

 ADF Code Corner

Oracle JDeveloper OTN Harvest 11 / 2011

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-NOV-2011

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

2

November 2011 Issue – Table of Contents

Using Groovy in Entity Validation ... 3

Using ADF logger with Groovy in ADF BC .. 6

UI Categories in ADF BC of JDeveloper 11g R2 7

Accessing View Object UI hints from EL ... 10

JSF 2.0 Preemptive Navigation in ADFc of JDeveloper 11.1.2 11

How-to read train stop display names from a message bundle 12

How-to access selected node in tree component 17

How-to create a command button at runtime 19

Accessing the JSESSIONID from JSF.. 21

How to detect browser type and version from ADF Faces 22

OTN Harvest Spotlight - John Stegeman .. 23

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

3

Using Groovy in Entity Validation

The use case for this sample has been posted on OTN as follows: "How to define entity validation for the

Salary attribute of the Employees table so that pay raises going beyond the cumulated salary budget for a

departments throws an exception". The logic for this is as follows:

AvailableBudget – (AllSalariesInDepartment + newEmployeeSalar) + currentEmployeeSalary < 0

The available budget is compared to all salaries paid in a department. Chances are that some salaries have

been changed for an entity but not yet committed, which means thatyou need to read the salary from the

entity cache to obtain the current budget. You then add the old employee salary before subtracted the

new salary from the available budget to determine if the pay raise is within budget.

To implement the solution in Groovy, I assume you have an ADF Business Component model built on

the Departments and Employees table of the Oracle HR Schema. You should have two entities created

with an association defined between.

Select the association and double click on it to show the visual editor. Click onto the Relationship

menu item to see the Source and Destination accessor names (e.g. Departments1, Employees1). Using

accessors, you can "walk" the entity relationship up and down (e.g. to access the Departments entity from

the Employees entity), which is key to this little recipe.

In the Employee entity editor, select the Salary attribute and click the green plus icon next to the

Validation section to create a new validation rule.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

4

In the Add Validation Rule for Salary dialog, choose the Rule Type as Script Expression

As the Rule Definition, add the following script:

//perform validation

if((100000 - (Departments1.Employees1.sum('Salary')+ newValue) +

 oldValue) < 0){

 adf.error.raise("SALARY_TOO_HIGH_ERROR")

 return false

}

return true

As you can see from the script, it uses the entity association accessors to get to the Departments entity to

then compute the summary of salaries paid within.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

5

What you need to know: The validation provides implicit object to access information contained

within. Two of these information is oldValue and newValue, which gives you a handle to the value as it

was before (committed or uncommitted) and the new value the attribute is changed to. Another useful

object, though not used here is source. The source object gives you access to the entity object itself. You

can use this e.g. to access public methods in an entity impl class (no need to expose them on the client

interface). A use case for this is if you wanted to access getPostedData which is the data originally

queried from the database. The getPostedData is a protected method, which is why you need a custom

entity impl class to expose it through a public method, just the need to use the source object.

Select the Failure Handling tab of the dialog to define the message to be shown when validation fails.

Add message string with variables. Variables are defined by curly braces and a name, like {newsal}

The message is added to a resource properties file. In the sample I used a message key of:
SALARY_TOO_HIGH_ERROR. The message string associated to this in the properties
file is shown below:

SALARY_TOO_HIGH_ERROR=Salary raise to {newsal} is too high for money
{moneyAvailable} left in the budget for this department

The variable names can then be configured in the Failure Handling tab, e.g. to reference
the new value and the budget.

You then run the AM and add salaries so that the budget is existed and the message will
show.

