

Oracle Enterprise Pack for Eclipse 11g Hands on Labs

This certified set of Eclipse plug-ins is designed to help develop, deploy and debug

applications for Oracle WebLogic Server. It installs as a plug-in to your existing

Eclipse, or will install Eclipse for you, and enhances Eclipse's capabilities for Java,

Java EE, Spring, ORM and WebServices. If you are an Oracle WebLogic Server user,

this is the free tool for you.

OEPE 11g Release Notes

OEPE introduces new tools in support of Java EE 5.0 standards. The support for Java
wEE5 includes the following technologies:

Java EE5 Standards Support

• Servlet 2.5

• JSP 2.1

• JSF 1.2

• JSTL 1.2

• Unified Expression Language

• JAX-WS

• JAXB 2.0

• EJB 3

• EE5 EAR

• EJB 3 Session Beans
• EJB 3 Message Driven Beans

Built on Eclipse 3.4.2 and Web Tools Platform 3.0.4

OEPE 11g is built on the Eclipse Platform, an open source framework that is now
widely used for Java development. OEPE extends Eclipse and the Web Tools Platform.

Supported by Windows Vista

OEPE 11g is supported by Windows Vista. See the development tools blog for a
note on MAC OS X support.

XML Beans

OEPE 11g supports XMLBeans 2.3 and earlier.

Getting Familiar with OEPE 11g

The core components of this Eclipse based development environment are defined by

the following functional areas:

• Enhanced server plug-ins for multiple versions of Oracle WebLogic Server

• Visual Oracle WebLogic Server Web Service and XML IDE

• WYSIWYG Web and presentation tier tools for portable Java Web applications

• Object-relational mapping workbench and database tools

• Apache Beehive IDE for Java Page Flow and controls

• AppXRay support for the above components

• Spring IDE Project and Spring code generation wizards

• Core IDE features for Java SE and Java EE

• Built in Web Application and Web Service test client

Getting hands on with OEPE 11g

This document contains instructions for the following labs:

1. Creation of a simple JAX-WS web service

2. Using the OEPE ClientGen functionality

3. JAX-WS Web Service with custom bindings

4. JAXB

5. FastSwap Java Class Redefinition

LAB1: JAX-WS Service

Note:

The lab resources and completed projects can be found in the companion

OEPE11gLabs.zip file. The folder names match the lab titles in this document.

Objective: Create a simple JAX-WS web service in OEPE and deploy it to a running

server.

The 10gR3 release of WebLogic Server supports both Java API for XML-Based Web

Services 2.1 (JAX-WS) and Java API for XML-Based RPC 1.1 (JAX-RPC) Web Services.

JAX-RPC, an older specification, defined APIs and conventions for supporting XML

Web Services in the Java Platform as well support for the WS-I Basic Profile 1.0 to

improve interoperability between JAX-RPC implementations. JAX-WS is a follow up to

JAX-RPC 1.1 and it implements many of the new features in Java EE 5. For additional

documentation and examples about programming the features described in the

following sections in a JAX-WS Web Service, see the JAX-WS documentation

available at https://jax-ws.dev.java.net.

Java API for XML-based Web Services (JAX-WS) 2.1 is supported in this release,

adding the following features to those found in JAX-WS 2.0:

� Support for the JAXB 2.1 (JSR 222) Data Binding API

� WS-Addressing support

� Dynamic publishing of endpoints

� APIs for EndpointReference creation and propagation

� Annotations and APIs to enabled/disable features, such as MTOM and

Addressing

The WebLogic Server implementation of JAX-WS is based on the JAX-WS Reference

Implementation (RI), Version 2.1.4, and includes enhancements to the tool layer to

simplify the building and deployment of JAX-WS services and to ease the migration

from JAX-RPC to JAX-WS. The following features and enhancements are available

from the JAX-WS RI 2.1.4:

