
 

 

  ADF Code Corner  

Oracle JDeveloper OTN Harvest 03 / 2011 
 

 

Abstract: 

The Oracle JDeveloper forum is in the Top 5 of the most 

active forums on the Oracle Technology Network (OTN). 

The number of questions and answers published on the 

forum is steadily increasing with the growing interest in 

and adoption of the Oracle Application Development 

Framework (ADF).  

The ADF Code Corner "Oracle JDeveloper OTN Harvest" 

series is a monthly summary of selected topics posted on 

the OTN Oracle JDeveloper forum. It is an effort to turn 

knowledge exchange into an interesting read for 

developers who enjoy harvesting little nuggets of wisdom.  

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/ 

Author:   
    

Frank  Nimphius, Oracle Corporation  
twitter.com/fnimphiu 
31-MAR-2011 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

2 

 
March 2011 Issue – Table of Content 
 

Best-practice for follow-up questions on OTN forums ......................... 3 

How-to display JavaDocs for methods displayed in syntax help ......... 3 

"Internal Package Import" errors and how to switch them off .............. 4 

Building model driven dependent list with Oracle ADF BC.................. 6 

How to display a dependent list box disabled if no child data exist ... 12 

Testing bounded task flow using page fragments ............................. 14 

Oracle JDeveloper command line arguments ................................... 14 

Task flow "new transaction" vs. "new db connection" ....................... 14 

Configuring the ADF BC locking behavior in JDeveloper 11.1.1.4 .... 18 

How-to filter table filter input to only allow numeric input .................. 18 

Best practices about creating and using backing beans ................... 22 

Extending the ADF Controller exception handler .............................. 22 

How to create a model-driven multi column auto-suggest list ........... 23 

How-to delete a tree node using the context menu ........................... 26 

How to open the LOV of af:inputListOfValues with a double click ..... 30 

Configuring projects for Java EE security annotations ...................... 32 

Implementing Query pagination using EJB and ADF ........................ 33 

How to equally stretch multiple table columns .................................. 34 

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions 
to real world coding problems. 
 
Disclaimer: All samples are provided as is with no guarantee for future upgrades or error 
correction. No support can be given through Oracle customer support.  
 
Please post questions or report problems related to the samples in this series on the OTN forum 
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83 
 

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips 
and information around Oracle JDeveloper and Oracle ADF.  
 
Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle 
blogging policies. It is not an official Oracle publication. All samples and code snippets are 
provided "as is" with no guarantee for future upgrades or error correction. No support can be 
given through Oracle customer support.  
 
If you have questions, please post them to the Oracle OTN JDeveloper forum: 
http://forums.oracle.com/forums/forum.jspa?forumID=83 
 

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83


ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

3 

 

Best-practice for follow-up questions on OTN forums 

I recently recognized users on the OTN forum to post a question to then, when answers are coming in, 

change subject to follow up questions that are not related to the previously asked question. The problem 

with changing subject in an OTN thread is that the follow up questions are stealth and not seen by many 

on the forum who don't read until the end of a thread but go with the subject mention in the header.  

In addition, those who provided a correct answer to the original question, considering the question as 

answered and move on. So the obvious negative impact of stealth follow questions in a forum thread is 

that no one looks at it no matter how hard user bump it back to the top of the list. Therefore, if you have 

a follow up question on an original question that however changes subject, post it in a new thread. Its five 

minutes of your time to re-phrase the question to the new subject saving you days you spend waiting with 

no answer. 

How-to display JavaDocs for methods displayed in syntax help 

When working within the Oracle JDeveloper Java code editor, syntax help is displayed when pausing your 

edits after adding a dot (".") or when pressing ctrl+blank key for the incomplete statement.  

 

However, unless you are savvy with the component API you are working with, not all the methods may 

speak to you. To get an idea of what a specific method can do for you, you can enable quick Java docs to 

be displayed. To open the Java documentation for the selected method, click the little plus icon next to 

the QuickDoc label at the lower right corner of the method completion dialog as shown in the image 

below. 

 

The Java doc window stays open and changes its content with you changing the selection on the method 

dialog. To close the Java documentation window, click the minus icon next to QueickDoc label or press the 

ctrl+d keyboard shortcut. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

4 

"Internal Package Import" errors and how to switch them off 

A new functionality in Oracle JDeveloper 11g (11.1.1.4) is an audit rule that flags an error when compiling 

Java files that use internal ADF framework classes. Internal ADF framework classes are public classes that 

reside in internal packages. For example, FacesCtrlHierBinding extends JUCtrlHierBinding 

and represents the component model used with the ADF Faces table, tree and tree table components. It is 

an internal implementation class that developers should not use in their application development. For this 

reason, Oracle packaged it in a package structure with the name internal in it: 

oracle.adfinternal.view.faces.model.binding.FacesCtrlHierBinding. 

