

 ADF Code Corner

Oracle JDeveloper OTN Harvest 05 / 2011

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-MAY-2011

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

2

May 2011 Issue – Table of Contents

About the train button bar skip behavior ... 3

Declarative multi-column sort for ADF bound tables 3

Building a search form from bind variables in a View Criteria 5

TypeConversionException using af:validateDateTimeRange 10

Task Flow transactions and Application Modules 11

Using check boxes for table row selection(s) 11

Determine the arguments of an operation binding at runtime 12

Invoking af:exportCollectionActionListener from Java 13

About default value in SelectOneChoice component 15

Handling the close icon on a task flow opened as a dialog 16

Select month and year only using af:inputDate................................. 17

OTN forum: Good questions produce better answers 18

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

3

About the train button bar skip behavior

The skip property of a train stop, a view activity or task flow activity, in a bounded task flow has different

meanings dependent on the ADF Faces component that is used to handle the train navigation. Using the

af:train component, the skip property disables the train stop, which means users cannot navigate to

this view and instead would continue by clicking on another train stop.

Another train stop rendering component in ADF Faces is af:trainButtonBar and displays the

train with two buttons, one for forward and one for backward navigation. If the skip property is set to

"true" for a train stop, then navigation stops on the previous train stop with the train button displayed as

disabled.

The behavior of the af:trainButtonBar appears strange to ADF developers as it prevents users

from continuing with the process they started. The component however works as designed. The train

button bar is used for sequential trains, which means that each stop is visited in order. Thus, to hold a

process, you set the skip property of the following stop to "true".

To temporarily hold a train navigation until data entry meets a certain condition; you dynamically set the

skip property on the next train stop to true using EL When the condition is met, you dynamically set the

skip property to false and partially refresh the train button bar so that forward navigation is enabled again

(Same of course for backward navigation if you changed a previous stop's skip property from false to

true. For example, if an account name can only be set once in a process, you could use skip to prevent

back navigation to this view by setting skip to true). A second option for navigating to the next stop in

the "skip = true" case is programmatic navigation, in which the program logic follows a control flow case

to the next allowed view in a process. This then also enables the train button, assuming the stop following

the next has its skip property set to false.

Sample #80 on ADF Code Corner shows an example of how a managed bean extending the HashMap

class can be used to dynamically set properties on the bounded task flow train stop configurations.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Declarative multi-column sort for ADF bound tables

Enabling sort on an ADF Faces table allows users to sort column data by clicking on an icon in the table

header. To sort tables by multiple columns, developers add the af:panelCollection component as

the parent container of the af:table component.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

4

1. Surround the table component with an af:panelCollection component

2. Configure the af:table column for multi column selection

3. At runtime, application users then choose View | Sort | Advanced

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

5

4. In the dialog, users select the columns to include in the sort and also the sort direction. Pressing

"Ok" then performs the sort of the table data

Building a search form from bind variables in a View Criteria

Using the ADF Faces af:query component, you can easily build search forms based on View Criteria

defined on a View Object in ADF Business Components.

Just for you to recall how to do this: Expand the View Object node that contains the View Criteria in the

Data Controls panel. Drag and drop the named criteria located in the Named Criteria folder to a JSF

page and choose an entry of the Query or Quick Query context menu.

Though configurable to some degree, the search form rendered by the af:query component is not as

customizable as you need it to be. In this case you need to look at alternative solutions:

One of these alternative solutions is to apply a View Criteria that uses bind variables to filter the View

Object query to the View Object instance. The bind variables then are exposed in the DataControls

Panel and can be set by executing the ExecuteWithParams operation.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

6

To implement this solution, start by creating a View Criteria for the View Object. The View Criteria will

have all attributes to query added and associated to a bind variable.

To create an attribute in the View Criteria, select the Group node and press the Add Item button. Select

the attribute to add and set the Operand field to Bind Variable. Create new bind variables by pressing

the green plus icon next to the Parameter field and make sure you assign the correct data type for it. Also

note that for string parameters you want to set the Operator field to contains, endsWith or startWith.

