
Oracle® Policy Modeling User's Guide
User Assistance and How-To Guide

Browse Policy Modeling User's Guide

What's new Quick linksNEW!

Introducing Oracle Policy Modeling Getting assistance

Projects and files Writing rules

Designing andmaintaining rule documents Languages

Variables and constant values Data model

Rules using entity instances Temporal reasoning

Interviews and flows Decision reports

Compiling and building Finding and reporting

Analysis Test cases

Debugging Deployment

Custom functions and programming Collaborating

Integrating Accessibility

Reference

V10.4.7

Copyright © 2009, 2016

Oracle Support

http://www.oracle.com/support/contact.html

Oracle® Policy Modeling User's Guide
Release 10.4 Update 7
E79061-01
September 2016

Copyright © 2009, 2016, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, trans-
mit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engin-
eering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any pro-
grams installed on the hardware, and/or documentation, delivered to U.S. Government end users are "com-
mercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or doc-
umentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

What's new in Oracle Policy Modeling V10

Version 10.4

Modules
Oracle Policy Modeling now enables you to combine policy models from multiple teams or projects, and easily
update them as needed. This reduces the risk of large policy automation projects and means that common
policies across projects/divisions/systems can be readily shared. To do this you build your rulebase as a mod-
ule, and then link to this module from other projects.

See also:

l Create rules that can be shared with another project

l Include rules defined in a separate project

Entity and relationship creation changes
The user interface for defining data models in Policy Modeling projects has been simplified. Creating an entity in
a properties file is now a quick one-step process that automatically sets up the containment relationship, as well
as the identifying attribute for the entity. (The default containment relationship, and the default identifying
attribute, can later be edited.) The user interface for editing containment and reference relationships is now con-
sistent.

See also:

l Define an entity

l Define a relationship

Inferred entity instances
In Oracle Policy Modeling you can now write policy models that determine which entity instances must exist.
This means that there is no need to pre-create each entity instance that might be needed. Decision reports show
why entity instances have been created.

See also:

l Write rules that infer relationships and entities

Batch processor
The batch processor is a replacement for the Data Source Connector and allows a large number of 'cases' to be
processed in batch. It has made it possible to easily analyze a policy model to see the results it will yield (using
What-If Analysis documents). The batch processor can also be used to generate test scripts from existing Excel
data.

See also:

l Conduct what-if analysis using an Excel workbook

l Create test scripts from existing data

Testing coverage
There is a new report, Test Script Coverage, that enables you to measure the coverage of the test cases in a pro-
ject. This helps to identify how you could improve the overall coverage of a test suite.

See also:

l Measure the coverage of a test suite

Other changes
l The version of BI Publisher used by Oracle Policy Automation has been upgraded from v11.1.1.3 to v11.1.1.9 (as of 10.4
Update 7)

l Displaying unformatted number values - you can now specify in the Attribute Editor that a number variable is to be dis-
played unformatted (eg in decision reports in the debugger andWeb Determinations). See Formatting of attribute values
for more information.

l Checkboxes in interviews - boolean values can now be collected using checkboxes. See Customize interview user input
options for more information.

l Relationship filtering in interviews - you can now filter the list of entities that are available when collecting relationships, so
that the user avoids seeing invalid options. See Filter the list of available target entities for more information. You can also
now specify a visibility attribute for reference relationship controls (this works in the same way as visibility options for
other control types).

l Sortable Project Explorer - folders and files in the Project Explorer can now be sorted alphabetically. This is an option called
Sort project explorer under Project Properties. This option is on by default for new projects, and off when a project
is upgraded from a previous version. (When turned off, folders and files will appear in the order that they were defined in
the project file.)

l Warning when leaving a screen inWeb Determinations - when you try to navigate away from an interview screen without
submitting data, you are now shown a warning and get a chance to cancel, so that you don't unexpectedly lose the data you
have entered.

l The accessibility of the Oracle Web Determinations (OWD) user interface has been improved (as of release 10.4 Update
5). For more information, see Accessibility features in Oracle Web Determinations.

l The Social Services Screening Example Project has been updated to reflect recent changes in the underlying legislative and
policy rules, with new screens added to collect additional information now required as a result of the rule changes. New test
cases have been added and the visualizations have also been updated. To see the updated Social Services Screening pro-
ject, follow the instructions in Open an example rulebase.

l Documentation of the following has been improved:

l the process for doing a bulk import of expected test results - for more information, see Specify expected results.

l the different acceptable ranges of values for date variables in Oracle Policy Modeling and Oracle Web Determin-
ations - for more information, see Use constant values in rules.

l using Microsoft Team Foundation Server for source control of Oracle Policy Modeling projects. For more inform-
ation, see Track rulebase changes onmulti-developer projects, in particular Install Microsoft Team Foundation
Server.

l confining the use of regular expressions to text variable attributes only - for more information, see: Use regular
expressions.

Version 10.3.0

BI Publisher integration
In Oracle Policy Modeling you can now use BI Publisher to author document templates in Word which can be
used with Oracle Web Determinations to generate interview documents.

See also:

l Overview: The process of creating an interview document

l Develop a template for an interview document

l BI Publisher code for Oracle Policy Modeling

Language support
Syntactic parsers are new for the following languages: Italian, Japanese, Portuguese (Brazilian), Portuguese
(European), Russian. From the Help menu in Oracle Policy Modeling you can now access a list of available lan-
guages. This lists each language parser with its version number and the type of parser (ie Syntactic or RLS).
Translations, which are included in an Excel translation document, can now be marked as not requiring trans-
lation using an Ignore Translation button on the Oracle Policy Modeling toolbar. This is useful where the trans-
lation of an item is intended to be the same as in the original rule language (ie it is language-independent).
There are special considerations that need to taken into account when writing rules in particular non-English lan-
guages. Documentation has been provided which explains what is supported (ie sentence structures and verb
forms) and any limitations that you need to be aware of when writing rules in these languages.

See also:

l Write rules in Arabic

l Write rules in Finnish

l Write rules in French

l Write rules in Italian

l Write rules in Japanese

l Write rules in Portuguese

l Write rules in Russian

l Write rules in Spanish

l Write rules in Turkish

Version 10.2.0

Entity-level summary screen goals and other screen authoring changes
Goals, screen flows and labels which operate at entity level may now be added to a summary screen, by cre-
ating a summary screen folder associated with the relevant entity.
Entity-level attributes may also be used for visibility, dynamic default, mandatory and read-only settings.
Public names may now be assigned to screen flows.

See also:

l Add entity-level items to the summary screen

l Customize interview user input options

l Hide, display and disable an interview screen element

l Define interview screen flow

Language support
Translations can now be added to a rulebase via an Excel translation document. The document is created by
Oracle Policy Modeling and populated with all rulebase strings needing translation. The translations can then be
filled out in the Excel document and compiled to produce a translated rulebase that may be run in Oracle Web
Determinations.
The concept of the project locale has now been divided into a separate rule language and region, to better
handle deployments involving one language used across multiple regions and vice versa. The data entry
formats in Oracle Policy Modeling, Word/Excel rules, the debugger and Oracle Web Determinations are now
restricted in line with this (essentially for Oracle Policy Modeling and the debugger to require basic format, and
Web Determinations according to the rulebase region setting).

See also:

l Create a new language translation for a rulebase

l Write rules in other languages

l Formatting of variable values

l Use constant values in rules

l Localize interview help (commentary)

Containment
Containment relationships are now an integral part of the data model for a rulebase. All entities must be defined
within the context of a containment relationship, such that the network of containment relationships in the rule-
base represents the main data structure of the rulebase. Additional relationships between entities are defined
as reference relationships as required. Singleton entities have now been fully deprecated.
Projects created in versions of Oracle Policy Modeling prior to 10.2 are upgraded automatically when opened.
Containment relationships are defined for the upgraded rulebase based on a number of principles applied to the
old relationship structure of the rulebase pre-upgrade.

See also:

l Upgrade a project

l Understand containment relationships and entity completion

l Define an entity

l Define a relationship

l Set up entities and containment relationships in the debugger

Updated Excel functionality
The rules generated from Excel decision tables have been optimized to produce smaller and more efficient
rules. In particular, the way merged conclusion cells are interpreted has been revised, so that any condition row
proving a conclusion in a merged cell can evaluate in any order. The usual "top-down" evaluation order applies
to rows if their conclusion cells are not merged.
It is now also possible to use entity attributes in Excel decision tables, and to use most entity functions.

See also:

l Prove the same set of conclusions usingmultiple conditions

l Allow rule conditions to evaluate in any order and handle missing values

l Use entity attributes in an Excel rule table

Rule looping
Rule loops are now permitted as a valid part of a rulebase. A normal rule may be defined as a rule loop by using
a Configuration element for the rule. Loops may also now be created between attributes proved in shortcut
rules.

See also:

l Model loops in rule logic

l Capture implicit logic in rules

New functions
The following new text functions are available:

l Contains: checks if a text string contains a particular substring

l StartsWith: checks if a text string contains a particular substring at the start of the string

l EndsWith: checks if a text string contains a particular substring at the end of the string

l IsNumber: checks if a text string is a number

l Length: finds the length of a text string

The following new temporal functions are available:

l TemporalIsWeekday: determines whether each day in a specified range is a weekday

l TemporalOncePerMonth: returns a temporal boolean value whose value is true only on a given day of the month

See also:

l Text function rule examples

l Temporal reasoning function rule examples

l Localized function references (all languages)

Preview screen
A Preview option is now available during the development of question screens which quickly and easily displays
the question screen as it will appear in Oracle Web Determinations, without needing to complete an interview. If

a debug session already exists, any data from the session is used to display the screen preview.

See also:

l Preview a question screen

Custom function definition
Custom functions may now be called in the same way as any of the built-in functions in Oracle Policy Modeling,
with input and return values defined entirely by the custom function implementation.

See also:

l Write a rule that uses a custom function

'Currently known' operator
A new operator 'currently known' is now available, to test whether or not an attribute has a value, without caus-
ing it to be investigated in the question search.

See also:

l Certain and known operator rule examples

l Localized function references (all languages)

Native Subversion support
Subversion is now integrated directly into Oracle Policy Modeling. This provides access to rule file history and
version comparisons.

See also:

l Track rulebase changes onmulti-developer projects

l Track versions of rulebase documents

l Retrieve a specific document version

Persist temporal visualization view
The temporal visualization view in the debugger will now persist when the debugger is restarted, and when the
project or Oracle Policy Modeling is closed and reopened.

See also:

l Visualize temporal data

Configure attribute validation messages
The error message shown for maximum/minimum/regular expression validations on an attribute can now be
specified in the Attribute Editor.

See also:

l Validate user input using errors and warnings

Configure add/remove entity instance buttons
The text used for the Add Instance and Remove Instance buttons on entity collect screens in Oracle Web
Determinations can now be specified in the Screen Editor.

See also:

l Define a screen for collecting entity instances

Locate in Explorer option
A "Locate in Explorer" option is now available on rulebase files in the Project Explorer, to open the selected file's
folder in Windows Explorer.

See also:

l Locate a rulebase file inWindows Explorer

Version 10.1

Build and continue in Debugger
When you restart a debugger session now, you have the option to retain current session data. The rulebase will
be built and then the debugger will restart and attempt to reload the old session data into the new debugger
session. Data for an attribute, entity or relationship will only be lost if it has changed text and public name.

See also:

l Change a rule while debugging

Access to localized function references
The Function Reference list which is available from the Help menu in Oracle Policy Modeling now includes the
description of the function in the native language.
The Function Reference list is also now available and searchable in the Oracle Policy Modeling User's Guide.
The rule authoring experience in Word and Excel is now fully localized for every syntactic and non-syntactic
parser language.
A complete function reference is also available for every language from the Help menu.

See also:

l Localized function references

Command-line support for regression tester
Command-line support has been added for the regression tester. The C# project "Regres-
sionTester.CmdLine.exe" within the regression tester solution provides an executable that allows a rulebase pro-
ject's test scripts to be executed from the command line.

See also:

l Use the regression tester from the command line

InstanceValueIf function
InstanceValueIf is a new function for Oracle Policy Modeling. The rule author can now get a value from a unique
entity instance, identified from the target entity instances of a relationship by a condition.
If the condition identifies a single target entity instance, then the value is the value calculated against that
entity instance.
If more than one target instance meets the condition, then Uncertain is returned.
If no target instances meet the condition and the relationship is known, then the value is Uncertain.

See also:

l Entity and relationship function rule examples

Auto-include additional files at build time into rulebase .zip
There are files that are useful to include in the rulebase zip, such as configuration for custom functions and com-
mentary for Web Determinations. These files can now be placed inside a folder called "include" in the project
directory and they will be automatically added to the rulebase zip at build time.
This was previously possible by copying those same files into the "output" folder but this meant the output
folder included a mixture of generated files and source files. Now the output folder can be safely excluded from
source control, and deleted to ensure old output files are not left lying around.

See also:

l Include extra files in the build

Version 10.0

Inferred relationships
Enhancements have been made to enable rule authors to:

1. Reason aboutmultiple entities in the same rule (cross entity reasoning), and

2. Infer relationships through rules.

In previous versions, it was only possible to write rules while referring to one entity at a time. With an entity
function, such as Exists or ForAll, the rule author could reason across a single relationship to the target entities,
but these functions had a very limited application.
In Oracle Policy Modeling 10.0, rule authors can now reason across several different entities within the "scope"
of a single rule. This is done using extended forms of the For, Exists and ForAll functions. Each function works
like its older equivalent, but the boolean proof for the function is pushed to a subsidiary rule level.
The other new feature is the ability to conclude relationships. Previously, relationships were statically defined
for a set of session data. A rule author can now create a new type of relationship, an inferred relationship, and
can then infer the source and targets of those relationships using rules.
NOTE: Any V10.0 rulebases that use inferred relationships will need to be recompiled for V10.1.

See also:

l Reason about the relationship between two entities

l Entity and relationship functions

l Investigate an inferred relationship

Reasoning with partial knowledge
Reasoning with partial knowledge improves the reasoning done by Oracle Policy Modeling in situations where
attributes or relationships used in a rule are unknown. In some of these situations, where not all, but enough
information is known it is now possible to receive valid conclusions from a rulebase query. Previously the result
of such queries would simply have been unknown.
See also:

l Make a decision when only some data is known

Time of day and data and time data types
In order to provide more fine-grained operations on dates, a date-time attribute type, and a time of day attrib-
ute type have been added to Oracle Policy Modeling.

l Time of day - this is a string formatted as hh:mm:ss. For example,

the specified start time for the employee = 07:47:31

l Date time - this is a string formatted as yyyy-MM-dd hh:mm:ss. For example,

the submission date time = 2009-08-12 17:30:00

See also:

l Get a date and time

l Get a time, second, minute or hour

l Count periods between two dates or times

l Time of day functions

l Date and time functions

Screen flow functionality
The use of Microsoft Visio for creating screen flows has been replaced with in-built screen flow functionality.
Screen flows are now created and authored entirely within Oracle Policy Modeling.

See also:

l Define interview screen flow

Updated commentary generation
Oracle Web Determinations 10.0 is able to serve commentary files without extra configuration when the com-
mentary files are included in the deployed rulebase archive. Commentary for screens is now supported in addi-
tion to the attribute commentary which was previously supported. Oracle Policy Modeling now creates
placeholder commentary files in the rulebase include directory, ready for modification, which will be archived

together with the rules and screens each time the rulebase is built. Running Web Determinations in the debug-
ger now shows the commentary as it will appear by default in a production environment.

See also:

l Create, update or delete interview help (commentary)

Other changes:
l Build and run with Oracle Determinations Server - there is now the option to run with Determinations Server when building
a rulebase.

l Debugging Oracle Web Determinations for .NET - Oracle Policy Modeling now supports debugging Oracle Web Determin-
ations for .NET. This is available through the Debug Options dialog as part of the capability to attach to an existing Oracle
Web Determinations Website. (This capability is not specific to .NET and applies equally well for connecting to an existing
instance of Oracle Web Determinations for Java.) See Use Oracle Web Determinations in the debugger for more inform-
ation.

l New rulebase list provider - the rulebase list provider is a new out-of-the-box alternative to the static selectable list options
for input controls given through Oracle Policy Modeling. It provides the ability to package list files, in a strict XML format
organized by locale, along with the rulebase archive. See Source list contents from an external file for more information.

l Single file rulebase deployment - building a project in Oracle Policy Modeling will now automatically build a <project>.zip
file in the output folder. This package of all of the individual output components of a rulebase is the preferredmethod of
deploying rulebases rather than as individual files. (NOTE: Any other files placed into the output folder will also auto-
matically be included as part of this zip file, so unless the documentation explicitly directs you to, you should not put any-
thing into the output folder.)

l Rebranding - the product formerly known as Haley Office Rules 2008 has been rebranded to become Oracle Policy Model-
ing 10.0. The documentation has been updated accordingly.

l Handling of many-to-many relationships in the debugger - in previous versions, many-to-many relationships were handled
differently in the debugger to one-to-many, many-to-one and one-to-one relationships. If a many-to-many relationship
was modified, the reverse relationship was not updated, as was the case with the other three relationship forms. This was
in part due to a lack of support for partial knowledge. In Oracle Policy Modeling 10.0 many-to-many relationships are
handled exactly the same as other relationships in the debugger. When a many-to-many relationship is modified, the
reverse relationship will also be updated.

l Support for rule authoring in any language - an Oracle Policy Modeling project can now be created using a language parser
developed using the Rapid Language Support Tool. For more information, see Create a new project.