� .NET 2.0/WSF 3.0 MTOM interoperability support

� Significant performance improvements through the use of Woodstox

StAX Parser

� SOAPAction- based dispatching

� Integration of JAXB RI 2.1.5

� JAXB type substitution support

� WS-Addressing support for both W3C (1.0) and Member Submission

(2004/08)

� Asynchronous client/server support

� Dispatch and provider support:

• Dispatch<Message> and Provider<Message> support

• Development of non-WSDL or non-SOAP endpoints, such as

REST

As with WebLogic Server 10.0, developers may begin development with either a Java

source file or WSDL file. The WebLogic Server Ant tasks <jwsc> and <clientgen>

automate the generation of portable data binding classes, creation of deployment

descriptors, and packaging.

Steps:

Note: The JAX-WS Service and ClientGen projects are combined in the

JaxWsService.zip archive. The Service is ‘JaxwsServiceWeb’ and the client is

‘JaxwsClientWeb’.

-define wls runtime

1. Define a new WebLogic Runtime. This is a one time action done on first start

of Eclipse. Choose Window -> Preferences -> Server -> Runtime

Environments.

2. Choose Add…

3. Choose Oracle WebLogic Server 10gR3

4. Specify the WebLogic Server home directory, <BEA_HOME>\wlserver_10.3

5. Select File -> New -> Project -> J2EE

6. Create a new Enterprise Application called ‘JaxwsProjectEAR’

7. Keep the default configuration

8. Click ‘Finish’

9. Select File -> New -> Project

10. Find ‘Web Service Project’ under ‘Web Services’. Select and click ‘Next’

11. Name the project ‘JaxwsServiceWeb’

12. Under ‘Configurations’ select ‘Annotated Web Services Facets JAX-WS

(Recommended) (v10.3)’

13. Select ‘Add project to an EAR’

14. Click ‘Finish’

15. In the ‘Project Explorer’ View right click the ‘Java Resources/src’ folder in the

JaxwsServiceWeb project and select New -> package.

16. Name the package ‘webservice’

17. Right click the ‘webservice’ package folder

18. Select New -> WebLogic Web Service

19. Enter the class name ‘HelloJaxWs’ and click ‘Finish’

20. You’ll get the source with the ‘@WebService’ annotation

21. Fill out the ‘hello’ method with the following:

@WebMethod

public String hello(String name) {

 System.out.println("Service invoked with name: " + name);

 return "Hello " + name + " from JAX-WS service";

 }

22. Create a server by right clicking in the servers tab (towards the bottom of the

screen) and choosing new -> server.

23. Choose the Oracle WebLogic Server 10.3 (default)

24. Click next.

25. When creating the server, you can use the sample domain that ships with the

product by pointing to the directory

<bea_home>\wlserver_10.3\samples\domains\wl_server. Choose the domain

and then click finish.

26. Right click on the HelloJaxWs.java as shown below, and choose run as.. run

on server to build and deploy and test the application onto Oracle WebLogic

Server 10gR3. Click finish on the resulting dialog to run.

Troubleshooting Tip: If you have an issue deploying the app where the error says

that someone else owns the edit lock on the server go to the WLS console ->

Preferences and disable the automatic locking. Then click ‘Release Edit Lock’ to

fix it.

27. The test client should launch in the embedded Eclipse web browser. This test

harness allows you to interact with your JAX-WS web service. Enter your

name and click the “Hello” button, then scroll down to see the response.

28. Leave OEPE open, server running and application deployed, as you will need it

in the next lab.

LAB2: Client Gen – depends on LAB1

Note:

The lab resources and completed projects can be found in the companion

OEPE11gLabs.zip file, located on the OTN. The folder name for this lab is the same

as lab 1: “JAX-WS Service”.

Objective: Create a client for the previously created JAX-WS web service using the

ClientGen functionality of OEPE. This should be done in sequence after lab1 to work

properly.

The clientgen Ant task generates, from an existing WSDL file, the client component

files that client applications use to invoke both WebLogic and non-WebLogic Web

Services. This allows your web service to be called from a web or non-web client.

