

Oracle Forms to SOA: A Case
Study in Modernization

An Oracle Forms Community White Paper

Steven Price
Griffiths Waite
June 2008

Oracle Forms to SOA: A Case Study in Modernization Page 2

Oracle Forms to SOA: A Case Study in Modernization

Introduction ... 3
Modernization.. 4
Legacy Assets... 4
Active Sustainment ... 5
Service Oriented Architecture... 5
Oracle Forms and SOA ... 5

Upgrading to the Web .. 6
Client/server Forms ... 6
Web Forms .. 7
New Forms UI using Java ... 7
Self Service Applications ... 8
Sharing Services... 9

First Steps into a Services World .. 10
Refactoring Forms Code to be Message Oriented 10
Orchestrating New Services from Forms ... 10

Further Steps in the SOA World .. 10
Business Process Management ... 10
BPEL .. 10
BAM.. 11
Business Rules ... 12

A Platform for Growth .. 13
Leveraging Existing Skills .. 14
Oracle Application Development Framework....................................... 14

A Richer User Experience ... 15
UI Services ... 15
Retiring Oracle Forms.. 16
Replacing the JSP Solution.. 17
Decision Services with Oracle Business Rules 17

Summary ... 18

Oracle Forms to SOA: A Case Study in Modernization Page 3

Oracle Forms to SOA: A Case Study in Modernization

INTRODUCTION

Recent analyst reports and Oracle’s own “Forms modernization” drive are

encouraging customers to look closely at their technology investment to

understand how it can be modernized and take advantage of changes in both

business and I.T.

The key messages of this modernization approach are clear:

Retain Investment

With continued support and investment in the technologies of your legacy

applications, you have the ability to modernize from a platform of stability.

Adopt Technologies

Service Oriented Architecture (SOA) allows you to realise new practices and

technologies and to do so in a step-by-step basis

Integrate

Both your legacy and new systems can integrate and share services allowing legacy

applications to continue to run your business as you build up new systems and

services.

So, for many, the message of modernization is clear. The next step is to understand

the practicalities and learn from the “hands-on” experiences of those who are

already forging a path forward. We at Griffiths Waite have been involved in this

area for a number of years and this paper presents a case study of a core business

application built using Oracle Forms and its evolution from client/server, to the

web and to a services based architecture.

This case study covers the implementation of an Application Processing System

(APS) at two financial services organizations in the UK. APS is a credit granting

system for consumer finance markets and processes finance requests from initial

application through credit scoring and underwriting to quoting and compliance and

finally to agreement completion. The first organization at which APS was

implemented is one of the largest providers of financial services products to the

non-standard consumer credit market in the UK operating with 5 call centres and a

national network of over 450 branches and employing over 5,000 people. The

Established in 1994, Griffiths Waite

specialises in the deployment of SOA and

business applications based on Oracle

technology and Oracle applications.

Oracle Forms to SOA: A Case Study in Modernization Page 4

second company is a national loan broker with a network of branches throughout

the UK and call centres in both the UK and India.

MODERNIZATION

Existing applications are the outcome of past capital investments. The value of the

application investment tends to decline over time as the business and the

technology context changes. Early in the life-cycle there will be enhancement

investments to maintain close alignment with the business but eventually there will

come a point where this becomes difficult. This can happen, for example, where

the underpinning infrastructure is superseded, web access is required, or the weight

of changes in the applications and lack of available know-how make it impossible

to continue with enhancements.

Legacy Assets

Legacy systems are the result of many years of combined experience, development,

and customisation, harbouring the core business processes that continue to

provide competitive advantage. This combined with the reliability and stability of

these systems in most instances makes a replacement plan poor value and high

risk. Replacement and rewrite are necessary in certain instances, but if the existing

legacy application meets current business needs, then the chances are that this

legacy asset can be effectively transformed to continue to meet the needs of the

business in the future.

