

 ADF Code Corner

Oracle JDeveloper OTN Harvest 12 / 2010

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-DEC-2010

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

2

Table of Content

OTN Harvest – The Blog .. 3

How-to find out about ADF application deployment with ojdeploy 3

Grid Layouts in ADF Faces using Trinidad ... 3

Panel Collection Confusion .. 4

Reading the selected value of an ADF bound Select List in Java 5

Formatting the af:inputSpinNumber tick labels 6

Beginner Mistake: Adding a String to a value property 6

How-to create dependent model-driven LOV 7

How-to tell the ViewCriteria a user chose in an af:query component 15

How-to restrict file upload sizes in ADF Faces 18

Map Viewer doesn't show maps for large parts of the globe 19

How-to control user input based on RegEx pattern 19

Get social security numbers right ... 21

How-to call server side Java from JavaScript 23

How to expose an ADF application in a Portlet? 24

How-to query af:quickQuery on page load ? 24

How-to create a select one choice list of common time zones 25

How-to hide the close icon for task flows opened in dialogs 26

How-to populate different select list content per table row 27

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

3

OTN Harvest – The Blog

The content of this OTN Oracle JDeveloper Harvest summary is also available as a blog:

http://blogs.oracle.com/jdevotnharvest/

The Oracle "ADF Code Corner Oracle JDeveloper OTN Harvest" blog publishes information as close as

possible to their related question on the OTN forum. An extended version of the blog entries, containing

screen shots and images, is provided in this OTN Harvest Summary document.

How-to find out about ADF application deployment with ojdeploy

Using the ojdeploy, applications or modules can be deployed from a command line window or ANT. To

learn about how to use this utility, use the Oracle JDeveloper help

1 - In the search field you see in Oracle JDeveloper (right upper corner), type ojdeploy

2 - click "About Deploying from the Command Line"

Grid Layouts in ADF Faces using Trinidad

ADF Faces does provide a data table component but none to define grid layouts. Grids are common in

web design and developers often try HTML table markup wrapped in an f:verbatim tag or directly added

the page to build a desired layout. Usually these attempts fail, showing unpredictable results,

However, ADF Faces does not provide a table layout component, but Apache MyFaces Trinidad does.

The Trinidad trh:tableLayout component is a thin wrapper around the HTML table element and contains

a series of row layout elements, trh:rowLayout. Each trh:rowLayout component may contain one or many

trh:cellLayout components to format cells content.

<trh:tableLayout id="tl1" halign="left">

 <trh:rowLayout id="rl1" valign="top" halign="left">

 <trh:cellFormat id="cf1" width="100" header="true">

 <af:outputLabel value="Label 1" id="ol1"/>

 </trh:cellFormat>

 <trh:cellFormat id="cf2" header="true"

http://blogs.oracle.com/jdevotnharvest/
http://blogs.oracle.com/jdevotnharvest/

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

4

 width="300">

 <af:outputLabel value="Label 2" id="outputLabel1"/>

 </trh:cellFormat>

 </trh:rowLayout>

 <trh:rowLayout id="rowLayout1" valign="top" halign="left">

 <trh:cellFormat id="cellFormat1" width="100" header="false">

 <af:outputLabel value="Label 3" id="outputLabel2"/>

 </trh:cellFormat>

 </trh:rowLayout>

 ...

</trh:tableLayout>

To add the Trinidad tag library to your ADF Faces projects …

 Open the Component Palette and right mouse click into it

 Choose "Edit Tag Libraries" and select the Trinidad components. Move them to the "Selected

Libraries" section and Ok the dialog.

 The first time you drag a Trinidad component to a page, the web.xml file is updated with the required

filters

Note: The Trinidad tags don't participate in the ADF Faces RC geometry management. However, they

are JSF components that are part of the JSF request lifecycle.