When generating a JAX-WS Web Services, the output includes:

� The Java class for the Service interface implementation for the

particular Web Service you want to invoke.

� JAXB data binding artifacts.

� The Java class for any user-defined XML Schema data types included

in the WSDL file.

Client applications can use the generated artifacts of clientgen to invoke Web

Services, for example with:

� Stand-alone Java clients that do not use the Java Platform, Enterprise

Edition (Java EE) Version 5 client container.

� Java EE clients, such as EJBs, JSPs, and Web Services, that use the

Java EE client container.

Client Gen’s output libraries can also be used or declared as a Shared Java EE library

on WebLogic. Java EE library support in WebLogic Server provides an easy way to

share one or more Java EE modules or JAR files among multiple Enterprise

Applications. A Java EE library is a stand-alone Java EE module, multiple Java EE

modules packaged in an Enterprise Application (EAR), or a plain JAR file that is

registered with the Java EE application container upon deployment. After a Java EE

library has been registered, you can deploy Enterprise Applications that reference the

library. Each referencing application receives a copy of the shared Java EE library

module(s) on deployment, and can use those modules as if they were packaged as

part of the application itself.

Steps:

Note: The JAX-WS Service and ClientGen projects are combined in the

JaxWsService.zip archive in the lab zip file. The Service is ‘JaxwsServiceWeb’ and

the client is ‘JaxwsClientWeb’.

1. Select File -> New -> Project -> Web Services

2. Select ‘Web Service Project’

3. Click ‘Next’

4. Name the project ‘JaxwsClientWeb’ and under ‘Configurations’ select

‘Annotated Web Services Facets JAX-WS (Recommended) (v10.3)’ as

shown below:

5. Click ‘Finish’

6. Now deploy your new project to server that’s already running. In the server

tab, right click “Oracle WebLogic Server v10.3 ….” and choose “Add and

Remove Projects” as shown below.

7. Click next on the resulting dialog.

8. Add the project by clicking add all, then finish. Do not remove existing

projects.

9. Right click the ‘JaxwsClientWeb/WebContent’ folder

10. Select New -> Other -> Web Service -> Web Service Client

11. Select the ‘Remote’ radio button and enter the following URL:

http://localhost:7001/JaxwsServiceWeb/HelloJaxWsService?wsdl

12. Click ‘Validate WSDL’

TROUBLESHOOTING TIP:

Make sure that the server is started and running, with the ‘JaxwsServiceWeb’

project deployed, and that you created the projects with the JAX-WS

configuration, not the JAX-RPC configuration, in the previous steps.

13. Click ‘Next’

14. Click “Next’

15. Select the radio button for ‘Copy WSDL into Client jar’

16. Click ‘Finish’

17. You’ll find the HelloJaxWsService.jar file in

JaxwsClientWeb/WebContent/WEB-INF/lib

18. Copy index.jsp from the lab resources to the JaxwsClientWeb/WebContent

folder

19. Right click on the index.jsp file and choose “Run As.. Run on Server to and

deploy it to the server and open it in the embedded Eclipse browser. Click ok

on the resulting dialog.

20. The embedded browser should take you to

http://localhost:7001/JaxwsClientWeb/index.jsp

The next lab will make use of a client JAR in the user interface code.

LAB3: Custom Bindings

Objective: Creating web service that leverages JAX-B custom bindings, generating a

client JAR, plugging client code into JSP and running it.

Introduction to customizing XML Schema-to-Java Mapping Using Binding Declarations

Due to the distributed nature of a WSDL, you cannot always control or change its

contents to meet the requirements of your application. For example, the WSDL may

not be owned by you or it may already be in use by your partners, making changes

impractical or impossible. If directly editing the WSDL is not an option, you can

customize how the WSDL components are mapped to Java objects by specifying

custom binding declarations. You can use binding declarations to control specific

features, as well, such as asynchrony, wrapper style, and so on, and to control the

JAXB data binding artifacts that are produced by customizing the XML Schema.

