
4 | Second Quarter 2009 | ODTUG Technical Journal

		 Unless you’ve been vacationing on Mars or some
other far flung and remote corner of the solar system, as
an Oracle technologist you’ve heard of “Fusion”: Oracle’s
strategy of next generation business applications based on the
Java platform, SOA and Web 2.0. Contrary to what you may
have thought, Fusion, or more specifically the core technolo-
gy at the heart of Fusion already walks amongst us in the form
of the latest version of the Oracle Application Development
Framework (ADF). So, whether you see this new frontier as
frightening or exciting, it is reality and it is here today. Which
leaves one obvious question. What do you do with your ex-
isting technology? Technology that has been serving you well
for years, and still continues to serve you well today.
	 The case for the future of Oracle Forms and Oracle’s
strategy for modernizing Oracle Forms is already well-doc-
umented http://otn.oracle.com/goto/formsmodernize and it’s
probably prudent not to waste a limited word count on re-
emphasising the fact that there is nothing wrong with staying
with Forms or having a blend of technologies. However, one
question raises its head every so often: can—and probably
more importantly, should—a Forms application be migrated
to another technology like Java or APEX? This article takes a
look at Forms migration, notes the challenges involved, the
questions you should be asking, and whether there is a magic
bullet for Forms migration or is it just a myth.

Forms to Fusion
	 It’s probably fair to say that the challenge of migrating
a Forms application is comparable whether we are talk-
ing about migrating to Java or a proprietary technology like
APEX. Regardless of the programming language in your target
platform, there are different concepts between the source and
the target and much of the migration effort is trying map the
two. However, given Oracle’s strategic technology choice
for Fusion is the Java platform and this question is something
Oracle has had to address in its own Applications Division,
lets focus on the challenge of migrating Forms to the Fusion
technology stack.

And I’m doing this, why?
	 Before embarking on a project of migration, you might
need to set some expectations. I think we can all agree that
there will be risk, cost, and effort involved and so it would be
reasonable to expect that what you get as a result of migration
should in some way improve the business.
	 You may be considering migration because your business
has fewer Forms programmers. Although, would it be cheaper
to train PL/SQL developers to use Forms rather than migrate?
You might be migrating because you want to avoid incurring
an Oracle license to run Forms. But, are you just pushing your
licence costs to another tier and would any potential saving be
eroded by the cost of migration? Or are you looking to con-
solidate on a modern standards based technology; in which

case maybe a more gradual evolution might reduce your risk
while allowing you to ramp up skills.
	 And what are your expectations of a migrated applica-
tion? Do you want it to look and behave like Forms, which
gives your end users no visible improvements? Or so you
want to get a more modern Web look and feel, which may
involve having to retrain your users?
	 The bottom line is it’s all about bottom line. Migration
will cost you and you have to be very clear on the return
you expect for the effort. For Oracle, the Fusion initiative
had brought together from many acquired companies with a
variety of solutions and technologies: some complementing,
some overlapping and some competing. So for Oracle the
chance to draw a line under this smorgasbord of applications
and tools and move forward on a standard set of technologies
was a major factor in considering migration.

The scope of the challenge
	 The first thing is to establish the scope of work involved.
While on the surface, a Forms and a Fusion application may
perform a similar business function, the “style” of the ap-
plication is quite different. Oracle Forms has its roots in
transactional client/server applications that are tightly aligned
with the database. Conversely, Fusion Web applications are
based on stateless Web technology and modelled around a
service based architecture where each service is, typically, as-
sociated to a business process. And herein lies the first chal-
lenge of migration; any attempt to migrate a Forms applica-
tion to Fusion without taking into consideration the difference
in architecture is in effect an effort at re-implementing the
20-year-old Forms runtime.
	 Closely related to application “style” is the user inter-
face. Web 2.0 and our “away from work” social-computing
experience of applications are changing our perception of
how these applications should look and function. Social
networking sites like Facebook or MySpace, along with more
commercial offerings like eBay and Amazon are a world away
from the Forms multi-row block style of user experience.
Users have more sophisticated expectations of applications
than ten years ago and as a result are more demanding of the
applications they use at work. And here lies the second chal-
lenge of migration: to re-architect the front end to provide a
21st century experience rather than just delivering an HTML
version of the Forms UI. As an example, Figure 1 on the next
page contrasts two new Fusion screenshots (foreground) with
a Forms Implementation. Figure 1: Forms Building Blocks.
	 The third challenge is an interesting combination of the
first two. Oracle Forms applications are built as a homoge-
nised “lump” of business and UI logic. On the other hand,
Fusion applications are based on Oracle ADF, which imple-
ments an architectural pattern called model-view-controller
(MVC). This means that the implementation of a business
service is completely separate from the user interaction

Migrating Oracle Forms to Fusion: Myth or Magic Bullet?