Figure 1 – Application Lifecycle

Oracle Forms to SOA: A Case Study in Modernization Page 5

Active Sustainment

Preventing systems from slowly becoming legacy systems requires active

sustainment. The goal is to prevent the system from "flat-lining" and consequently

requiring a replacement effort. Sustainment lends itself to lower risks by avoiding

the wholesale replacement of systems. Software sustainment is designed for the

company’s long-term health, not for short term effect. To avoid obsolescence, the

sustainment must keep pace with changing technology and evolving business

needs. Maintenance efforts should be punctuated with modernization projects,

such as revamping an existing user interface, migrating to a new platform, or

reengineering the code base.

Service Oriented Architecture

In a Service Oriented Architecture (SOA) systems are composed of reusable

components, called ‘services’. A service is a software building block that performs

a distinct function — such as retrieving customer information from a database.

Wrap and Reuse

SOA takes standard business applications and breaks them down into individual

business functions or services that can be used and reused to support different

business activities. SOA works with legacy and existing applications through ‘wrap

and reuse’ as opposed to ‘rip and replace’ – so services can be constructed,

deployed and reused virtually on demand, and easily integrated enterprise wide,

across multiple platforms.

Oracle Forms and SOA

The SOA Roadmap deconstructs legacy Oracle Forms systems into elemental

components and recomposes them into a vast set of new application services.

Client
Server

N-TIER - Oracle
Fusion Middleware

SOA - Oracle Fusion Middleware

BPM - Oracle Fusion Middleware

J2EE - Oracle Fusion Middleware

Oracle BPA Suite

Process Centric

Oracle WebCenter
Oracle SOA Suite

Open Standards - Web Services

Expose Legacy

Oracle ADF and Oracle JDeveloper 10g

Open Standards - Java, XML, BPEL

Internet Self Service

Oracle Application Server 10g

Oracle Forms 10g

Oracle Reports 10g

Web Look & Feel

Oracle Forms 6 or below

Oracle Reports 6 or below

B
u
s
in

e
s
s
 P

ro
c
e
s
s

Figure 2 – The Forms to SOA Roadmap

Oracle Forms to SOA: A Case Study in Modernization Page 6

The transition from Oracle Forms client/server to SOA should be a journey, not a

single transformation. A staged (that is, phased) modernization effort enables

Oracle Forms applications to be migrated over time. This lengthens the period of

time during which Oracle Forms remains an architectural element, but reduces the

overall migration risk during that time period. The first phase focuses on

protecting customer’s existing investments by stabilising the application and

upgrading it onto a supported platform. Subsequent transformation phases will

then gradually evolve the application to a Service Oriented Architecture.

The most critical and also the most difficult step in the transition to SOA is the

migration to an n-tier Architecture focusing on establishing the business logic as

independent to the database and client application. Once this has been achieved

the transition to the upper levels of the Roadmap becomes significantly easier.

Critically, system modules / business processes can be migrated one at a time and

proceed at different speeds through the roadmap.

UPGRADING TO THE WEB

Client/server Forms

APS first went live in two call centers as an Oracle Forms client server solution.

Following a successful implementation there was an urgent requirement to roll the

application out nationwide to hundreds of branches, many quite small located in

major towns and cities throughout the UK. These were linked to the HQ site by

comparatively slow network links.

Figure 3 – Client/server APS

Running APS as a client/server application over a branch network was not feasible

due to the performance problems of continually accessing the database across a

In line with Oracle’s own published roadmap, a

step by step modernization approach limits risk

and protects investment while taking a phased

adoption of newer technological practices

Oracle Forms to SOA: A Case Study in Modernization Page 7

high latency network. Every operation a form makes (such as validating a field)

often results in a number of requests and replies across the network between the

form running on the user’s PC and the database.

Web Forms

The first step in the SOA Roadmap was the adoption of Web Forms to provide

internet access to APS without making significant changes to the underlying

platform. This is achieved by running APS on a Web server and emulating the

graphical user interface in a generic applet in the client. Instead of the traditional

Oracle Client Server Forms solution, a Java UI was presented to the user within a

browser. The three tier architecture of Web Forms is much more responsive when

run across a large company network, significantly reducing the network traffic

between the client and the data center, compared to the client/server architecture.