Using Groovy for this use case is straight forward though, as I admit, requires some better
knowledge of ADF Business Components and Java.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

6

Before you ask: To make the budget generic, you can have an attribute added to the
Departments table that holds the value, in which case it too becomes Groovy accessible

Using ADF logger with Groovy in ADF BC

Groovy is a scripting language that can be used in the context of ADF BC. It simplifies Java
object access and method execution. Basically everything you could access from Java you can
access from Groovy. If logging is needed in your Groovy scripting, then this can be achieved
using the ADF Logger as shown below. Just add script similar to this into the Groovy code
are (e..g when working with custom entity validators)

//log information to console. Create a logger instance for

//the entity class – "Employees in this sample

oracle.adf.share.logging.ADFLogger LOGGER =

 oracle.adf.share.logging.ADFLogger.

 createADFLogger(source.getClass())

LOGGER.info("Groovy Log Statement: oldValue and newValue in Validdator

 "+oldValue+" ---> "+newValue)

LOGGER.info("Groovy Log Statement: All salaries in Department

 "+Departments1.Employees1.sum('Salary'))

LOGGER.info("Groovy Log Statement: current budget "+(100000 -

 (Departments1.Employees1.sum('Salary')+ newValue) + oldValue))

Like In Java, you define a variable to hold the logger reference to then use it to print info
messages

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

7

UI Categories in ADF BC of JDeveloper 11g R2

Oracle ADF Business Components in Oracle JDeveloper 112g R2 allow to categorize attributes in a View

Object so they can be displayed in UI groups in the generated UI of the ADF BC tester and – with a bit

of configuration – in the ADF Faces view.

To use categorization, open the View Object from the Application Navigator.

A default category exists that yet holds all attributes. Use the green plus icon to create additional

categories.

Note: You cannot order the categories in the ADF Business Component Editor.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

8

Create additional categories as needed (like Job and HR in this example) and drag the attribute into the

categories.

Run the Application Module in the ADF Business Component tester to see the categories in action.

To use ADF Business Components categories on ADF Faces pages, create a JSPX document and drag

the View Object collection as an ADF Dynamic Form

Note: ADF Dynamic Forms are not yet supported with Facelets in Oracle JDeveloper 11.1.2.1

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

9

Create as many ADF Dynamic Forms as you have categories. In the example there are three categories:

Person, Job, and HR. Select one of the dynamic:form tags and open the Properties Inspector. Set the

Category Property to the name of the property to render.

At runtime, the categories attributes are automatically added to the dynamic form representing a category.

Note that the above layout is achieved by surrounding the dynamic:form withan af:panelHeader

component.

To dynamically set the af:panelHeader title to the UI hint label specified for a category, use Expression

Language as shown below

 <af:panelGroupLayout id="pgl1" layout="vertical">

 <af:panelHeader id="ph1"

 text="#{bindings.allEmployeesIterator.hints['categories']['Person'].name}">

 <dynamic:form value="#{bindings.allEmployeesIterator}" id="df1" category="Person"/>

 </af:panelHeader>

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

10

 <af:panelHeader id="ph2"

 text="#{bindings.allEmployeesIterator.hints['categories']['Job'].name}">

 <dynamic:form value="#{bindings.allEmployeesIterator}" id="df2" category="Job"/>

 </af:panelHeader>

 <af:panelHeader id="ph3"

 text="#{bindings.allEmployeesIterator.hints['categories']['HR'].name}">

 <dynamic:form value="#{bindings.allEmployeesIterator}" id="df3" category="HR"/>

 <af:commandButton text="Submit" id="cb3"/>

 </af:panelHeader>

</af:panelGroupLayout>

Just in case you are interested, the hints['categories'] expression returns a HashMap of CategoryImpl

objects. The CategoryImpl exposes a property for name. Because the EL expression builder in

Oracle JDeveloper doesn't expose the hint property in full detail for the DCIteratorBinding, you need to

type this EL into the text property yourself.

Note that the UI preview in the visual editor in Oracle JDeveloper will change to {…} for the title

strings.

Accessing View Object UI hints from EL

View Objects allow developers to define UI hints in the General category. In below screen shot, the

Display Name, Display Name (Plural) and Description are defined for the Employees View Object.