ADF Faces RC components work well with Trinidad layout components that don't use PPR. The PPR

implementation of Trinidad is different from the one in ADF Faces. However, when you mix ADF Faces

components with Trinidad components, avoid Trinidad components that have integrated PPR behavior.

Only use passive Trinidad components.

Links:

http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_tableLayout.html

http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_rowLayout.html

http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_cellFormat.html

Panel Collection Confusion

A command button added to the toolbar of a Panel Collection component does not cause field validation

in a form when pressed. While this appears confusing it works as designed.

Instead of a full page re-rendering, ADF Faces events and components can trigger partial page refresh, in

which only portions of a page are refresh upon a request. In addition, some components – including the

af:popup and af:subForm - represent event roots. Event roots don't propagated event notification outside

of the component tag boundary, which means that the ADF Faces lifecycle only executed on components

that are children of the event root component. The PanelCollection component is an event root and

therefore only validates and refreshes data of its child components.

http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_tableLayout.html
http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_rowLayout.html
http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_cellFormat.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

5

Reading the selected value of an ADF bound Select List in Java

Model driven and dynamic select lists are bound to the JUCtrlListBinding in the associated binding

container. To read the user selected list value in a managed bean, the list component AutoSubmit

property must be set to "true". The ValueCangeListener property then references a managed bean

method to read the selected value.

At design time, the select list is defined in the PageDef file of the page or page fragment containing the

list component. The name of the list binding is referenced in the managed bean method shown below.

The managed bean method shown below accesses

- the selected list index

- the selected list value

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

6

- the selected list row

public void onEmployeesListChange(ValueChangeEvent valueChangeEvent) {

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 JUCtrlListBinding list =

 (JUCtrlListBinding) bindings.get("DepartmentId");

 //get the selected Row. This allows you to access row attributes that

 //are not displayed in the list

 Row selectedRow = (Row)list.getSelectedValue();

 //get selected list value. This is the value used to update the

 //Select List value attribute

 Number selectedValue = (Number) list.getAttributeValue();

 //get the selected list index

 Integer selectedIndx = (Integer) valueChangeEvent.getNewValue();

 // ... do more work here

}

Formatting the af:inputSpinNumber tick labels

To change the display format of the Input Spin Number tick labels from

to

,add an af:convertNumber tag as shown below

<af:convertNumber integerOnly="true" minIntegerDigits="2"/>

Beginner Mistake: Adding a String to a value property

A common beginner mistake, e.g. when working with the af:selectOneChoice component or the

af:inputText component, is to provide a static value to the component value property. For example:

<af:selectOneChoice id="soc1" value="Value One" autoSubmit="true">

 <af:selectItem label="…" value="…" />

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

7

 …

</af:selectOneChoice>

Or

<af:inputText id="it1" value="Hello World"/>

Assigning a non-updateable value to an UI input component however renders this component read-only,

which come by surprise for developers that are new to JavaServer Faces.

If you experience a problem like this, keep in mind that JSF components expect a value expression to be

provided in its value property. If you want to define a default value for a component, define a value for

the JavaBean variable which setter/getter method is referenced in the JSF component value property.

How-to create dependent model-driven LOV

Dependent list-of-values can be based on View Objects that have a parent-detail relationship or

independent View Objects, as explained in the following.

In the example, a View Object "VacationrequestsView" has two attributes, "DepartmentId" and

"EmployeeId" that reference values of the "DepartmentsView" and the "EmployeesView" objects.

To build a dependent model driven list-of-value, open the "VacationrequestsView" view object in the

View Object editor. Select the "DepartmentId" attribute and click the green plus icon next to the List of

Values: DepartmentId header.

In the opened Create List of Values" editor, press the green plus icon at the end of the List Data

Source field.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

8

Select the "DepartmentView" View Object and press the first arrow icon to create a View Accessor

instance of it.

Press OK to close the dialog. In the Create List of Values dialog, select DepartmentId as the List

Attribute.