Creating a Logical Middle Tier

All business logic that resided in the client side forms was extracted and

implemented as modularised code within the database. While web deployed Forms

allows you the ability to run your forms in a three tier mode with little or no

modification, we chose to refactor business logic from Forms in the database so

that this processing could then be reused elsewhere in the application or even in

other systems. A business tier was created within the database giving APS an N-

tier architecture and allowing greater flexibility in implementing new business

initiatives.

Equally important was establishing the foundation to leverage the integration

features of Oracle’s middleware and Java tools. Moving to an Internet deployment

model also provided benefits in centralized management and deployment without

having to migrate the technology stack or application.

New Forms UI using Java

Aside from the technical limitations in rolling out the client server version of APS

to hundreds of branches of equal concern was how well the application would be

received by the branch users. Like many Forms applications APS was fine in body

but presented an old face to the world.

The dated user interface was perceived to be a major obstacle to implementing

APS across the group and considerable resistance was anticipated. The system

relied on the underlying database structure to drive its design, resulting in an

interface where one window looked identical to the next and complex information

was forced into numerous master-detail screens with cumbersome navigation.

We needed to rejuvenate APS’s user interface. As user interfaces become richer in

possibilities, more graphical, with more choices for both developers and the users,

the importance of design increases. Software is a visual medium and in essence we

wanted to give APS a ‘facelift’ with a new stylish design and attractive appearance.

Upgrading from client server to web Forms

was the most obvious first step to

modernization. It brought a number of

business benefits, put the customer on the

latest and certified version of the technology

stack, and provided a platform from which to

take further modernization steps

Because the upgrade of Forms to the web was

technically not difficult, it gave us scope to also

make architectural changes to the application,

Oracle Forms to SOA: A Case Study in Modernization Page 8

In redesigning APS’s user interface our goal was not just to improve the ‘look’ of

the application but also its ‘feel’ by designing an elegant solution that simplified the

complex business processing. To this end we developed the concept of User

Consoles. User Consoles are the primary focus for completing a particular activity.

By bringing together all the related objects and tasks for a business activity User

Consoles move away from the more primitive approach of table driven design and

as a result they are easy-to-use and offer a compelling, intuitive experience for the

user.

Figure 4 – Web Forms Java UI

Good design creates excitement and enthusiasm, and we wanted to engender a

‘must have’ mentality throughout the branch network that would lead to easier

acceptance and adoption. To create the new ‘look and feel’ that we wanted for

APS we took advantage of the Java extensions available in Web Forms to

customise the Forms User Interface using JavaBeans and Pluggable Java

Components (PJCs) to deliver a rich Web user interface.

Self Service Applications

Following the internal success of APS, there was a growing requirement to increase

distribution channels, firstly, by engaging more closely with smaller brokers by

offering them a service where they could submit on-line loan applications, and

track their progress. This entailed providing these brokers with access to the same

business processes performed by APS.

Many of the brokers were small companies and at this time they had limited

Internet connections. This made the time taken to download JInitiator and the

associated JAR files to run Web Forms limiting, and thus prohibitive.

Modernizing the UI gave the user immediate

impact with virtually no risk in changing the

application since nearly all the back end logic

was unaffected by this change.

While Oracle Forms fits many requirements of

back office professional data entry

applications, other tools and technologies are

better suited for ad-hoc self-service kinds of

applications.

Oracle Forms to SOA: A Case Study in Modernization Page 9

We needed another way to deliver APS functionality to this audience. After careful

consideration, we chose the combination of Java Server Pages (JSP’s) and the open

source Struts framework together with a set of simple SQLJ-based classes for

database access to build the APS Broker Portal. The main advantage of JSP is that

the output is standard HTML and therefore requires little from the client except a

compatible browser. There is no JVM running on the client, so there is no

requirement for a set of Java runtime files or Java application files on the local PC.