Similar package structures exist for Oracle ADF Business Components, ADF Controller and other 

technologies in Oracle ADF. In previous versions of Oracle JDeveloper 11g, this audit rule did not exist, 

which means that without noticing, developers may have used those classes, which now, after upgrading 

ADF applications to Oracle JDeveloper 11.1.1.4, no longer compile, because the new audit rule prevents 

it from compiling. So there are reasons for you to want the audit rule to change. To change the audit rule 

settings for internal framework class uses, to either disable (less recommended) or smoothen it (more 

recommended) by setting the Severity to Warning instead of Error, you choose Tools | Preferences | 

Audit | Profiles. In here you expand the ADF Java Audit Rules node to change the settings for the 

internal package import or disable it.  

 

Before disabling this audit rule or change it from Error to Warning, it is important that you understand 

why this audit is there. Like the Java and Java EE platforms, application development frameworks consist 

of public APIs and internal implementation classes. While in the normal Java case you protect internal 

implementations by flagging classes as private and protected, or using inner classes, you can't always do 

the same in frameworks because the classes may be referenced within the framework, for which they need 

to be public. Implementation details are subject to change, which means that there is not notification sent 

out ahead of time before a change happens. Changes may be required for example to add new features, fix 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

5 

bugs or integrate new technologies. Look at the internal classes as "a framework developer's freedom to 

change" and you get an idea for what they are.  

What should you do if you used internal classes in your existing application? 

1. Set the audit rule to Warning so your project compiles. 

2. Take a note about the list of issues found by the audit rule 

3. Look at each use of internal class uses and see if you find public classes to use instead. For 

example, the FacesCtrlHierBinding class can be replaced by JUCtrlHierBinding for 

most of its functionality 

4. If you can't find a public API, report this as a problem to customer support for Oracle to 

provide a public API for the functionality you need to access in Java.  

 

Important note: The Oracle JDeveloper forum on OTN is not Oracle support 

5. For the time being and to avoid using internal classes, use ValueExpressions or 

MethodExpressions in Java and access the internal functionality through their expression. For 

example, instead of calling makeCurrent on FacesCtrlHierBinding, you can resolve the 

EL string #{bindings.treeBindingName.makeCurrent} as a method expression in a managed 

bean method referenced from a SelectionListener property of a table: 

 

public void onSelecTable(SelectionEvent selectEvent){ 

  FacesContext fctx = FacesContext.getCurrentInstance(); 

  ELContext elctx = fctx.getELContext(); 

  ExpressionFactory exprFactory =       

  fctx.getApplication().getExpressionFactory(); 

  MethodExpression me = exprFactory.createMethodExpression(                                                              

                      elctx,                                                              

                      "#{bindings.treeBindingName.makeCurrent",                                                                

                      Object.class,  

                      new Class[]{SelectionEvent.class}); 

  me.invoke(elctx, new Object[]{selectEvent }); 

} 

What should you do if you need to use internal classes in your current application? 

1. Post a question on the Oracle JDeveloper forum on OTN and ask for a public API alternative to 

what you think requires the use of internal framework classes 

2. If you don't find a solution, use Expression language as explained above, starting from bullet #5 

Using expression language as a substitution for internal Java API calls is considered a work around, 

though one that lasts for long. However, given expressions are resolved by the expression resolver before 

internal framework classes are accessed, it is your abstraction layer – or safety belt in this situation – that 

protects you from internal framework changes.  

In summary: 

 Keep the audit rule as it is 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

6 

 Change it to Warning if you have to 

 Avoid switching it off  

Building model driven dependent list with Oracle ADF BC 

Creating dependent lists or list of values is a frequent developer requirement that is easy to implement 

using ADF Business Components. Instead of building the list of value dependency in the view layer, you 

define it on the View Object attribute level. Oracle JDeveloper the automatically creates the dependent list 

components when the View Object is added as a form or table to the ADF Faces page.  

The following example steps you through the creation of model driven dependent list boxes. The View 

Object in this sample represents a vacation request form with an attribute representing the DepartmentId 

and a dependent dependent EmployeeId attribute. 

To create a dependent list component or list of value, you first need to edit the EmployeesView object to 

create a View Criteria that then is used to create the dependency between the selected DepartmentId in the 

vacation request form and the EmployeeId. 

 

 Open the EmployeeView object editor and click the green plus icon next to the View Criteria section in the 

Query category. In the opened dialog, create a View Criteria that queries the EmployeesView object filtered 

by a DepertamentId value that is held in a bind variable. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

7 

 

Click the Add Item button and choose the DepartmentId attribute. Choose the Equals operator and select 

Bind Variable as the Operand. Press the green plus icon to create the bind variable. 

 

Define a Name, for example departmentIdVar, for the bind variable and set its Type to Number, which is the 

oracle.jbo.domain.Number type. Make sure the bind variable is updateable and OK the dialog. 

Ok the View Criteria too and open the VacationRequestsView object. 

Select the DepartmentIdattribute in the Attribute category of the View Object editor and press the green plus 

icon next to the List of Values: DepartmentId section.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

8 

 

Click the green plus icon next to the List Data Source entry in the opened dialog to the select the View 

Object source to provide the list data (DepartmentsView).  