You can define binding declarations in one of the following ways:

� Create an external binding declarations file that contains all binding

declarations for a specific WSDL or XML Schema document.

� Note: If customizations are required, Oracle recommends this method

to maintain flexibility by keeping the customizations separate from the

WSDL or XML Schema document.

� Embed binding declarations within the WSDL or XML Schema

document.

The binding declarations are semantically equivalent regardless of which method you

choose. Custom binding declarations are associated with a scope, as shown in the

following figure.

Scopes for Custom Binding Declarations

The following table describes the meaning of each scope.

Scopes for Custom Binding Declarations

Scope Definition

Global

scope

Describes customization values with global scope. Specifically:

� For JAX-WS binding declarations, describes customization values

that are defined as part of the root element.

� For JAXB annotations, describes customization values that are

contained within the <globalBindings> binding declaration.

Global scope values apply to all of the schema elements in the

source schema as well as any schemas that are included or

imported.

Schema

scope

Describes JAXB customization values that are contained within the

<schemaBindings> binding declaration. Schema scope values apply to

the elements in the target namespace of a schema.

Note: This scope applies for JAXB binding declarations only

Definition

scope

Describes JAXB customization values that are defined in binding

declarations of a type definition or global declaration. Definition scope

values apply to elements that reference the type definition or global

declaration.

Note: This scope applies for JAXB binding declarations only

Component

scope

Describes customization values that apply to the WSDL or schema

element that was annotated.

Scopes for custom binding declarations adhere to the following inheritance and

overriding rules:

� Inheritance—Customization values are inherited from the top down.

For example, a WSDL element (JAX-WS) in a component scope inherits

a customization value defined in global scope. A schema element

(JAXB) in a component scope inherits a customization value defined in

global, schema, and definition scopes.

� Overriding—Customization values are overridden from the bottom up.

For example, a WSDL element (JAX-WS) in a component scope

overrides a customization value defined in global scope. A schema

element (JAXB) in a component scope overrides a customization value

defined in definition, schema, and global scopes.

Steps:

1. Select File -> New -> Project -> Web Services

2. Select ‘Web Service Project’

3. Click ‘Next’

4. Name the project ‘CustomBindingsServiceWeb’

5. Be sure to select ‘Annotated Web Service Facets JAX-WS

(Recommended)(v10.3)’ in the ‘Configurations’ drop down, as shown

below, then click finish.

6. Select File -> New -> Project -> Web Services

7. Select ‘Web Service Project’

8. Click ‘Next’

9. Name the project ‘CustomBindingsClientWeb’

10. Be sure to select ‘Annotated Web Service Facets JAX-WS

(Recommended)(v10.3)’ in the ‘Configurations’ drop down, as shown

below, then click finish.

11. Do this next part carefully, making sure the paths are correct

12. In the CustomBindingsServiceWeb project create a folder called ‘wsdl’ under

‘WebContent’ and copy the file ‘TemperatureService.wsdl’ in

‘CustomBindingsServiceWeb’.

13. Copy the file ‘myBindings.xml’ to

CustomBindingsServiceWeb/WebContent/wsdl.

14. In the CustomBindingsClientWeb project create a folder called ‘bindings’

under ‘WebContent’. NOTE THIS IS NOT THE SAME PROJECT.

15. Copy ‘myBindingsClient.xml’ to the ‘bindings’ folder in

CustomBindingsClientWeb

16. Go back to CustomBindingsServiceWeb/WebContent/wsdl, right click on the

wsdl file and select WebLogic Web Services -> Generate Web Service

17. Click ‘Next’

18. In the ‘Bindings’ section select ‘Add’, navigate to ‘WebContent/wsdl’ and

choose ‘myBindings.xml’

19. Click ‘Finish’

20. This will create the web service files in ‘CustomBindingsServiceWeb

/WebContent/WEB-INF/lib/TemperatureService_wsdl.jar’. If you want, you

can open the file with winzip and you’ll see the custom packaging reflected in

the folder naming.