Quick links
l Rule syntax reference

l Screen flow syntax

l BI Publisher syntax

l Keyboard shortcuts

l Choose attribute text

l Write rules inWord

l Write rules in Excel

l Create an entity

l Create a relationship

l Use an entity or relationship in a rule

l Temporal reasoning

l Model the structure of legislation

l Design an interview

l Design a decision report

l Test a rule

l Polish a rulebase

l Deploy an interview toWeb Determinations

l Using source control

l Example rulebases

l Upgrade a project

l Rule principles for OPM

l Modify the look and feel of Oracle Policy Modeling

Getting assistance
Topics in Getting Assistance:

l How to use Oracle Policy Modeling User's Guide

l Create and deploy a rulebase

l Example rulebases

l Get trained in Oracle Policy Modeling

l Access further resources on Oracle Policy Automation

See also:

l Modify the appearance or layout of Oracle Policy Modeling

l Keyboard shortcuts for Oracle Policy Modeling

How to use Oracle Policy Modeling User's Guide
The Oracle Policy Modeling User's Guide is a comprehensive source of information relating to the use of Oracle
Policy Modeling.

What do you want to do?
Find information using the Contents
Find information using the Search
Find information using the Glossary
Access the Oracle Policy Modeling User's Guide in another language

Find information using the Contents
The Oracle Policy Modeling User's Guide is organized into sections corresponding to the main rule development
tasks in Oracle Policy Modeling.
You can see these sections at any time by clicking on the Contents tab located in the left hand pane.
The topic you are viewing at the time will be highlighted in the Table of Contents:

Find information using the Search
You can use the Search function to search for information that you are interested in. Click in the Search field at
the top right hand side of the window and enter a keyword related to the information you are looking for.

Then click the magnifying glass button, or click Enter to search.
Tip: To search for a specific string of text, enclose the text in double quotes in the Search field.
The search results will be displayed as a list of topic titles with summaries of their contents under each.
When you click on a topic title in the search results, that topic will open. The term you searched for is high-
lighted in yellow on the page.

Find information using the Glossary
The Glossary is a list of key terms used in Oracle Policy Modeling. Click on the Glossary tab at the top of the
left hand pane to open it.
When you click on a term in the Glossary, the definition will be shown below it.

Access the Oracle Policy Modeling User's Guide in another language
To access the Oracle Policy Modeling User's Guide in another language, go to Start Menu | Programs |
Oracle Policy Modeling | Oracle Policy Modeling User's Guide and select the language.
Note that the list of languages for the help will be those that were selected during the installation of Oracle
Policy Automation. See the Oracle Policy Modeling Installation Guide in your Oracle Policy Modeling installation
folder for further details.

Function references
Function references are provided for all of the languages Oracle Policy Modeling supports. Note that only the US
English function reference appears in search results.

See also:

l Get trained in Oracle Policy Modeling

l Access further resources

Create and deploy a rulebase
Oracle Policy Modeling is a set of tools and methodologies which support the creation and deployment of rule-
based knowledge models.
Rules can be authored using Microsoft Word or Microsoft Excel. In both Word and Excel you write rules in nat-
ural language and format these rules using Oracle Policy Modeling styles. You then compile your rule documents

which creates generated rule format files in Oracle Policy Modeling. These files are then used to build rulebase
files for use with the Oracle Determinations Engine.
Below are the steps involved in creating a rulebase using Oracle Policy Modeling. Click on any of the links for
more information on that step.

1. Create a new project.

2. Add a new rule document.

3. Write rules inWord or in Excel.

4. Compile the rules.

5. Debug the rulebase.

6. Deploy the rulebase.

Example rulebases
Several example rulebase projects are installed with Oracle Policy Modeling:

l Simple Benefits rulebase

n A simple rulebase that assesses the claimant's eligibility for teenage child allowance and low income allowance.
The rulebase has one entity 'the child', a test script file and no screens.

l Parents And Children rulebase

n A rulebase that has a simple many-to-many relationship between two entities 'the parent' and 'the child'. It exem-
plifies the use of entity functions and the collection of entities and relationships on screens. It also has a test script.

l Interview Service Test rulebase

n A rulebase with one nested rule that determines a person's eligibility for education expenses assistance based on
the child's age and school. Screens collect the children, the schools and the children's schools.

l Healthy Eating rulebase

n A comprehensive rulebase that looks at the diet of the customer's children and rates the overall family's health.
There are source and system rules written inWord, as well as rules settingmultiple conclusions from the same
logic written in Excel. This primary purpose of this rulebase is to demonstrate the use of BI Publisher inWord to
create interview documents such as a decision letter and an interview summary document.

l Social Services Screening rulebase

n A comprehensive rulebase that investigates the household member's eligibility for a range of social services.
There are rules written inWord and Excel, and in addition to the source rules there are many system rules (inter-
pretative, procedural, validation and visibility). The rulebase also contains rule visualizations and test scripts.
Social Services Screening is a very good example of a customized version of Oracle Web Determinations, and of a
claim form document generated from the answers provided during an interview.

l Inferred Entity Instances rulebases

l Inferred Brand Discount rulebase

n A rulebase that uses inferred entity instances to group order items by brand and then apply a brand dis-
count for purchases over $100 for any given brand.

l Inferred Benefits rulebase

n A rulebase that infers the existence of benefits and tallies the number of people eligible for each benefit.
It also demonstrates inferred instances using rule tables.

l Inferred Tax Years rulebase

n A rulebase that infers the existence of tax year entity instances so that further rules related to those tax
years could be applied.

l Inferred Service Delta rulebase

n A rulebase that infers the existence of service entity instances in order to identify which services should
be started, stopped or retained when a customer changes phone plans. It also demonstrates inferred
instances from global values.

l Insurance Fraud Score rulebase

n A rulebase that calculates the fraud score for an insurance claim. The rulebase has one entity 'the previous claim'.
The fraud score is calculated based on the current claim and an average of fraud scores accumulated for previous
claims. It demonstrates the following features in an Excel rulebase: creating rule tables withmerged condition and
conclusion cells, using 'Apply Sheet' to reason about attributes that change over time (fraud score points for cover
and value), using entity level attributes, functions and calculations based on entity instances. The rulebase also
contains rule visualizations and test scripts.

l Income Support Benefit

n A rulebase containing a module file, using a fictitious example of rulebase which assesses eligibility and rate of
unemployment benefit. The Rates and Thresholds module is separated from the main Income Support Benefit rule-
base so the rates can be updated independently of the main rulebase and to allow those rates to be re-used in
other rulebases.

l Aged Care Approval

n A rulebase that investigates the validity of an Aged Care Approval. It has one Word rule document and one impor-
ted test case. The rules demonstrate several temporal functions operating together.

Open an example rulebase
1. Go to \Program Files\Oracle\Policy Modeling\examples.

2. Select the folder for the rulebase you would like to view.

3. Copy the folder and paste it into C:\projects.

4. Open the folder and unzip the zip file for the project into that folder.

5. Open Oracle Policy Modeling and select File | Open Project...

6. Browse to C:\projects\<project name>\Development and select the <project name>.xprj file. Click Open.

Get trained in Oracle Policy Modeling
Further training in Oracle Policy Modeling is available from Oracle University:

Oracle Policy Modeling Courses

http://bit.ly/OUcoursesOPA

Access further resources on Oracle Policy Automation

Oracle Policy Automation Developer's Guide
Technical information on Oracle Policy Automation is in the Oracle Policy Automation Developer's Guide which is
available from:

l Start Menu | Programs | Oracle Policy Modeling | Oracle Policy Modeling Tools | Oracle Policy Automation Developer's
Guide

Oracle Policy Automation Discussion Forum
To search for details of any questions you may have, or to ask questions directly if they have not already been
discussed on the forum, go to:

l Oracle Policy Automation Discussion Forum

Oracle Policy Automation Knowledge Base
The Oracle Policy Automation Knowledge Base contains various articles on Oracle Policy Automation, including
technical 'how to' instructions, known issues and their workarounds, and product announcements. (NOTE: You
will need Oracle customer details to view it.) It can be accessed from:

l support.oracle.com
In the Browse Knowledge area, type "Oracle Policy Modeling" or "Oracle Policy Automation" into the Find a Product by
Name field.

http://forums.oracle.com/forums/forum.jspa?forumID=828
https://support.oracle.com/

Introducing Policy Modeling
Oracle Policy Modeling is an integrated development environment for developing rules and rule-based applic-
ations. It is also used to compile rulebases and screens for use by the Oracle Determinations Engine and Web
Determinations.
Oracle Policy Modeling projects are comprised of files and settings contained in a project file. To get started in
Oracle Policy Modeling, see Create and deploy a rulebase.
To understand more about the way that Oracle Policy Modeling rulebases work, see Oracle Determinations
Engine and the Inference Cycle.
There are several sample rulebases installed with Oracle Policy Modeling. For more information, see Example
rulebases.

Oracle Determinations Engine and the Inference Cycle

The Oracle Determinations Engine is an inferencing engine which works with Oracle Policy Modeling rules to
conduct queries and make decisions based on those rules. In short, it is the 'brain' that does the thinking based
on the rules you have defined. For example, if you set the value of "the person is a pensioner" to true, the
Determinations Engine may infer that "the person is eligible for a discount at the university bookstore" is also
true.
Each time you conduct a new assessment against a rulebase using the Determinations Engine (for example, cre-
ating a new interview in Web Determinations) you are creating what is called a rulebase session. The
Determinations Engine does not maintain the state of its rulebase sessions, so each time you end a rulebase ses-
sion your data will be forgotten by the Determinations Engine unless you explicitly save it.
The process of querying and inferencing during a rulebase session is known as the Inference Cycle.

The Inference Cycle
The Inference Cycle is the cycle of question and answer which operates on rules to replicate the decision mak-
ing process.
The following diagram illustrates the Inference Cycle:

The diagram above shows the following steps:

1. Start (investigate goal): An attribute is specified as the goal attribute to be investigated.

2. Goal Known?: The Determinations Engine determines whether or not the goal attribute has a value.

3. Question Search: The Determinations Engine finds all known (or unknown) attributes that influence the
goal based on the rules in the rulebase (an inferencing process known as backward chaining), then reports
any influencing attributes that are unknown. Another way of thinking about this is that the Determinations
Engine is asking, "What do I need to find out to prove this attribute?".

4. Enter Additional Data: The Determinations Engine waits for a value(s) to be input for the attribute(s)
raised by the Question Search.

5. Infer Attributes: The rule decision tree is scanned by the Determinations Engine in the reverse dir-
ection, drawing conclusions based on attributes that are now known. This inferencing process is known as
forward chaining. Another way of thinking about this is that the Determinations Engine is asking, "What can
I conclude based on the collection of what I know?".

6. Finish: Once the goal attribute is known, the Determinations Engine reports the value and how it reached
that decision (if requested). The Determinations Engine generates a Decision Report (if required) using
backward chaining, as described above.

The Inference Cycle repeats steps 2 to 5 until the goal attribute is known.

See also:

l What is a rule?

l Interviews and flows

l Decision reports

l Deploy an interview toWeb Determinations

Projects and files
Topics in "Projects and files"

l Create, modify or delete a project

l Upgrade a project

l Update Oracle Policy Modeling Templates

l Manage legislation and other source material

l Organize project files

l Add, rename or remove a rule document

l Save changes to a project

l Get project statistics

l Edit a rule document

See also:

l Share rule documents across projects

Create, modify or delete a project
An Oracle Policy Modeling project is created to manage the rule documents and other files that make up a rule-
base.

What do you want to do?
Create a new project
Open an existing project
Add existing files to a project
Add new files to a project
Delete a project

Create a new project
To create a new rulebase project:

1. In Oracle Policy Modeling, select File | New Project.

2. In the New Project dialog box, enter a name for the project in the Project Name field.
NOTE: Do not use a trailing "." (dot) in the Project Name, as this can cause a deployment error in IIS.

3. In the Rule Language drop-down list, select the language in which you will write the rules. The rule language determ-
ines what language documents are parsed in.
If the language that you want to create your project in is not in this list, you can use the Oracle Policy Modeling Rapid Lan-
guage Support Tool to create a language parser for a different language. (The Oracle Policy Modeling Language Support
Tool is available from Start | All Programs | Oracle Policy Modeling | Oracle Policy Modeling Tools | Oracle Policy Model-
ing Rapid Language Support Tool, and help on using that tool is available from the Help menu in the tool itself.)
Once you have created a new language parser using this tool, when you reopen Oracle Policy Modeling and select File |
New Project, the parser you created will appear in the Rule Language drop-down list.
Note that youmay also write a rulebase in one language, and then add one or more translations to the rulebase to allow
it to be run in other languages.

4. In the Region drop-down list, select the appropriate region for the rulebase. This setting determines the formatting of
numbers, dates and currency values. This applies by default to both the deployment of the rulebase in Oracle Web
Determinations or other application (eg how values entered into your rulebase by a user are interpreted), and some
aspects of the rule documents in your rulebase (eg how some constant values referenced in your rules, such as income
limits, are interpreted). Note that youmay customize the deployment settings so they are not based on this project set-
ting - please see the Oracle Policy Automation Developer's Guide for details.

5. In the Project Folder field, specify the location for the project. The recommended location for Oracle Policy Modeling
projects is c:\Projects or d:\Projects (whatever the main local drive is).
TIP: You can create a new folder by simply typing the directory followed by the new folder name into this field.

6. If you want to create the default folder structure, select the option to Create default folder structure.
TIP: It is recommended that the default folder structure is created as it will help organize your project. For more inform-
ation, see Organize project files.

7. Click Create to create your project.
Your new project will open in Oracle Policy Modeling. If you look in the project folder on your computer (eg inWindows
Explorer) you will notice that a new folder Development has been created. This folder contains your project file (.xprj)
and the default folders (if the options to create these was selected). The xprj file is the master project file which records
the file and folder structure of the project.

Open an existing project
To open an existing project:

1. In Oracle Policy Modeling, select File | Open Project.

2. In theOpen Project dialog box, browse to your existing Oracle Policy Modeling project file (.xprj). Then click Open.

Alternatively, you may double-click on an existing project file in Windows Explorer to launch the project in
Oracle Policy Modeling.
NOTE: If the project was created in an older version of Oracle Policy Modeling, it will need to be upgraded
before it can be opened. See Upgrade a project for more information.

Add existing files to a project
To add an existing file to a project:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the file to be placed in, then select
File | Add | Add Existing File...

2. In the Add Existing File dialog box, browse to the file that you want to add. Then click Open. NOTE: If the file was cre-
ated in an older version of Oracle Policy Modeling, you will be prompted to upgrade the file at this point.

The file will now appear in the Project Explorer in Oracle Policy Modeling and can be opened by double-clicking
it.

Add new files to a project
To add a new file to a project:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the file to be placed in, then right-
click and select the type of file that you would like to add.
The options are Add New Word Document, Add New Excel Document, Add New Translation Document,
Add New Screens File, Add New Properties File, Add New Visual Browser File, or Add New Test Script
File.

2. Type a name for the new document, then press Enter.

The file will now appear in the Project Explorer in Oracle Policy Modeling and can be opened by double-clicking
it.

Delete a project
To delete a project from your file system:

1. InWindows Explorer, browse to select the project folder that contains the project that you want to remove.

2. Right-click the folder and selectDelete.

3. In the Confirm Folder Delete dialog box, click Yes.

Upgrade a project
Projects created in old versions of Oracle Policy Modeling can be opened and upgraded using the Upgrade Pro-
ject wizard. The treatment of entities and their containment relationships in particular must be brought up to
date from older project versions, which is done automatically by the wizard. Other changes in the behavior of
Oracle Policy Modeling will need your consideration to determine if you need to make any manual changes to
your project.

What do you want to do?
Upgrade a project using the Upgrade Project wizard
Understand changes in the behavior of Oracle Policy Modeling

Upgrade a project using the Upgrade Project wizard
To upgrade a project created in an older version of Oracle Policy Modeling:

1. Open the project in Oracle Policy Modeling (File | Open Project), select the project file (.xprj) and click Open.

2. The Upgrade Project window is shown, showing the older version of Oracle Policy Modeling from which the project will
be upgraded. Note that the project files will be copied to a backup location before the upgrade is performed, to ensure
that you have the original version of the project to refer to if necessary. Release folders are not included in the upgrade
process. Click Continue.

3. The project upgrade is performed, converting entities and relationships to the current version of Oracle Policy Modeling
as required. Any test cases in the project are also upgraded. Any messages or warnings that are relevant to the upgrade
are displayed in the Error List after the upgrade is performed.

The wizard will also upgrade an older properties file added to a new project in this way.

Principles for the upgrading of entities and their containment relationships
The Upgrade Project wizard applies the following principles in upgrading entities and their containment rela-
tionships:

l "One-to-many" relationships between the global entity and other entities are upgraded to containment relationships where
possible.

l Where the relationship structure provides no clear definition of containment relationships, the presence of entity collect
screens for the relevant entities guides which relationships are defined as containment relationships.

l Where the relationship structure provides no clear definition of containment relationships, and no relevant entity collect
screens are defined, new containment relationships are created from the global entity to the relevant entities, and the old
relationships preserved as reference relationships.

l Singleton entities (deprecated) or one-to-one entities will not be treated as containing entities in the upgrade process.

l Relationships from projects created in Oracle Policy Modeling version 10.0 or earlier will be upgraded as reference rela-
tionships, and new containment relationships created from the global entity to other entities as appropriate.