 

In return, Oracle JDeveloper creates a new accessor for the View Object. In List Attribute, select the list 

attribute matching the DepartmentId attribute in the vacation request form. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

9 

OK the dialog. In the Create List of Values dialog, select the UI Hints tab and choose Choice List as the 

component to build the list for this attribute at runtime. 

 

In the Available list, select the DepartmentName and move it to the list of selected display items. OK the 

dialog. 

Repeat the list of values creation steps for the EmployeesView object. 

 

This time however, choose EmployeesView as the list object.  

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

10 

In the View Accessors dialog, click the Edit button to assign the View criteria created earlier. 

 

Select the View Criteria and set its bind variable value to DepartmentId, the attribute in the vacation request 

view object that holds the selected parent value. Ok the dialog two times to return to the list of values 

creation dialog. Set EmployeeId as the matching list attribute and select the UI hints table and choose 

FirstNameand LastName as the display values. 

 

Ok the dialog and test the VacationrequestsView object in the ADF Business Components tester. For this, 

select the Application Module and choose the run option from the context menu. If the dependent lists 

work in the tester, create a new JSF page in the ViewController project and drag the VacationrequestsView 

collection from the DataControls panel and drop it as an ADF form onto the page.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

11 

 

The form contains two instances of the af:selectOneChoice component, on for the DepartmentId 

attribute and one for the EmployeeId attribute. To make the two fields dependent, the EmployeeId list needs 

to be refreshed whenever the parent select lit has the selected value changed.  

For this, on the parent list, set the autosubmit property to "true" and have the PartialTriggers property of the 

dependent list box pointing to the parent list component Id.  

 

 

This is all that it takes and you can now run the form and see the dependent list boxes in action.  

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

12 

Note: The same dependency also works if the af:inputListOfValues component was chosen for providing 

the DepartmentId and EmployeeId attribute values. 

How to display a dependent list box disabled if no child data exist 

A requirement on OTN was to disable the dependent list box of a model driven list of value configuration 

whenever the list is empty. 

 

To disable the dependent list, the af:selectOneChoice component needs to be refreshed with every 

value change of the parent list, which however already is the case as the list boxes are already dependent. 

When you create model driven list of values as choice lists in an ADF Faces page, two ADF list bindings 

are implicitly created in the PageDef file of the page that hosts the input form. 

 

At runtime, a list binding is an instance of FacesCtrlListBinding, which exposes getItems() as 

a method to access a list of available child data (java.util.List). Using Expression Language, the 

list is accessible with 

#{bindings.list_attribute_name.items} 

To dynamically set the disabled property on the dependent af:selectOneChoice component, 

however, you need a managed bean that exposes the following two methods 

//empty – but required – setter method 

public void setIsEmpty(boolean isEmpty) {} 

 

//the method that returns true/false when the list is empty or  

//has values 

public boolean isIsEmpty() { 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

13 

  FacesContext fctx = FacesContext.getCurrentInstance(); 

  ELContext elctx = fctx.getELContext(); 

  ExpressionFactory exprFactory =     

                      fctx.getApplication().getExpressionFactory(); 

  ValueExpression vexpr =  

                      exprFactory.createValueExpression(elctx,   

                      "#{bindings.EmployeeId.items}", 

                      Object.class); 

  List employeesList = (List) vexpr.getValue(elctx);                       

  return employeesList.isEmpty()? true : false;       

} 

If referenced from the dependent choice list, as shown below, the list is disabled whenever it contains no 

list data 

<! --  master list --> 

<af:selectOneChoice value="#{bindings.DepartmentId.inputValue}" 

                                 label="#{bindings.DepartmentId.label}" 

                                 required="#{bindings.DepartmentId.hints.mandatory}" 

                                  shortDesc="#{bindings.DepartmentId.hints.tooltip}" 

                                  id="soc1" autoSubmit="true"> 

     <f:selectItems value="#{bindings.DepartmentId.items}" id="si1"/> 

</af:selectOneChoice> 

<! --  dependent  list --> 

<af:selectOneChoice value="#{bindings.EmployeeId.inputValue}" 

                                  label="#{bindings.EmployeeId.label}"     

                                  required="#{bindings.EmployeeId.hints.mandatory}" 

                                  shortDesc="#{bindings.EmployeeId.hints.tooltip}" 

                                  id="soc2" disabled="#{lovTestbean.isEmpty}" 

                                  partialTriggers="soc1"> 

    <f:selectItems value="#{bindings.EmployeeId.items}" id="si2"/> 

</af:selectOneChoice> 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

14 

Testing bounded task flow using page fragments 

Building reusable bounded task flows that are supposed to render in an ADF region require the use of 

page fragments to render the views. Page fragments are incomplete JSF pages and therefore bounded task 

flows that use them cannot be run from Oracle JDeveloper for testing.  