The application ran within a web browser using a pure HTML user interface

requiring no additional software to be installed or maintained. The web pages were

dynamically generated using the Struts framework to control the rendering of

JSP’s. The Struts/JSP programs call upon the services of other Java components,

some of which were implemented as Enterprise Java Beans (EJB’s). These

components avail themselves of the core business services provided by the APS

PL/SQL stored procedures.

Sharing Services

The Broker Portal was developed using JDeveloper and deployed on the same

application server as the Web Forms application allowing them to inter-operate

and share the same infrastructure and common services. In addition, Forms and

J2EE applications are able to share existing business logic by using database

PL/SQL stored procedures.

Figure 5 – Self Service APS – Broker Portal

APS’s N-tier architecture from the Web Forms migration provided us with the

basis for sharing the existing business logic with new business channels, greatly

These choices were made before Oracle ADF

became established.

Oracle Forms to SOA: A Case Study in Modernization Page 10

reducing the time required to roll out this new style of business. This architecture

enabled the maximum amount of reuse of existing code.

FIRST STEPS INTO A SERVICES WORLD

Following the publication of the lender’s new five-year business plan a three year

change programme was initiated. The first business initiative of the change

programme – Electronic Leads – was commissioned to automate the application

process to allow APS to accept large volumes of bulk-introduced business from

3rd party strategic partners.

Refactoring Forms Code to be Message Oriented

We decided to refactor the application processing into well-defined and self-

contained services. Each business service was implemented as a self-contained

group of PL/SQL procedures. There was to be clear interfaces to determine what

data passed in and out of each service, with no direct interaction between the

services. Instead when a service had finished, control was passed back to a single

orchestration procedure that determined what happened next.

Orchestrating New Services from Forms

The architecture of the Forms Java client provides opportunities for the interaction

between external programs or queues and Forms. We exploited this ability to write

code that will listen for events coming from the Oracle Advanced Queuing (AQ)

mechanism, which can then be passed through to the Forms runtime process.

The different application stages progress at different rates. Sometimes a stage may

be temporarily unavailable. We needed some way to “buffer” data between stages

and control its rate of flow. Oracle AQ (Advanced Queuing) enabled us to achieve

this and significantly uplift the application volumes processed. Electronic Leads

effectively implemented an Event Driven Architecture (EDA) using a message

based Oracle AQ solution in the APS database. This significantly eased the

transition to BPEL later.

FURTHER STEPS IN THE SOA WORLD

Business Process Management

To better support each partner’s unique requirements GW embarked upon a

Business Process Management (BPM) programme utilising Business Process

Execution Language (BPEL), Business Activity Monitoring (BAM) and a Business

Rule Management System (BRMS).

BPEL

The Electronic Leads module had given APS a loosely coupled process design.

However the BPM supporting this architecture was embedded within the APS

database. This put a reliance on APS for every link in the chain to be satisfied for

Oracle Forms to SOA: A Case Study in Modernization Page 11

any given process to function. BPM should naturally reside outside any native

system in the middle tier and be impervious to system change.

We wanted to move the process management and orchestration out of the APS

database to the middle tier adopting an industry standard based architecture. To

this end we selected BPEL, which provides a standard, portable language for

orchestrating services into end-to-end business processes. It's built from the

ground up around XML and Web services and is recognised as the industry

standard with Oracle, IBM, Microsoft and BEA all heavily committed.

We implemented BPEL whereby the Electronic Leads processes where moved to

the Application Server, exposed from the database as Web Services and

coordinated through BPEL. The APS solution using BPEL was responsible for

orchestrating and managing both the low level services within APS and the calls to

external services and partner systems.

BPEL provided the developers with mix-and-match flexibility so that they only

needed to revise individual APS components or plug in new ones as partner

requirements changed ensuring that the Strategic Partner Programme could expand

at an accelerating rate.