Select the UI Hints tab to define the list as a list-of-value. Choose Input Text with List of Values as

the Default List Type.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

9

Select the attributes that should be shown in the LOV result table.

Next, double click the "EmployeesView" view object that provides the dependent list values. In the View

Object editor, click the green plus icon next to the Bind Variables header.

In the Bind Variable editor, create a bind variable with the data type of the data passed in from the first

LOV selection. In this example, the data type is oracle.jbo.domain.Number. The bind variable

should be configured as updatable and not required. Specifying the bind variable as not required allows

you to run the View Object also when the bind variable does not have a value. This allows the variable to

be used in a View Criteria, which is what is used in this sample to filter the LOV query based on the user

selection in the first LOV.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

10

OK the dialog. After creating the bind variable, press the green plus icon next to the View Criteria

header of the "EmployeesView" View Object editor.

In the Edit View Criteria editor, provide a meaningful name for the new criteria and press the Add Item

button. Select DepatrtmentId as the attribute to apply the named where clause (the view criteria) to.

Choose Bind Variable as the Operand, and select the bind variable created earlier. This step defines a

where clause that filters employee data to only match employees of a department Id defined by the bind

variable.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

11

Still in the Edit View Criteriadialog, uncheck the Ignore Null Valueschckbox before pressing OK.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

12

Open the View Object editor for the "VacationsrequestsView" object and select the EmployeeId

attribute. Press the plus icon next to the List of Values: EmployeeId header.

In the opened Create List of Values dialog, press the green plus icon next to the List Data Source field.

In the opened View Accessors dialog, select the "EmployeesView" entry and press the first shuttle

button.

Before closing the dialog, press the Edit button next to the View Accessors label.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

13

In the Edit View Accessor: EmployeesView1 editor, select the View criteria name in the Available list

field and shuttle it to the Selected list. This applies the View criteria to the EmployeesView LOV query.

Point the View Criteria bind variable – deptId in the example – to the attribute in the View Object that

holds the value for the first LOV selection.

Select EmployeeId as the list attribute that updates the "VacationsrequestView" attribute and press the

UI Hints tab to define the list as a list-of-value at runtime.

After this, you can run the ADF Business Components tester from the Application Module context menu

to try the dependent list-of-values.

Id the dependent list-of-values work in the ADF Business Components tester, create an ADF Faces page

and drag the VacationsrequestsView instance as an input form.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

14

Because of the model side settings, the DepartmentId and EmployeeId attributes are represented by LOV

components.

Select the first list-of-value component – DepartmentId in the sample – and open the Property Inspector.

Set the AutoSubmit property to true.

Then select the second list-of-values – EmployeeId in the sample – and point its PartialTriggers

property to the Id of the first-list-of value component. For this, you can use the Edit option of the

PartialTriggers context menu.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

15

When you run the page, then the dependent list-of-values behave exactly as when using the ADF Business

Components tester

Note: The LOV initial query and search field can be configured on the model side LOV definition.

Note: The Vacationrequests table is not part of the Oracle HR schema. To reproduce the sample

documented in this section, you need to first create the table with a foreign key reference to the

"DepartmentId" attribute in the "Departments" table and an "EmployeeId" reference in the "Employees"

table.

How-to tell the ViewCriteria a user chose in an af:query component

The af:query component defines a search form for application users to enter search conditions for a

selected View Criteria. A View Criteria is a named where clauses that you can create declaratively on the

ADF Business Component View Object.

A default View Criteria that allows users to search in all attributes exists by default and exposed in the

Data Controls panel.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

16

To create an ADF Faces search form, expand the View Object node that contains the View Criteria

definition in the Data Controls panel. Drag the View Criteria that should be displayed as the default

criteria onto the page and choose Query in the opened context menu. One of the options within the

Query option is to create an ADF Query Panel with Table, which displays the result set in a table view,

which can have additional column filters defined.