To display this information on the ADF Faces view as shown below …

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

11

You use EL expression similar to the one shown the page snippet below

<af:panelGroupLayout id="pgl2" layout="horizontal">

 <af:outputText value="#{bindings.allEmployeesIterator.hints['label']}," id="ot3"/>

 <af:spacer width="10" height="10" id="s1"/>

 <af:outputText value="#{bindings.allEmployeesIterator.hints['labelPlural']}, " id="ot2"/>

 <af:spacer width="10" height="10" id="s2"/>

 <af:outputText value="#{bindings.allEmployeesIterator.hints['TOOLTIP']} " id="ot1"/>

</af:panelGroupLayout>

So the Display Name property maps to UI hints "label", the Display Name (Plural) property to the UI

hints "labelPlural" and the Description property to the "TOOLTIP" string.

These strings are defined in the oracle.jbo.AttributeHints class. For future-save programming

you should consider reading the UI hint strings directly from this class.

To do so, expose the AttributeHints class to EL through a helper managed bean (put it to

application scope for best performance) that exposes JavaBean properties for each of the strings.

Using such a helper bean, the above page snippets would look similar to this

 <af:panelGroupLayout id="pgl2" layout="horizontal">

 <af:outputText value="#{bindings.allEmployeesIterator.hints[helperBean.label]}," id="ot3"/>

 <af:spacer width="10" height="10" id="s1"/>

 <af:outputText value="#{bindings.allEmployeesIterator.hints[helperBean.labelPlural]}, "

 id="ot2"/>

 <af:spacer width="10" height="10" id="s2"/>

….

JSF 2.0 Preemptive Navigation in ADFc of JDeveloper 11.1.2

Preemptive navigation is a new feature in JavaServer Faces 2.0 and allows runtime introspection of

control flow cases for their target view.

The JSF API for this is the ConfigurableNavigationHander class that exposes the following

methods

 getNavigationCase(FacesContext context,

 java.lang.String fromAction,

 java.lang.String outcome)

 getNavigationCases() – returns a Map<String, Set<NavigationCase>> that lists all

available navigation cases with the viewId as the map keys

 performNavigation(java.lang.String outcome) – Navigates to the next view based on the

outcome. Developers using this method must ensure it is used during JSF InvokeApplication

phase as it cannot be used any later

The NavigationCase class wraps the information defined for a navigation, including the condition

(also a new feature in JSF 2.0) in which the navigation case is valid.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

12

Preemptive navigation can be used in an application to populate redirect components, like the goLink

shown below with a target view, or for redirects in a managed bean, for which developers need to know

the target view.

The sample below shows an ADF Faces GoLink pointing to a managed bean. The managed bean returns

the redirect URL the link follows when clicked on.

The managed bean accesses the NavigationHandler defined for the JSF instance and verifies it to be

an instance of ConfigurableNavigationHandler before it looks up the target viewId for the

control flow case.

Note that ADFc in Oracle JDeveloper 11g R2 also supports conditional navigation, in which case

developers can define an EL expression on the control flow case, using the Property Inspector, that

determines when a navigation case is valid and when it is not.

Also note that Preemptive navigation fails with a NullPointer exception if the referenced control flow

case is conditionally set to disabled. To handle this, the managed bean code above needs to be surrounded

with a try…catch block.

How-to read train stop display names from a message bundle

In Oracle JDeveloper 11g R1, you set the display name of a train stop of an ADF bounded task flow train

model by using the Oracle JDeveloper Structure Window.

To do so

 Double-click onto the bounded task flow configuration file (XML) located in the Application

Navigator so the task flow diagram opens.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

13

 In the task flow diagram, select the view activity node for which you want to define the display

name.

 In the Structure Window., expand the view activity node and then the train-stop node therein

 Add the display name element by using the right-click context menu on the train-stop node,

selecting Insert inside train-stop -> Display Name

 Edit the Display Name value with the Property Inspector

Following the steps outlined above, you can define static display names – like "PF1" for page fragment 1

shown in the image below - for train stops to show at runtime.

In the following, I explain how you can change the static display string to a dynamic string that reads the

display label from a resource bundle so train stop labels can be internationalized.