The way to test bounded task flows that use page fragments for the views is to create a JSPX document 

and add the bounded task flow as a region to it. After this you can run and test the page.  

The problem with this approach, however, is that the stand alone page, the JSX page for testing, is not 

supposed to be deployed with the application, which means you need to clean the project from it and its 

associated artifacts and changes (PageDef file created, entry in the DataBindings.cpx file).  

So a better testing option seems to be to deploy the ADF bounded task flow in an ADF library and have a 

separate project (in a separate workspace) to import the ADF library and adding its contained task flow to 

a test page for runtime testing.  

This approach, though it appears a bit inconvenient has benefits: 

1. The bounded task flow is tested in an environment that simulates how it would be later used 

2. Artifacts created while testing don't need to be remembered and cleaned 

3. You don't need to think about which libraries to remove when deploying the ADF library 

Oracle JDeveloper command line arguments 

Oracle JDeveloper accepts command line arguments. To view the available list of command line 

arguments, start JDeveloper with the –help flag (<jdev_home>\jdeveloper\jdeveloper –help). The 

following dialog, listing all supported command line arguments, is opened: 

 

Task flow "new transaction" vs. "new db connection" 

Bounded task flow can represent a transaction and be used to declaratively manage transaction when 

using ADF Business Components as the business service. A transaction is a grouping of data model 

changes to be committed or rolled back at a certain point. A transaction is opened in ADF by the 

framework calling beginTransaction on the ADF BindingContext. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

15 

To configure the bounded task flow transaction behavior, you select the bounded task flow in the Oracle 

JDeveloper Application Navigator and open the Structure Window (ctrl+shift+S). In the Structure Window, 

expand the ADF Task Flow node and select the contained task flow. 

 

 

Open the Property Inspector (ctrl+shift+I) and navigate to the Behavior section and set the Transaction 

property to one of the following: 

 No Controller Transaction (default) : The bounded task flow does not start a transaction when 

entered 

 Always Begin New Transaction : When the task flow is entered, a new transaction is always 

started 

 Always Use Existing Transaction : The bounded task flow expects a transaction to exit that it can 

reuse 

 Use Existing Transaction if Possible : If a transaction exists, it is used, if not, a new one is 

created. 

Whenever a bounded task flow is configured to start a new transaction it needs to either commit or 

rollback the transaction upon exiting the task flow. The configuration of how to exit a bounded task flow 

is configured on the return activity. 

Note: The ADF Controller does not handle transactions. All it does is to pass the configured transaction 

behavior as a hint to the Data Control. It is up to the Data Control to implement these hints. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

16 

 

When a bounded task flow creates a new transaction, does it also mean it creates a new database 

connection? No.  

Bounded task flow that share the data control with the calling task flow share the database connection 

too, which also means they share the transaction if one exists. Using ADF Business Components a single 

transaction exists per database connection. Trying to open a second transaction in a bounded task flow 

will cause a task flow exception, ADFC-00020.   

 

oracle.adf.controller.activity.ActivityLogicException: ADFC-00020:  

Task flow '/WEB-INF/employees-btf.xml#employees-btf' requires a new transaction, but a transaction is already open on 

the frame. 

To open a second transaction, a second Data Control frame is needed, which you configure in the 

Property Inspector for the bounded task flow, unchecking the Share data control with calling task flow 

checkbox.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

17 

 

However, not sharing the data control means, internally, a new data control frame is opened, which is 

comparable to starting a new root Application Module in ADF Business Components, creating a new 

database connection. You can test this by opening SQL*Plus and counting the connections for the 

application database connect.   

select count (*) from v$session where username='<db user connect name>' 

 

You issue the SQL command before and after navigating to a bounded task flow that is isolated from the 

calling task flow.  

So the answer to the initial question is that a new database connection is created when the data control is 

not shared between a calling and the called task flow. Configuring the transaction on a bounded task flow 

to open a new transaction does not create a new database connection. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

18 

Configuring the ADF BC locking behavior in JDeveloper 11.1.1.4 

In Oracle JDeveloper releases prior to 11.1.1.4, the ADF Business Components locking behavior was 

defaulted to pessimistic though optimistic is what should be used for web applications. Also in JDeveloper 

11.1.1.4, the configuration of this behavior has been simplified in that the behavior now is configured in 

the adf-config.xml file. To change the locking behavior, you expand the Application Resources accordion 

panel in the JDeveloper Application Navigator and expand the Descriptors | ADF META-INF node. Double 

click onto the adf-config.xml file entry to open the visual editor shown below. 

 

How-to filter table filter input to only allow numeric input 

In a previous ADF Code Corner post, I explained how to change the table filter behavior by intercepting 

the query condition in a query filter. See sample #30 at http://www.oracle.com/technetwork/developer-

tools/adf/learnmore/index-101235.html  

In this OTN Harvest post I explain how to prevent users from providing invalid character entries as table 

filter criteria to avoid problems upon re-querying the table. In the example shown next, only numeric 

values are allowed for a table column filter. 