To intercept the user query for modification, or just to know about the selected View Criteria, you

override the QueryListener property on the af:query component of the af:table component.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

17

Overriding the QueryListener on the table makes sense if the table allows users to further filter the result

set using column filters.

To override the default QueryListener, copy the existing string referencing the binding layer to the

clipboard and then select Edit from the field context menu (press the arrow icon to open it) to selecte or

create a new managed bean and method to handle the query event.

 The code below is from a managed bean with custom query listener handlers defined for the af:query

component and the af:table component. The default listener entry copied to the clipboard was

"#{bindings.ImplicitViewCriteriaQuery.processQuery}"

 public void onQueryList(QueryEvent queryEvent) {

 // The generated QueryListener replaced by this method

 //#{bindings.ImplicitViewCriteriaQuery.processQuery}

 QueryDescriptor qdes = queryEvent.getDescriptor();

 //print or log selected View Criteria

 System.out.println("NAME "+qdes.getName());

 //call default Query Event

 invokeQueryEventMethodExpression("

 #{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

18

 }

public void onQueryTable(QueryEvent queryEvent) {

 // The generated QueryListener replaced by this method

 //#{bindings.ImplicitViewCriteriaQuery.processQuery}

 QueryDescriptor qdes = queryEvent.getDescriptor();

 //print or log selected View Criteria

 System.out.println("NAME "+qdes.getName());

 invokeQueryEventMethodExpression(

 "#{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);

}

private void invokeQueryEventMethodExpression(

 String expression, QueryEvent queryEvent){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory efactory

 fctx.getApplication().getExpressionFactory();

 MethodExpression me =

 efactory.createMethodExpression(elctx,expression,

 Object.class,

 new Class[]{QueryEvent.class});

 me.invoke(elctx, new Object[]{queryEvent});

}

Of course, this code also can be used as a starting point for other query manipulations and also works

with saved custom criterias.

To read more about the af:query component, see:

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

How-to restrict file upload sizes in ADF Faces

Many of the ADF Faces configuration settings use Apache Trinidad files or context parameters. This is

also true when configuring the web.xml file for file upload settings used by the af:inputFile component.

<context-param>

 <!-- Maximum memory per request (in bytes) -->

 <param-name>

 org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY

 </param-name>

- <!-- Use 500K -->

 <param-value>512000</param-value>

</context-param>

<context-param>

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

19

<!-- Maximum disk space per request (in bytes) -->

 <param-name>

 org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE

 </param-name>

<!-- Use 20,000K -->

 <param-value>20480000</param-value>

</context-param>

For more information about file upload in ADF Faces, see:

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_inputFile.html

Map Viewer doesn't show maps for large parts of the globe

"The Map component provides the ablity to display different maps and enables high performance panning, zooming and

display of different layers (aka Themes) of data. Unlike other ADF Faces component, the Map component itself doesn't

take a data model via the 'value' attribute. Instead, it only needs a configuration that contains a URL to a Map Viewerer

service and optionally a Geo-Coder service if address data will have to be converted to longitutde and latitude."[1]

However, large parts of the globe are not displayed when testing the ADF Faces DVT map viewer

component using the Oracle map server accessible from http://elocation.oracle.com/mapviewer. The

reason for this is that the exposed map server is for demo purpose only and does not have all the maps

installed that exist. There also is no guarantee that the service is up. If you want to try the Oracle map

viewer and the ADF Faces DVT map viewer component then the

http://elocation.oracle.com/mapviewer is good to use. If you want to integrate maps in your business

applications then you need a license and local installation of the map server. If the demo server is

accessible from a browser but not from Oracle JDeveloper, check your proxy settings in Tools |

Preferences | Web Browser and Proxy

[1]: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12418/tagdoc/dvt_map.html

How-to control user input based on RegEx pattern

ADF Faces provides Regular Expression validation component that allow developers to test user input

for a specific input pattern like numbers or characters only, value ranges and more. Validation however

works after the fact, which means the user already provided a wrong entry. To prevent wrong user entry

to an input field, JavaScript can be used to ignore the key press when it doesn't fit a specific pattern.