Understand changes in the behavior of Oracle Policy Modeling

Radio buttons for booleans
The Radio Buttons option for boolean inputs on screen controls has been removed. This means that if an existing
project uses the Radio Buttons option with default values, you will need to delete the control and recreate it
using the Default option (which creates radio buttons for booleans).

Output folder
The 'output' folder is now a strict output folder and can no longer be used to include additional files in the com-
piled rulebase zip file. If you have any other files stored in the output folder of your project, you will need to
move these to the 'include' folder to have them included in the compiled rulebase zip file.

Time/date difference functions
The various time/date difference functions (MinuteDifference, HourDifference, DayDifference, WeekDifference,
etc) no longer return 0 in the case where the first time/date parameter is after the second time/date parameter.
This means that the order of the two parameters is no longer significant, for example, "the number of days
between X and Y" will produce the same result as "the number of days between Y and X".
If your rules using these time/date difference functions are relying on a 0 result, or you want to ensure that you
get exactly the same behavior as previously, you will need to build some extra logic into your rules to set the
conclusion to 0 if the second date is before the first date.

Missing values in Excel
Any condition row proving a conclusion in a merged cell can now evaluate in any order. This means that a rule-
base outcome in this release may be known earlier than in previous versions. To have your rules evaluate in the
top-down order of previous versions, unmerge your conclusion cells.

Functions in Excel
If you want to use a text function in an Excel rule table you now need to put the function text in parentheses.
Existing projects that use text functions will need to have parentheses added, otherwise the function will be
treated as a text value.

Text attributes in Excel
If you want to use an attribute's value in the condition or conclusion of a text attribute in an Excel rule table, you
now need to put the attribute text in parentheses. Existing projects that use attributes in such rule talbes will
need to have parentheses added, otherwise the attribute text will be treated as a text value.

Text values in Excel
Changes made to how Excel processes cell contents have affected the way quoted text is interpreted. This
means that double quotes, instead of single quotes, should now be used.

Unknown relationship reasoning
There are two significant consequences of the changes to how unknown relationship reasoning now operates.
The first is that backward chaining knows more about what information might possibly be required in chasing
down a goal.

For example, say your rulebase has household members, and each household member refers to some global
property such as the number of bedrooms in the residence. Previously you actually needed to create a house-
hold member before the engine knew that the bedroom-count could be required. Now it can actually reason
about a 'hypothetical' household member and from there work out the bedroom-count is a question that may
need be to be asked.
The second consequence is that the engine can also sometimes draw conclusions in cases where it previously
did not think it could.
Say, for example, that you have the following rule:

the parent does not require disability carer's assistance if

Exists(the parent's children, the child has a disability)

And you have a bunch of a children and a bunch of parents, but you haven't yet said who is the parent of who (ie
both parent and child are global-level entities). If none of the children have a disability, the engine will now
infer that none of the parents require disability carer's assistance. It knows this because even without knowing
who a person's children are, it knows that none of the hypothetical candidates could fulfill the criteria, therefore
the conclusion is definitively false.

Warning shown when the Oracle Web Determinations template version does not match the cur-
rent version of Oracle Policy Modeling
When you Build and Debug with Screens, or Build and Run with Web Determinations, if the 'Replace deployed
version' option is turned off, and the Web Determinations template version is not the same as the current ver-
sion of Oracle Policy Modeling, the following warning will be displayed:
"The currently deployed version of Web Determinations is not the version expected by Oracle Policy Modeling.
This might cause problems during runtime. Do you want to continue?"
To prevent this warning from being shown, select the option to replace your currently deployed version of Web
Determinations in the Debug Options or Build and Run dialog. (This is not done automatically in case the user
has customized Web Determinations.)

Document controls
A document will be created based on the document control information in a project created in a version of
Oracle Policy Modeling prior to 10.3.0. The resulting document will not have an RTF template associated with it
(since previous versions used XSLT) so this will generate a build warning that will need to be manually
addressed in the project. Also, any previously specified decision reports that do not have public names will also
cause build warnings and will need to be updated.

Unformatted text in translation documents
When an existing translation document is opened, a new column "Unformatted Text" will have been added to the
Statements (3rd Person) and Variables (3rd Person) worksheets. It will contain non-translated fields which will
need to be translated with the basic form of the attribute. See Update a translation file for how to do this.

See also:

l Understand containment relationships and entity completion

Update Oracle Policy Modeling Templates
Project files created in previous versions of Oracle Policy Modeling are typically upgraded when the project is
loaded in the new version of the application, or when added as existing files to a project. Occasionally you may
need to update the template of an Oracle Policy Modeling document manually. To do this you use the Template
Update Wizard.

1. Go to Tools | Update Oracle Policy Modeling Templates...

2. Specify the folder containing the documents you wish to update. By default this will be theDevelopment folder in your
project folder.

3. Select the Include sub-folders checkbox if you want the wizard to look in all sub-folders for documents to update.

4. Select the Update document styles from template if you want to update the Oracle Policy Modeling document
styles (if these have changed from the previous version).

5. Select the Remove embedded statements and variables option if you want to strip the metadata from the doc-
uments (ie if documents were last compiled against entities and relationships that no longer exist or have been relo-
cated).

6. Click Next. The Wizard will then scan the specified folder/s and list the documents that use the Oracle Policy Modeling
template. Use the checkboxes next to the documents to select which documents you want to update the templates of.
(By default all documents will be selected.)

7. Click Next. The results of the template update will be shown on the next screen.

8. Click Finish to close the Template Update Wizard.

Manage legislation and other source material
Legislation and other source material can be contained within the Oracle Policy Modeling project to make it easy
to access and refer to these documents while working on a project. These documents should be kept in their ori-
ginal unchanged format, and the in-scope content from them copied and pasted into separate rule document
files for processing into Oracle Policy Modeling rules.

Add a source document to a project
Source documents should be contained in a separate folder in the project, ideally in the Documents/Source
folder. To add a document to this folder:

1. In the Project Explorer in Oracle Policy Modeling, select the Documents/Source folder, then right-click and select Add
Existing File...

2. In the Add Existing File dialog box, browse to the file that you want to add. Then click Open.
NOTE: You can only addWord, Excel or PDF files to your project.

The file will now appear in the Project Explorer in Oracle Policy Modeling and can be opened in its own applic-
ation by double-clicking it.

Exclude a source file from the build
Source documents should be excluded from the build. To do this:

1. In the Project Explorer in Oracle Policy Modeling, select the source file.

2. Right-click and selectProperties...

3. In the Properties dialog box, clear the Include document in build checkbox. Then click OK.

The document icon will now be shown with a red line in the bottom right hand corner in the Project Explorer to
indicate that the document is not included in the build.

Organize project files
Folders are used in Oracle Policy Modeling to organize project files. When you create a new project you have
the option to create a default folder structure which is the standard way of organizing your project files.

What do you want to do?
Decide whether or not to use the default project folder structure
Create a new project folder
Add an existing folder
Rename a project folder
Remove a project folder
Move files between folders
Sort folders and files
Locate a rulebase file in Windows Explorer

Decide whether or not to use the default project folder structure
The default folder structure, created when you set up a new Oracle Policy Modeling project, is:

This folder structure is also physically created in the same location as your Oracle Policy Modeling project. The
folders are for assistance only. Documents may be contained in any folder.
If this folder structure is not suitable for your individual project, unselect the option to Create default folder
structure in the New Project dialog. You will then need to manually create project folders (see below).

Create a new project folder
To create a folder in your Oracle Policy Modeling project:

1. Select the folder in the Project Explorer where you would like to create the folder. (If you want the folder created at the
top level in your project, select the project name.)

2. Right-click and selectAdd New Folder.

3. Type a name for the folder, then press Enter.

Add an existing folder
To add an existing folder to a project:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the existing folder to be placed in.

2. Right-click and select Add Existing Folder...

3. In the Add Existing Folder dialog box, select the folder/s that you want to add. NOTE: This dialog box will only display
the folders that already exist in the project folder.

4. Use the check box to indicate whether you want to include all files and sub folders, then click OK.

NOTE: When adding sub-folders, hidden files and directories will be ignored. Hidden files/folders can still be
added manually using the respective Add Existing [File/Folder] options.

Rename a project folder
To rename a folder in your project:

1. In the Project Explorer in Oracle Policy Modeling, right-click the folder that you want to rename and selectRename.

2. Type a new name for the file, then press Enter.

Remove a project folder
To remove a folder from a project:

1. In the Project Explorer in Oracle Policy Modeling, right-click the folder that you want to remove and selectRemove
from Project.

Move files between folders
To move a file to a different folder:

1. In the Project Explorer in Oracle Policy Modeling, select the file that you want to move.

2. Drag the file to the folder where you want to move it to (the folder will become highlighted) and release your mouse but-
ton.

3. Youmay be advised that moving the file may cause existing attribute links to break because the document is currently
using an automatically generated Scope ID. Click Yes to persist the current Scope ID so as to avoid these broken links.

Sort folders and files
By default, folders, and files in folders will be sorted alphabetically. To turn this feature off (so that folders and
files appear in the order that you added them):

1. Go to File | Project Properties | Common Properties | General.

2. Unselect the Sort project explorer checkbox.

3. Click OK.

Locate a rulebase file inWindows Explorer
You can locate any of your rulebase files in Windows Explorer from within Oracle Policy Modeling.

1. In the Project Explorer, right-click on the file you wish to open inWindows Explorer.

2. Select the Locate in Explorer option in the menu. A new Windows Explorer window will be opened showing the folder
containing the rulebase file.

Add, rename or remove a rule document
Oracle Policy Modeling rules are written in Microsoft Word or Microsoft Excel. After a rule document has been
added to a project, it can later be renamed and/or removed.

What do you want to do?
Add a new rule document
Rename a rule document
Remove a rule document

Add a new rule document
To add a new rule document to a project:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the file to be placed in.

2. Right-click and select either Add New Word Document or Add New Excel Document.

3. Type a name for the new rule document, then press Enter.

The file will now appear in the Project Explorer in Oracle Policy Modeling and can be opened by double-clicking
it.

Rename a rule document
To rename a rule document:

1. In the Project Explorer in Oracle Policy Modeling, right-click the file that you want to rename and selectRename.

2. Type a new name for the file, then press Enter.

Remove a rule document
To remove a rule document from a project:

1. In the Project Explorer in Oracle Policy Modeling, right-click the file that you want to remove and selectRemove from
Project.

NOTE: The file remains in your file system but has been removed from your Oracle Policy Modeling project. To
permanently delete a file from both your file system and from your project, right-click it in Oracle Policy Model-
ing and select Delete.

See also

l Add existing files to a project

Save changes to a project
If there are changes in your project that need to be saved, an asterisk will be displayed next to the project
name in the Project Explorer in Oracle Policy Modeling. You can save changes to individual files, or save all
changes to the project.

NOTE: Changes to Microsoft Word and Excel documents need to be saved from within these applications. This
happens automatically when you compile.

Save changes to an individual file
To save changes to an individual file:

1. In the Project Explorer, select the file.

2. Select File | Save <file name>.

Save all changes to the project
To save all changes to the project:

1. Select File | Save All, OR

2. Press Ctrl+Shift+S.

Get project statistics
The Project Statistics dialog shows a summary of the current status of the project, including the number of
files in the project, and the number of attributes, entities, relationships, rules and screens.
To view the project statistics, select File | Project Statistics.

To copy the text of this dialog, use the Copy Text button.

Edit a rule document
To edit a rule document you need to open the document in Word or Excel.

In the Project Explorer in Oracle Policy Modeling, either:

1. Double-click the rule file, OR

2. Right-click the rule file and selectOpen with Microsoft Word or Open with Microsoft Excel.

The file will then open in its own application.

Make the necessary changes to the document and then compile it.

Writing rules
Topics in "Writing rules"

l What is a rule?

l Decide whether to write rules inWord or Excel

l Write rules inWord

l Define rule tables inWord documents

l Define decision tables in Excel workbooks

l Make your Excel rules easier to understand

l Capture implicit logic in rules

l Write rules in the negative

l Prove an attribute usingmultiple rules

l Model loops in rule logic

l Include an existing attribute in a rule

l Choose a function to include in a rule

l Add rule metadata

l Validate user input using errors and warnings

l Use rules to trigger external software applications

See also:

l Create and deploy a rulebase

l Split and link rules

l Choose a name for an entity, relationship or attribute

l Use an attribute in a rule

l Use an entity or relationship in a rule

What is a rule?

What do you want to learn about?
What is a rule?
What is a rulebase?
Conclusions and conditions
What is an attribute?
Attribute levels
Connecting conditions using and/or
Grouping conditions using both/all and either/any
Alternative conclusions

Rule types

What is a rule?
A rule is an assertion that a conclusion can be drawn from a particular state of affairs. For example:

If you leave the ice cream in the sun, then the ice cream will melt.

It is a good idea to take an umbrella if it is raining outside.

Full-time students and pensioners are eligible for a discount at the university bookstore.

Your plane can take-off from the airport if it has permission from the control tower and has completed a safety check.

The movie ticket will cost $10 if the ticket is for a child.

The claimant is not eligible for an aged pension if the claimant is not a citizen

Rules operate on data and can incorporate operations such as comparisons and mathematical functions.

What is a rulebase?
A rulebase is simply a collection of one or more connected rules. For example:
Rule 1:

the person is eligible for a discount at the university bookstore if

the person is a full-time student or

the person is a pensioner

Rule 2:

the person is a full-time student if

the person is studying a full-time load and

the person does not have a full-time job

Conclusions and conditions
Each rule must have a conclusion (the state of affairs that can be determined) and usually has at least one con-
dition (the conditions upon which that determination may be made). A conclusion is the "Then" part of an "If...
Then..." statement. A condition is the "If" part of an "If... Then..." statement.

CONCLUSION: the ice-cream will melt if

CONDITION: the ice-cream has been left in the sun

CONCLUSION: it is a good idea to take an umbrella if

CONDITION: it is raining outside

CONCLUSION: the person is eligible for a discount at the university bookstore if

CONDITION: the person is a full-time student

CONDITION: the person is a pensioner

CONCLUSION: your plane can take-off from the airport if

CONDITION: it has permission from the control tower

CONDITION: it has completed a safety check

CONCLUSION: the cost of the movie ticket = $10 if

CONDITION: the ticket is for a child

CONCLUSION: the claimant is not eligible for an aged pension if

CONDITION: the claimant is not a citizen

NOTE: The value of the condition may be different to the value of the attribute as used in the condition.
The table below demonstrates the range of values which a condition may have:

Condition Actual Citizenship Value

The claimant is an Australian citizen Australian True

The claimant is an Australian citizen American False

The claimant is not an Australian citizen Australian False

The claimant is not an Australian citizen American True

What is an attribute?
An attribute is a single unit of data or fact. For example:

l the person is a full-time student

l the cost of the movie ticket

An attribute is of a particular data type: boolean, text, number, currency, date, time of day, or date and time.
Boolean attributes can either have a true or false value, and variable attributes take a text, number, currency,
date, time of day, or date and time value depending on the type of variable.
The following are some examples of attributes and types:

l the person is hungry (boolean attribute)

l the person's name (variable attribute – text)

l the person's date of birth (variable attribute – date)

l the number of cookies the person wants to eat (variable attribute – number)

l the cost of the person's meal (variable attribute – currency)

An attribute always belongs to a particular entity even if it is the global entity. Attributes form the building
blocks of rules.

Attribute levels
Attributes will have different purposes depending on their place in the rule hierarchy. For example, consider the
hierarchy of attributes in the following rules:
Rule 1

the person is eligible for a discount at the university bookstore if

the person is a full-time student or

the person is a pensioner

Rule 2

the person is a full-time student if

the person is studying a full-time load and

the person does not have a full-time job

Diagrammatic form:

In this rulebase, the attribute "the person is eligible for a discount at the university bookstore" is the top-level
attribute. That is, the attribute is at the top of the rule hierarchy, it is not used as a condition in any other rule.
Top-level attributes usually represent the main outcome or primary goal of the rulebase (that is, the question
the rulebase seeks to answer).

The attribute in the middle, "the person is a full-time student" is called an intermediate attribute as it is used
as a condition in at least one rule and a conclusion in another. Intermediate attributes can also be called goals
where they calculate an outcome which may be of interest to a user.
The attributes:

l the person is a pensioner

l the person is studying a full-time load and

l the person has a full-time job

are all base-level attributes in the rule hierarchy. That is, there are no rules explaining how these attributes
are to be determined. The value of base-level attributes must be provided by the user.

Connecting conditions using and/or
Where a rule contains multiple conditions, the conditions must be separated by an and or an or to indicate
whether one or all conditions are required to satisfy the conclusion.
For instance,

Example 1 Example 2

the person is eligible for a pension if: the person is eligible for a pension if:

the person is over 65. the person is over 65.

AND OR

the person is a citizen. the person is unable to work.

In Example 1, both conditions must be true to be able to draw a positive outcome for the person's eligibility. If
either condition is false, then only a negative outcome can be drawn.
In Example 2, either the first or second condition, or both, must be true to be able to draw a positive outcome.
If both the conditions are proved false, then a negative outcome is drawn.
For more information on the possible outcomes when using and or or, see Truth tables.