Note that bid variables can have UI hints defined which allows you to set the labels accordingly.

To associate the View Criteria with a View Object instance in the Application Module. Double click the

Application Module (AppModule in the sample) object in the Application Navigator to open the editor

window for it. Choose the Data Model category to see View Object instance. Select the View Object

instance you want to apply the View criteria to and choose Edit <VO Name> from the right mouse

context menu.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

7

Select the View Criteria and press Ok. You don't need to provide default values for the bind variables.

Open the ADF Faces page that should have the search form defined. In the DataControls panel, expand

the Operations node of the View Object instance and drag and drop the ExecuteWithParams entry as

an ADF Parameter Form.

After you created the parameter form, drag and drop the View Object instance itself as a table to the same

page.

Select the table on the page and open the Property Inspector (ctrl+shift+I) and browse to the Partial

Triggers property. Use the Edit option of the context menu to search for the command button created

for the search form.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

8

Referencing the button from the table ensures the table to be refreshed when the command is pressed.

Next, select the search command button of the search form and browse to its PartialSubmit property.

Set the property to true so that when pressing the button, the page is not refreshed as a whole and instead

an Ajax request is send to the server.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

9

At runtime you can now add search conditions into the search form and press the search button to see

the table queried similar to when using the af:query component.

Note that in contrast to the af:query component, the search form in this example is fully customizable

by you.

Useful extra steps for you to do

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

10

 Rename the ExecutesWithParams method binding in the PageDef file to something meaningful

to you and your peers. Make also sure all EL references (e.g. the command button) are updated

accordingly

 Provide UI hints for the bind variables for user friendly (non technical) prompts

TypeConversionException using af:validateDateTimeRange

ADF Faces provides the af:validateDateTimeRange tag in the Operations category of the

Component Palette for applications to enforce valid date and time ranges.

However adding the af:validateDateTimeRange to an ADF Business Components bound date

field may cause a type conversion exception at runtime as shown below:

<LifecycleImpl> <_handleException> ADF_FACES-60098:Faces lifecycle receives

unhandled exceptions in phase PROCESS_VALIDATIONS 3

org.apache.myfaces.trinidadinternal.convert.TypeConversionException: Could not

convert instance:2011-05-17 of type:class java.lang.String into type:class

java.util.Date

at org.apache.myfaces.trinidadinternal.convert.GenericConverterFactory.convert

(GenericConverterFactory.java:289)

at org.apache.myfaces.trinidadinternal.validator.DateTimeRangeValidator.

validate(DateTimeRangeValidator.java:63)

The exception is thrown when a user updates the date field and submits the form. The reason for this

exception is that the date field in ADF Business Components has a simple date format configured in its

UI Control hints. To avoid this error, you need to unset the simple date format configuration on the View

Object or Entity Object.

The UI Control hint is not automatically set when creating ADF Business Components models, which

helps to control the setting of simple date patterns to date fields that don't require enforcing a specific

date and time range

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

11

Task Flow transactions and Application Modules

On the Enterprise Methodology Group (EMG) and OTN forum, Chris Muir fired up a discussion about

the bounded task flow transaction settings and its impact to the ADF Business Components Application

Modules. In two blog entries, Chris summarizes his findings, which is a good – though advanced – read I

recommend:

"JDev 11g, Task Flows & ADF BC the Always use Existing Transaction option it's not what it seems"

http://one-size-doesnt-fit-all.blogspot.com/2011/05/jdev-11g-task-flows-adf-bc-always-use.html

"JDev 11g, Task Flows & ADF BC one root Application Module to rule them all?"

http://one-size-doesnt-fit-all.blogspot.com/2011/05/jdev-11g-task-flows-adf-bc-one-root.html

Using check boxes for table row selection(s)