 <af:inputText label="RegEx Sample - Values between 1 - 50" id="it2">

 <af:clientListener method="applyRegExPatternFilter('^[1-9]{1}$|^[1-4]{1}[0-9]{1}$|^50$')"

 type="keyDown"/>

</af:inputText>

The Regular expression in the sample code above allows values between 1 and 50 to be entered in a text

input field. Any value lower or bigger than this is suppressed and the keyboard entry is not accepted. The

JavaScript function for this is shown below:

// JavaScript filter that suppresses user input if the defined regular

// expression pattern is not met. Use this pattern if you want to

// enforce specific user input patterns.

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_inputFile.html
http://elocation.oracle.com/mapviewer
http://elocation.oracle.com/mapviewer
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12418/tagdoc/dvt_map.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

20

function applyRegExPatternFilter(pattern){

 return function(evt){

 var inputField = evt.getCurrentTarget();

 var keyCode = evt.getKeyCode();

 var oldValue = inputField.getSubmittedValue();

 //allowed keys to navigate, delete and tab out

 var controlKeys = new Array(AdfKeyStroke.ARROWRIGHT_KEY,

 AdfKeyStroke.ARROWLEFT_KEY,

 AdfKeyStroke.BACKSPACE_KEY,

 AdfKeyStroke.DELETE_KEY,

 AdfKeyStroke.END_KEY,

 AdfKeyStroke.ESC_KEY,

 AdfKeyStroke.TAB_KEY);

 var isControlKey = false;

 //check if the pressed key is a control key

 for (var i=0; i < controlKeys.length; ++i){

 if (controlKeys[i] == keyCode) {

 isControlKey = true;

 break;

 }

 }

 if (isControlKey == false)

 {

 var regExp = new RegExp(pattern,"i");

 var hasMatch = false;

 var keyChar =

 AdfKeyStroke.getKeyStroke(keyCode).toMarshalledString();

 hasMatch = regExp.test(oldValue.concat(keyChar));

 if(!hasMatch)

 inputField.setValue(oldValue);

 evt.cancel();

 }

 }

 }

}

You add the JavaScript to a page by either adding it to the body area of an af:resource tag, or referencing

it in an external JS file from the source property of the af:resource tag.

The JavaScript function uses a callback to allow developers to pass additional arguments into it. Using a

JavaScript callback like this allows writing generic code that can easily go into external JavaScript files. To

change the JavaScript sample to only allow numeric entries, use the following configuration

<af:inputText label="RegEx Sample - Values between 1 - 50" id="it2">

 <af:clientListener method="applyRegExPatternFilter('^[0-9]*$')"

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

21

 type="keyDown"/>

</af:inputText>

Using the same JavaScript function with the ^[0-9]*$ expression blocks all user entry of characters.

Note: The Regular Expression used with this JavaScript function must return true for all user entry until

the user attempts to add a wrong character. E.g. a RegEx expression to verify mail addresses will not work

with this code as it requires a complete mail address to be provided to work.

Note: Using JavaScript like this with af:inputDate doesn't work. The getSubmittedValue does not return a

date object but a string, which fails when setting it as a value on the inputDate field.

Get social security numbers right

A common development use case is to guide users when working with input fields that require a specific

input format. For example, credit card and social security number fields use character delimiters that you

may want to enforce on a field. The following sample uses JavaScript to add a defined delimiter character

according to a defined character.

The American social security pattern is defined as xxx-xx-xxxx. Users that type 123456789 should have

the input automatically corrected to 123-45-6789 while they type. Also, the field should be protected from

character input and input length larger than the provided pattern.