21. Create a server by right clicking in the servers tab (towards the bottom of the

screen) and choosing new -> server.

22. Choose the Oracle WebLogic Server 10.3 (default)

23. Click next.

24. When creating the server, you can use the sample domain that ships with the

product by pointing to the directory

<bea_home>\wlserver_10.3\samples\domains\wl_server. Choose the

domain and then click finish.

25. Now deploy the CustomBindingsServiceWeb project to server that’s already

running. In the servers tab, right click “Oracle WebLogic Server v10.3 ….” and

choose “Add and Remove Projects” as shown below.

26. Click next on the resulting dialog.

27. Add the project by clicking on the CustomBindingsServiceWeb and clicking

add, then finish. This will deploy the application on the server.

28. Start the server by clicking the green play button, in the servers tab.

29. Go to the ‘CustomBindingsClientWeb’ project

30. Right click the ‘WebContent’ folder and select New -> Other

31. Select Web Services -> ClientGen Web Service Client

32. Select the ‘Remote’ radio button and enter the wsdl location:

http://localhost:7001/CustomBindingsServiceWeb/TemperatureService?wsdl

33. Click ‘Validate WSDL’

Troubleshooting tip: make sure the CustomBindingsServiceWeb has successfully

deployed to a running server, and that you created the projects with the JAX-WS

configuration, not the JAX-RPC configuration, in the previous steps.

34. Click ‘Next’

35. Click ‘Next’

36. In the ‘Bindings’ section select ‘Add’. Navigate to

‘WebContent\bindings\myBindingsClient.xml’ and add it.

37. Click ‘Finish’

38. You now have ‘TemperatureService.jar’ in WEB-INF/lib. Open it and view the

package structure.

39. Copy ‘index.jsp’ from the lab resources to CustomBindingsClientWeb

/WebContent

40. Right click on the JSP page (as shown below), choose run as.. run on server,

and the embedded Eclipse browser should take you to

http://localhost:7001/CustomBindingsClientWeb/index.jsp

Troubleshooting tip: if you get an “service unavailable” error, try re-deploying

both projects.

LAB4: JAXB

Objective: Demonstrate the JAXB functionality in OEPE by creating JAXB classes

from an xsd and using them in a simple application.

Overview of Data Binding Using JAXB

With the emergence of XML as the standard for exchanging data across disparate

systems, Web Service applications need a way to access data that are in XML format

directly from the Java application. Specifically, the XML content needs to be

converted to a format that is readable by the Java application. Data binding

describes the conversion of data between its XML and Java representations.

JAX-WS uses Java Architecture for XML Binding (JAXB) to manage all of the data

binding tasks. Specifically, JAXB binds Java method signatures and WSDL messages

and operations and allows you to customize the mapping while automatically

handling the runtime conversion. This makes it easy for you to incorporate XML data

and processing functions in applications based on Java technology without having to

know much about XML. The following figure shows the JAXB data binding process.

Data Binding With JAXB

As shown in the previous figure, the JAXB data binding process consists of the

following tasks:

� Bind—Binds XML Schema to schema-derived JAXB Java classes, or

value classes. Each class provides access to the content via a set of

JavaBean-style access methods (that is, get and set). Binding is

managed by the JAXB schema compiler.

� Unmarshal—Converts the XML document to create a tree of Java

program elements, or objects, that represents the content and

organization of the document that can be accessed by your Java code.

In the content tree, complex types are mapped to value classes.

Attribute declarations or elements with simple types are mapped to

properties or fields within the value class and you can access the

values for them using get and set methods. Unmarshalling is managed

by the JAXB binding framework.

� Marshal—Converts the Java objects back to XML content. In this case,

the Java methods that are deployed as WSDL operations determine

the schema components in the wsdl:types section. Marshalling is

managed by the JAXB binding framework. You can use the JAXB

binding language to define custom binding declarations or specify JAXB

annotations to control the conversion of data between XML and Java.