Two questions are re-occuring on the OTN forum. The first question is about how to add checkboxes in

front of ADF table rows for the user to select them. The native implementation of table row selection is

to select multiple table rows (assuming the table is configured for multi row selection) by holding the ctrl

key and clicking into the cell. For using checkboxes, there is a bit of coding required, which is explained in

this blog post by Sameh Nassar

http://sameh-nassar.blogspot.com/2009/12/use-checkbox-for-selecting-multiple.html

The second question that comes up quite often is how to quickly select all rows in a table, using a check

box in the column header of the first table column or a keyboard shortcut. Luc Bors from AMIS answers

this question in a blog entry for using the ctrl+a key combination and for using a command button. The

http://one-size-doesnt-fit-all.blogspot.com/2011/05/jdev-11g-task-flows-adf-bc-always-use.html
http://one-size-doesnt-fit-all.blogspot.com/2011/05/jdev-11g-task-flows-adf-bc-one-root.html
http://sameh-nassar.blogspot.com/2009/12/use-checkbox-for-selecting-multiple.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

12

change from using a command button to using a check box is minimal and should present no problem for

ADF developers.

http://technology.amis.nl/blog/8269/adf-11g-select-all-rows-in-an-adf-table

Determine the arguments of an operation binding at runtime

On the OTN forum, Navaneetha Krishnan answered the question of how to access an Operation Binding

at runtime and determine the arguments it expects. Background of the question is that if you call

getParamsMap() on the Operation Binding, it does not contain the keys of the method arguments.

The example code shown below accesses an OperationBinding that is defined in the PageDef file for

a method. It then dynamically parses the binding definition for configured method argument names.

For example, a method to relocate employees may be exposed on the ADF Business Component model

and exposed in the Data Control panel for drag and drop UI binding in ADF. The method signature of

the sample may be as shown below

relocateEmployee(Number departmentId, Number employeeId,

 Boolean withSalaryRaise, Long salaryRaiseInPercent)

The easiest way for you to create a method like the one below, is to drag and drop the method from the

DataControls panel to the page and have it rendered as a button or link. A binding dialog opens for you

to define default values or reference objects that provide the argument values at runtime.

Double click the command item to create a managed bean method that contains generated code for the

operation to invoke ("relocateEmployee" in the sample). The following managed bean method was built

this way and then extended with the code posted by Navaneetha.

The code sample has a place holder line for where your application would look up the argument values to

pass to the method. For example, if there is a HashMap available (e.g. exposed by a managed bean, or

passed as an input parameter to a bounded task flow) then you could check if it contains values for the

operation argument names you read from the OperationBinding.

import java.util.Map;

import oracle.adf.model.BindingContext;

import oracle.adf.model.OperationParameter;

import oracle.adf.model.binding.DCInvokeMethod;

import oracle.adf.model.binding.DCInvokeMethodDef;

import oracle.binding.BindingContainer;

import oracle.binding.OperationBinding;

…

//method called from a command item in ADF Faces

public String onRelocateEmployee() {

 //generated binding access code

 BindingContainer bindings = getBindings();

 //access the method binding in the PageDef file

 OperationBinding operationBinding =

 bindings.getOperationBinding("relocateEmployee");

 //to pass arguments to an operation binding, a Map is used.

http://technology.amis.nl/blog/8269/adf-11g-select-all-rows-in-an-adf-table
http://forums.oracle.com/forums/profile.jspa?userID=806397
http://forums.oracle.com/forums/profile.jspa?userID=806397

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

13

 //the Map is retrieved by a call to getParamsMap on the operation

 //binding

 Map operationParamsMap = operationBinding.getParamsMap();

 //get access to the operation definition

 DCInvokeMethod method =

 (DCInvokeMethod)operationBinding.getOperationInfo();

 if (method != null) {

 DCInvokeMethodDef methodDef = method.getDef();

 if (methodDef != null) {

 OperationParameter[] operationParameters = null;

 operationParameters = methodDef.getParameters();

 if (operationParameters != null) {

 for (OperationParameter operationParameter :

 operationParameters) {

 String argumentName = operationParameter.getName();