To create a table that allows data filtering, drag a View Object – or a data collection of a Web Service or 

JPA business service – from the DataControls panel and drop it as a table. Choose the Enable Filtering 

option in the Edit Table Columns dialog so the table renders with the column filter boxes displayed. 

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html


ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

19 

 

The table filter fields are created using implicit af:inputText components that need to be customized 

for you to apply a custom filter input component, or to change the input behavior. To change the input 

filter, so only a defined set of input keys is allowed, you need to change the default filter field with your 

own af:inputText field to which you apply an af:clientListener tag that filters user keyboard 

entries. 

 

For this, in the Oracle JDeveloper visual editor, select the column which filter you want to change and 

expand the column node in the Oracle JDeveloper Structure Window. Part of the column definition is the 

Column facet node. Expand the facets so you see the filter facet entry. The filter facet is grayed out as there 

is no custom facet defined. In a next step, open theComponent Palette (ctrl+shift+P) and drag an Input 

Text component onto the facet. This demarks the first part in the filter customization. 

To make the custom filter component work, you need to map the af:inputText component value 

property to the ADF filter criteria that is exposed in the Expression Builder.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

20 

 

Open the Expression Builder for the filter input component value property by clicking the arrow icon to its 

right. In the Expression Builder expand the JSP Objects | vs | filterCriteria node to select the attribute 

name represented by the table column. The vs entry is the name of a variable that is defined on the table 

and that grants you access to the table attributes. 

 

Now that the filter works as before – though using a custom filter input component – you can add the 

af:clientListener tag to your custom filter component – af:inputText - call out to JavaScript when users 

type in the column filter field 

 

Point the client filter method property to a JavaScript function that you reference or add through using the 

af:resource tag and set the type property value to keyDown. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

21 

<af:document id="d1"> 

    <af:resource type="javascript" source="/js/filterHandler.js"/> 

… 

The filter definition looks as shown below 

<af:inputText label="Label 1" id="it1" 

                        value="#{vs.filterCriteria.Employe 

       <af:clientListener method="suppressCharacterInput" 

                                    type="keyDown"/> 

</af:inputText> 

 

The JavaScript code that you can use to either filter character inputs or numeric inputs is shown below. 

Just store this code in an external JavaScript (.js) file and reference it from the af:resource tag. 

//Allow numbers, cursor control keys and delete keys 

function suppressCharacterInput(evt) { 

    var _keyCode = evt.getKeyCode(); 

    var _filterField = evt.getCurrentTarget(); 

    var _oldValue = _filterField.getValue(); 

    if (!((_keyCode < 57) ||(_keyCode > 96 && _keyCode < 105))) { 

        _filterField.setValue(_oldValue); 

        evt.cancel(); 

    } 

} 

 

//Allow characters, cursor control keys and delete keys 

function suppressNumericInput(evt) { 

 var _keyCode = evt.getKeyCode(); 

 var _filterField = evt.getCurrentTarget(); 

 var _oldValue = _filterField.getValue(); 

 //check for numbers 

 if ((_keyCode < 57 && _keyCode > 47) || 

     (_keyCode > 96 && _keyCode < 105)){ 

    _filterField.setValue(_oldValue); 

    evt.cancel(); 

  } 

} 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

22 

But what if browsers don't allow JavaScript ? Don't worry about this. If browsers would not support 

JavaScript then ADF Faces as a whole would not work and you had a different problem.  

Best practices about creating and using backing beans  

Backing beans are special uses of managed beans and have a 1:1 relation to a page or page fragment. By 

default, Oracle JDeveloper doesn't create backing beans for pages you create. Automatic backing bean 

creation is a setting you can configured in the Design | Page Properties | Component Binding menu 

option that shows when you opened the JSF visual editor in Oracle JDeveloper. Best practices however is 

to not create backing beans for the pages you create, which also is the default behavior.  

Creating backing beans provides easy access to the component instance for programmatic manipulation 

of the component state and data, but also represents unnecessary overhead as there is no option to tell the 

IDE when not to create component bindings or to remove component bindings that are longer needed. 

Especially complex pages thus quickly end up with lots of Java entries created in the managed bean, which 

is hard to maintain and also hard to keep track of.  

Best practices for using backing bean is not to use the auto-generate feature in Oracle JDeveloper but to 

create component binding references on an as needed basis. To create a component binding to a managed 

bean, which then turns into a backing bean for this page, select the component binding property in the 

Property Inspector and open the context menu by pressing the arrow icon. Choose Edit from the context 

menu to create a component binding reference.  

Extending the ADF Controller exception handler 

The Oracle ADF controller provides a declarative option for developers to define a view activity, method 

activity or router activity to handle exceptions in bounded or unbounded task flows. Exception handling 

however is for exceptions only and not handling all types of Throwable. Furthermore, exceptions that 

occur during the JSF RENDER RESPONSE phase are not looked at either as it is considered too late in 

the cycle.  