Steps:

1. Select File -> New -> Project -> J2EE

2. Create a new Enterprise Application called ‘JaxbApp’

3. Keep the default configuration

4. Click ‘Finish’

5. Select File -> New -> Project -> Web -> Dynamic Web Project

6. Create a Dynamic Web Project called ‘JaxbWeb’

7. Add project to the EAR and click ‘Next’, as shown below

8. Be sure to select the two Web Services facets, JSF 1.2 Facet, and click ‘Finish’,

as shown below

9. Create the folder JaxbWeb/WebContent/xsd

10. Copy the book.xsd file from the lab resources to JaxbWeb/WebContent/xsd

11. Copy the books.xml file to the domain root of the server, located at

<bea_home>\wlserver_10.3\samples\domains\wl_server

12. Right click on book.xsd and select WebLogic Web Services -> Generate a

JAXB types

13. Click ‘Next’

14. Type in ‘book’ as the Java package

15. Click ‘Finish’

16. The jar file book.xsd.jar is created in JaxbWeb/WebContent/WEB-INF/lib. If

you like, you can double click on it to view the contents in WinZip in a file

explorer window.

17. Create a package ‘book’ under JaxbWeb/Java Resources/src

18. Copy in the JaxbTest source file from the lab resources into the ‘book’

package

19. Copy in the index.jsp from the lab resources to WebContent/JaxbWeb

/WebContent.

20. Create a server by right clicking in the servers tab (towards the bottom of the

screen) and choosing new -> server.

21. Choose the Oracle WebLogic Server 10.3 (default)

22. Click next.

23. When creating the server, you can use the sample domain that ships with the

product by pointing to the directory

<bea_home>\wlserver_10.3\samples\domains\wl_server. Choose the domain

and then click finish, as shown below.

24. Right click on the JaxbWeb/WebContent/index.jsp (as shown below) and

choose run as.. run on server. This will open the embedded eclipse browser

and should navigate you to http://localhost:7001/JaxbWeb/index.jsp

25. The resulting webpage calls the JaxbTest class for some output (see below).

Examine the JaxbTest.java for details.

LAB5: Class Redefinition (FastSwap)

Objective: Demonstrate the WLS FastSwap capability from within an OEPE project

using a stateful session bean.

Java SE 5 introduces the ability to redefine a class at runtime without dropping its

ClassLoader or abandoning existing instances. This will allow containers to reload

altered classes without disturbing running applications, vastly speeding up iterative

development cycles and improving the overall development and testing experiences.

The usefulness of Java SE 5’s dynamic class redefinition is severely curtailed,

however, by the restriction that the shape of the class – its declared fields and

methods – cannot change. The purpose of FastSwap is to remove this restriction in

WebLogic Server, allowing the dynamic redefinition of classes with new shapes to

facilitate iterative development.

With FastSwap, Java classes are redefined in-place without reloading the ClassLoader

thus having the huge advantage of fast turnaround times. This means that

developers do not have to sit and wait for an application to redeploy and then

navigate back to wherever they were in the Web page flow. They can make their

changes, auto compile, and then see the effects immediately.

Supported Application Configurations

• FastSwap is only supported when the server is running in development mode. It is

automatically disabled in production mode.

• Only changes to class files in exploded directories are supported. Modifications to

class-files in archived applications as well as archived jars appearing in the

application’s classpath are not supported. Examples are as follows:

• When a web application is deployed as an archived war within an ear,

modifications to any of the classes are not picked up by the FastSwap agent.

• Within an exploded web application, modifications to Java classes are only

supported in the WEB-INF/classes directory; the FastSwap agent does not

pick up changes to archived jars residing in WEB-INF/lib.

Application Types and Changes Supported with FastSwap

FastSwap is supported with POJOs (JARs), Web applications (WARs) and enterprise

applications (EARs) deployed in an exploded format. FastSwap is not supported with

resource adapters (RARs).