<af:inputText label="Social Security Number" id="it1"

 rendered="true">

 <af:clientListener

 method="handleNumberFormatConversion('xxx-xx-xxxx','-')"

 type="keyDown"/>

</af:inputText>

With the above configuration, the handleNumberFormatConversion method is called for each key

stroke in the input field. Additional arguments provided to the function are the input pattern and the

character delimiter.

The JavaScript code that is addressed by the clientListener on the InputText is shown below:

// JavaScript function that applies a specific format to numeric input.

// The pattern argument defines the input mask, e.g. xxx-xx-xxxx. The

// delimiter defines the delimiter character to add to the user input

// based on the pattern

function handleNumberFormatConversion(pattern, delimiter){

 return function(evt){

 var inputField = evt.getCurrentTarget();

 var keyPressed = evt.getKeyCode();

 var oldValue = inputField.getSubmittedValue();

 //keycode 48-57 are keys 0-9

 //keycode 96-105 are numbpad keys 0-9

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

22

 var validKeys = new Array(48,49,50,51,52,53,54,55,

 56,57,96,97,98,99,100,

 101,102,103,104,105,

 AdfKeyStroke.ARROWRIGHT_KEY,

 AdfKeyStroke.ARROWLEFT_KEY,

 AdfKeyStroke.BACKSPACE_KEY,

 AdfKeyStroke.DELETE_KEY,

 AdfKeyStroke.END_KEY,

 AdfKeyStroke.ESC_KEY,

 AdfKeyStroke.TAB_KEY);

 var numberKeys = new Array(48,49,50,51,52,53,54,55,

 56,57,96,97,98,99,100,

 101,102,103,104,105);

 var isValidKey = false;

 for (var i=0; i < validKeys.length; ++i){

 if (validKeys[i] == keyPressed) {

 isValidKey = true;

 break;

 }

 }

 if(isValidKey){

 //key is valid, ensure formatting is correct

 var isNumberKey = false;

 for (var n=0; n < numberKeys.length; ++n){

 if(numberKeys[n] == keyPressed){

 isNumberKey = true;

 break;

 }

 }

 if(isNumberKey){

 //if the user provided enough data, cancel

 //the input

 var formatLength = pattern.length;

 if(formatLength == oldValue.length){

 inputField.setValue(oldValue);

 evt.cancel();

 }

 //more values allowed. Check if delimiter needs to be set

 else{

 //if the date format has a delimiter as the next

 //character, add it

 if(pattern.charAt(oldValue.length)== delimiter){

 oldValue = oldValue+delimiter;

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

23

 inputField.setValue(oldValue);

 }

 }

 }

 }

 else{

 //key is not valid, so undo entry

 inputField.setValue(oldValue);

 evt.cancel();

 }

 }

}

The sample is for number only input. However, changing it for character or mixed input is not difficult to

do. Note however that you can't use this with af:inputDate component because this component doesn't

work well when setting String formatted values as the value property.

How-to call server side Java from JavaScript

The af:serverListener tag in Oracle ADF Faces allows JavaScript to call into server side Java. The

example shown below uses an af:clientListener tag to invoke client side JavaScript in response to

a key stroke in an Input Text field. The script then call a defined af:serverListener by its name

defined in the type attribute. The server listener can be defined anywhere on the page, though from a

code readability perspective it sounds like a good idea to put it close to from where it is invoked.

<af:inputText id="it1" label="...">

 <af:clientListener method="handleKeyUp" type="keyUp"/>

 <af:serverListener type="MyCustomServerEvent"

 method="#{mybean.handleServerEvent}"/>

</af:inputText>

The JavaScript function below reads the event source from the event object that gets passed into the

called JavaScript function. The call to the server side Java method, which is defined on a managed bean, is

issued by a JavaScript call to AdfCustomEvent. The arguments passed to the custom event are the

event source, the name of the server listener, a message payload formatted as an array of key:value pairs,

and true/false indicating whether or not to make the call immediate in the request lifecycle.