Figure 6 – BPEL Process Orchestration

BAM

To give immediate visibility into the Electronic Leads operation the Pipeline

Manger was developed. Pipeline Manager is a graphical Business Activity

Oracle Forms to SOA: A Case Study in Modernization Page 12

Monitoring (BAM) tool that allows the business to monitor and manage, in real-

time, the process flows within Electronic Leads.

Oracle BAM enabled business users to define and monitor events and event

patterns that occur throughout application processing. Sensors in the form of

XML representations of events were added to the BPEL process to feed data to

the BAM engine. These were then collated in BAM as reports. Users could view

dashboards showing critical business measures including partner SLAs that

updated in real time and then drill down into the detailed information behind

them.

The Oracle BAM architecture delivers the requested information within seconds of

an event or change in status. Because the primary source of data is messages,

Oracle BAM can accept tens of thousands of updates per second into a memory-

based persistent cache that is at the center of the Oracle BAM architecture.

The Pipeline Manager gives business users the detailed analytics they need to cut

costs and improve processes – as business events are happening. This ensures that

partner SLAs are met and customer service becomes more proactive.

Figure 7 – BAM Real-Time Analytics

Business Rules

To make APS more responsive to business change we extracted key business rules

such as applicant pre-qualification and product allocation from the source code

and built our own rule engine–Metis–to execute them. Metis is a Business Rule

Management System (BRMS).

Oracle Forms to SOA: A Case Study in Modernization Page 13

A BRMS allows users to change business rules in live systems without any

assistance from IT. This approach recognises that business rules change frequently

and need to be modified by business personnel. Putting rules development in the

hands of business users avoids the long development and testing processes typical

of traditional application development, enabling business users themselves to

quickly and efficiently develop and modify rules as fast as the business requires.

The Metis rule development environment provided an intuitive, easy-to-use Rule

Builder with a graphical user interface that enabled business users to rapidly design

workflow, wizard and pre-qualification rules. The Rule Builder presented the users

with meaningful business terms for data items and using an English-like syntax,

complex rules could easily be created.

Metis generated PL/SQL packages from the rule definitions, which were then

loaded into the APS database and made available as services to be consumed

within the BPEL process. This resulted in a rule engine that was comparatively

easy to build, and performant since the generated code ran inside the APS database

and directly referenced the APS schema.

Metis enabled business users to customize APS without rewriting software - with

dramatic results. In the six months prior to Metis’ implementation we had

performed one policy release comprising 200 business rules. Six months after Metis

30 releases had been deployed by which time the number of business rules in

production had risen to 22,000. Metis enabled business users to ‘get creative’ and

to start exploiting opportunities in the market whilst at the same time facilitating

regulatory compliance.

A PLATFORM FOR GROWTH

Following the success of APS at the first client we were commissioned to

implement the APS solution at a national loan broker. The company was

experiencing rapid growth. This growth is both organic and acquisitive but the

current systems environment was becoming a barrier to further growth.

The first APS module to be deployed was the existing Broker Portal application.

This was deployed for the broker’s partners and the group’s UK branches and

Indian call centre. Whilst the Broker Portal was initially deployed with minimal

changes considerable new functionality was required to the Oracle Forms

application and a second generation of the Broker Portal would later be required.

The client mandated that the solution be multi-channel, offer a compelling and

superior user interface and provided management information that would enable

them to drive the business forward.

Following the initial implementation of the Broker Portal we undertook a full

review of APS’s technology platform in light of the new requirements and now

that it was scheduled to have a lifespan of a further 10 years.

Oracle Forms to SOA: A Case Study in Modernization Page 14

Modern enterprise development increasingly entails working in a heterogeneous

environment tied together by open standards. A business can be viewed as a series

of services – both internal and external - that can be reused or orchestrated in

various ways to build composite applications, cutting across traditional application

and organisational boundaries. The focus within such applications is increasingly

on assembling and orchestrating these services and building rich engaging user

interfaces through which to access them.