The following types of changes are supported with FastSwap:

• Addition of static methods.

• Removal of static methods.

• Addition of instance methods.

• Removal of instance methods.

• Changes to static method bodies.

• Changes to instance method bodies.

• Addition of static fields.

• Removal of static fields.

• Addition of instance fields.

• Removal of instance fields.

The online documentation has a detailed table listing the change types supported

with FastSwap.

Limitations of FastSwap

• Java Reflection results do not include newly added fields and methods and

include removed fields and methods. As a result of this, use of the reflection

API on the modified classes can result in undesired behavior.

• Changing the hierarchy of an already existing class is not supported by

FastSwap. Example: a) Changing the list of implemented interfaces of a class.

b) Changing the superclass of a class is not supported.

• Addition or Removal of Java Annotations is not supported by FastSwap, since

this is tied to reflection changes mentioned above.

• Addition or Removal of methods on EJB Interfaces is not supported by

FastSwap since an EJB Compilation step is required to reflect the changes at

runtime.

• Addition or Removal of constants from Enums not supported in this release.

• Addition or Removal of the finalize method is not supported.

Steps:

1. Create a new Enterprise Application called ‘FastSwapApp’

2. Select File -> New -> Project -> Web -> Dynamic Web Project called

‘FastSwapWeb’ and check the box for “add project to an EAR, as shown below.

Then click finish.

3. Create a new EJB project called ‘EJBProject’. Select File -> New -> Project ->

EJB -> EJB Project... then check the “add project to an EAR” similar to the

preceding step, then click finish.

4. Go to Window -> Preferences -> Validation and disable all validation

5. Create a package under EJBProject/‘ejbModule’ called ‘sessionbean’

6. Copy ‘Account.java’, ‘AccountBean.java’ and ‘AuditInterceptor.java’ into the

sessionbean package from the lab resources

7. Right click on the FastSwapWeb project, and choose Window -> Properties.

8. Then choose Java EE Module Dependencies and navigate to the Web Libraries

tab. Click select all and then click OK.

9. Copy ‘index.jsp’ from the lab resources to the FastSwapWeb/WebContent

folder

10. In the project explorer, right click on FastSwapWeb/WebContent/index.jsp

and choose run as… run on server..

11. This will prompt you to create a server, choose the Oracle WebLogic Server

10.3 (default)

12. Click next.

13. When creating the server, you can use the sample domain that ships with the

product by pointing to the directory

<bea_home>\wlserver_10.3\samples\domains\wl_server. Choose the

domain and then click finish.

14. The embedded browser will launch and navigate you to

http://localhost:7001/FastSwapWeb/index.jsp. (If a separate IE window pops

up, you can ignore or close it).

15. In the web page, you’ll see the current balance is 100. Hit refresh a few

times to see the balance increase by 100 each time.

16. In EJBProject open the AccountBean.java file and in the ‘getBalance’ method

change the return to ‘balance + 1’. Save the change.

17. In the server tab you’ll see the Status is ‘Republish’ but don’t republish yet.

18. Refresh the browser a few more times and notice that it still increments to an

even number.

19. Now republish to the server

20. Go back to the browser and refresh and you’ll see the balance is xx1 each

time

21. Remove the ‘+1’ from the getBalance method and save the change

22. Open the FastSwapApp\EarContent\META-INF\weblogic-application.xml file

and the deployment descriptor editor will open.

23. Selecting this checkbox adds the following code to your weblogic-

application.xml, just before the closing tag </wls:weblogic-application>
 <wls:fast-swap>

 <wls:enabled>true</wls:enabled>

 </wls:fast-swap>

24. Save and republish. If this fails with a validation error, go to step 6.

25. Refresh the browser and the balance should now again be 100

26. Add the ‘+1’ back to the getBalance method and save the change

27. Again the server status will be ‘Republish’ but don’t publish

28. Refresh the browser and you’ll see the xx1. This happens because the

runtime class was updated in the classloader using ‘FastSwap’.