 Object argumentType = operationParameter.getTypeName();

 Object defaultValue = operationParameter.getValue();

 if (argumentName != null) {

 Object value = <determine value for argumentNname>;

 operationParamsMap.put(argumentName, value != null ?

 value : defaultValue);

 }

 }

 }

 }

 }

 //the operation arguments are provided. Now it is time to

 //execute it

 Object result = operationBinding.execute();

 if (!operationBinding.getErrors().isEmpty()) {

 //TODO log error

 //TODO handle error

 return null;

 }

 return null;

 }

Invoking af:exportCollectionActionListener from Java

The af:exportCollectionListener tag is a client behavior tag in ADF Faces. Client behavior

tags implement functionality that requires JavaScript on the client side if coded manually by application

developer. In fact, client behavior tags wrap the JavaScript that is required for a solution and expose a JSF

tag for declarative use instead. The af:exportCollectionListener exports the visible content of

a collection, like exposed in an ADF Faces table, to Excel. The tag is dragged on top of a command item,

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

14

like a toolbar button or a command button, and then configured with the table id for which rows should

be exported, the name of the file to produce, whether you want to export all rows or just those that are

selected, and an optional title string. For more information, see the tag documentation:

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_exportCollectionActi

onListener.html

When the command item that has the af:exportCollectionListener tag added is invoked by a

user, the tag is executed as well and produces the desired output. However, applications usually are a lot

more dynamic than to wait for a user to press a button. Instead developers may want to invoke the client

behavior programmatically, which in case of a client behavior you can do using JavaScript

var button = AdfPage.PAGE.findComponentByAbsoluteId('pc1:ctb1');

if (button != null)

{

 AdfActionEvent.queue(button);

}

The JavaScript code above looks an ADF Faces component up in a search from the page root. The

component is identified by its absolute component Id ('pc1:ctb1' in the example as the button is in a

toolbar facet of a panel collection, which is a naming container). If the component is found, the client

event – AdfActionEvent – is queued for the button, which virtually presses it.

However, what if you don't want JavaScript in your application code? In this case, you can use Java to

invoke JavaScript from a managed bean. The following code sample provides a method that is called from

Java logic in your managed bean to composes the JavaScript String and to invoke it on the client:

import javax.faces.component.UIComponent;

import javax.faces.component.UIViewRoot;

import javax.faces.context.FacesContext;

import org.apache.myfaces.trinidad.render.ExtendedRenderKitService;

import org.apache.myfaces.trinidad.util.Service;

public void magicallyPressToolbarCommand(String id) {

 FacesContext fctx = FacesContext.getCurrentInstance();

 UIViewRoot uiViewRoot = fctx.getViewRoot();

 UIComponent comp = uiViewRoot.findComponent(id);

 //check if the component is a command component. For the

 //exportCollectionListener this is important as we need to

 //queue a client side action event

 if (comp != null && (comp instanceof UIXCommand)) {

 String clientId = comp.getClientId(fctx);

 StringBuffer scriptBuffer = new StringBuffer();

 scriptBuffer.append("var button =

 AdfPage.PAGE.findComponentByAbsoluteId('");

 scriptBuffer.append(clientId + "'); ");

 scriptBuffer.append("if (button != null){");

 scriptBuffer.append("AdfActionEvent.queue(button);}");

 writeJavaScriptToClient(scriptBuffer.toString());

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_exportCollectionActionListener.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_exportCollectionActionListener.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

15

 }

 else {

 //ID probably not found. Log the issue

 System.out.println("Component with ID " + id +

 " not Found !!!");

 //TODO - use proper ADFLogger print message

 }

}

//universal helper method for invoking scripts on the client

private void writeJavaScriptToClient(String script) {

 FacesContext fctx = FacesContext.getCurrentInstance();

 //Trinidad classes

 ExtendedRenderKitService erks = null;

 erks = Service.getRenderKitService(fctx,

 ExtendedRenderKitService.class);

 erks.addScript(fctx, script);

}

What you need to pay extra attention to is the ID of the component (a toolbar component in my

example). If a component is within a naming container like PageTemplate, Table, PanelCollection,

Region, etc. then the ID(s) of the surrounding naming containers must be added as a prefix to the

component ID. The form is namingContainerId:componentId.

