

 ADF Code Corner

Oracle JDeveloper OTN Harvest 02 / 2011

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
28-FEB-2011

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

2

February 2011 Issue – Table of Content

Does ADF Faces work with JavaScript disabled? 2

How to set a default activity in an unbounded task flow 2

How to set the initial component focus ... 3

How to deploy global managed beans .. 3

getRow(key) and findByKey(key,1) inconsistency 4

How to protect UI components using OPSS Resource Permissions ... 5

How-to change the required field indicator location 10

How to launch LOV and Date dialogs using the keyboard 11

How to filter tree node child data .. 12

How to ensure serverListener events fires before action events 18

Best practices for good performance in ADF 19

Does ADF Faces work with JavaScript disabled?

No. ADF Faces requires browsers to have JavaScript enabled.

How to set a default activity in an unbounded task flow

An unbounded task flow does not have clearly defined boundaries and thus does not have a default

activity to start an application. The unbounded task flow definition is the equivalent of the JavaServer

Faces faces-config.xml file and users may request any of its defined view activities from a browser

URL. To enforce a defined entry to an application, developers can

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

3

 Use a phase listener that redirects a request to a start page if the request type is GET and the

requested view id is not the view to start with

 Only add a single view activity definition to the unbounded task flow and then use a task flow

activity to continue with bounded task flows. In this case the URL Invoke property of all task

flows should be set to url-invoke-disallowed so task flows are not directly accessible from browsers.

 Use bounded task flows only and set the URL Invoke property of all task flows but one to url-

invoke-disallowed. This allows direct browser GET access for a single bounded task flow only. The

unbounded task flow definition is empty

How to set the initial component focus

In ADF Faces, you use the af:document tag's initialFocusId to define the initial component focus. For

this, specify the id property value of the component that you want to put the initial focus on. Identifiers

are relative to the component, and must account for NamingContainers. You can use a single colon to

start the search from the root, or multiple colons to move up through the NamingContainers - "::" will

pop out of the component's naming container and begin the search from there, ":::" will pop out of two

naming containers and begin the search from there. Alternatively you can add the naming container IDs

as a prefix to the component Id, e.g. nc1:nc2:comp1.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_document.html

To set the initial focus to a component located in a page fragment that is exposed through an ADF

region, keep in mind that ADF Faces regions – af:region – is a naming container too. To address an

input text field with the id "it1" in an ADF region exposed by an af:region tag with the id r1, you use

the following reference in af:document:

<af:document id="d1" initialFocusId="r1:0:it1">

Note the "0" index in the client Id. Also, make sure the input text component has its clientComponent

property set to true as otherwise no client component exist to put focus on.

How to deploy global managed beans

"Global managed" beans is the term I use in this post to describe beans that are used across applications.

Global managed beans contain helper – or utility – methods like or instead of JSFUtils and ADFUtils.

The difference between global managed beans and static helper classes like JSFUtis and ADFUtils is that

they are EL accessible, providing reusable functionality that is ready to use on UI components and – if

accessed from Java – in other managed beans.

For example, the ADF Faces page template (af:pageTemplate) allows you to define attributes for

the consuming page to pass in object references or strings into it. It does not have method attributes that

allow command components contained in a template to invoke listeners in managed beans and the ADF

binding layer, or to execute actions. To create templates that provide global button or menu functionality,

like logon, logout, print etc., an option for developers is to deployed managed beans with the ADF Faces

page templates. To deploy a managed bean with a page template, create an ADF library from the project

containing the template definition and import this ADF library into the target project using the Resource

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_document.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

4

palette. When importing an ADF library, all its content is added to the project, including page template

definitions, managed bean sources and configurations.

More about page templates

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_pageTemplate.html

Using a globally configured managed bean allows you to use Expression Language in the UI to access

common functionality but also use Java in application specific managed beans. Storing the faces-

config.xml file in the JAR file META-INF directory automatically makes it available when the JAR file is

found in the class path of an application.

Another use-case for globally configured managed beans is for creating helper methods to be used in

many applications. Instead of creating a base managed bean class that then is extended by all managed

beans used in applications, you can deploy a managed bean in a JAR file and add the faces-config.xml file

with the managed bean configuration to the JAR's META-INF folder as shown below.

getRow(key) and findByKey(key,1) inconsistency

Calling getRow(key) on a RowSet seems to return different results than using findByKey(key,1)

on the same set. The getRow(Key) API iterates the rows in the RowSet (fetching rows from the DB as

needed) until the key matches. In the worst case, if your VO sorts data and the key you are looking for is

the last row in the row set, you fetch all rows from the database just to find the one you're looking for.