There are different strategies available for managing message bundles within an Oracle JDeveloper

project. For this sample, I decided to build and configure the default properties file as indicated by the

projects properties. To learn about the project's suggested file name and location, open the JDeveloper

project properties (use a right mouse click on the project node in the Application Navigator and choose

Project Properties.

Select the Resource Bundle node to see the suggested name and location for the default message bundle.

Note that this is the resource bundle that Oracle JDeveloper would automatically create when you assign a

text resource to an ADF Faces component in a page.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

14

For the train stop display name, we need to create the message bundle manually as there is no context

menu help available in Oracle JDeveloper. For this, use a right mouse click on the JDeveloper project and

choose New  General  File from the menu and in the opened dialog.

Specify the message bundle file name as the name looked up before in the project properties Resource

Bundle option. Also, ensure that the file is saved in a directory structure that matches the package

structure shown in the Resource Bundle dialog. In the sample, the properties file is saved in the View

Project's src  adf  sample directory.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

15

Edit the properties file and define key – values pairs for the train stop component. In the sample, such

key value pairs are

TrainStop1=Train Stop 1

TrainStop2=Train Stop 2

TrainStop3=Train Stop 3

Next, double click the faces-config.xml file and switch the opened editor to the Overview tab. Select the

Application category and press the green plus icon next to the Resource Bundle section.

Define the resource bundle Base Name as the package and properties file name, for example

adf.sample.ViewControllerBundle

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

16

<resource-bundle>

 <base-name>adf.sample.ViewControllerBundle</base-name>

 <var>messageBundle</var>

 </resource-bundle>

Finally, define a variable name for the message bundle so the bundle can be accessed from Expression

Language. For this example, the name is chosen as "messageBundle".

Next, select the display-name element in the train stop node (similar to when creating the display name)

and use the Property Inspector to change the static string to an EL expression referencing the message

bundle, for example:

#{messageBundle.TrainStop1}

At runtime, the train stops now show display names read from a message bundle.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

17

How-to access selected node in tree component

By default, the SelectionListener property of an ADF bound tree points to the makeCurrent method of

the FacesCtrlHierBinding class in ADF to synchronize the current row in the ADF binding layer with

the selected tree node. To customize the selection behavior, or just to read the selected node value in Java,

you override the default configuration with an EL string pointing to a managed bean method property. In

the following I show how you change the selection listener while preserving the default ADF selection

behavior.

To change the SelectionListener, select the tree component in the Structure Window and open the

Oracle JDeveloper Property Inspector. From the context menu, select the Edit option to create a new

listener method in a new or an existing managed bean.

For this example, I created a new managed bean

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

18

On tree node select, the managed bean code prints the selected tree node value(s)

import java.util.Iterator;

import java.util.List;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.MethodExpression;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.data.RichTree;

import oracle.jbo.Row;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.event.SelectionEvent;

import org.apache.myfaces.trinidad.model.CollectionModel;

import org.apache.myfaces.trinidad.model.RowKeySet;

import org.apache.myfaces.trinidad.model.TreeModel;

public class TreeSampleBean {

 public TreeSampleBean() {

 }

 public void onTreeSelect(SelectionEvent selectionEvent) {

 //original selection listener set by ADF

 //#{bindings.allDepartments.treeModel.makeCurrent}

 String adfSelectionListener =

 "#{bindings.allDepartments.treeModel.makeCurrent}";

 //make sure the default selection listener functionality is

 //preserved. you don't need to do this for multi select trees

 //as the ADF binding only supports single current row selection

 /* START PRESERVER DEFAULT ADF SELECT BEHAVIOR */

 FacesContext fctx = FacesContext.getCurrentInstance();

 Application application = fctx.getApplication();

 ELContext elCtx = fctx.getELContext();

 ExpressionFactory exprFactory = application.getExpressionFactory();

 MethodExpression me = null;

 me = exprFactory.createMethodExpression(

 elCtx, adfSelectionListener,

 Object.class, newClass[]{SelectionEvent.class});

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

19

 me.invoke(elCtx, new Object[] { selectionEvent });