Disadvantage of using JavaScript in Java: The script is harder to debug on the client.

One more challenge!

Okay, now that I showed how to invoke a command item on a client using JavaScript from Java, what if

you don't want to have a button showing in the UI? In this case, it should be the application logic only

that invokes the af:exportCollectionAtionListener. In this case you still add a command

item to the page but set its Visible property to false. This way the command item is hidden in the user

interface, but the functionality is still available for the application to use.

Note: Don't however try the same setting the "Rendered" property to false. If a component is not

rendered then it cannot be found and invoked on the client.

About default value in SelectOneChoice component

A common requirement when using an af:selectOneChoice component is to set its default value to

a value in the list. Some developers try to hack into the af:selectOneChoice component rendering

to set the default to e.g. the first value in the list. This however, doesn't work and if it would, would have a

side effect, which is that the underlying model wouldn't know if the default list value is meant to be set as

a selection by the user or just a proposed value by the developer. Therefore, the proper way for selecting a

default list value in an af:selectOneChoice component is to define the default value on the attribute

of the object to update. Using ADF Business Components as a business service, the default value would

be defined on the Entity Object attribute or the View Object attribute. If you use JPA, you set the default

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

16

value on the JPA entity attribute. POJO is similar to JPA. So don't look for manipulating the list rendering

but add a default value to the attribute populated by the list.

Handling the close icon on a task flow opened as a dialog

Calls to bounded task flows can be configured to open the task flow in an inline popup dialog. To do so,
you set the task flow call activity property Run as Dialog to true and the Display Type property to
inline-popup launches the called bounded task flow in an inline popup.

To launch the bounded task flow in the dialog, a command item, like af:commandButton is used that,
in its Action property, references the control flow case that exist between the current view and the task
flow call activity

<af:commandButton text="Lookup" id="cb6"
 windowEmbedStyle="inlineDocument" useWindow="true"

 windowHeight="300" windowWidth="300"

 action="control_flow_ name" partialSubmit="true"/>

Note that it is the command item launching the dialog that defines the size of the opened dialog.

By default, the dialog that contains the task flow has a close icon added in its right upper corner that, if
clicked, closes the dialog, abandons the bounded task flow and returns to the calling page. However, using
this approach of cancelling the dialog does not produce a return event, which means that the calling view
does not get any feedback of what the user did and how he, or she, exit the dialog. To avoid this "loss of
control" (there may be use cases where you don't care, but often you do), all you can do is to hide the icon
from the dialog. There are two approaches for you to take:

1. Configure a managed bean as shown below to hide the close icons from all dialogs in the
application (note that the "dailog" used in the managed bean is not a misspelling in this post but
a misspelling the internal framework code.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

17

<managed-bean>

 <managed-bean-name>

 oracle$adfinternal$view$rich$dailogInlineDocument

 </managed-bean-name>

 <managed-bean-class>java.util.TreeMap</managed-bean-class>

 <managed-bean-scope>application</managed-bean-scope>

 <map-entries>

 <key-class>java.lang.String</key-class>

 <value-class>java.lang.String</value-class>

 <map-entry>

 <key>MODE</key>

 <value>withoutCancel</value>

 </map-entry>

 </map-entries>

 </managed-bean>
2. Use skinning to hide the icon

af|panelWindow::close-icon-style{ display:none; }

The question of how to hide the close icon in the bounded task flow dialog is reoccurring and I
documented this in two blog articles you can access from the links below:

1. Managed Bean approach (JDeveloper 11.1.1.4)
2. Skinning Approach

Note: The full URLs are provided at the end of this OTN Harvest document too.

Select month and year only using af:inputDate

The af:inputDate component is an input field with date picker that users use to select an input date.