Also, if you have a View with ORDER BY <ATTRIBUTE> and you call setMaxFetchSize(5) on the VO

at runtime, it will only fetch 5 rows and the getRow(key) may not find a result because it is not in the

first five result rows in sorted order. In this case, the getRow(key) method will return a different result

than the findByKey(key,1) method searching the same RowSet.

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_pageTemplate.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

5

In contrast, findByKey(key,1) formulates a targeted query using the key attribute(s) and retrieves the

row from the database if it cannot already find the row in the cache.

The use of findByKey is recommended to use unless you have a use case that demands using the

getRow method

(answered by Steve Muench)

How to protect UI components using OPSS Resource Permissions

ADF security protects ADF bound pages, bounded task flows and ADF Business Components entities

with framework specific JAAS permissions classes (RegionPermission, TaskFlowPermission

and EntityPermission). If used in combination with the ADF security expression language and

security checks performed in Java, this protection already provides you with fine grained access control

that can also be used to secure UI components like buttons and input text field. For example, the EL

shown below disables the user profile panel tabs for unauthenticated users:

<af:panelTabbed id="pt1" position="above">

 ...

 <af:showDetailItem

 text="User Profile" id="sdi2"

 disabled="#{!securityContext.authenticated}">

 </af:showDetailItem>

 ...

</af:panelTabbed>

The next example disables a panel tab item if the authenticated user is not granted access to the bounded

task flow exposed in a region on this tab:

<af:panelTabbed id="pt1" position="above">

 ...

 <af:showDetailItem text="Employees Overview" id="sdi4"

 disabled="#{!securityContext.taskflowViewable

 ['/WEB-INF/EmployeeUpdateFlow.xml#EmployeeUpdateFlow']}">

 </af:showDetailItem>

 ...

</af:panelTabbed>

Security expressions like shown above allow developers to check the user permission, authentication and

role membership status before showing UI components. Similar, using Java, developers can use code like

shown below to verify the user authentication status:

ADFContext adfContext = ADFContext.getCurrent();

SecurityContext securityCtx = adfContext.getSecurityContext();

boolean userAuthenticated = securityCtx.isAuthenticated();

Note that the Java code lines use the same security context reference that is used with expression

language.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

6

But is this all that there is? No ! The goal of ADF Security is to enable all ADF developers to build secure

web application with JAAS (Java Authentication and Authorization Service). For this, more fine grained

protection can be defined using the ResourcePermission, a generic JAAS permission class owned

by the Oracle Platform Security Services (OPSS). Using the ResourcePermission class, developers

can grant permission to functional parts of an application that are not protected by page or task flow

security.

For example, an application menu allows creating and canceling product shipments to customers.

However, only a specific user group – or application role, which is the better way to use ADF Security – is

allowed to cancel a shipment.

To enforce this rule, a permission is needed that can be used declaratively on the UI to hide a menu entry

and programmatically in Java to check the user permission before the action is performed.

Note that multiple lines of defense are what you should implement in your application development.

Don't just rely on UI protection through hidden or disabled command options.

To create menu protection permission for an ADF Security enable application, you choose Application |

Secure | Resource Grants from the Oracle JDeveloper menu.

The opened editor shows a visual representation of the jazn-data.xml file that is used at design time

to define security policies and user identities for testing. An option in the Resource Grants section is to

create a new Resource Type.

A list of pre-defined types exists for you to create policy definitions for. Many of these pre-defined types

use the ResourcePermission class.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

7

To create a custom Resource Type, for example to protect application menu functions, you click the

green plus icon next to the Resource Type select list.

The Create Resource Type editor that opens allows you to add a name for the resource type, a display

name that is shown when granting resource permissions and a description. The ResourcePermission

class name is already set. In the menu protection sample, you add the following information:

Name: MenuProtection

Display Name: Menu Protection

Description: Permission to grant menu item permissions

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

8

OK the dialog to close the resource permission creation.

To create a resource policy that can be used to check user permissions at runtime, click the green plus

icon in the Resources section of the Resource Grants section.