 /* END PRESERVER DEFAULT ADF SELECT BEHAVIOR */

 RichTree tree = (RichTree)selectionEvent.getSource();

 TreeModel model = (TreeModel)tree.getValue();

 //get selected nodes

 RowKeySet rowKeySet = selectionEvent.getAddedSet();

 Iterator rksIterator = rowKeySet.iterator();

 //for single select configurations, thi sonly is called once

 while (rksIterator.hasNext()) {

 List key = (List)rksIterator.next();

 JUCtrlHierBinding treeBinding = null;

 CollectionModel collectionModel = (CollectionModel)tree.getValue();

 treeBinding = (JUCtrlHierBinding)collectionModel.getWrappedData();

 JUCtrlHierNodeBinding nodeBinding = null;

 nodeBinding = treeBinding.findNodeByKeyPath(key);

 Row rw = nodeBinding.getRow();

 //print first row attribute. Note that in a tree you have to

 // determine the node type if you want to select node attributes

 //by name and not index

 String rowType = rw.getStructureDef().getDefName();

 if(rowType.equalsIgnoreCase("DepartmentsView")){

 System.out.println("This row is a department: " +

 rw.getAttribute("DepartmentId"));

 }

 else if(rowType.equalsIgnoreCase("EmployeesView")){

 System.out.println("This row is an employee: " +

 rw.getAttribute("EmployeeId"));

 }

 else{

 System.out.println("Huh ????");

 }

 // ... do more useful stuff here

 }

 }

}

How-to create a command button at runtime

In ADF Faces, the command button is an instance of RichCommandButton and can be created at

runtime. While creating the button is not difficult at all, adding behavior to it requires knowing about how

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

20

to dynamically create and add an action listener reference. The example code below shows two methods:

The first method, handleButtonPress is a public method exposed on a managed bean.

public void handleButtonPress(ActionEvent event){

 System.out.println("Event handled");

 //optional: partially refresh changed components if command

 //issued as a partial submit

}

The second method is called in response to a user interaction or on page load and dynamically creates and

adds a command button. When the button is pressed, the managed bean method – the action handler –

defined above is called. The action handler is referenced using EL in the created MethodExpression

instance. If the managed bean is in viewScope, backingBeanScope or pageFlowsScope, then you need to

add these scopes as a prefix to the EL (as you would when configuring the managed bean reference at

design time)

//Create command button and add it as a child to the parent component that is passed as an

//argument to this method

 private void createCommandButton(UIComponent parent){

 RichCommandButton edit = new RichCommandButton();

 //make the request partial

 edit.setPartialSubmit(true);

 edit.setText("Edit");

 //compose method expression to invoke action event handler when button is

 //pressed

 FacesContext fctx = FacesContext.getCurrentInstance();

 Application application = fctx.getApplication();

 ExpressionFactory elFactory = application.getExpressionFactory();

 ELContext elContext = facesCtx.getELContext();

MethodExpression methodExpression =null;

//Make sure the EL expression references a valid managed bean method. Ensure

//the bean scope is properly addressed

 methodExpression = elFactory.createMethodExpression(

 elContext, "#{myRequestScopeBean.handleButtonPress}",

 Object.class, new Class[] {ActionEvent.class});

//Create the command button action listener reference

 MethodExpressionActionListener al = null;

 al= new MethodExpressionActionListener(methodExpression);

 edit.addActionListener(al);

 //add new command button to parent component and PPR the component for

 //the button to show

 parent.getChildren().add(edit);

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

21

 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();

 adfFacesContext.addPartialTarget(parent);

 }

Accessing the JSESSIONID from JSF

The following code attempts to access and print the user session ID from ADF Faces, using the session

cookie that is automatically set by the server and the Http Session object itself.