For developers to try themselves to handle unhandled exceptions in ADF Controller, it is possible to 

extend the default exception handling, while still leveraging the declarative configuration. To add your 

own exception handler: 

 Create a Java class that extends ExceptionHandler 

 Create a textfile with the name “oracle.adf.view.rich.context.Exceptionhandler” (without the quotes) 

and store it in .adf\META-INF\services (you need to create the “services” folder) 

 In the file, add the absolute name of your custom exception handler class (package name and class 

name without the “.class” extension) 

For any exception you don't handle in your custom exception handler, just re-throw it for the default 

handler to give it a try 

import oracle.adf.view.rich.context.ExceptionHandler; 

 

public class MyCustomExceptionHandler extends ExceptionHandler { 

 public MyCustomExceptionHandler() { 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

23 

     super(); 

 } 

public void handleException(FacesContext facesContext,  

                            Throwable throwable, PhaseId phaseId)  

                            throws Throwable 

 { 

   String error_message; 

   error_message = throwable.getMessage(); 

   //check error message and handle it if you can  

   if( … ){   

       //handle exception 

       … 

   } 

   else{ 

      //delegate to the default ADFc exception handler 

       throw throwable;} 

   } 

} 

Note however, that it is recommended to first try and handle exceptions with the ADF Controller default 

exception handling mechanism. In the past, I've seen attempts on OTN to handle regular application use 

cases with custom exception handlers for where there was no need to override the exception handler. So 

don't go for this solution to quickly and always think of alternative solutions. Sometimes a try-catch-final 

block does it better than sophisticated web exception handling.  

How to create a model-driven multi column auto-suggest list 

ADF Faces provides an auto suggest behavior tag – af:autoSuggestBehavior – that you use to 

suggest selectable values based on user input into a text field or combo box. Using the ADF list of values 

binding, you can build the suggest behavior declarative and model driven. For this, you select the View 

Object attribute for which want to provide list of values support (that later renders as suggest items). 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

24 

Press the green plus icon in the List of Values header section to create a new list of values. Choose a list 

data source and map the list attribute to the base attribute you want to copy the selected value to. This 

you do in the Configuration tab. In the UI Hint  tab, you specify the UI control that is used to render the 

attribute when it is dragged from the Data Controls panel to the JSF view (for example: Input Text With 

List of Values). Ok the dialog so the list of value definition is created. 

 

When dragging the View Object that has the list of value defined on its attribute(s) from the Data 

Controls panel and dropping it as a form or table, the attribute is rendered with the UI component 

specified in the UI Hints. 

 

Press the Bindings tab at the bottom of the ADF Faces view to add a list of values binding, as shown in the 

image below. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

25 

Press the green plus icon in the Bindings and Executables tab of the binding editor and choose the 

listOfValues entry to create a new list of value binding. 

Choose the View Object with the list of value definition in one of its attributes as the Base Data Source and 

select the attribute itself as the Base Data Source Attribute. The Server List Binding Name field is populated 

automatically and you can OK the dialog. 

 

Back in the visual page editor, expand the Operations accordion in the Component Palette and drag the 

Auto Suggest Behavior tag onto the column input component that renders the model driven-list-of-value, as 

shown in the image below. 

 

Edit the af:autoSuggestBehavior component to reference the list of value binding you created 

before from the SuggestedItems property.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

26 

 

For example, if the attribute that has the model driven list of values defined is "JobId", as used in the 

example, then the expression is 

#{bindings.JobId.suggestedItems} 

Note: When you configure a model driven list of values for a View Object attribute, then, when designing 

ADF Faces views, the attribute is represented by the UI component you specified as the Default Type in 

the UI Hints tab of the Edit List of Valued dialog. If you only want to use the model driven LOV for the 

suggest item behavior, you can change the component in the page source editor: For example instead of 

an Input Item with List of Values, you just use a plain Input Text component, changing the page source to 

af:inputText. 

At runtime, a list of suggest choices is automatically shown based on the user typed input. The benefit of 

using model driven list of values to populate the suggest list is that you display additional information as 

shown in the image below. 

 

How-to delete a tree node using the context menu 

Hierarchical trees in Oracle ADF make use of View Accessors, which means that only the top level node 

needs to be exposed as a View Object instance on the ADF Business Components Data Model. This also 

means that only the top level node has a representation in the PageDef file as a tree binding and iterator 

binding reference. Detail nodes are accessed through tree rule definitions that use the accessor mentioned 

above (or nested collections in the case of POJO or EJB business services).  

The tree component is configured for single node selection, which however can be declaratively changed 

for users to press the ctrl key and selecting multiple nodes.  