Leveraging Existing Skills

APS was rapidly moving in this direction and we questioned whether Oracle

Forms was still the best choice for satisfying APS’s current and future needs. In

moving forward we wanted to leverage our existing SQL and Java skills as much as

possible and minimize the investment levels and time to productivity.

Consideration was given to the available skill pools both internally and externally

and the skill sets of the current and next generation of graduates. Whilst we were

moving to an n-Tier architecture we wanted to reduce the number of technologies

within our development environment as much as possible.

Oracle Forms is proprietary to Oracle and Oracle themselves have clearly stated

that their long term technology strategy is based on the Java platform and whilst

Forms can exist in a SOA world more modern next generation environments are

better suited to the task. With a required lifespan of over 10 years Forms was not

the best option.

Having discounted Oracle Forms we considered extending the ‘self-service’

application – broker portal. For partner and customer facing applications the user

experience is critical. The main advantage of JSP pages—that they output

lightweight HTML—is also the main disadvantage. Traditional HTML page-based

Internet applications inhibit interaction in the interface; pages are slow to load,

processes require multiple steps, simple functions such as scrolling down in a list of

records, deleting a record, or changing the way information is sorted requires a

refresh of the page and a small, standard set of controls limits the ability for

developers to create truly engaging, user-friendly applications. These limitations do

not allow for a dynamic user experience and lessen productivity, while causing

frustration as users fail to complete tasks leading to process abandonment.

It is clear that the stale “click and wait” interaction associated with traditional web

applications is no longer acceptable. Users now expect real-time updates and

desktop-like functionality. Consequently, we needed a better way to mimic desktop

functionality within the confines of the existing web application model.

Oracle Application Development Framework

We settled on Oracle Application Development Framework (ADF) and Oracle

JDeveloper. JDeveloper had evolved to a ‘Forms-like’ integrated development

environment (IDE) for building service-oriented applications using the latest

industry standards for Java, XML, Web services and SQL and offered a single

Oracle Forms to SOA: A Case Study in Modernization Page 15

platform to assemble rich UIs, develop business services and orchestrate those

services.

Oracle ADF is an end-to-end application framework that builds on J2EE

standards to simplify the development of service-oriented applications by

implementing the Model-View-Controller (MVC) design pattern and further

extending it by providing a model layer that can expose business services from

disparate technologies. Separating applications into these layers simplifies

maintenance and reuse of components across applications. The independence of

each layer from the others results in a loosely coupled, Service Oriented

Architecture. Furthermore, Oracle ADF lets developers choose the technologies

they prefer to use when implementing each of the layers.

Figure 8 – Oracle ADF Technology Options

We adopted ADF Business Components as our primary technology for database

interaction. Oracle ADF Business Components is a framework focused on creating

objects, which implement the Business Services layer on top of a database. ADF

Business Components enables CRUD style applications to be developed with

productivity levels approaching those of Oracle Forms whilst enabling our

programmers to work in a familiar SQL ‘centric’ development style.

A RICHER USER EXPERIENCE

UI Services

Just as we adopted BPEL for process orchestration we were keen to take a

standards based approach to UI development. In selecting our UI technology we

wanted to combine the ubiquity of the Web browser with the richness of user

interface elements found in traditional desktop applications to enable us to create

Oracle Forms to SOA: A Case Study in Modernization Page 16

truly interactive and engaging user experiences, ones that could run on multiple

platforms with minimal or preferably no rework required.

Java Server Faces (JSF) is a component-based UI specification for building Web

user interfaces in the Java EE 5 stack. JSF is fast becoming the industry standard

for web UI development with IBM, Oracle, BEA, Sun and RedHat all committed

to using JSF as their UI technology.

Within the view layer Oracle ADF includes a set of rich functionality JSF

components – called ADF Faces which are built on top of the standard JSF APIs.

Oracle ADF also enables AJAX development to be undertaken in a more

productive declarative fashion than previously possible.