FacesContext fctx = FacesContext.getCurrentInstance();

ExternalContext ectx = fctx.getExternalContext();

HttpSession session = (HttpSession) ectx.getSession(false);

String sessionId = session.getId();

System.out.println("Session Id = "+ sessionId);

Cookie[] cookies =

 ((HttpServletRequest)ectx.getRequest()).getCookies();

//reset session string

sessionId = null;

if (cookies != null) {

 for (Cookie brezel : cookies) {

 if (brezel.getName().equalsIgnoreCase("JSESSIONID")) {

 sessionId = brezel.getValue();

 break;

 }

 }

 }

 System.out.println("JSESSIONID cookie = "+sessionId);

Though apparently both approaches to the same thing, they are different in the value they return and the

condition under which they work. The getId method, for example returns a session value as shown below

grLFTNzJhhnQTqVwxHMGl0WDZPGhZFl2m0JS5SyYVmZqvrfghFxy!-1834097692!1322120041091

Reading the cookie, returns a value like this

grLFTNzJhhnQTqVwxHMGl0WDZPGhZFl2m0JS5SyYVmZqvrfghFxy!-1834097692

Though both seem to be identical, the difference is within "!1322120041091" added to the id when

reading it directly from the Http Session object. Dependent on the use case the session Id is looked up

for, the difference may not be important.

Another difference however, is of importance. The cookie reading only works if the session Id is added as

a cookie to the request, which is configurable for applications in the weblogic-application.xml

file. If cookies are disabled, then the server adds the session ID to the request URL (actually it appends it

to the end of the URI, so right after the view Id reference). In this case however no cookie is set so that

the lookup returns empty. In both cases however, the getId variant works.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

22

How to detect browser type and version from ADF Faces

Sometimes ADF applications need to know about the user browser type and version. For this, assuming

you need this information in Java, you can use the Trinidad RequestContext object. You could also

use the AdfFacesContext object for the same, but since the ADF Faces Agent class is marked as

deprecated, using the equivalent Trinidad classes is the better choice.

The source code below prints the user browser information to the Oracle JDeveloper message window

import org.apache.myfaces.trinidad.context.Agent;

import org.apache.myfaces.trinidad.context.RequestContext;

…

RequestContext requestCtx = RequestContext.getCurrentInstance();

Agent agent = requestCtx.getAgent();

String version = agent.getAgentVersion();

String browser = agent.getAgentName();

String platform = agent.getPlatformName();

String platformVersion = agent.getPlatformVersion();

System.out.println("==================");

System.out.println("Your browser information: ");

System.out.println("Browser: "+browser);

System.out.println("Browser Version : "+version);

System.out.println("Browser Platform: "+platform);

System.out.println("Browser Platform Version:

 "+platformVersion);

System.out.println("==================");

Ps.: I can almost hear John Stegeman, the Oracle ADF community expert I introduce in this month's

OTN Harvest Spotlight, saying that System.out.println is not what I should be using, but

AdfLogger. And right he is – however, samples fall under a different category than production systems.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

23

ADF Code Corner

OTN Harvest Spotlight
- John Stegeman

- paragraph about person –

I’ve been working in IT for the past 21 years. I was born in the USA, but I
I am currently living and working in the UK. I’m married to my

beautiful wife Josephine and have three great children, Purity, David,

and Matthew.

"select answer from forum_answers where context_provided is null and

question_is_not_related_to_thread = 'TRUE' "

 - John Stegeman

ACC: What is your current role?

John: I am an architect / presales resource in the insurance software group of Xchanging, a

BPO/ITO company headquartered in London.

ACC: What is your IT background?

John: I don’t have any formal IT education (I was a chemistry/chemical engineering major in

university), but starting from my very first work-study experience, I was doing

programming tasks in Fortran to simulate chemical production efficiencies.

I started my career in IT in 1990 and have been working with Oracle technology in one way

or another since then. I started using JDeveloper in about 1999, shortly after Oracle bought

the source code for JBuilder from Borland.

ACC: How do you currently use Oracle JDeveloper and ADF?

John: Actually, I’m not currently using Oracle JDeveloper or ADF in any projects. When I do use

them, I’ve used them to build internal applications for our customers.