<af:resource type="javascript">

 function handleKeyUp (evt) {

 var inputTextComponen = event.getSource();

 AdfCustomEvent.queue(inputTextComponent,

 "MyCustomServerEvent ",

 {fvalue:component.getSubmittedValue()},

 false);

 event.cancel();}

 </af:resource>

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

24

The server side managed bean method uses a single argument signature with the argument type being

ClientEvent. The client event provides information about the event source object – as provided in

the call to AdfCustomEvent, as well as the payload keys and values. The payload is accessible from a

call to getParameters, which returns a HashMap to get the values by its key identifiers.

 public void handleServerEvent(ClientEvent ce){

 String message = (String) ce.getParameters().get("fvalue");

 …

 }

Find the tag library at:

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

How to expose an ADF application in a Portlet?

The Oracle JSF Portlet Bridge allows developers to declaratively expose Oracle ADF applications and task

flows as JSR 168 portlets. The configuration requires the definition of the initial view which then becomes

the starting point for navigation within the application. Note that applications exposed in a Portlet must

be able to run stand alone. This excludes applications that only consist of a bounded task flow using page

fragments.

http://download.oracle.com/docs/cd/E14571_01/webcenter.1111/e10148/jpsdg_bridge.htm#CACBAIJD

How-to query af:quickQuery on page load ?

A quick query component doesn't execute the query on page load. Check the "Query Automatically"

checkbox in the ViewCriteria definition does not work as it does for the af:query component or list of

values. To automatically query the af:quickQuery component, select the page's PageDef.xml file and

expand the Executables node.

Select the ImplicitViewCriteriaQuery entry and set the InitialQueryOverriden property to true.

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html
http://download.oracle.com/docs/cd/E14571_01/webcenter.1111/e10148/jpsdg_bridge.htm#CACBAIJD

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

25

How-to create a select one choice list of common time zones

ADF Faces provides an option to query a list of common timezones for display in a Select One Choice

component. The EL expression for this is #{af:getCommonTimeZoneSelectItems()}.

To use this expression in a Single Select One Choice component, drag and drop the component from the

Oracle JDeveloper Component Palette into a JSF page. In the opened dialog, copy the expression into

the Value property below the Bind to list (select items) header.

Complete the dialog and run the page to see all time zones.

The page source is shown below

<af:selectOneChoice label="TimeZones" id="soc1">

 <f:selectItems value="#{af:getCommonTimeZoneSelectItems()}"

 id="si1"/>

</af:selectOneChoice>

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

26

For more information about using time zones with the af:inputDate component, please read section 9.5.3
What You May Need to Know About Selecting Time Zones without the inputDate Component of
"Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework 11g" :

http://docs.tpu.ru/docs/oracle/en/owl/E14571_01/web.1111/b31973/af_input.htm#BABBJECD

How-to hide the close icon for task flows opened in dialogs

ADF bounded task flows can be opened in an external dialog and return values to the calling application

as documented in chapter 19 of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application

Development Framework11g:

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_dialogs.htm#BABBAFJB

Setting the task flow call activity property Run as Dialog to true and the Display Type property to

inline-popup opens the bounded task flow in an inline popup. To launch the dialog, a command item is

used that references the control flow case to the task flow call activity

<af:commandButton text="Lookup" id="cb6"

 windowEmbedStyle="inlineDocument" useWindow="true"

 windowHeight="300" windowWidth="300"

 action="lookup" partialSubmit="true"/>

By default, the dialog that contains the task flow has a close icon defined that if pressed closes the dialog

and returns to the calling page. However, no event is sent to the calling page to handle the close case.

To avoid users closing the dialog without the calling application to be notified in a return listener, the

close icon shown in the opened dialog can be hidden using ADF Faces skinning.