JSF further provides a highly flexible rendering architecture that defines a loose

coupling between component behaviour and presentation. This allows developers

to build client-agnostic UIs that cater to an assortment of output devices. The

same programming model (JSF) can be used whether we want to build a web

application, a portal application, a wireless application, or a dynamic and interactive

AJAX user interface.

Retiring Oracle Forms

Following the selection of ADF we replaced the Oracle Forms with ADF Faces

and any remaining client side code was refactored into PL/SQL stored procedures.

At the same time the use of BPEL was expanded to orchestrate all of the

processing within APS.

Figure 9 – APS ADF Faces

Oracle Forms to SOA: A Case Study in Modernization Page 17

Replacing the JSP Solution

For the improved user experience that was mandated for introducers and

customers we needed to restore the interactivity and usability that was lacking in

the JSP solution and make APS’s web experience more like the desktop. It was also

important to simplify the online process as much as possible to ensure that

customers didn’t abandon the application process without finishing.

We therefore decided to build a new set of screens specifically for the Customer

Portal. The key advantages that ADF afforded us was the ability to not only

produce richer more attractive user interfaces but also to be able to reuse core

validation and business logic from within the business services layer across

different channels.

Figure 10 – Customer Portal ADF Faces

Decision Services with Oracle Business Rules

At the same time we migrated to Oracle ADF we adopted Oracle Business Rules

in preference to Metis. Whilst, Metis delivered many of the benefits of a BRMS it

suffered from a number of architectural limitations.

Oracle Business Rules runs as a completely separate decision service, employing its

own meta-model over the corporate data model. This means that it is protected

from changes to the APS data model, and more importantly, the business rules are

now reusable across other business systems.

Oracle Forms to SOA: A Case Study in Modernization Page 18

The approach which Oracle Business Rules takes to defining the rules is also very

different from Metis. It is more declarative whereas our own approach was more

procedural (for example, with Oracle’s rule engine it doesn’t matter what order you

declare the rules in, so a latter rule can “fire” meaning that an earlier rule then

becomes applicable – a process called “inference”). The big advantage of this is

that Oracle’s rule engine can optimise the rules, and thereby avoid evaluating rules

which are no longer relevant.

Oracle Business Rules is supplied with a GUI Rule Author, but this is not really

suitable for end users. We substituted this with a program which reads the

metamodel and the rules from a collection of spreadsheets and then loads these

into the rule repository using Oracle’s SDK. This provides the users with a more

approachable user interface, and also enables us to enforce elementary validation

of the rule definitions.

Figure 11 – Oracle Business Rules

SUMMARY

All software is susceptible to a natural decline in quality and value over time

without continual, balanced investment in functions, features, architecture and

technologies. We recognized that the nature of the applications we built was

changing and SOA was the best way to meet these challenges.

The evolution from client/server to SOA took place over a number of years and in

multiple stages. At every stage we were keen to leverage as much of the existing

solution and our existing skill sets as possible to minimise delivery timescales and

risk whilst maximising our return on investment.

Oracle Forms to SOA: A Case Study in Modernization Page 19

Using a phased, architecture-driven approach, we were able to achieve both these

objectives and reverse declining software quality. Application modernisation

through SOA maximizes the investment in existing systems by building on the

strengths of the past and combining them with the opportunities that modern

technologies offer.

By definition legacy modernization is a journey which is never complete and we are

now currently implementing Oracle BI into APS and deploying the Oracle BPA

Suite to generate the process blueprints for BPEL.

Figure 12 – Forthcoming Oracle ADF and BI Integration

Oracle Forms to SOA: A Case Study In Modernization

June 2008

Author: Steven Price

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only

and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to

any other warranties or conditions, whether expressed orally

or implied in law, including implied warranties and conditions of

merchantability or fitness for a particular purpose. We specifically

disclaim any liability with respect to this document and no

contractual obligations are formed either directly or indirectly

by this document. This document may not be reproduced or

transmitted in any form or by any means, electronic or mechanical,

for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