There is no restriction on the number of ands and ors that can be used in a rule. For instance,

Example 1 Example 2

the person is eligible for a pension if the person is eligible for a pension if

the person is over 65 the person is over 65

AND OR

the person is a citizen the person is a citizen

AND OR

Example 1 Example 2

the person is unable to work the person is unable to work

Both ands and ors can be used within the same rule in order to closely model source material. It is not pos-
sible, however, to mix these two operators on a single level without creating an ambiguity in the logic.
Explain this further
For example:

A if B or C and D

could be interpreted as:

A if B or (C and D)

in which case B is sufficient to prove A. Or it could be interpreted as:

A if (B or C) and D

in which case, D would always be required.
The rule author must distinguish between the two interpretations when writing the rules.

Grouping conditions using both/all and either/any
The all operator is used to group conditions separated by and. In the example "A if B or (C and D)" the brackets
are around the conditions joined by an and so you must use the all operator in your rule:

A is true if

B is true

or

all

C is true

and

D is true

The any operator is used to group conditions separated by or. In the example "A if (B or C) and D" the brackets
are around the conditions joined by an or so you must use the any operator in your rule:

A is true if

any

B is true

or

C is true

and

D is true

NOTE: You may also use the word both in place of all and either in place of any. Using these words has the
same effect but may make the text more readable where only two conditions are grouped.

The grouping operators sit above the conditions they are grouping. The conditions being grouped sit beneath the
grouping operator and should therefore take the style of the next level down. For example, if the word "any" is
in Level 1 style, the conditions it is grouping should be in Level 2 style.
The following example demonstrates this placement:

the claimant is eligible for a pension if

the claimant is poor

or

all

the claimant is sick and

the claimant has been sick for more than 6 months and

the claimant does not another form of income

Where your rule continues (as in the example below) at the higher level, the appropriate operator (and or or)
should be added as a separate line at the same level as the subsequent condition. For example:

the claimant is eligible for a pension if

the claimant is poor or

all

the claimant is sick and

the claimant has been sick for more than 6 months and

the claimant does not another form of income

or

the claimant has been entitled to a pension previously

Alternative conclusions
By default, Oracle Policy Modeling assumes all rules contain an alternative conclusion. That is, if the con-
ditions are not satisfied, you can infer the opposite of the conclusion. For example, given the rule:

CONCLUSION: it is a good idea to take an umbrella if

CONDITION: it is raining outside

If it is not raining outside, you may conclude that it is not a good idea to take an umbrella.
The alternative conclusion need not be stated, it is assumed in all rules unless otherwise indicated.

Rule types
Oracle Policy Modeling supports the following rule types:

l Global rules - use global attributes

l Entity-level rules - use entity-level attributes and operate on sets of data simultaneously.

l Shortcut rules – allow the value of one base attribute to be inferred from the value of another base attribute. These are
the only rules which do not require an alternative conclusion.

l Warning and error event rules – fire a warning or error in the Oracle Determinations Engine. These are commonly
used to control screen inputs (such as warning the user they have entered conflicting data).

l Custom event rules – allow the rulebase to call custom code where the functions in the rulebase are simply not suf-
ficient or data is stored outside of the rulebase (for example, to call an external database of dates rather than capturing the
dates in rules).

Decide whether to write rules in Word or Excel
Microsoft Excel should be used to capture the rule if:

l the source material is a decision table or

l the rule logic is appropriate to convert into a decision table (see below)

In addition only rules of the following type should be written in Excel:

l where multiple conclusions can be set from the same logic (Example A)

l where multiple conclusions can be set from different values of one attribute (Example B)

Otherwise, all rules should be written in Microsoft Word.

Is the rule logic appropriate to convert to a decision table?
The rule logic is appropriate to convert into a decision table if the rule logic is not more than one level deep. If
the rule logic is more than one level deep it can still be converted to a decision table providing:

a. intermediate logic is not required in the decision report* and

b. the rule is relatively simple to translate into a decision table while having confidence that all combinations of attribute val-
ues are captured in the decision table.

*Excel decision reports just show the values and the outcome, without detailed reasoning.

Example A (multiple conclusions set from the same logic)

the person must be sent an approval letter if

the person is eligible

the person must be sent an information pack if

the person is eligible

Example B (multiple conclusions set from different values of one attribute)

the pet is a dog if

the pet's species = "dog"

the pet is a cat if

the pet's species = "cat"

Write rules in Word
Using Microsoft Word you can write your rules in plain English. You then format these rules with the styles
provided on the Oracle Policy Modeling tab to enable them to be compiled into a format that can be used by the
Oracle Determinations Engine.

Before you start writing rules, you need to change some of the default settings in Word.

What do you want to do?
Prepare Word for writing rules
Understand Oracle Policy Modeling format and structure
Write a rule in Word

Prepare Word for writing rules
Some normal settings in Microsoft Word will interfere with rule creation by Oracle Policy Modeling, so you will
need to make the following changes to Word settings:

AutoCorrect
In Tools | AutoCorrect Options | AutoCorrect tab (in Word 2003), or Word Options | Proofing | AutoCorrect
Options | AutoCorrect tab (in Word 2007 and later):

l Uncheck Capitalize first letter of sentences

l Uncheck Capitalize first letter of table cells

l Uncheck Replace text as you type

AutoFormat As You Type
In Tools | AutoCorrect Options | AutoFormat As You Type tab (in Word 2003), or Word Options | Proofing |
AutoCorrect Options | AutoFormat As You Type tab (in Word 2007 and later):

l Uncheck "Straight quotes" with “smart quotes”

l Uncheck Automatic bulleted lists

l Uncheck Automatic numbered lists

l Uncheck Format beginning of list item like the one before it

l Uncheck Set left- and first-indent with tabs and backspaces

l Uncheck Define styles based on your formatting

Measurement Units and Style Area
Set the units of measurement to Centimeters and the Style Area Width to about 3cm – this will help you to see
what is happening with the Oracle Policy Modeling styles.
For Word 2003:

l In Tools | Options | General tab, change Measurement units to centimeters.

l In Tools | Options | View tab, set the Style area width to 3cm.

For Word 2007 and later, the Show Styles button in the Document group of the Oracle Policy Modeling tab
provides a shortcut to display the style area.

The settings to do this manually in Word 2007 and later can be found in Word Options | Advanced | Display:

l Change Show measurement in units of: to Centimeters.

l Set the Style area pane width in Draft and Outline views: to 3cm. Note that you will need to select the Draft or Outline Docu-
ment Views while you are usingWord in order to see this.

TIPS:

i. Make sure that the rule language and the dictionary language in Microsoft Word are synchronized (eg if the rule language
is English (American), the dictionary language inWord should be English (U.S.)).

ii. For extremely complex projects containing either very large rule documents (70+ pages) or large numbers of rule doc-
uments, you should also turn off auto-saving, backup and background repagination to improve the performance of
Microsoft Word with Oracle Policy Modeling.

Understand Oracle Policy Modeling format and structure
Oracle Policy Modeling format is quite strict in order to maintain consistency and completeness of rules and to
avoid logical ambiguity. In particular, styles and indentation play an important role in recognizing the meaning
of rules. Indentation and styles are used to separate the conditions from the conclusion, and conditions of dif-
ferent levels from each other. Distinct conditions are separated onto different lines, and the placement of and
and or between conditions has special significance.
Rules need to be marked up in Word using Oracle Policy Modeling styles in order to be recognized by the Oracle
Policy Modeling compiler. The styles appear in the Oracle Policy Modeling toolbar and in the document tem-
plates which are attached to all Word documents created through Oracle Policy Modeling. Oracle Policy Modeling
looks for these styles when parsing your rules to determine the various rule components. Each style has a
unique style name and coloring to make it easy to identify. Text which is not in the Oracle Policy Modeling styles
is ignored by the Oracle Policy Modeling compiler.

The rule below shows an example of the OPM styles that would be applied in Word using the Conclusion and
Level styles on the Oracle Policy Modeling tab:

the claimant is eligible for living allowances if OPM - conclusion

the claimant is living alone and OPM - level 1

the claimant satisfies the age criteria OPM - level 1

the claimant satisfies the male age criteria OPM - level 2

the claimant is aged over 65 and OPM - level 3

the claimant is a man OPM - level 3

or OPM - level 2

the claimant satisfies the female age criteria OPM - level 2

the claimant is aged over 60 and OPM - level 3

the claimant is a woman OPM - level 3

Write a rule inWord
To write a rule in Word:

1. Create and open a Word document in your project.
InWord you will notice the Oracle Policy Modeling toolbar. (If the toolbar is not visible inWord 2003, go to View | Tool-
bars | Oracle Policy Modeling to open it.) This toolbar is what you will use to format your rules in Oracle Policy
Modeling styles.

2. Put the cursor on a new blank line in the Word document.

3. Type "the person is happy if". This will form your rule conclusion.

4. Place the cursor somewhere in this text and click the Conclusion button on the Oracle Policy Modeling toolbar.

5. Place the cursor at the end of the line (after the "if") and press the Enter key to start a new paragraph.
The Level 1 style will automatically be applied to the new paragraph. You will notice that the Level 1 style is indented
slightly from the Conclusion style to highlight the difference in rule levels.

6. Type "the sun is shining".
That’s it! You have just created a rule inWord.

Define rule tables in Word documents
When using multiple rules to prove an attribute, you must be extremely careful to ensure that you have closed
the logic with your rules. If all of the rules proving your conclusion (goal) attribute do not provide full logical cov-
erage, your rules will not cover every possible situation.
Imagine that you wanted to add the following rules to your model:

the passenger's favorite color = "blue" if

the passenger selected the blue seat

the passenger's favorite color = "orange" if

the passenger selected the orange seat

the passenger's favorite color = "purple" if

the passenger selected the purple seat

If there were a fourth seat color (eg "olive"), then the rules would not cope with that situation.
Instead of using multiple rules to prove the goal, you use rule tables to cover this situation. Rule tables provide
an invisible layer of truth management by enforcing the effective creation of additional conditions and enforcing
question order to avoid goal exhaustion when your rules are built.
The following diagram shows how this table must be structured:

conclusion

value condition

value condition

value otherwise

The first row of the table defines which attribute will be used as the conclusion attribute for the rule.
The left hand column is used to specify values (includes mathematical expressions) which will set the value of
the conclusion attribute if the condition in the right hand column of the same row is satisfied.
The final row provides an alternative conclusion, to which the conclusion will be set if none of the conditional
rows are satisfied.

Add a rule table in Word
To add a rule table in Word:

1. Place the cursor on a new blank line in your Word rules document and click the Rule Table button on the Oracle Policy
Modeling toolbar.
A pre-formatted table will be inserted.

otherwise

2. Enter your conclusion in the first row of the table.

the passenger's favorite color

otherwise

3. In each subsequent row of the table enter a value in the left hand column and the condition that sets it in the right hand
column.

the passenger's favorite color

"blue" the passenger selected the blue seat

"orange" the passenger selected the orange seat

"purple" the passenger selected the purple seat

otherwise

4. In the final row, enter a value for the alternative conclusion in the left hand column.

the passenger's favorite color

"blue" the passenger selected the blue seat

"orange" the passenger selected the orange seat

"purple" the passenger selected the purple seat

uncertain otherwise

Define decision tables in Excel workbooks
To author rules in Excel, you simply write rules in tables, and use Oracle Policy Modeling styles to identify the
type of information in the cells so that they can be compiled for use with the Oracle Determinations Engine. You
can have as many worksheets for rules in your document as you need.

What do you want to do?
Understand the styles used for rule tables
Create a rule table in Excel
Prove multiple attributes for the same set of conditions
Prove the same set of conclusions using multiple conditions
Allow rule conditions to evaluate in any order and handle missing values
Write a comparison type rule where a decision applies to a range of numbers or dates
Split rule tables according to the date they apply from
Use entity attributes in an Excel rule table

Prove a text attribute in an Excel rule

Understand the styles used for rule tables
Excel rules which are intended for compiling in Oracle Policy Modeling need to be marked up using the styles
supplied with the Oracle Policy Modeling Excel document template. The following styles are used for writing
rules:
Style Name Description

Conclusion Heading Used to mark up a conclusion column in a rule block. The text is either "conclusion" or an
attribute ID.

Conclusion Used to mark up an attribute that will be concluded by a rule

Condition Heading Used to mark up a condition column in a rule block. The text is either "condition" or an
attribute ID.

Condition

Used to mark up a condition for a part of a rule. If the condition header is "condition", the
condition must be a complete expression or a valid boolean attribute. If the condition
header is an attribute ID, the condition must be either a constant or a comparison of the
same type as the attribute.

Else Used to mark up the else condition

Commentary Used to mark up descriptive text in a rule block. The text is ignored when generating the
rule.

The heading cells are optional. Similarly, the order of cells is irrelevant since each style is unique - as long as
the necessary styles are used with valid cell contents.
NOTES:

i. Regardless of the order of declaration on a worksheet, the order of processing is "global entity", "entity" and then any
attributes. This ensures that attributes appear in the correct entity.

ii. To format a cell as a currency value, do not use the button on the Excel formatting toolbar - instead go to Format |
Cells and selectCurrency on theNumber tab.

iii. Whenworking with numbers, currencies, dates and time in Microsoft Excel, the regional setting of the computer should
accord with the rulebase project’s region. This is because Microsoft Excel formats the data types using the templates in
the regional setting.

iv. If you use a text attribute you can either put the value of that text attribute in quotes or not in quotes and it will be treated
the same way.

v. If you want to use a text function in a rule table, you need to put the function text in parentheses.

Create a rule table in Excel
When you add an Excel document to your project, it will contain a rule template on the Rule Table worksheet
that looks like this:

condition condition conclusion conclusion

commentary

else

To write a simple rule in Excel which contains a single condition and a single conclusion, follow the steps below.
In this example we will be concluding the nationality of the individual based on their country of citizenship.
NOTE: Variable attributes should be declared in a properties file before use in Excel. (There is no need to
declare boolean attributes before using them in rules.) In this example, the text variables "the country of cit-
izenship" and "the nationality of the individual" have already been declared in the properties files in the project.

1. Replace the text condition in the second columnwith "the country of citizenship". This cell is already in the correct
Condition Heading style. As we will only be having one set of conditions you can delete the first condition column.

2. Replace the text conclusion with "the nationality of the individual". This cell is already in the correctConclusion
Heading style. As we will only be having one set of conclusions you can delete the other conclusion column.

3. Type "USA" in the cell below the "the country of citizenship" cell. Tab across to the next cell (the cell below the "the nation-
ality of the individual" cell) and type "American". These cells are already in the correct styles: Condition andCon-
clusion respectively. Delete the next two rows, as they won't be used.

4. In the row below, enter another condition "Scotland" with the associated conclusion "Scottish". Follow this on the next
row with another condition "Japan" and conclusion "Japanese".

5. Type "uncertain" in the cell next to the else condition. This applies an alternative conclusion of "uncertain".

Your rule table should look like this:

the country of citizenship the nationality of the individual
USA American
Scotland Scottish
Japan Japanese

else uncertain

Decision tables written in Excel are converted into internally generated rule tables by Oracle Policy Modeling
when the rules are compiled. The table above will create the following rule (xgen) in Oracle Policy Modeling.
(This can be viewed in OPM by right-clicking on the rule document in the Project Explorer and selecting Open
Rule Browser.)

the nationality of the individual
Rule Tables.xgen
a1: the nationality of the individual
"American" a2: the country of citizenship = "USA"
"Scottish" a2: the country of citizenship = "Scotland"
"Japanese" a2: the country of citizenship = "Japan"
"uncertain" otherwise

Prove multiple attributes for the same set of conditions
Using just one table in Excel you can prove multiple attributes for the same set of conditions (unlike in Word
which would require multiple rule tables).
Assuming you have the following variables already declared, the text variables "the country of citizenship", "the
nationality of the individual" and "the currency of the country", you could have the following rule table:

the country of citizenship the nationality of the individual the currency of the country
USA American Dollar
Scotland Scottish Pound
Japan Japanese Yen

else uncertain uncertain

Prove the same set of conclusions usingmultiple conditions
You can specify multiple conditions for a particular conclusion in Excel, merging the conclusion cells if appro-
priate to influence the way the rule is evaluated.
For example, you may wish to determine the appropriate ticket type for different combinations of adults and
children. If you have the following variables:

Attribute Type Attribute Text Legend Key
Number the number of adults in the group Adults
Number the number of children in the group Children
Text the ticket type Ticket

you may have the following rule table:

Adults Children Ticket
1 0 Single
1 1 Double
2 0 Double
2 1 Family
2 2 Family
2 3 Family
3 0 Family

else Combo

The rule generated for this table in Oracle Policy Modeling will look like the following:

the ticket type
Multiple conclusions unmerged.xgen
ticket_type: the ticket type

"Single"
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =0

"Double"
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =1

"Double"
all
number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =0

"Family" all

the ticket type
Multiple conclusions unmerged.xgen

number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =1

"Family"
all
number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =2

"Family"
all
number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =3

"Family"
all
number_adults: the number of adults in the group =3 and
number_children: the number of children in the group =0

"Combo" otherwise

We can leave a condition cell empty if we do not wish to test the value of the attribute for that conclusion cell. In
our example, we may decide that two adults can enter under a Family ticket if they have any children with
them, and three adults can be covered by a Family ticket regardless of whether there are children with them.

Adults Children Ticket
1 0 Single
1 1 Double
2 0 Double
2 Family
3 Family

else Combo

This will simplify the logic, and the rule generated:

the ticket type
Multiple conclusions simplified.xgen
ticket_type: the ticket type

"Single"
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =0

"Double"
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =1

"Double"
all
number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =0

"Family" number_adults: the number of adults in the group =2
"Family" number_adults: the number of adults in the group =3
"Combo" otherwise

We can also merge the cells for the conclusion values, if there are multiple condition rows that prove the same
conclusion.