The following skin selector hides the close icon in the dialog

af|panelWindow::close-icon-style{ display:none; }

To learn about skinning, see chapter 20 of Oracle Fusion Middleware Web User Interface Developer's

Guide for Oracle Application Development Framework

http://docs.tpu.ru/docs/oracle/en/owl/E14571_01/web.1111/b31973/af_input.htm#BABBJECD
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_dialogs.htm#BABBAFJB

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

27

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

However, the skin selector that is shown above hides the close icon from all af:panelWindow usages,

which may not be intended. To only hide the close icon from dialogs opened by a bounded task flow call

activity, the ADF Faces component styleClass property can be used.

The af:panelWindow component shown below has a "withCloseWindow" style class property name

defined. This name is referenced in the following skin selector, ensuring that the close icon is displayed

af|panelWindow.withCloseIcon::close-icon-style{ display:block; }

In summary, to hide the close icon shown for bounded task flows that are launched in inline popup

dialogs, the default display behavior of the close icon of the af:panelWindow needs to be reversed.

Instead to always display the close icon, the close icon is always hidden, using the first skin selector. To

show the disclosed icon in other usages of the af:panelWindow component, the component is flagged

with a styleClass property value as shown below

<af:popup id="p1">

 <af:panelWindow id="pw1" contentWidth="300" contentHeight="300"

 styleClass="withCloseIcon"/>

</af:popup>

The "withCloseIcon" value is referenced in the second skin definition

af|panelWindow.withCloseIcon::close-icon-style{ display:block; }

The complete entry of the skin CSS file looks as shown below:

af|panelWindow::close-icon-style{ display:none; }

af|panelWindow.withCloseIcon::close-icon-style{ display:block; }

How-to populate different select list content per table row

A frequent requirement posted on the OTN forum is to render cells of a table column using instances of

af:selectOneChoices with each af:selectOneChoice instance showing different list values.

To implement this use case, the select list of the table column is populated dynamically from a managed

bean for each row. The table's current rendered row object is accessible in the managed bean using the

#{row} expression, where "row" is the value added to the table's var property.

<af:table var="row">

 …

 <af:column …>

 <af:selectOneChoice ...>

 <f:selectItems value="#{browseBean.items}"/>

 </af:selectOneChoice>

 </af:column

</af:table>

The browseBean managed bean referenced in the code snippet above has a setItems and getItems

method defined that is accessible from EL using the #{browseBean.items} expression.

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
12 / 2010

28

When the table renders, then the var property variable – the #{row} reference – is filled with the data

object displayed in the current rendered table row.

The managed bean getItems method returns a List<SelectItem>, which is the model format

expected by the f:selectItems tag to populate the af:selectOneChoice list.

public void setItems(ArrayList<SelectItem> items) {}

//this method is executed for each table row

public ArrayList<SelectItem> getItems() {

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory efactory =

 fctx.getApplication().getExpressionFactory();

 ValueExpression ve =

 efactory.createValueExpression(elctx, "#{row}", Object.class);

 Row rw = (Row) ve.getValue(elctx);

 //use one of the row attributes to determine which list to query and

 //show in the current af:selectOneChoice list

 // …

 ArrayList<SelectItem> alsi = new ArrayList<SelectItem>();

 for(...){

 SelectItem item = new SelectItem();

 item.setLabel(...);

 item.setValue(...);

 alsi.add(item);

 }

 return alsi;

}

For better performance, the ADF Faces table stamps it data rows. Stamping means that the cell renderer

component – af:selectOneChoice in this example – is instantiated once for the column and then

repeatedly used to display the cell data for individual table rows. This however means that you cannot

refresh a single select one choice component in a table to change its list values. Instead the whole table

needs to be refreshed, rerunning the managed bean list query.

Be aware that having individual list values per table row is an expensive operation that should be used

only on small tables for Business Services with low latency data fetching (e.g. ADF Business Components

and EJB) and with server side caching strategies for the queried data (e.g. storing queried list data in a

managed bean in session scope).

RELATED DOCOMENTATION