ORACLE® TOOLS DIRECTION

 By Grant Ron

ald

5Second Quarter 2009 | ODTUG Technical Journal |

O
racle Tools D

irection . . . (Continued)

code. For any migrated application to exploit the benefits
of MVC the source form must somehow be refactored into
UI and business/data logic. Which raises a number of inter-
esting questions, such as: would the migration of a when-
new-record-instance sit in the view, since you are navigating
between UI components or within the model as you are
selecting the next row of data. Or what about a call to Next_
Item?
	 So the lesson from the three points above is: re-architec-
ture. Any migration of a Forms application needs to take into
account the target platform and for most options considered
today, that means making fundamental changes to the struc-
ture of the application to better align it with the “sweet spot”
of your target platform. And remember, that “sweet” spot isn’t
just the Java language, but the whole SOA world it supports.
Do you really want to blindly re-implement your end-of-day-
employee-updates-to-batch process or do you instead take
that back in-line and use the asynchronous features exposed
through BPEL? Do you want to mimic your custom-written
expenses authorization process as-is or instead push that
functionality out of your core application and into a rules
engine and gain the agility and visibility offered by that solu-
tion? If you are not asking these questions then you are not
modernizing.

Maintaining for who?
	 The next challenge of migration relates to you developer
community. Oracle’s own Fusion development community
features developers from database, PL/SQL, Forms, People
Tools, .NET, and Java backgrounds. So, do you migrate your
application to look familiar to your Forms developers or your
Java developers?
	 The simple answer is you need it to be maintainable by
a Fusion developer regardless of their background. Simply
re-implementing Forms structures and built-ins as Java classes
and methods suggests, at best, only a cursory attempt at re-
architecure and should set alarm bells ringing. Furthermore,
a 3GL Java implementation seems like a step back from the
productive and declarative nature of Oracle Forms. And this
is where Oracle ADF brings together the two worlds. Based
on Java EE design patterns and best practices, it fits comfort-

ably with Java architects, but with concepts familiar in Oracle
Forms and driven by metadata, it provides the rapidly produc-
tive and declarative experience that a Forms developer would
expect. And this is a major reason why Fusion uses Oracle
ADF and why any attempt at Forms migration is more likely to
succeed if based on Oracle ADF.

Are you speaking my language?
	 Closely related to the developer community is the devel-
opment scripting language. Forms is based on PL/SQL, the
Java EE platform is based on Java. So, you need to migrate all
your PL/SQL code to Java? Not necessarily all, but defi-
nitely a considerable amount of it. PL/SQL is without match
for what it does: manipulating data in the database. If you
blindly migrate all your PL/SQL to Java you will, in all prob-
ability, end up with less maintainable and less efficient code.
Instead you should consider which code it best left as PL/SQL.
In many cases, you will be able to identify PL/SQL code in
your Forms application that is doing straight database inter-
action and often that code will sit more comfortably in the
database as PL/SQL. Not only is it probably more efficient
and maintainable but also it will certainly be less effort to
put it there than try to redevelop it in Java. Of course, doing
that still requires refactoring of the code so that references to
Forms built-ins or items are removed.
	 The next step is to identify Forms code that supports
features already implemented in Oracle ADF. For example
page navigation, validation and lookups are all implemented
in PL/SQL in Forms. However, Oracle ADF already provides
that functionality as part of the framework and doesn’t require
Java code to implement these features. Migrating that PL/SQL
to Java doesn’t make sense given the functionality is already
implemented in a way that allows much easier maintenance
and customization.
	 Which leaves the rest of the code. The above tasks are
anything but trivial but migrating the rest of the Foms code is
almost certainly a more considerable effort and the bulk of
your undertaking. As pointed out before, to blindly migrate
PL/SQL code to Java, regardless if you have some clever
framework to map the code, suggests that little consideration
is given to the requirement to rearchitect. Careful consider-
ation has to be given to how that code fits in the new envi-
ronment. Of course, the final complication is that in Oracle
Forms the flow of code executed as a result of an action is not
necessarily contained in once place. Therefore, a particular
action of, for example, submitting a new employee record
may result in many Forms triggers firing. Each of these dis-
crete actions may themselves call trigger code, program units,
attached libraries or even calling our to third party code such
as OLE or C/C++. Understanding the flow of these triggers,
and mapping these to the multiple event points in your new
technology is one of the most difficult challenges.