In the following, I explain how to create a context menu on the tree for users to delete the selected tree 

nodes. For this, the context menu item will access a managed bean, which then determines the selected 

node(s), the internal ADF node bindings and the rows they represent. 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

27 

 

 

As mentioned, the ADF Business Components Data Model only needs to expose the top level node data 

sources, which in this example is an instance of the Locations View Object. For the tree to work, you 

need to have associations defined between entities, which usually is done for you by Oracle JDeveloper if 

the database tables have foreign keys defined  

Note: As a general hint of best practices and to simplify your life: Make sure your database schema is well 

defined and designed before starting your development project. Don't treat the database as something 

organic that grows and changes with the requirements as you proceed in your project. Business service 

refactoring in response to database changes is possible, but should be treated as an exception, not the rule. 

Good database design is a necessity – even for application developers – and nothing evil.  

 

To create the tree component, expand the Data Controls panel and drag the View Object collection to the 

view. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

28 

From the context menu, select the tree component entry and continue with defining the tree rules that 

make up the hierarchical structure. 

 

As you see, when pressing the green plus icon  in the Edit Tree Binding  dialog, the data structure, Locations -  

Departments – Employees in my sample, shows without you having created a View Object instance for 

each of the nodes in the ADF Business Components Data Model. 

 

After you configured the tree structure in the Edit Tree Binding dialog, you press OK and the tree is 

created. Select the tree in the page editor and open the Structure Window (ctrl+shift+S). In the Structure 

window, expand the tree node to access the conextMenu facet. Use the right mouse button to insert a Popup  

into the facet. 

 

Repeat the same steps to insert a Menu and a Menu Item into the Popup you created.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

29 

 

The Menu item text should be changed to something meaningful like "Delete". Note that the custom 

menu item later is added to the context menu together with the default context menu options like expand 

and expand all. 

 

To define the action that is executed when the menu item is clicked on, you select the Action Listener 

property in the Property Inspector and click the arrow icon followed by the Edit menu option. Create or 

select a managed bean and define a method name for the action handler. 

 

Next, select the tree component and browse to its binding property in the Property Inspector. Again, use 

the arrow icon | Edit option to create a component binding in the same managed bean that has the 

action listener defined. The tree handle is used in the action listener code, which is shown below: 

public void onTreeNodeDelete(ActionEvent actionEvent) { 

  //access the tree from the JSF component reference created 

  //using the af:tree "binding" property. The "binding" property  

  //creates a pair of set/get methods to access the RichTree instance 

  RichTree tree = this.getTreeHandler(); 

  //get the list of selected row keys 

  RowKeySet rks = tree.getSelectedRowKeys(); 

  //access the iterator to loop over selected nodes 

  Iterator rksIterator = rks.iterator();         



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

30 

  //The CollectionModel represents the tree model and is  

  //accessed from the tree "value" property 

  CollectionModel model = (CollectionModel) tree.getValue(); 

  //The CollectionModel is a wrapper for the ADF tree binding  

  //class, which is JUCtrlHierBinding 

  JUCtrlHierBinding treeBinding =  

                 (JUCtrlHierBinding) model.getWrappedData();         

  //loop over the selected nodes and delete the rows they 

  //represent 

  while(rksIterator.hasNext()){ 

    List nodeKey = (List) rksIterator.next(); 

    //find the ADF node binding using the node key 

    JUCtrlHierNodeBinding node =  

                      treeBinding.findNodeByKeyPath(nodeKey); 

    //delete the row.  

    Row rw = node.getRow(); 

      rw.remove(); 

  }         

  //only refresh the tree if tree nodes have been selected 

  if(rks.size() > 0){ 

    AdfFacesContext adfFacesContext = 

                         AdfFacesContext.getCurrentInstance(); 

    adfFacesContext.addPartialTarget(tree); 

  } 

} 

Note: To enable multi node selection for a tree, select the tree and change the row selection setting from 

"single" to "multiple". 

How to open the LOV of af:inputListOfValues with a double click 

To open the LOV popup of an af:inputListOfValues component in ADF Faces, you either click 

the magnifier icon to the right of the input field or tab onto the icon and press the Enter key. If you want 

to open the same dialog in response to a user double click into the LOV input field, JavaScript is a friend.  



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

31 

 

For this solution, I assume you created an editable table or input form that is based on a View Object that 

contains at least one attribute that has a model driven list of values defined. The Default List Type is should 

be set to Input Text with List of Values so that when the form or table gets created, the attribute is rendered 

by the af:inputListOfValues component.  

To implement the use case, drag a Client Listener component from the Operations accordion in the 

Component Palette and drop it onto the af:inputListOfValues component in the page. In the 

opened Insert Client Listener dialog, define the Method as handleLovOnDblclickand choose dblClick in the 

select list for the Type attribute. 

 

 

Add the following code snippet to the page source directly below the af:document tag. 