Adults Children Ticket
1 0 Single
1 1

Double
2 0
2

Family
3

else Combo

This will simplify the appearance of the Excel rule table and emphasize that the value inferred for Ticket will be
the same in more than one possible scenario. However, it will also change the way Oracle Policy Modeling inter-
prets the logic of the rule. The internal rule table generated from an Excel rule table includes a row for each
Excel conclusion cell. This means that instead of having two rows in the generated rule table proving the same
conclusion value (which will be evaluated in order from the top down), we now have a single row proving the
conclusion value, with multiple options that may be evaluated in any order. This can be useful if our rules need
to allow for some condition values being unknown.

the ticket type
Multiple conclusions merged.xgen
ticket_type: the ticket type

"Single"
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =0

"Double"

either
all
number_adults: the number of adults in the group =1 and
number_children: the number of children in the group =1
or
all
number_adults: the number of adults in the group =2 and
number_children: the number of children in the group =0

"Family"
either
number_adults: the number of adults in the group =2 or
number_adults: the number of adults in the group =3

"Combo" otherwise

TIP: To see an example of a complete rulebase with merged condition and conclusion cells, open and run the
Insurance Fraud Score example rulebase project provided in the Examples folder in the Oracle Policy Modeling
installation folder.

Allow rule conditions to evaluate in any order and handle missing values
The internal rule tables that are generated by Oracle Policy Modeling from decision tables in Excel are evaluated
row by row from the top down. If the first row of a table cannot be evaluated (ie if some of the condition values

are unknown), then the evaluation of the rule table as a whole will not progress beyond that row, even if a later
row in the same table can be evaluated because all of its condition values are fully known.
In some cases, this may not be the most useful way for the rule to evaluate. If a single conclusion is proved in
multiple ways, you can merge a single conclusion cell across all of the different condition rows. Oracle Policy
Modeling will then allow any of those condition rows to prove the conclusion value, in any order.
For example, in the following rule cells we would like either of the two rows to be able to prove the conclusion.

Occupation Age Entitlement
Student TRUE

16 TRUE

With the current rule table layout, the rule generated by Oracle Policy Modeling will have separate rows for each
of the rows in our Excel rule. Because a rule table evaluates from the top down, this will mean that even if we
know that a person is 16 and hence is entitled to Youth Benefit, the rule table would be unable to conclude a res-
ult until we know the person's occupation and can evaluate the first row.

the applicant is entitled to the benefit
Handle missing data unmerged.xgen
applicant_entitlement: the applicant is entitled to the benefit
true applicant_occupation: the applicant's occupation = "Student"
true applicant_age: the applicant's age =16
uncertain otherwise

However, if we merge the cells containing the conclusions that apply to these two rows, the internal rule gen-
erated by Oracle Policy Modeling combines these rows with an "or" condition in a single rule table row, rather
than the two separate rule table rows generated above.

Occupation Age Entitlement
Student

TRUE
16

This new structure allows the conditions proving the conclusion to be evaluated in any order, so the second row
will now allow the rule to be evaluated even if the first row values are unknown.

the applicant is entitled to the benefit
Handle missing data merged.xgen
applicant_entitlement: the applicant is entitled to the benefit

true
either
applicant_occupation: the applicant's occupation = "Student" or
applicant_age: the applicant's age =16

uncertain otherwise

Write a comparison type rule where a decision applies to a range of numbers or dates
For non-text conditions, it is likely that the decision will apply to a range of numbers or dates rather than to a
specific number or date. A simple example is the mapping of taxable income to tax rates for a particular date
range:

Attribute Type Attribute Text Legend Key
Date the assessment date Assessment Date
Currency the client's taxable income Taxable Income
Number the client's tax rate Tax Rate

Assessment Date Taxable Income Tax Rate

>=2006-07-01 <2007-07-01

>=0 <12000 0
>=12000 <24000 0.22
>=24000 <36000 0.27
>=36000 <48000 0.36
>=48000 0.48

>=2005-07-01 <2006-07-01

>=0 <12000 0
>=12000 <24000 0.22
>=24000 <36000 0.27
>=36000 <48000 0.35
>=48000 0.47

>=2004-07-01 <2005-07-01

>=0 <12000 0
>=12000 <24000 0.21
>=24000 <36000 0.26
>=36000 <48000 0.34
>=48000 0.46

else 0.5

It is also possible that you may want to have multiple comparisons for one attribute as exemplified below:

Attribute Type Attribute Text Legend Key
Number the current temperature Temp
Text the person's gender Gender
Text the state the person is likely to be in State

Temp Temp Gender State
<=0 Freezing

>0 <12 male Cold
>0 <16 female Cold
>=20 <24 Comfortable
>30 Hot

else Uncertain

Split rule tables according to the date they apply from
Tables can be split over several sheets in the same file to allow for regular table updates that apply from a par-
ticular date. This is managed by the insertion of a master table that prioritizes the sheets. The prioritization is
done by reference to sheet name, which is specified in the tab for the sheet. For example, you could have:

Attribute Type Attribute Text Legend Key
Text the type of ticket Ticket
Currency the ticket price Price
Date the date of purchase Date

Date Apply Sheet
>= 2006-07-01 2006-2007
>= 2005-07-01 2005-2006

else pre 2005-2006

The logic of these tables is consolidated on compile, and therefore does not result in multiply proven attributes.
Master tables use the standard rule condition and conclusion styles but have a single conclusion column headed
"Apply Sheet" in the Conclusion Heading style. Note that the text "Apply Sheet" therefore cannot be used as a
column heading in a standard rule table.
In this example, you would have three other worksheets which contain the rule tables below. Note that the work-
sheets must be titled (case-sensitive) according to the names given in the Apply Sheet column.

pre 2005-2006
Ticket Price
Adult 14
Concession 10
Child 6

else 14

2005-2006
Ticket Price
Adult 16
Concession 12
Child 8

else 16

2006-2007
Ticket Price
Adult 20
Concession 15
Child 10

else 20

This will create the following rule in Oracle Policy Modeling:

the ticket price
Split tables.xgen
price_ticket: the ticket price

20
all
ticket_type: the type of ticket = "Adult" and
purchase_date: the date of purchase >=07/01/2006

15
all
ticket_type: the type of ticket = "Concession" and
purchase_date: the date of purchase >=07/01/2006

10
all
ticket_type: the type of ticket = "Child" and
purchase_date: the date of purchase >=07/01/2006

20 purchase_date: the date of purchase >=07/01/2006

16
all
ticket_type: the type of ticket = "Adult" and
purchase_date: the date of purchase >=07/01/2005

12
all
ticket_type: the type of ticket = "Concession" and
purchase_date: the date of purchase >=07/01/2005

8
all
ticket_type: the type of ticket = "Child" and
purchase_date: the date of purchase >=07/01/2005

16 purchase_date: the date of purchase >=07/01/2005
14 ticket_type: the type of ticket = "Adult"
10 ticket_type: the type of ticket = "Concession"
6 ticket_type: the type of ticket = "Child"
14 true
uncertain otherwise

TIP: To see an example of a complete rulebase using 'Apply Sheet' to reason about attributes that change over
time, open and run the Insurance Fraud Score example rulebase project provided in the Examples folder in the
Oracle Policy Modeling installation folder.

Use entity attributes in an Excel rule table
You can prove entity-level attributes in Excel rule tables, however, all conclusion attributes in the table must be
in the same entity. The condition attributes in the rule table may be in the same entity as the conclusion, or they
may reference any entities in the containment relationships of the conclusion entity.
For example, the following rule table infers conclusion attributes in "the pet" entity, using condition attributes in
the entity "the child" and the global entity, which are both in its containment relationship as shown:

the grocery shopping has been done the child is on school holidays the pet is happy the pet is well fed
TRUE

TRUE TRUE
TRUE

FALSE
FALSE

FALSE FALSE
else uncertain uncertain

Entity level attributes can also be used in condition cells with most entity functions. For example, the following
rule uses the InstanceCount function to set the child's pocket money depending on how many pets she owns.

condition the amount of pocket money the child gets
the number of the child's pets = 0 $5.00
the number of the child's pets = 1 $8.00
the number of the child's pets = 2 $10.00

else $15.00

NOTE: The entity functions that cannot be used in this way in Excel are those which deal with multiple entities:
ForScope, ForAllScope, ExistsScope, IsMemberOf, IsNotMemberOf, InstanceEquals, InstanceNotEquals.
TIP: To see an example of a complete rulebase using entity level attributes, functions and calculations based on
entity instances, open and run the Insurance Fraud Score example rulebase project provided in the Examples
folder in the Oracle Policy Modeling installation folder.

Prove a text attribute in an Excel rule
When proving a text attribute in an Excel rule, you need to enclose the attribute text in parentheses so that the
compiler recognizes it as an attribute.
For example, if you had the following declarations:

Attribute Type Attribute Text
Text the location of the overall winner
Text the winner of the overall award
Text the winner of the award in Australia
Text the winner of the award in Japan
Text the winner of the award in the UK
Text the winner of the award in the US

you would need to put the text attribute’s text in parentheses when it is being concluded in a rule table. For
example:

the location of the overall winner the winner of the overall award
Australia (the winner of the award in Australia)
Japan (the winner of the award in Japan)

United Kingdom (the winner of the award in the UK)
United States (the winner of the award in the US)

else uncertain

If you had not put the parentheses around these text attributes in the rule, these attributes would not be recog-
nized and the resulting rule would conclude the literal strings.
When concluding a specific value for a text attribute it is not necessary to enclose it in parentheses (note that
you can either put the value of that text attribute in quotes or not in quotes and it will be treated the same way).

See also:

l Make your Excel rules easier to understand

Make your Excel rules easier to understand
There are several ways in which you can make your Excel rules easier to understand.

What do you want to do?
Shorten attribute names in Excel workbooks
Simplify rule table layout by merging cells
Change rule table orientation

Shorten attribute names in Excel workbooks
You can create an abbreviated way of referring to an attribute in Excel using a Legend Key. Specification of this
abbreviated form is optional.
To specify a legend key:

1. In Excel, open your Declarations worksheet.

2. Next to your Attribute Type andAttribute Text columns, add the title "Legend Key". Click on the Legend Key
Heading button on the Oracle Policy Modeling toolbar to set the style of this cell. NOTE: This column is already there in
the default Excel worksheet so you will only need to do this step if you have manually deleted the Legend Key column at
some stage.

3. Next to each attribute (in the Legend Key column) specify the abbreviated attribute name. Use the Legend Key button
on the Oracle Policy Modeling toolbar to set the style of these cells.

4. Open youRule Table worksheet. You can now use the legend key text as Condition Headings andConclusion
Headings.

For example, if you have the following declaration:
Attribute Type Attribute Text Legend Key
Text the country of citizenship Country
Text the nationality of the individual Nationality

you could have the following rule table:
Country Nationality
USA American
Scotland Scottish
Japan Japanese

else uncertain

You can also use legends with tables which use boolean attributes.
For example, if you have the following declaration:
Attribute Type Attribute Text Legend Key
Number the individual's age Age
Boolean the individual is disabled Disabled
Boolean the individual is entitled to compensation Compensation

 you could have the following rule table:
Age Disabled Compensation
<18 TRUE TRUE
>65 TRUE TRUE

FALSE FALSE
else FALSE

Simplify rule table layout bymerging cells
Looking at the multiple condition example below, we note that the values for the Adults condition cells consist of
only three unique values 1, 2 and 3.
Attribute Type Attribute Text Legend Key
Number the number of adults in the group Adults
Number the number of children in the group Children
Text the ticket type Ticket

Adults Children Ticket
1 0 Single
1 1 Double
2 0 Double
2 1 Family
2 2 Family
2 3 Family
3 0 Family

else Combo

We can choose to merge the cells in this column that share the same value. To merge cells in Excel, select the

cells that you want to merge and then click the Merge & Center button on the Excel formatting toolbar.
You may get a warning that advises that merging will keep the upper-left most data only. Click OK.
Adults Children Ticket

1
0 Single
1 Double

2
0 Double
Family

3 Family
else Combo

This table is equivalent (in function) to the original table, but allows us to emphasize that only three distinct val-
ues are used for Adults, and the rows that they cover.
You can also merge conclusion cells, however note that this will change the structure of the rule logic slightly.
See Prove the same set of conclusions using multiple conditions and Allow rule conditions to evaluate in any
order and handle missing values for further details.

Change rule table orientation
Typically a rule table will be specified with the conclusion and conditions listed left-to-right in separate columns,
and each set of conditions and conditions listed in separate rows, as shown below. (NOTE: In this example "can
be trusted" represents the boolean attribute "the user is of a trustworthy nature".)

condition taxable income the user can be trusted the risk level of the user

the user is applying for some money

<=100 > 0
FALSE

high
<=2000 > 100 high
<=50000 > 2000

TRUE
medium

>50000 low

It is possible to rotate a rule table such that the rows and columns are swapped. This effectively means that we
represent a rule table in the Y-X orientation rather than the X-Y orientation. For this example, the rotated rule
table would be:

condition the user is applying for some money

taxable income
<=100 <=2000 <=50000
> 0 > 100 > 2000 >50000

the user can be trusted FALSE TRUE

the risk level of the user high high medium low

Both rule tables will generate the exact same rules when compiled.

Capture implicit logic in rules
Shortcut rules are a type of application rule used to capture implicit logic which does not automatically flow
from source rules. Shortcut rules only participate in inferencing and do not participate in the question search,
and are therefore useful in streamlining interviews.

What do you want to do?
Understand how shortcut rules work
Write a shortcut rule

Understand how shortcut rules work
To understand how a shortcut rule works, consider the following two statements:

The claimant has lived in America for more than 50 years

The claimant has lived in America for more than 20 years

The second statement must be true if the first is true. On the other hand, the reverse is not the case, although it
might be true (ie it is not necessarily false).
This type of situation needs to be captured where rules are used in a software application, to avoid situations
where the application asks redundant questions (just imagine answering that you had lived in America for 50
years, then being asked if you’d lived there for 20 years!).
If we try to model this logic using our default rule format, we would have the following rule:

the claimant has lived in America for more than 20 years if

the claimant has lived in America for more than 50 years

When compiled, this rule would automatically be given an alternative conclusion. An alternative conclusion for
this rule would not be correct, however, as it is not necessarily the case that the claimant has not lived in Amer-
ica for 20 years just because they have not lived there for 50 years.
Assume the rule did not have an alternative conclusion. While investigating the conclusion, the question search
would traverse this rule and try to prove the condition. Assuming that no other rule proved the conclusion, if the
condition returned false, there would be no alternative conditions to investigate, resulting in the goal being
exhausted.
Instead, we can define this rule as a shortcut rule and it will then provide the required logic. As a shortcut rule,
if the condition is set to a value of true following the operation of the question search on other rules, inferencing
operates to set the value of the conclusion attribute. If the value returned is not true, this rule will not fire, and
the conclusion attribute will not be set. Alternative conclusions are not set for shortcut rules.
It is possible for attributes proved in shortcut rules to be interrelated in a logical loop, because no alternative
conclusions are set and because they are not traversed by the question search. So in addition to the shortcut
rule above, it is also possible to have the following shortcut rule:

the claimant has not lived in America for more than 50 years if

the claimant has not lived in America for more than 20 years

NOTE: Shortcut rules should only be used when you can prove a base level attribute before it is asked.

Write a shortcut rule
To write a shortcut rule in Microsoft Word, click the Shortcut Rule button on the Oracle Policy Modeling toolbar
(or press F7) to add a shortcut rule template.
Essentially, the only difference between the format of a shortcut rule and a standard rule is that the rule has an
additional paragraph above it which uses the Rule Type style and reads "shortcut rule". Lacking this heading,
the rule will be given an alternative conclusion, and will participate in the question search, causing goal exhaus-
tion. The rule template also leaves a line for you to provide a rule name.
For example,

shortcut rule

the claimant has lived in America for more than 20 years if

the claimant has lived in America for more than 50 years

It is also possible to use rule tables for writing shortcut rules. For example,

shortcut rule

the claimant lives in Australia

true the claimant lives in Sydney

true the claimant lives in Canberra

false the claimant lives in London

NOTE: You must not include an alternative conclusion in your rule table for a shortcut rule.

Write rules in the negative
Attributes may be expressed in either the positive form ("the person is happy") or negative form ("the person is
not happy") in both conclusions and conditions. For example, you may write "the person is not happy" and the
rule engine will recognize this as the negative form of "the person is happy". When compiled, the attribute will
be marked up like this:

[not b10] the person is not happy

Avoid multiple conclusions when writing negative rules
Repeating a conclusion can result in two conflicting criteria for the conclusion to be satisfied. For example:

[b11] the person is considered an employee if

[b3] the person works set hours

and

[not b11] the person is not considered an employee if

[b4] the person owns the equipment required to do the job

In this example, if a person works set hours and owns the equipment, is the person an employee or not? The
logic is unclear. The logic needs to be grouped or prioritized to make that decision.
When using both the positive and negative forms of an attribute within a rulebase, take care that the attribute is
only concluded once.
To avoid repeating the conclusion, an exclusion clause can be linked in to the conclusion rather than simply
restating the same conclusion in the negative. For example:

[b11] the person is considered an employee if

[b3] the person works set hours and

[not b4] the person does not own the equipment required to do the job

Prove an attribute using multiple rules
A multiply proven attribute is an attribute that appears as the conclusion attribute of more than one rule (includ-
ing shortcut rules).