In the Create Resource dialog, provide a name for the menu option you want to protect. To protect the

cancel shipment menu option, create a resource with the following settings

Resource Type: Menu Protection

Name: Cancel Shipment

Display Name: Cancel Shipment

Description: Grant allows user to cancel customer good

shipment

A new resource Cancel Shipmentis added to the Resources panel. Initially the resource is not granted to

any user, enterprise or application role. To grant the resource, click the green plus icon in the Granted To

section, select the Add Application Role option and choose one or more application roles in the opened

dialog.

Finally, you click the process action to define the policy. Note that permission can have multiple actions

that you can grant individually to users and roles. The cancel shipment permission for example could have

another action "view" defined to determine which user should see that this option exist and which users

don't.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

9

To use the cancel shipment permission, select the disabled property on a command item, like

af:commandMenuItem and click the arrow icon on the right. From the context menu, choose the

Expression Builder entry. Expand the ADF Bindings | securityContext node and click the

userGrantedResource option.

Hint: You can expand the Description panel below the EL selection panel to see an example of how the

grant should look like.

The EL that is created needs to be manually edited to show as

#{!securityContext.userGrantedResource[

 'resourceName=Cancel Shipment;resourceType=MenuProtection;action=process']}

OK the dialog so the permission checking EL is added as a value to the disabled property. Running the

application and expanding the Shipment menu shows the Cancel Shipments menu item disabled for all

users that don't have the custom menu protection resource permission granted.

Note: Following the steps listed above, you create a JAAS permission and declaratively configure it for

function security in an ADF application. Do you need to understand JAAS for this? No! This is one of

the benefits that you gain from using the ADF development framework.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

10

To implement multi lines of defense for your application, the action performed when clicking the enabled

"Cancel Shipments" option should also check if the authenticated user is allowed to use process it. For

this, code as shown below can be used in a managed bean

public void onCancelShipment(ActionEvent actionEvent) {

 SecurityContext securityCtx =

 ADFContext.getCurrent().getSecurityContext();

 //create instance of ResourcePermission(String type, String name,

 //String action)

 ResourcePermission resourcePermission =

 new ResourcePermission("MenuProtection","Cancel Shipment",

 "process");

 boolean userHasPermission =

 securityCtx.hasPermission(resourcePermission);

 if (userHasPermission){

 //execute privileged logic here

 }

}

Note: To learn more abput ADF Security, visit

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH

How-to change the required field indicator location

By default, the required field indicator that you specify for an input field is left aligned to the component

label as shown in the image below.

<af:inputText label="Mail" id="it3"

 requiredMessageDetail="You must provide your mail address to send feedback to the forum"

 required="true"/>

To change the icon position to show to the right of the label, you use skinning as shown below

.AFRequiredIconStyle{

 float:right;

}

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

11

More about skinning in ADF Faces:

http://download.oracle.com/docs/cd/E14571_01/web.1111/b31973/af_skin.htm

How to launch LOV and Date dialogs using the keyboard

Using the ADF Faces JavaScript API, developers can listen for user keyboard input in input components

to filter or respond to specific characters or key combination. The JavaScript shown below can be used

with an af:clientListener tag on af:inputListOfValues or af:inputDate. At runtime,

the JavaScript code determines the component type it is executed on and either opens the LOV dialog or

the input Date popup.

<af:resource type="javascript">

 /**

 * function to launch dialog if cursor is in LOV or

 * input date field

 * @param evt argument to capture the AdfUIInputEvent object

 */

 function launchPopUpUsingF8(evt) {

 var component = evt.getSource();

 if (evt.getKeyCode() == AdfKeyStroke.F8_KEY) {

 //check for input LOV component

 if (component.getTypeName() == 'AdfRichInputListOfValues') {

 AdfLaunchPopupEvent.queue(component, true);

 //event is handled on the client. Server does not need

 //to be notified

 evt.cancel();

 }

 //check for input Date component

 else if (component.getTypeName() == 'AdfRichInputDate') {

 //the inputDate af:popup component ID always is ::pop

 var popupClientId = component.getId() + '::pop';

 var popup = component.findComponent(popupClientId);

 var hints = {align : AdfRichPopup.ALIGN_END_AFTER,

 alignId : component.getAbsoluteLocator()};

 popup.show(hints);

 //event is handled on the client. Server does not need

 //to be notified

 evt.cancel();

 }

http://download.oracle.com/docs/cd/E14571_01/web.1111/b31973/af_skin.htm

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

12

 }

}

</af:resource>

The af:clientListener that calls the JavaScript is added as shown below.