Although I’m not working on any ADF projects at the moment, I still invest a lot of time

keeping current so that I don’t get rusty and am ready for the next opportunity that comes

up.

ACC: So far, what has been your biggest challenge in building Java EE application with Oracle

ADF?

John: The biggest challenge that I’ve had is taking teams of people that understand and have lived

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

24

and breathed in Oracle Forms and helping them be productive in Oracle ADF.

At the time I built my first real live ADF application, there was very little experience in the

marketplace (my first app was in JDeveloper 10.1.3 – the first version to have ADF Faces),

so learning the “best practices” was a matter of building them as we went along.

ACC: Which feature of ADF was the greatest benefit to your project?

John: The feature that was the best from my perspective was the ADF binding layer. Not having

to worry about how to link up the data to the UI was a big productivity booster, and made

things that much easier for the Forms developers to pick up.

ACC: Away from the on line help, what have been your most valuable sources of ADF

knowledge?

John: I learned tons from the OTN Forums, both from asking questions in my early days and

more in answering questions of late.

I am by nature a person who learns by solving problems, so answering questions on the

Forum was and is very beneficial. The Oracle documentation (the Fusion Developer’s

Guide for ADF) is also something that was very helpful to me.

Even though I’ve read it cover-to-cover, I still find gems in there that I’d read before but

forgotten because I didn’t need to know them at the moment.

ACC: Are you in any way actively involved in the ADF Community?

John: I’ve been a bit less active of late, but I am or have been active on the Forms, in blogging

(although it’s been a long time since I’ve blogged anything), presenting to user groups,

participating in the ADF Enterprise Methodology Group and writing articles for OTN.

ACC: What is your recommendation for developers new to Oracle ADF. How should they start?

John: This is a tough one, because it depends on the background of the developers.

People who know Forms and people who know Java/J2EE will have a very different
learning path to take. I can give a few general suggestions, though:

a) Read the documentation and one or more of the excellent books that are out there.

b) Don’t be afraid to experiment – you will learn a lot this way.

c) Find a mentor (or hire a consultant) to help you with your first project. It will really help
you focus (ADF is really huge) and avoid learning to do things the wrong way.

d) Spend some time reading on the OTN JDeveloper/ADF forum. I learn a lot from
hearing what other people are struggling with and definitely have learned some new things
from seeing people’s answers.

e) Join the ADF Enterprise Methodology Group.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

25

ACC: You are very active in answering questions on the Oracle JDeveloper forum. Is there

anything people can do to make your life on the forum easier?

John:
That sounds like a trick question – answering questions on the forum isn’t part of my job
description, so it’s not about making *my* life easier.

I answer questions on the forums for two main reasons: first, I like helping people and
solving problems; second, it helps me learn new things.

Maybe the question you should have asked is what people can do to make their own lives
easier (in other words, how to get help faster)? I have a few suggestions for that one:

a). Search before asking – you can often get an answer really fast this way.

b). Slow down when you ask a question – make sure you give all of the background
information and explain yourself clearly.

One of my personal pet peeves on the forum is when people make me play Twenty
Questions just so I can understand their question.

There are some people who do a really good job of asking questions, whereas others post a

one-liner with the obligatory PLEASE HELP ME IT'S URGENT!!!!!! at the end 

ACC: Are you attending the UKOUG conference in Brimingham 2011? If so, what are your

planned activities there and how could people meet you just to say 'hello'?

John: Unfortunately, I’m not likely to make it up to UKOUG this year due to some really

pressing project needs, but I’m always happy to meet people in the London area for a cup

of coffee.

The easy way for people to contact me might be to send a direct Twitter message to

@stegemanoracle.

ACC: ADF Genie grants you a wish, what would you ask for?

John:

Hmm, hard to pick just one, but I’d like to see Oracle JDeveloper work really nicely with

Maven for ADF projects.

ACC: Thanks John.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
11 / 2011

26

RELATED DOCOMENTATION

 Oracle Magazine Article on ADF Train Model

http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

http://www.oracle.com/technetwork/issue-archive/2011/11-sep/o51adf-452576.html