An attribute which is proven by multiple rules like this will not function correctly in the Engine because of the
operation of the automatic alternate conclusion in every rule. The closed logic of alternative conclusions will pre-
vent multiple rules being traversed - the first rule traversed will close off the possibility of the other forms oper-
ating.

What do you want to do?
Intentionally prove an attribute using multiple rules
Check my rules for multiply proven attributes

Intentionally prove an attribute usingmultiple rules
The nature of the business rule domain and methodological factors may mean you need to have attributes with
multiple, or distributed (non-adjacent), proofs in your rulebase. For such rules it is necessary to designate the
rule as a 'rule fragment'. A 'priority' needs to also be specified for these rules to guarantee predictable question
searches and inferencing. Lower numbers indicate higher priority (ie priority 1 takes precedence over priority 2
rule fragments).

To create rule fragments:

1. In Microsoft Word, write your rules.

2. Place the cursor somewhere in the first rule and click the Rule Properties Editor button on the Oracle Policy Modeling
toolbar.

3. Select the Rule Fragment check box.

4. Specify a priority.

5. Click OK. Repeat steps 2-5 for each rule.

You will notice that your rules in Word are now preceded by a configuration line which indicate that the rule is a
rule fragment and shows the priority.
At rulebase build time, rules marked as rule fragments will be automatically combined into a single rule using
an inclusive or operator, and will use the author-assigned priorities to determine the question order.
A rule without a proof becomes the default alternative conclusion for the collection of rules if it has a lower pri-
ority than the other rules. So, for example, if you wanted to specify an otherwise clause for these rule frag-
ments:

rule_property[fragment:1]

the claimant's queue position = 1 if

the claimant has been queuing longer than anyone else

rule_property[fragment:2]

the claimant's queue position = 1 if

the claimant has jumped to the start of the queue

You would need to also have a rule without conditions which specifies the alternative conclusion, ie:

rule_property[fragment:3]

the claimant's queue position = 2

Then if the claimant has not been queuing longer than anyone else and has not jumped to the start of the queue,
then the result would be that the claimant's queue position is 2.
If this alternative conclusion rule is not provided, the result will be uncertain when the other rules are dis-
proven. That is, if the claimant has not been queuing longer than anyone else and has not jumped to the start of
the queue then the result would be uncertain.

Checkmy rules formultiply proven attributes
Oracle Policy Modeling automatically runs a check for Multiply Proven Attributes when building a rulebase. If
any multiple proven attributes are detected, an error will be logged in the Error List and the build will be can-
celed. To see which attributes are proven by more that one rule, you can generate a Multiply Proven Attributes
Report. To do this, select Reports | Multiply Proven Attributes from the main menu in Oracle Policy Model-
ing.
Attributes that are concluded in rules marked as rule fragments will not fail the Multiply Proven Attributes check
at build time, and will not appear in the Multiply Proven Attribute report (unless they are multiply-proven by
some other "normal" rule).
The identifying attribute of an entity that is inferred via different relationships will appear in a Multiply Proven
Attributes report. Here the identifying attribute is technically multiply-proven because there are multiple rules
that cause it to have a value. But the attributes don't actually conflict and aren't problematic, because by defin-
ition, if two different values are inferred, then two instances are created and the two values can peacefully co-
exist. (However, if another "normal" rule independently inferred the identifying attribute, then there would be a
conflict there.)

Model loops in rule logic
Generally, having loops in your rule logic should be avoided, as they can result in rules which can never be
proven, and in unintended behavior in your rulebase, if the logic is not carefully checked. To prevent this situ-
ation occurring accidentally, Oracle Policy Modeling will validate your rulebase for rule loops when you build the
project.
However, in some situations, in particular when working with rules using entity instances, it may be desirable
for a controlled logic looping situation to be created within rules.
Consider an example where a person entity is used to model the person's citizenship. The person's citizenship
status may be inferred from their place of birth, or it may be inferred from the citizenship status of one of their
parents. If the person's parents are also instances of the person entity, represented by the self-referential rela-
tionship "the person's parents", then we may wish to create a rule to model the logic as follows:

the person is a citizen if

the person was born in the country or

at least one of the person's parents is a citizen

This rule contains a logical loop, in that "the person is a citizen" is both proved and used (via "the person's par-
ents" relationship) in the same rule. However the logic of the scenario we wish to model is sound. We can allow
this logical looping to be a valid part of the rulebase by defining the above rule as a rule loop.

To define a rule as a rule loop:

1. Define the line above your rule as a Configuration line (use the Configuration button in the Oracle Policy Modeling toolbar,
or use the keyboard shortcut Alt+F).

2. Enter the text "rule_loop" in the Configuration line.

rule_loop

the person is a citizen if

the person was born in the country or

at least one of the person's parents is a citizen

If the logical loop encompasses multiple rules, each rule must be defined as a rule loop.
TIP: It is important to ensure that the logic of the rule allows an alternative way to prove the conclusion without
using the rule loop logic, to avoid having the rule loop endlessly. In the example above, the rule premise "the
person was born in the country" provides this.
NOTE: When introducing logic loops into your rules in this way, it is very important that the rules be tested thor-
oughly to ensure no unintended behavior results in the rulebase.

See also:

l Fix a build error

l Capture implicit logic in rules

Include an existing attribute in a rule
At the project level, Oracle Policy Modeling automatically links all attributes with the same text together and
treats them as one attribute. This means you can write your rules in any document, or in a number of doc-
uments, in any order within those documents, and Oracle Policy Modeling will link them all together for you,
provided the same attribute text (including capitalization) is used.
So, once a variable attribute has been added to a properties file, it can be used in any rule in any rules doc-
ument (Word or Excel). Similarly, once you have written a rule using a boolean attribute, that boolean attribute
can be used in any rule. A condition of one rule will be automatically linked to the conclusion of another rule if
the attribute text is exactly the same.
Once an attribute is linked with another they are logically collapsed within the Oracle Policy Modeling model and
displayed as a single item in the Data Model and Build Model views.

To ensure you are using an existing attribute in a rule (not inadvertently creating a new one with very similar
text):

1. In your Word rule document, click on theData Model Browser button on the Oracle Policy Modeling toolbar.

2. On the Attributes tab, right-click on the text of the attribute and selectCopy Text to Clipboard.

3. In the appropriate place in your rule, press Ctrl+V to paste the attribute text.

Choose a function to include in a rule
Functions are used to extend the capabilities of expressions. These are useful for performing a number of com-
mon calculations which frequently appear in rules.
There are many different types of functions that you can use in your rules:

Function Type Use

Numerical functions
Used with number and currency variables to perform basic and complex arithmetic cal-
culations, trigonometric calculations andmaximum/minimum calculations

Date functions

Used with date variables to express the current date (based on the system date at the start
of the session), to calculate a relative date, to find a date in a year, to get particular
dates/days/months/years, to count periods between two dates, and to get an earliest/latest
date

Time of day functions
Used with time of day variables to express the current time of day, to set the time of day, to
calculate the difference in seconds/minutes/hours between two times of day, to extract the
second/minute/hour from a time of day, and to get an earliest/latest time of day

Date and time functions

Used with date and time variables to express the current date and time (based on the sys-
tem date/time at the start of the session), to set the date and time, to calculate the difference
in units between two dates, to extract a unit from a date and time, to extract a time of day,
and to get an earliest/latest date and time

Text functions Used with text variables to combine text strings and to extract parts of text strings

Entity and relationship functions

Used to perform operations on entity-specific data to produce global results, such as count-
ing the number of instances of an entity, obtaining the highest/most recent or lowest/least
recent value of an entity-level variable, and adding up numerical values gathered from each
instance of the entity

Temporal reasoning functions
Used in rules to compute results for, and express relationships that involve, attributes over
multiple periods

NOTE: If you have a project which uses a RLS (Rapid Language Support) parser, the syntax for the functions are
defined in the configuration for that particular RLS parser. For more information on using an RLS parser, and
changing the templates for the functions in such a project, see the Help available in the Rapid Language Support
Tool.

Nested functions
Functions can be nested within other functions to form complex expressions.

Examples
To retrieve a minimum value from a given set of numbers (ie more than two), you can nest the Minimum func-
tion multiple times to accommodate your set of numbers. For example:

l Minimum(x,Minimum(y,z))

NOTE: If your set of numbers are instances in an entity, then use InstanceMinimum or InstanceMinimumIf
entity functions.

To write a rule where a money value is always rounded up the nearest dollar, you would use nested functions as
follows:

the total benefit paid in whole dollars = (((the total benefit paid truncated to 2 decimal places)+ 0.99)
truncated to 0 decimal places)

The rounding up in this rule is achieved by:

l truncating the value of {the total benefit paid} to 2 decimal places: trunc (the total benefit paid, 2);

l adding 0.99 to the result: <result1>+ 0.99; and

l truncating the new figure to zero decimal places: trunc (<result2>,0)

If the total benefit paid is 180.7569 (as a result of previous calculations in the rulebase), then the first step trun-
cates this 180.75. The second step adds 0.99 to 180.75 giving a figure of 181.74. The third step truncates this to
181.

See also:

l Function syntax references for US English

l Function syntax references for other languages

Add rule metadata
The following rule metadata can be added to a rule:

l Rule name - specifies the name that will be used for the rule in the list of generated rules in Oracle Policy Modeling

l Rule source - specifies the origin of the rule, such as the legislative provision, policy document reference or instruction
manual reference

l Rule definition - specifies the purpose, meaning or behaviour of the rule

l Rule start date - specifies the date that the rule applies from

l Rule end date - specifies the date that the rule ceases to apply

l Rule fragment indicator and priority - specifies that the rule is one of several which prove a single conclusion attribute, and
the priority of the rule within this group of rule fragments.

l Rule loop indicator - specifies that the rule is part of an intended rule loop

NOTE: Only the last two rule properties affect how the rule operates, the others are for documentation purposes
only.

To add or amend rule metadata:

1. In your Word rules document, place your cursor anywhere in the relevant rule and click the Rule Properties Editor
button on the Oracle Policy Modeling toolbar.

2. In the Rule Properties dialog box, enter your rule metadata in the appropriate fields.

See also:

l Prove an attribute usingmultiple rules

l Model loops in rule logic

Validate user input using errors and warnings
Validation of a rulebase is done in two ways: using error and warning events, and by specifying validations on
user input. Validation will warn or prevent the user from entering values which do not meet certain criteria
when running the rulebase.

Error and warning events are types of rules that specify an action to be taken in a process outside of the rule-
base. They operate in a similar way to normal rules, except that instead of inferring an attribute, they execute a
command (ie firing the command specified in the conclusion line of the event rule). Event rules participate in
inferencing only – not in the question search.
Oracle Policy Modeling also allows you to specify validations on the user input at runtime. These validations are
set using minimum and maximum values and regular expressions on variable attributes. These input validations
are triggered at the point which the value is submitted to the Engine and not during inferencing.

What do you want to do?
Write an error event rule
Write a warning event rule
Specify minimum and maximum values
Use regular expressions

Write an error event rule
An error event is used to pass a message to the user, and prevent them from continuing an investigation until
the condition which triggered that error no longer applies.
To write an error event rule use the following syntax for the conclusion line of the rule:

l error("<error message text>") if

For example,

Error("You can only be married to one person.") if

the applicant's number of spouses > 1

Write a warning event rule
A warning event is used to pass a message to the user, but permits them to continue despite the condition which
triggered that warning.
To write a warning event rule use the following syntax for the conclusion line of the rule:

l warning("<warningmessage text>") if

For example,

warning("The date of birth you have entered is in the future.") if

the person's date of birth > the current date

Specifyminimumandmaximum values
Minimum and maximum values can be specified for number, currency, date, time of day, and date/time vari-
ables to ensure that data entered by the user falls within a certain range. Values must be specified in the correct
format.

l For numbers and currency, this is the lowest and highest number you wish to allow users to enter.

l For dates, this is the earliest and latest date you wish to allow users to enter. Dates must be in the format yyyy-MM-dd.

l For time of day variables, this is the earliest and latest time you wish to allow users to enter. Times must be in the format
hh:mm:ss.

l For variables of type date and time, this is the earliest and latest date and time you wish to allow users to enter. The date/-
time values must be in the format yyyy-MM-dd hh:mm:ss.

To specify minimum and maximum values for an attribute:

1. Open the properties file for your project and double-click on the attribute in the Attribute view to open it in the Attribute
Editor.

2. Enter the minimum value in theMin value text field.

3. Enter the maximum value in theMax value text field.

4. Enter a message in the Error Message text field, to be displayed to the user when the validation is triggered, or leave
the default error message (ie "Invalid Value").

5. Click OK.

Use regular expressions
Regular expressions can be used in Oracle Policy Modeling to ensure that the data entered by the user matches
an expected format. You can also specify a custom error message to display when the user enters data that
does not conform to the format. An example of where you might use a regular expression would be to check
that a driver's license number contains the correct number of digits and / or alphabetical characters in the cor-
rect relative positions.
Note: Regular expressions are only recommended for use with text variable attributes. They are not recom-
mended for use with number, currency, time of day, or date and time variable attributes. It is currently possible
to specify a regular expression for a non-text variable attribute in Oracle Policy Modeling, but this functionality
will be removed in a future release. In any case, regular expressions that include spaces and brackets can only
be used on text variables (spaces and brackets are not valid input characters for other variable types).
Common regular expressions are given below:

Use Regular Expression

To check basic types of email addresses ^[\w-]+(?:\.[\w-]+)*@(?:[\w-]+\.)+[a-zA-Z]{2,7}$

To check the data entered follows a certain format: 2 letters 6 num-
bers 1 letter (eg AB123456C)

^[A-Za-z]{2}[0-9]{6}[A-Za-z]$

To check the data is a phone number in the format: (NN) NNNN NNNN
where N = number. This example will match with or without the 2
spaces separating the sections.

^(\(0[0-9])\) ?[1-9][0-9]{3} ?[0-9]{4}$

To validate that the number of words in a text input does not exceed a
certain number. In this example, the value N is equal to the number of
permitted words minus one, so if the permissible number of words is 8
then, N = 7.

^\s*(\S+(\s+\S+){0,N}\s*)?$

To check a National Insurance Number (NINO)
^[A-CEGHJ-PR-TWZ][A-CEGHJ-NPR-TWZ] ?\d{2} ?\d
{2} ?\d{2} ?[ABCD]

TIP: There are a number of internet resources available on crafting regular expressions(eg http://en.wiki-
pedia.org/wiki/Regex).

To specify a regular expression for an attribute:

1. Open the properties file for your project and double-click on the attribute in the Attribute view to open it in the Attribute
Editor.

2. Enter the regular expression in the Regular expression: text field.

3. Enter a message in the Error message: text field, to be displayed to the user when the validation is triggered, or leave
the default error message ("Invalid Value").

4. Click OK.

Use rules to trigger external software applications
A custom event rule is used to allow rulebase events to trigger an external software application. This feature is
designed to increase the flexibility of the Oracle Policy Modeling product set by enabling integration with infer-
ence events.

To write a custom event rule use the following syntax for the conclusion line of the rule:

l raiseevent <custom event>(<attribute id>, <attribute id>...) if

For example, if you want to display some events to the user, and log other events at the backend, then a cus-
tom event can be useful to provide this additional categorisation. In this instance you could create custom
events called DisplayError and LogError.
To test a custom event rule, you can use the debugger to check if the conditions for the rule were met. Other
problems with custom events (eg problems with the event handler which mean that the rule doesn’t do what you
expect it to) will need to be diagnosed by a technical person.

http://en.wikipedia.org/wiki/Regex
http://en.wikipedia.org/wiki/Regex

Designing and maintaining rule documents
Topics in "Designing and maintaining rule documents"

l Identify what rules are needed

l Model the structure of legislation

l Split a rule across documents

l Improve the wording of a rule

l Split and link rules

l Model discretion within rules

Identify what rules are needed
Conceptually, rules perform three types of discrete roles:

1. Source rulesmodel core source material. Typically, these are closest in structure and wording to the underlying rules
which are being represented. In the case of legislation-based rulebases, these are the core legislative rules.

2. Business rules model policy and interpretative implementations of the underlying source material.

3. System rules provide an integration function, linking source rules and user input. For example, when developingmod-
els for use with Oracle Web Determinations, rules are needed to support screen flows and document generation, as well
as to tie together discrete source elements and to work with screen controls.

These distinctions are simply conceptual – in fact there is no difference between the rules in syntax or oper-
ation. They are a convenient way of thinking about different types of rule operation, and help you to organize
your rules for easiest maintenance.
TIP: The physical structure of the rulebase, that is the location of the rules in the rulebase, should reflect the
actual structure of the underlying source rules, while accommodating the conceptual division described above.

Identifying source rules
Once the scope of the rulebase has been determined and documented, you need to create rules documents for
the sections of the material that are in scope. One of the primary activities in interpreting source material is to
identify the logical foundation blocks in that material – the logical operators and the conditions. Identifying con-
ditions first helps you to break down your rules and further identify logical operators between them.
These source rules need to be transformed into Oracle Policy Modeling format. During this process, the rule text
may need to be changed in order to explicitly model relationships between the rules and to adequately handle
entities. However, as a general rule, the structure and semantics of the source material should be retained as
fully as possible.
Show me an example
The following example shows how conditions can be extracted from source material.
Source material:

Australian Government Assistance for Areas Affected by Cyclones Monica and Larry Fact Sheet
Business Assistance Fund
Who can get it?

n Registered businesses, including farmers, in areas affected by Cyclones Monica and Larry.