<af:inputDate label="Label 1" id="id1">

 <af:clientListener method="launchPopUpUsingF8" type="keyDown"/>

</af:inputDate>

As you may have noticed, the call to open the popup is different for the af:inputListOfValues and

the af:inputDate. For the list of values component, an ADF Faces AdfLaunchPopupEvent is

queued with the LOV component passed s an argument. Launching the input date popup is a bit more

complicate and requires you to lookup the implicit popup dialog and to open it manually. Because the

popup is opened manually using the show() method on the af:popup component, the alignment of

the dialog also needs to be handled manually. For this, the popup component specifies alignment hints,

that for the ALIGN_END_AFTER hint aligns the dialog at the end and below the date component. The

align Id hint specifies the component the dialog is relatively positioned to, which of course should be the

input date field. At runtime, the popup opens as shown below.

The ADF Faces JavaScript API and how to use it is further explained in the Using JavaScript in ADF Faces

Rich Client Applications whitepaper available from the Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

An ADF Insider recording about JavaScript in ADF Faces can be watched from here

http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/adf-insider-javascript/adf-insider-

javascript.html

How to filter tree node child data

When you drag an ADF Business Components View Object from the Data Controls panel in Oracle

JDeveloper and drop it as an ADF bound ADF Faces tree component, two things happen implicitly:

1. A tree binding is created that allows you to configure the hierarchical structure of the data

presented in the tree.

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf
http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/adf-insider-javascript/adf-insider-javascript.html
http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/adf-insider-javascript/adf-insider-javascript.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

13

2. An itertator binding is created for the View Object that represents the top level node, the root

node. No additional iterators are created for the dependent View Objects that populate the tree

nodes

A frequent requirement of developers is to manipulate the tree node child query to filter data – for

example employee records – displayed in the tree.

Example 113 on Steve Muench's Not Yet Documented ADF Sample Applications blog explains how to filter

View Objects that are exposed as child nodes in an ADF bound tree. Though the sample is written with

and for Oracle JDeveloper 10.1.3, it is still valid. View Objects are hierarchically connected through View

Links. Accessors exposed on the View Links provide developers a handle to the child collection.

In the following, I explain a solution that closely follows Steve Muench's original example, except that it

uses a View Criteria to filter the dependent EmployeesView rows. The sample uses the Departments and

Employees table of the Oracle RDBMS HR sample schema. To create the Model project, just run the

Create Business Components from Table wizard in the Oracle JDeveloper New Gallery. I did later refactor the

generated View Objects and Entity Objects to reside in their own packages. I did the same for view links

and entity associations.

The relationship between a Department and its Employees is represented by the EmpDeptFKLink view

link.

The association from the DepartmentsView parent collection to the EmployeesView detail collection is

represented by the EmployeesView accessor name

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

14

To filter employees data by the salary range a user provides in the web tier, a View Criteria is created on

the EmployeesView view object. Double click onto the View Object and select the Query panel in the

opened editor. Create the View Criteria as shown below.

Note: Because the tree references the child employee collection through the accessor, it does not make

sense to configure the View Criteria on a View Object instance in the Application Module data model.

Instead, it needs to be dynamically added to the accessor View Object.

To set the bind variables defined in the View Criteria and to apply the View Criteria, a method needs to

be created in the Departments View Object Impl class and exposed as a client method. Double click the

DepartmentsView View Object and choose the Java panel in the opened editor. Click the pencil icon next to

the Java Classes header. As shown in the image above, select the Generate View Object Class option and press

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

15

OK. Open the created View Object Impl class and provide the following method, a slight variation of

Steve Muench's original. Note that the data type Number is oracle.jbo.domain.Number. It’s the

same data type used for the Bind Variables in the View Ctriteria.

public void setLowHighSalaryRangeForDetailEmployeesAccessorViewObject

 (Number lowSalary,

 Number highSalary) {

 Row r = getCurrentRow();

 if (r != null) {

 RowSet rs = (RowSet)r.getAttribute("EmployeesView");

 if (rs != null) {

 ViewObject accessorVO = rs.getViewObject();

 accessorVO.ensureVariableManager();

 accessorVO.getVariableManager().setVariableValue(

 "LowSalary", lowSalary);

 accessorVO.getVariableManager().setVariableValue(

 "HighSalary", highSalary);

 ViewCriteriaManager vcm = accessorVO.getViewCriteriaManager();

 ViewCriteria vc = vcm.getViewCriteria("QueryBySalaryRange");

 accessorVO.applyViewCriteria(vc);

 }

 executeQuery();

 }

}

Next, open the Departments View object editor – if not already open - and again select the Java category.