Can you achieve migration?
	 The final question really comes down to how to achieve
a migration. Within Oracle’s own Application Development
Tools division the decision whether to attempt migration was
taken early on. As Christopher Job (Vice President of Tools)

Figure 1: The two screenshots in the foreground contrast
with a Forms Implementation.

6 | Second Quarter 2009 | ODTUG Technical Journal

commented in his foreword to the book Oracle JDeveloper
for Forms and PL/SQL Developers – Koletzke & Mills:

“One of the controversial decisions we tool took early on was
not to tackle the task of migrating Forms and PL/SQL applica-
tions to J2EE. We did not think that in the long term, it was
the right thing for our customer, and consequently, it was not
the right thing for Oracle.”

Christophe continues:
	 “We knew we would not be able to provide a complete
migration, and manual modifications would have been re-
quired for all but the simplest application. [Furthermore] the
applications resulting from any automated migration would
not have had the structure of an architecturally sound J2EE
application.”
	 Thus, Oracle made the decision that for reasons includ-
ing, but not confined to architectural differences, the need to
exploit new business and technology concepts and the scale
of the challenge for an enterprise application meant that a
modularised and phased manual redevelopment approach
was the only real option.
	 And so, Oracle’s Fusion applications are embarking on
a process of staged manual development of Forms modules,
the development of which is aided and accelerated by using
Oracle ADF and reusing existing database PL/SQL.
	 So, are there any tools that can help? Well, some com-
panies have innovative solutions, some of which are an aid
to refactoring, some offer a “kick-start” by converting some of
the Forms metadata to target platform metadata, and others
advertise more complete migration.
	 Each of these offerings needs to be evaluated in the light
of those points made above and expectations set accordingly.

In Summary
	 The path you are likely to take is influenced by the place
you want to be. If your motivation for considerating a migra-
tion to a different technology is to exploit the features and
power of that target then you need to be willing to make wide
ranging architecture changes. To consider migration without
rearchitecture is handicapping your target technology to work
in way for which it was never designed.
	 So, Forms migration, myth or magic bullet? Can you
take migrate a Forms application to a technology like Java?
Of course you can, but is it the right thing to do and can it be
shown to be a success? That is a much more difficult chal-
lenge. Oracle’s experience in this field is that the difference
in technology, and the goal to fully exploit the new technol-
ogy means redevelopment rather than migration is the choice
that fits best with the business. After all, if Oracle could have
cast the die for that magic bullet, wouldn’t they have done it
by now?

O
ra

cl
e

To
ol

s
D

ire
ct

io
n

. .
 .

 (C
on

tin
ue

d)

Grant Ronald is a group product manager working for
Oracle’s Application Development Tools group respon-
sible for Forms and JDeveloper where he has a focus
on opening up the Java platform to Oracle’s current
install base. Grant joined Oracle in 1997, working
in Oracle support, where he headed up the Forms/
Reports/Discoverer team responsible for the support of
the local Oracle Support Centres throughout Europe,
Middle East, and Africa. Prior to Oracle, Grant worked
in various development roles at EDS Defense. Grant
has a BSc. in computing science and has been working
in the IT industry since 1989.

About The Author

WHAT ABOUT APEX?

	 While JDeveloper and Oracle ADF remains
Oracle’s strategic choice for enterprise application
development, Application Express (APEX) is another
option for Oracle developers and the recent 3.2
release offers a Forms converter. So, has the APEX
team found the secret to this migration magic
bullet?

	 Not surprisingly, Forms to APEX migration has
to address pretty much all of the same challenges.
As noted previously, and also in the Application
Express documentation, there still remains a funda-
mental architectural and functional mismatch be-
tween Oracle Forms and APEX (stateless vs. stateful,
UI design, and business logic replication). So, in all
but the simplest of emp/dept examples, consider-
able re-architecture decisions have to be made.
While the Forms to APEX converter maps some of
the structures within Forms (such as blocks, LOVs,
item properties) to the to APEX equivalents; and
allows you to annotate components to help in the
post generation phase, re-architecture decisions still
need to be taken and redevelopment is required
for all Forms triggers, the code in those triggers,
Forms program units, PL/SQL libraries (*.pll), menus
(*.mmb) and object libraries (*.olb).

Member