To qualify, businesses must:

n have a registered Australian Business Number/s (ABN) on or before 20 March 2006

n be located in the areas declared affected by the combined impacts of Cyclones Monica and Larry as defined in
Annexure 1

n have not already claimed the Business Assistance Fund

n receive more than 50 per cent of their income from the registered business, if a sole trader or partnership (unless they
are a primary producer with long lead times to production)

n have been adversely affected by the combined impacts of Cyclones Monica and Larry

n be prepared to show evidence supporting claimed losses

n make a claim by 31 August 2006

n have been solvent immediately before Cyclone Larry, and

n have been owned by the applicant/beneficiary immediately before Cyclone Monica.

Resulting conditions:

the registered business has an ABN on or before 20 March 2006

the registered business is located in the areas declared affected by the combined impacts of Cyclones Monica and Larry as defined
in Annexure 1

the registered business has already claimed the Business Assistance Fund

the registered business receives more than 50 per cent of their income from the registered business

the registered business is a sole trader

the registered business is a partnership

the registered business is a primary producer with long lead times to production

the registered business has been adversely affected by the combined impacts of Cyclones Monica and Larry

the registered business is prepared to show evidence supporting claimed losses

the registered business has made a claim by 31 August 2006

the registered business was solvent immediately before Cyclone Larry

the registered business was owned by the applicant/beneficiary immediately before Cyclone Monica

Identifying business rules
Once the source rules are created, the language may still be too complex for an ordinary user. Hence it is often
essential to use plain English language to express the same concepts and reuse information wherever possible.
This interpretative step is captured as a separate layer to ensure that the source rules are as pure as possible
and that the interpretative step is explicitly recorded in the rules.

Identifying system rules
A typical rulebase modeled solely on source and business rules is not suitable for use as a user-oriented soft-
ware application. System rules, also known as application rules, are used to provide an additional layer
between source rules and user input where the application requires it.
System rules may take a number of forms including:

l Validating user input (eg date of birth not in the future)

l Proving visibility attributes (eg the generate claim form link should be displayed if the person is eligible for the benefit)

l Proving one piece of data with another (eg the person is not pregnant if the person is male)

l Providing a level of data mapping between your rules and the data being fed into the rulebase (eg setting "the person's
rank is Captain" (Boolean) from "the person's rank" (text attribute))

l Streamlining question flow (eg the customer’s basic information has been collected if the customer’s first name, surname,
address and credit rating are known)

Compare the rules document with the source material
You can compare the language, structure and logic of your Word rule document with the source material quickly
and efficiently using the View Side by Side feature in Word (assuming the source material is also written in
Word). For more information, see the Microsoft Word help.

Model the structure of legislation
Modeling legislation involves firstly determining what parts of the legislation to model, and then using a com-
bination of indentation and structural elements to model the in scope structure of the legislation. Modeling legis-
lation is typically done using Word rule documents.

What do you want to do?
Use the Ignore and Commentary styles to identify parts of the legislation that won't be modeled
Use structural elements to model legislative structure
Use keywords to customize automatic structural attributes
Model conditions without structural rule elements
Use Heading styles to organize rules

Use the Ignore and Commentary styles to identify parts of the legislation that won't be modeled
The scoping phase of rulebase construction requires deciding which areas of the rules are relevant to the applic-
ation and the level of detail to which each area should be modeled.
The outcome of this analysis is captured in a Scoping Document. The Scoping Document consists of a copy of
the source material marked with comments and coloring to indicate areas which will and will not be included in
the source rules. The following styles should be used in this phase:

l Ignore
The Ignore style is used to indicate any parts of the source material that should not be modeled (ie are out of scope) for the
rulebase. To format text using this style, click on the Ignore button on the Oracle Policy Modeling toolbar.

l Commentary
The Commentary style is used to indicate any information that should be covered in commentary text. (NOTE: marking
text in this style does not automatically turn the text into the actual commentary that will be linked to text.) To format text
using this style, click on the Commentary button on the Oracle Policy Modeling toolbar.

l Normal
TheNormal style inWord is used for all parts of the source material which are to be modeled (ie are in scope) in the rule-
base.

Comments and footnotes can also be added to justify each scoping decision. This assists review and rulebase
maintenance.

Use structural elements to model legislative structure
The structural elements in legislation (section, paragraph, subparagraph etc) or policy (guidance, chapter, cri-
terion) can be captured in rules.
During compiling, Oracle Policy Modeling will automatically generate structural attributes based on the num-
bering system used in your rules. The default form of these automatic attributes is "section x is satisfied".
A single tab character () is used before any conclusion or condition to define structural rule elements. You
cannot use the tab character anywhere in your rules except for this purpose.

4 the claimant is eligible for living allowances if

(a) both

the claimant is living alone and

either

(i) both

the claimant is aged over 65 and

the claimant is a man

or

(ii) both

the claimant is aged over 65 and

the claimant is a woman

Compiling this rule will result in the following structural attributes being automatically generated:

section 4 is satisfied

section 4(a) is satisfied

section 4(a)(i) is satisfied

section 4(a)(ii) is satisfied

In any transformation to Oracle Policy Modeling format, the representation of structural elements should iso-
morphically model the structural elements from the source material. Altering the numbering conventions will
make it impossible to cross-reference your rules against the original material.
It is possible to customize these automatic attributes to more accurately reflect the source material you are
modeling (see below).

Use keywords to customize automatic structural attributes
Attributes of the form "section x is satisfied" do not always provide a satisfactory reference to the source mater-
ial you are modeling, so Oracle Policy Modeling provides a number of ways to customize these automatic attrib-
utes.

Default Structural Element
You can specify a default structural element, such as "regulation", "ruling", or "provision" in your rules to over-
ride "section", which is the default element used if none is specified.
This needs to be written in your Word document using the following syntax:

Default_structural_element[Regulation]

This results in automatic structural elements in the following form:

Regulation 1 is satisfied

Regulation 1(a) is satisfied

To add this, you must use the Configuration style above the rules which are to use the new element (click on
the Configuration button on the Oracle Policy Modeling toolbar to set this style).
You can add multiple configuration lines in your document to customize sections of your document.
You may also wish to add the name of the instrument, or source document for greater clarity in your source
rules, for example:

Default_structural_element[Tax Regulations 1996 regulation]

NOTE: This configuration setting is "space-sensitive". If you don’t add a space after the element, one will not be
added.

Default Structural Global Proof
You can specify a default structural global proof, such as "applies" or "has been met" to replace the default "is
satisfied" for global structural attributes using the following syntax:

Default_structural_globalproof[^x applies]

This results in automatic structural elements in the following form:

Section 2 applies

Section 23(a) applies

Default Structural Entity Proof
You can specify a default structural entity proof, such as "applies to" or "has been met" to replace the default "is
satisfied" for entity-level structural attributes using the following syntax:

Default_structural_entityproof[^x applies to ^entity]

This results in automatic structural entities in the following form:

Section 2 applies to the claimant

Section 23(a) applies to the claimant

NOTE: This will apply to all entities in the text following the definition.

Ignore
Your rules can be configured to ignore specific word combinations.
The following syntax will ignore propositions in the form "this paragraph is satisfied ":

Ignore[this paragraph is satisfied]

This is useful for providing placeholder text in rules, so that they make sense when read from within the Oracle
Policy Modeling document, but extra attributes and rule layers are not created.

Replace
Your rules can be configured so that certain word combinations will be replaced with automatic structural terms.
This is used in conjunction with the substitution token "^x". The syntax is:

Replace[<text to be replaced>, <replacement text including structural element ^x>]

Replace Entity
The Replace syntax can also be applied to entity-level attributes. This is used in conjunction with the sub-
stitution tokens "^x" and "^entity". The syntax is:

Replace[<text to be replaced>, <replacement text including structural elements ^x and ^entity>]

Model conditions without structural rule elements
We often model conditions in a rule that do not reflect structural elements within the rule section that we are
modeling. The following are some examples of where this occurs:

l a subsection contains three conditions in a single provision;

l a subsection contains an application condition in its preamble, followed by several qualifying paragraphs;

l a section sets out some of the criteria for satisfaction of its goal, but other sections contain additional criteria (exceptions or
extensions);

l the source material does not use numbering.

Oracle Policy Modeling format deals with this by using structural elements where they are explicit, and oth-
erwise by representing additional conditions without structural elements. The following example illustrates this:

38 the company is an eligible company if

(a) the company is registered in Australia and

(b) the company's annual turnover is less than five million dollars and

(c) the company is a private company and

the company is not disqualified under section 39

This example shows a situation in which one section has three paragraphs, but another section forms an implicit
additional premise, that must be added to the rule. In this case, a,b,c and the additional premise need to be true
in order to prove that 38 is true.

Use Heading styles to organize rules
Headings should be used to break your rules into discrete, manageable sections. There are three heading styles
in the Oracle Policy Modeling template in Word. These can be applied by using the Heading 1, Heading 2 and
Heading 3 styles in the Oracle Policy Modeling toolbar.

When Oracle Policy Modeling compiles your rules, it automatically places rules within folders and sub-folders
based on your headings and their corresponding levels.

Split a rule across documents
There are times when you might have multiple rule developers who all to want to add conditions to the same
rule but they don’t want to (or can’t) share access to the same rule document.
For example, you might have a rule which says "the advice to contact the customer helpline should be displayed
if". On a large project you may have multiple rule developers all working on different topic areas but several
topics advise the customer to contact the customer helpline. If you wanted to have all rule developers editing
the one rule document, each rule developer would need to wait their turn to work on it.
Rule fragments allow each rule developer to have the rule proven in their own rule document to work on at
their leisure. The rule fragments are combined into a single rule (separated by "or"s) when the rule documents
are built. NOTE: Rule fragments only work in Word, not in Excel.
For more information on how to write rule fragments, see Prove an attribute using multiple rules.

Improve the wording of a rule
The wording of rules can be improved in two ways:

1. By using a variable comparison to infer a number of separate boolean attributes, one for each possible value.

2. By replacing grouping operators (any/either, all/both) with a new attribute.

Using variable comparisons to infer boolean attributes
Sometimes a boolean attribute will be correct but very awkward to read and answer. In this sort of situation, it
is often advisable to use an interpretative rule to make the attribute more coherent. This involves creating
another rule which "wraps" the lower level rule.
The following example shows a rule which uses a string comparison with a text variable "the type of pet":

the pet is a lizard if

the type of pet = "lizard"

This type of rule structure is commonly used to transform a variable comparison to a boolean attribute that can
be reused throughout the rulebase in the source rules. The variable can be used to infer a number of separate
boolean attributes, one for each possible value (for instance, the pet is a dog, the pet is a cat etc). A drop-down
list can then be used in the interview to collect the value of the variable from the user.

Replacing grouping operators with new attributes
Intermediate attributes in Oracle Policy Modeling format can be added instead of using grouping operators, as
demonstrated in the following example.
Before (using grouping operators):

the claimant is eligible for living allowances if

the claimant is living alone and

any

all

the claimant is aged over 65 and

the claimant is a man

or

all

the claimant is aged over 60 and

the claimant is a woman

After (grouping operators replaced with new attributes):

the claimant is eligible for living allowances if

the claimant is living alone and

the claimant satisfies the age criteria

the claimant satisfies the male age criteria

the claimant is aged over 65 and

the claimant is a man

or

the claimant satisfies the female age criteria

the claimant is aged over 60 and

the claimant is a woman

Addition of these intermediate attributes is highly recommended to improve understanding of decision reports
and to assist in debugging.

Split and link rules
Each rule specifies logical relationships between conditions. Logical relationships can be modeled into rule net-
works. Large networks of rules can be built in this form. This is known as nesting or chaining rules. Lower-level
rules are nested within higher-level rules.

What do you want to do?
Understand how rules link together
Link rules together
Split large rules into smaller rules

Understand how rules link together
In a rule network, you can have many thousands of rules working together in an interconnected way. Take for
example, the following two rules:

Rule 1

Rule Element Comment

1: The person is eligible for a licence if: This is the goal proposition or conclusion of the rule.

2: The person is qualified to drive a car This is one of the rule conditions but is also the conclusion for Rule 2 (below).

and

3: The person lives in Victoria
This is one of the rule conditions.

and

4: The person is over the required age limit
This is one of the rule conditions.

Rule 2

Rule Element Comment

2: The person is qualified to drive a car if:
This is the goal proposition or conclusion of the rule. Rule 1 also uses this as a
condition.

5: The person has passed the driving exam-
ination

This is one of the rule conditions.

and

6: The person has passed the medical test
This is one of the rule conditions.

In the example above, Rule 2 is nested within Rule 1:

Condition 2 is one of the conditions which proves the conclusion of Rule 1. However, Condition 2 is also the con-
clusion for Rule 2, which is further proved by Conditions 5 and 6. So, part of Rule 1 is proved by Rule 2.

Link rules together
The Oracle Policy Modeling compiler will recognize that a particular attribute has been used multiple times,
provided the same text is used each time. You can therefore link rules within or between documents in a project
simply by using the text of a condition in one rule as the conclusion of another rule.
A basic example of linked rules is:

[b1] the person is eligible for a home loan if

[b2] the person is employed

[b2] the person is employed if

[p1>0] the person's weekly income > 0

In this example, the Oracle Policy Modeling compiler recognizes that the text "the person is employed" is
exactly the same in both rules, and therefore labels the attribute the same accordingly.
Linking can also occur between rules where either the positive or the negative form of an attribute is used. To
do so, you should use the exact text of the negation (you can check this in the Attribute Editor in Word or
Excel by clicking on the Edit button for the attribute). For example, the text "the person is not employed" will be
recognized as the negative form of attribute "the person is employed":

[b3] the person is eligible for rent assistance if

[not b2] the person is not employed

The easiest way to ensure you are using the same text of an attribute is to use the copy-paste function in Word
or Excel, or to 'drag and drop' the text of the attribute from the Data Model Browser which is accessed from
the Oracle Policy Modeling toolbar in Word.

Split large rules into smaller rules
It is theoretically possible, using Oracle Policy Modeling format, to model extremely complex logic, with further
and further indentations correctly separating groupings of conditions. That said, you should not go lower than 5
levels in a single rule because highly complex rule structures will become difficult to maintain or understand.
You can avoid large, highly nested rules by breaking the rule into smaller rules (ie by moving some of the struc-
ture of the rule to a new top level rule).
For example, the following rule:

the claimant is eligible for the pension if

the claimant is a man and

the claimant satisfies the age criteria

the claimant is aged over 65 or

both

the claimant is blind and

the claimant is aged over 40

can be broken into two rules:

the claimant is eligible for the pension if

the claimant is a man and

the claimant satisfies the age criteria

the claimant satisfies the age criteria if

the claimant is aged over 65 or

both

the claimant is blind and

the claimant is aged over 40

Model discretion within rules

A discretionary decision is one that relies on the wisdom and experience of the user. It can also be regarded as
a question of informed opinion rather than fact.
There are three main approaches to handling discretions in the rulebase (NOTE: References to a "decision
maker" should be read as a reference to the user):
1. Direct approach
The discretion to be exercised is asked as a base level attribute. The user exercises the discretion based on help
text guidance. A free text reason box is added where appropriate to collect audit information. This approach is
appropriate where questions of fact and value are inseparable in the exercise of discretion so that a decision
maker attaches the value to a matter of fact even in choosing to have regard to that matter of fact.
In such cases, exercise of the discretion as a base level attribute presupposes appropriate data collection by the
decision maker. The help text relating to the base level attribute will need to specify what entitlement data is
more/most relevant to the exercise of the discretion, and suggest values to be attached to particular enti-
tlement data.
2. Recommendation approach
The rulebase collects data related to the discretion and then presents a recommendation to the user. The user is
asked to confirm or override the discretion and to fill in the free text reason box for audit purposes. This
approach is appropriate where questions of fact and value are separable, but must be reconciled by a decision
maker in the exercise of the discretion. For example, the form in which a discretionary provision appears may
establish the relevant matters of fact, but the decision maker is required to attach a value to each matter of fact
before exercising the discretion.
The rule structure must ensure that the recommendation is known before the discretionary decision is required.
For example:

the child is a good child if

it is known whether or not the child has a clean room and

it is known whether or not the child has gone to bed on time and

the decision maker is of the opinion that the child is a good child

the system recommends that the child is a good child if

the child has a clean room and

the child has gone to bed on time

In such cases, exercise of the discretion as a base level attribute relates to the reconciliation of questions of
fact and value by a decision maker. The help text relating to the base level attribute will need to suggest values
to be attached to particular entitlement data in the exercise of the discretion.
3. Guided approach
This approach has two optional paths - the user can exercise the discretion immediately as a base attribute (ie

approach 1), or can choose to be guided through the various considerations that must be made in exercising the
discretion. A guided data collection process is used to ensure that the user has considered the appropriate
factors for exercising the discretion, and that the factors can be reviewed for audit purposes. The user is then
presented with a question as in approach 1 that requires the user to enter the discretion as a base level attrib-
ute, with a free text reason box. This approach is appropriate where questions of fact and value are entirely sep-
arate, in that the only question of value in the exercise of discretion is that it be exercised at all. For example,
the form in which a discretionary provision appears sets out the matters of fact which must be considered if the
discretion is to be exercised.
In such cases, exercise of the discretion as a base level attribute by a user would relate to whether it is appro-
priate for the discretion to be exercised following a consideration of the material facts. The help text relating to
the base level attribute would need to specify the precise situations (if any) in which it would be inappropriate to
exercise the discretion given the material facts.