Click the pencil icon next to the Client Interface entry.

Shuttle the method in the DepartmentsViewImpl class to the list of Selected interface methods

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

16

In the ViewController project, create a new ADF Faces page and drag and drop the allDepartments View

Object instance as an ADF tree.

Note: For better readability, I renamed the default View Object instance names in the ApplicationModule

data model. For this, double click the Application Module entry and select the Data Model panel. Select the

View Object instance to change the name for and choose Rename from the right mouse context menu.

When the tree is created, drag the allDepartments View Object instance client method that is exposed in the

Data Control panel onto the JSF page and drop it as an ADF Parameter form.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

17

Change the submit button to "Filter Employees by Salary" and configure the tree component's Partial

Triggers property to point to the parameter form command button ID. Ensure the button's PartialSubmit

property is set to true.

Change the prompts of the parameter form fields to "High Salary" and "Low Salary"

At runtime, the page comes up as shown below

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

18

Providing values for the Low Salary and the High Salary field and pressing the command button queries the

detail node (Employee) data before issuing a partial refresh of the tree component. In the example above,

the tree is cleared from employee records that have salary values less than 2000 or more than 5000.

Note: You find Steve Muench's sample page at: http://blogs.oracle.com/smuenchadf/examples/

How to ensure serverListener events fires before action events

Using JavaScript in ADF Faces you can queue custom events defined by an af:serverListener tag.

If the custom event however is queued from an af:clientListener on a command component,

then the command component's action and action listener methods fire before the queued custom event.

If you have a use case, for example in combination with client side integration of 3rd party technologies

like HTML, Applets or similar, then you want to change the order of execution.

The way to change the execution order is to invoke the command item action from the client event

method that handles the custom event propagated by the af:serverListener tag. The following

four steps ensure your successful doing this

1. Call cancel() on the event object passed to the client JavaScript function invoked by the

af:clientListener tag

2. Call the custom event as an immediate action by setting the last argument in the custom event

call to true

function invokeCustomEvent(evt){

 evt.cancel();

 var custEvent = new AdfCustomEvent(

 evt.getSource(),

 "mycustomevent",

 {message:"Hello World"},

 true);

 custEvent.queue();

}

3. When handling the custom event on the server, lookup the command item, for example a

button, to queue its action event. This way you simulate a user clicking the button. Use the

following code

ActionEvent event = new ActionEvent(component);

event.setPhaseId(PhaseId.INVOKE_APPLICATION);

event.queue();

The component reference needs to be changed with the handle to the command item which action

method you want to execute.

4. If the command component has behavior tags, like af:fileDownloadActionListener,

or af:setPropertyListener, defined, then these are also executed when the action event

http://blogs.oracle.com/smuenchadf/examples/

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

19

is queued. However, behavior tags, like the file download action listener, may require a full page

refresh to be issued to work, in which case the custom event cannot be issued as a partial refresh.

File download action tag:

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_fileDownlo

adActionListener.html

" Since file downloads must be processed with an ordinary request - not XMLHttp AJAX

requests - this tag forces partialSubmit to be false on the parent component, if it supports that

attribute."

To issue a custom event as a non-partial submit, the previously shown sample code would need

to be changed as shown below

function invokeCustomEvent(evt){

 evt.cancel();

 var custEvent = new AdfCustomEvent(

 evt.getSource(),

 "mycustomevent",

 {message:"Hello World"},

 true);

 custEvent.queue(false);

}

To learn more about custom events and the af:serverListener, please refer to the tag

documentation:

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

Best practices for good performance in ADF

A reoccurring question on the OTN forum is the one about performance best practices, which various

community members has blogged about in the past. Hints for best performance however are also well

documented in the Oracle Fusion Middleware Performance and Tuning Guide:

http://download.oracle.com/docs/cd/E14571_01/core.1111/e10108/adf.htm

Another source of information, if you use ADF Business Components as a business service, are chapters

40 and chapter 41 of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development

Framework about ADF BC Application Module state management and tips for module and connection

pooling

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcstatemgmt.htm#sm0318

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcampool.htm#sm0299

RELATED DOCOMENTATION

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_fileDownloadActionListener.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_fileDownloadActionListener.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_serverListener.html
http://download.oracle.com/docs/cd/E14571_01/core.1111/e10108/adf.htm
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcstatemgmt.htm#sm0318
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcampool.htm#sm0299

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
02 / 2011

20