 

<af:document id="d1"> 

     <af:resource type="javascript"> 

    function handleLovOnDblclick(evt){         

     var lovComp = evt.getSource();         

     if (lovComp instanceof AdfRichInputListOfValues && 

         lovComp.getReadOnly()==false){ 

          AdfLaunchPopupEvent.queue(lovComp,true); 

       } 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

32 

    } 

     </af:resource> 

The JavaScript function is called whenever the user clicks into the LOV field. It gets the source 

component reference from the event object that is passed into the function and verifies the LOV 

component is not read only. It then queues the launch event for the LOV popup to open. The page 

source for the LOV component is shown below: 

<af:inputListOfValues id="departmentIdId" … > 

  <f:validator binding="…"/> 

  … 

 <af:clientListener method="handleLovOnDblclick" type="dblClick"/> 

</af:inputListOfValues> 

At runtime, the popup opens in response to a mouse double click as shown in the image below: 

 

Configuring projects for Java EE security annotations 

Java EE security annotations are used in Enterprise Java Beans and JPA to protect user access to methods 

exposed in entities and the session façade. Creating a new EJB project in Oracle JDeveloper, or using the 

Java EE Web Application template to build a web application using EJB and ADF Faces, does not add the 

classes of the javax.annotation.security package to the project class path. To solve this issue, 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

33 

and to make security annotations like @DenyAll available in the code editor, you need to add the 

WebLogic 10.3. Remote Client library as follows: 

 Open the Model project properties by double clicking onto the project node or using the context 

menu 

 Select Libraries and Classpath  

 Click the Add Library button 

 Search for and add the WebLogic 10.3. Remote Client entry 

Implementing Query pagination using EJB and ADF 

With pagination, data is queried on demand instead of all –at-once and ad-hoc. It’s a desirable feature 

especially when working with large data sets to query, e.g. through scrolling in a table. ADF Code Corner 

(http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html) sample #37 

explains how to enable query pagination for ADF models that are based on a POJO data model using the 

JavaBean Data Control. But how do you enable pagination for Enterprise JavaBean models that use the 

EJB Data Control? The good news is that you don't need to do anything if you started developing your 

EJB model and ADF applications with Oracle JDeveloper 11g release 11.1.1.3 (PS2) or later.  

If you generated the EJB session façade with one of these Oracle JDeveloper, then the following method 

is automatically added: 

public Object queryByRange(String jpqlStmt, int firstResult, 

                           int maxResults) {                 

  Query query = em.createQuery(jpqlStmt); 

  if (firstResult > 0) { 

    query = query.setFirstResult(firstResult); 

  } 

  if (maxResults > 0) { 

    query = query.setMaxResults(maxResults); 

  } 

  return new ArrayList<Employees>(); query.getResultList(); 

} 

Note This method is also defined in the EJB local and remote interface definition.  

When generating the Oracle ADF Data Control configuration for the EJB session façade by right mouse 

clicking on the class in the JDeveloper Application Navigator and choosing Create Data Control from 

the context menu, the DataControls.dcx file gets created. The DataControls.dcx file describes the EJB 

session façade and its interfaces for the generic Data Control class to use. One information it contains is 

the definition of the DataControlHandler property: 

DataControlHandler="oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler" 

The DataControlHander definition, if set to JPQLDataFilterHandler, ensures that the EJB access uses 

pagination of the ELB interfaces and the session façade contain the queryByRange method. 

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html


ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

34 

 

For existing, pre Oracle JDeveloper 11.1.13 or non-Oracle JDeveloper created EJB session facade, you 

can add pagination support by adding the JPQLDataFilterHandler configuration in the DataControls.dcx 

file and the queryByRange method entries in the EJB interfaces and session façade after upgrading to a 

recent version of Oracle JDeveloper.  

How to equally stretch multiple table columns 

The default table stretch behavior is such that no column changes its width in response to changes of the 

available real estate. In the example below, the table is not contained in a layout container that stretches its 

child components. The table shown below has the StyleClass property set to AFStretchWidth to force it 

to take the maximum width. 

 

Note: If the table is enclosed by an af:panelCollection component, it automatically stretched to the size 

of the parent container. 

The images below show the default configuration of the table, as well as the behavior that shows when 

the available space changes, for example in response to users resizing the browser window. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

35 

 

As you can see, the table does not take all the available space. The table scrollbar shows to the right, 

indicating the possible width the table can take. Resizing the browser will change the blank are between 

the table columns and the scroll bar but don't change the size of the table columns. 

 

Changing the table configuration to maximize a specific column now fills the available blank space with 

the columns content. 

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

36 

The resize behavior is that a change of the available width first shrinks the column that is configured to 

fill the available space.  

 

Changing the ColumnStretching property to multiple and configuring the af:column width property 

(not the inline style width !)to a value of 33% now resizes all columns equally when the available maximal 

width changes.  

 

Resizing the browser window now treats the columns equal, as shown below.  

 



ADF CODE CORNER 
OTN ORACLE JDEVELOPER FORUM HARVEST  
3 / 2011 

 

 

37 

Before setting all tables and columns to multiple column stretching and 33%, make sure you have a look 

at the af:table and af:column tag documentations to learn about the performance impact that the 

dynamic column resizing comes with.  

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_table.html 

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_column.html  

 

RELATED DOCOMENTATION 

  

  

  

  

 

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_table.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_column.html