The value returned by the af:inputDate component by default contains the selected day, month and
year of the chosen date. To customize the date format or the information applied to the input field, you
use the f:convertDateTime tag.

For example, the following inputDate definition …

 <af:inputDate label="Label 1" id="id1">

 <f:convertDateTime pattern="MM/yyyy"/>

 </af:inputDate>

… produces the following date input at runtime

http://blogs.oracle.com/jdevotnharvest/entry/how-to_remove_the_close_icon_from_task_flows_opened_in_dialogs_11114
http://blogs.oracle.com/jdevotnharvest/entry/how-to_hide_the_close_icon_for_task_flows_opened_in_dialogs

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

18

OTN forum: Good questions produce better answers

If you are a new developer with Oracle ADF, you for sure have more questions to ask than answers to

give. Good to know that the Oracle JDeveloper forum on OTN is a place to go for help. Unfortunately

some questions don't contain enough information or lack a use case, making it hard for more experienced

ADF developers to help. Therefore, I like to encourage all new members of our forum on OTN to read

the post "Announcement: Please read this before you post" published by Shay Shmeltzer:

http://forums.oracle.com/forums/ann.jspa?annID=56

To re-iterate some of his points (copying from the doc)

Have a meaningful subject for your thread

Start your threads subject with the technology your question relates to follow by a clear and short description of your problem.

Bad example: Urgent! can you help me Good example: JSF: How to add custom components

Mark Bug and ER thread clearly

If you are reporting a bug start your subject with BUG. If you are requesting a new feature start your subject with ER.

Specify which version of the product you are using

Let us know the specific version of JDeveloper (and other products) you are using.

Bad Example - "How do I switch the projects JDK in JDeveloper?"

Good Example - "How do I switch the projects JDK in JDeveloper 10.1.2.1811?"

Specify any error messages you get

Specific error messages help to identify specific problems

Bad Example - I tried to connect to the database and it doesn't work

Good Example - I tried to connect to the database and got the error message: "Io exception: The Network Adapter could

not establish the connection."

Post code when it can help

If you have a small piece of code that can illustrate the problem post it. You can enclose it in [c ode] tags [/code] tags (remove

spaces from the tags)

Once you find a solution

Please mark your question as answered.

You should also recognize responses to your thread as helpful or correct using the buttons when appropriate.

One suggestion I like to add is: Don't start with "Adam and Eve" when asking a question. Start with the

use case you want to implement (just plain English) and then what you tried and what obviously didn't

work. Don't lose yourself in constructs like "VO A1 calls VO A2, which has attributes VO A2 AT1 and

VOA2 AT2, linked by a View Link VLV1V2. I dag V1 A2 AT2 as a popup populated by VO A3, which is

linked from VO A3 …. Hoe you see this is getting nowhere. Don't make me learn your business before I

http://forums.oracle.com/forums/ann.jspa?annID=56

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
05 / 2011

19

can understand the question. Break down your use case so it translates to a common database schema like

HR, FOD, or OE.

RELATED DOCOMENTATION

 Hide bounded task flow dialog close icon:

1. http://blogs.oracle.com/jdevotnharvest/entry/how-

to_remove_the_close_icon_from_task_flows_opened_in_dialogs_11114

2. http://blogs.oracle.com/jdevotnharvest/entry/how-

to_hide_the_close_icon_for_task_flows_opened_in_dialogs

http://blogs.oracle.com/jdevotnharvest/entry/how-to_remove_the_close_icon_from_task_flows_opened_in_dialogs_11114
http://blogs.oracle.com/jdevotnharvest/entry/how-to_remove_the_close_icon_from_task_flows_opened_in_dialogs_11114
http://blogs.oracle.com/jdevotnharvest/entry/how-to_hide_the_close_icon_for_task_flows_opened_in_dialogs
http://blogs.oracle.com/jdevotnharvest/entry/how-to_hide_the_close_icon_for_task_flows_opened_in_dialogs