The default position is to use the direct approach. The recommendation approach should be used in the limited
situations where it is possible. The guided approach should only be used where neither of the first two
approaches is appropriate. All discretions need significant help text support.

Languages
Topics in "Languages"

l Write rules in other languages

l Create a new language translation for a rulebase

l Localize interview help

l Localize interview document templates

l Select the user interface for rule authoring

l Configure the list of recognized verbs

l Format a numeric constant for the correct region

l Language specific considerations

Write rules in other languages
Oracle Policy Modeling supports rule authoring in any language. The rule language and region are set for a rule-
base, defining the language parser used to write rules, and the formatting used for date, number and currency
values.

What do you want to do?
Specify the rule language
Specify the rulebase region
Change the rule language or region
View the function syntax for the rule language
See which version of a language parser a rulebase is using

Specify the rule language
The rule language determines what language documents are parsed in. It is also used to decide what language
rule table text should be added in.
You specify the rule language for a project when you create a new project. In the New Project dialog there is a
drop-down list that contains a list of Rule Languages for you to select from. This list reflects the language pars-
ers installed with Oracle Policy Modeling. The default rule language is English (American), or the last rule lan-
guage you worked with in Oracle Policy Modeling previously.
Once you have created your project and commenced rulebase development (ie once rules or attributes have
been created), the rule language is locked and you cannot change it.

Creating a new language parser
If the language that you want to create your project in is not listed in the Rule Language list, you can use the
Oracle Policy Modeling Rapid Language Support Tool to create a language parser for that language. (The
Oracle Policy Modeling Language Support Tool is available from Start | All Programs | Oracle Policy Model-
ing | Oracle Policy Modeling Tools | Oracle Policy Modeling Rapid Language Support Tool. Help on
using that tool is available from the Help menu in the tool itself.)

Once you have created a new language parser using this tool, when you reopen Oracle Policy Modeling and cre-
ate a new project, the parser you created will appear in the Rule Language drop-down list.

Syntactic and non-syntactic parsers
Syntactic parsers are those that include a configurable list of recognized verbs. This means that attributes can
be entered in rules using the positive, negative or uncertain form and the parser will generate the other forms
correctly. Syntactic parsers are those in the Rule Languages list (in the New Project dialog) that do not have "
(RLS)" after the language name.
Non-syntactic parsers do not have a built-in verb list and so the sentence parses are generated using a generic
sentence form defined in the configuration for that particular RLS parser. These parsers are shown in the Rule
Languages list with "(RLS)" after the language name , for example "Thai (RLS)".

Specify the rulebase region
The rulebase region determines how numbers, dates and currency values are formatted. This is used to inter-
pret any constant values used within your rules, eg income limits, dates of effect, etc.
You specify the region for a project when you create a new project, by selecting from the Region drop-down list
in the New Project dialog. The default region shown for this list is based on what Oracle Policy Modeling
detects as your current system locale.
The region setting also controls the default formatting applied when your rulebase is deployed, eg whether a
date value entered by a user is interpreted in dd-mm-yyyy or mm-dd-yyyy format. Note that you may cus-
tomize the deployment settings so they are not based on this project setting - please see the Oracle Policy Auto-
mation Developer's Guide for details.
Once you have created your project and commenced rulebase development (ie once rules or attributes have
been created), the rulebase region is locked and you cannot change it.

Change the rule language or region
If no rules or attributes have been added to the project, you can change the rule language or region by:

1. Go to File | Project Properties | Common Properties | General.

2. Click the browse button next toRule Language to open the Language Selector. Select a different rule language,
then click OK.

3. Click the browse button next toRegion to open the Region Selector. Select a different region, then click OK.

Once you have created your project and commenced rulebase development (ie once rules or attributes have
been created), the rule language and region are locked and you will not be able to change these settings.

View the function syntax for the rule language
For the languages that Oracle Policy Modeling has in-built parsers for, the syntax for the functions in the chosen
rule language is available at Help | Function Reference. To view the localized versions of the function ref-
erence, go to the topic Localized function references.

See which version of a language parser a rulebase is using
The version numbers for each of the parsers is shown at Help | Available Languages.

The Display Anglicized Language Names checkbox is used to display the English names for each language
rather than the localized name. (This setting is not saved, so it will always be un-checked when the dialog is
first shown.)

See also:

l Create a new language translation for a rulebase

l Select the user interface language for rule authoring

l Localized function references

l Language specific considerations

Create a new language translation for a rulebase
You can translate an existing rulebase into another language by adding translation documents to the rulebase.
Translation documents are Excel files in which you specify your own translations of the relevant elements of the
rulebase, in any language you choose. The translation document is created for you by Oracle Policy Modeling,
including all rulebase elements which need a translation in order to be deployed (ie attributes, screens, rule-
base messages, events, and general rulebase metadata). Note that any element can be flagged as not requiring
translation.
Translation documents are useful when you do not have access to a parser for a language, and you do not wish
to create one using the Oracle Policy Modeling Rapid Language Support (RLS) Tool. Because you only create
translations for the specific phrases used in your rulebase, it can be quicker to deploy a rulebase using this
method than by creating a new RLS parser.
Translation documents also allow you to deploy a single rulebase in multiple languages, while continuing to
maintain your rulebase in its original language.
Note that creating and running a translation document allows you to provide a language translation of your rule-
base only, it will not modify the formatting of data such as currency, date and number conventions etc. These
formats are set based on the Region setting in Project Properties for your original rulebase.

What do you want to do?
Add a translation of an existing rulebase
Run a translation of a rulebase
Check for untranslated text in a rulebase
Update a translation file

Add a translation of an existing rulebase
You can easily add a rulebase translation to an existing rulebase project. It is advisable to add a translation of a
rulebase only after the bulk of rulebase development is complete. This will minimize the amount of rework
needed in the translation if the main rulebase changes after the translation is done.

1. Right-click on the Translations folder in the Project Explorer of your rulebase project, and selectAdd New Trans-
lation Document.

2. In theNew Translation File dialog, select the appropriate Locale for your new rulebase translation, based on the rel-
evant language and region, and click OK. Note that the rulebase cannot have a translation for the rule language of the
rulebase, or two translations for the same locale setting - a build error will result if these files are included in the rulebase
build.

3. The new translation document is added to the Project Explorer. Enter an appropriate name for the translation document.

4. Open the new translation document in Excel. Oracle Policy Modeling has automatically inserted all the elements of the
rulebase which require a translation to your chosen language, whichmay include:

l Statements (3rd person): unformatted text, positive, negative, question and uncertain forms are included

l Statements (2nd person): positive, negative, question and uncertain forms are included

l Variables (3rd person): unformatted text, translated text, positive, question, uncertain and unknown forms are
included

l Variables (2nd person): translated text, positive, question, uncertain and unknown forms are included

l Screens: text for all relevant screen items is included (attribute free-form text, flow captions, goal captions,
label captions, screen order data review title, screen name, add/remove entity instance text)

l Metadata: commonly used rulebase text such as true/false/uncertain/unknown and gender labels are included

l Events: text displayed to the user in Error andWarning rulebase events is included

l Messages: text used in attribute validationmessages is included

5. Fill out the translation document, completing the translations for each of the different items and their forms for your
chosen language. The first column in each worksheet lists the rulebase item in the original rule language. This column is
protected andmust be left unaltered, to enable Oracle Policy Modeling to map the translations you supply to the original
rulebase element.
NOTES:

1. If the translation of an item is intended to be the same as in the original rule language (ie it is language-inde-
pendent), click on the Ignore Translation button on the Oracle Policy Modeling toolbar. This will flag the
item as not requiring translation and it will therefore be excluded from the Untranslated Text report.

2. If your rulebase contains attributes using second person substitution, additional tabs for statements and vari-
ables will be created containing the second person substitution text for these attributes. In addition to columns
for the Statement and Variable elements listed above, the second column contains the second person sub-
stitution attribute in the original rule language, whichmust also be left unaltered.

3. If your rulebase contains variable substitution, use the substitution format "%<attribute public name>?%"
(see Substitute an attribute value into the text on screens for other options using this syntax) to insert the
desired attribute values into the translated text. The basic form of the 3rd person statement and variable
entered in the Unformatted Text columnwill be used for substitution when the substituting attribute has an
unknown value.

4. If your attribute translations include gender pronoun substitution, as shown in the example above, ensure that
you provide the three values required by Oracle Policy Automation (corresponding to male, female and neut-
ral genders), even if the same values are used.

6. When you have provided translations for all rulebase elements (or marked them as to be ignored for translation), com-
pile the document using the Compile button in the Oracle Policy Modeling toolbar.
TIP: Youmay also wish to translate any rulebase commentary you are using. See Localize interview help for details.

7. You can now run the translation of the rulebase, or alternatively test it in the debugger by going to Build | Build and
Debug in Oracle Policy Modeling, then select your chosen language as theDebugging Language in theDebug
Options dialog. This drop-down list shows the main rule language, plus any other languages for which translations have
been created.

NOTE: If you debug with screens and select a Debugging Language for which Oracle Policy Modeling does not provide
built-in support (see Localized function references for supported languages), you will need to set up the locale in Oracle
Web Determinations.

8. The rulebase will now run in the debugger, using your translations for rulebase questions etc, and built-in translations for
the screen text of Oracle Web Determinations.

TIP: You can also preview the translation for individual question screens in Oracle Web Determinations without
running a full interview, using the Preview option and selecting your new translation in the debug options.

Run a translation of a rulebase
Once you have created one or more translations for a rulebase as detailed above, you can then run the rulebase
in Oracle Web Determinations to access a fully-translated interview for your rules.

1. Open your rulebase with translations in Oracle Policy Modeling, and selectBuild | Build and Run.

2. If you select to run your rulebase in Oracle Web Determinations, you will see a browser screen showing you the locales
of the available language options in which the rulebase can be run. The options available include the main rule language,
plus any other languages for which translations of the rulebase have been created. Select the translation you wish to run.
TIP: The text in the list of locales is configurable. For more information, see Change the locale list in Oracle Web
Determinations.

3. The rulebase interview commences, in your selected translation.

Set up a new locale in Oracle Web Determinations
If you run your rulebase in Oracle Web Determinations and select a translation locale for which Oracle Policy
Modeling does not provide built-in support (see Localized function references for supported languages), you
may see an error message if the locale properties have not yet been configured.

You will need to create a configuration file to run the translation you selected in Oracle Web Determinations. To
do this:

1. InWindows Explorer, browse to the Release folder in which your Oracle Web Determinations is running, and go to
\web-determinations\WEB-INF\classes\configuration

2. Locate themessages.<locale>.properties file which corresponds to the original rulebase language for your rule-
base. For example, messages.en.properties for a rulebase written in US English.

3. Make a copy of this file, and rename it with the appropriate locale text for your translation. For example, messages.lv-
LV.properties for a Latvian translation. (The required file name is also shown in the Oracle Web Determinations error
message, as shown above).

4. Youmay optionally open the new file in a text editor and enter translations for the various configuration items under the
heading localised text for input controls. See the Oracle Policy Automation Developer's Guide for more information
on the settings in this file.

Check for untranslated text in a rulebase
Once you have added translations to your rulebase, Oracle Policy Modeling will automatically detect whether
any elements of the rulebase that require translation have not yet been translated. Warnings are generated at
build time if this is the case, and you can also run a report that will list all untranslated text in the rulebase.

1. To view this report, go toReports | Untranslated Text.

2. The Untranslated Text report is shown, listing all relevant rulebase elements for which a translation has not yet been
supplied. This report will not show any items that have beenmarked as 'Ignore Translation' in the translation document.
Items are grouped together, eg screen text, metadata, attributes with all forms that are missing translations.
If multiple translations have been added to the rulebase, items are grouped within the separate translation files.

3. Use this report to complete any missing translations, then click Regenerate at the top of the report to verify that all
translations have been completed.

4. The Error List will also show a warning if your rulebase has missing translations. Click onView | Error List to display
this. Double-click on the warningmessage to open the Untranslated Text report.

Update a translation file
It is advisable to add a translation of a rulebase only after the bulk of rulebase development is complete. This
will minimize the amount of rework needed in the translation if the main rulebase changes after the translation
is done. However, Oracle Policy Modeling will automatically detect if any new items have been added to the rule-
base that aren't reflected in the translation, and prompt you to ensure these are handled effectively.
To update a translation file:

1. First check for any missing translations as detailed above, to determine whether updates to the translation file are
required.

2. Open the translation document by double-clicking it in the Project Explorer. When the document opens, Oracle Policy
Modeling will automatically insert any missing rulebase elements which require a translation.

3. Enter the translations for the newly inserted items (or mark the items as 'Ignore Translation'), using the process detailed
above, and compile the translation document.

4. Re-check for any missing translations using the Untranslated Text report or Error List, and debug or run your rule-
base translation to test your changes.

NOTES:

i. Oracle Policy Modeling will not remove content from your translation file, so if you change or remove items from the rule-
base, you will need to manually check your translation file to make any necessary updates. If an item in the rulebase is
modified, Oracle Policy Modeling will insert the updated item into the translation file, however if you wish to remove or
re-use the old translation instead, youmust manually make these changes.

ii. If substitution is enabled for any attributes after the rulebase has been translated, the existing translations will need to be
manually updated. The quickest way to do this would be to add a new translation file andmanually merge the changes
(ie replace the statements for the affected attributes in the old file with the correct forms from the new file).

See also:

l Write rules in other languages

l Localize a rulebase

Localize interview help
When you add a language translation to your rulebase, you may also wish to create a translated version of your
rulebase commentary, which provides interview help. If no localized commentary is provided, commentary will
not be displayed when you run your translated rulebase. To create localized commentary:

1. InWindows Explorer, browse to the Development\include\commentary folder for your rulebase. Within this location, a
folder named for the original rulebase language (eg "en-GB") contains the default commentary for the rulebase. This
folder is created when you first create the commentary for your rulebase (ie for the original rulebase language).

2. Create a copy of the default commentary folder, and rename it with the code for your rulebase translation language. For
example, copy the "en-GB" folder and rename the copy "fr-FR" to create commentary if you have a French rulebase
translation.

3. Modify each of the commentary HTML files in the new folder, to translate the commentary text as appropriate for your
rulebase. Note that as for creating the original commentary files, some knowledge of html is useful, to help identify which
text in the file is displayed to the user.

4. Build the rulebase, and debug or run in the translation language to view the new localized commentary files.

NOTE: Commentary should only be translated once it has been finalized for the original rulebase language. Sub-
sequent changes to the rulebase or its commentary files/content will require manual changes to your localized
commentary files.

See also:

l Create, update or delete interview help

l Create a new language translation for a rulebase

Localize interview document templates
When you add a language translation to your rulebase, you should also create a translated version of any inter-
view document templates. You need to do this for every language that your rulebase supports. To create

localized document templates:

1. InWindows Explorer, browse to the Development\include\templates folder for your rulebase. Within this location, a
folder named for the original rulebase language (eg "en-GB") contains the document templates for the rulebase. This
folder is created when you first create a new interview document (ie for the original rulebase language).

2. Create a copy of the templates folder for the original rulebase language, and rename it with the code for your rulebase
translation language. For example, copy the "en-GB" folder and rename the copy "fr-FR" to create the templates for a
French rulebase translation.

3. Translate the text of each template in the new folder to that locale.

4. Build the rulebase, and run in Oracle Web Determinations. You will see that the set of templates used is based on the loc-
ale of the session.

NOTE: If no localized template file exists, then clicking the document link in Web Determinations will generate
an error.

See also:

l Create, update or delete an interview document

l Develop a template for an interview document

Select the user interface language for rule authoring
The user interface language setting controls what language is used for the user interface of all Oracle Policy
Modeling components in Word and Excel, such as dialog boxes and messages. Oracle Policy Modeling supports
the following user interface languages: Arabic, Chinese (Simplified), Chinese (Traditional), Czech, Danish,
Dutch, English (American), English (British), Finnish, French, German, Hebrew, Italian, Japanese, Korean, Pol-
ish, Portuguese (Brazilian), Portuguese (European), Russian, Spanish, Swedish, Thai and Turkish. By default the
authoring user interface language is set to English (American).
To change the authoring user interface language:

1. In Oracle Policy Modeling, go to Tools | Options | Environment | General.

2. Select a language from the Authoring UI Language drop-down list.

3. Click OK.

Configure the list of recognized verbs
Oracle Policy Modeling comes with a library of commonly used verbs. These verbs have already been con-
jugated1 and are ready to use in attributes.
Oracle Policy Modeling will be unable to initially parse an attribute if it contains an unknown verb (ie a verb that
is not in the default verbs list). In this instance, it is necessary to create a custom verbs list to add the new verb
to. From then on, Oracle Policy Modeling will recognize that verb whenever it is used in an attribute.
NOTE: Projects which use a Rapid Language Support language parser do not contain a list of verbs so the
options below do not apply to these projects. For more information on how to edit the sentence forms for such
projects, see the Help available in the Rapid Language Support Tool.

What do you want to do?
Create a new verb file
Add a new verb
Modify existing verb forms
Delete a verb
Delete a verbs file

1The conjugations are the different forms the verbs take depending on what person and tense they are.

Create a new verb file
To create a verb file:

1. In Oracle Policy Modeling, select File | Edit Verbs....

2. You will be prompted to create a custom verbs file. Click Yes.

TIP: Custom verb files are created at the project level. If you already have a custom verb file from another pro-
ject that you want to use in your project, copy it into the Development folder for your project. The file must be
called verbs.xml.

Add a new verb
After you have created a new verb file (see above), you can then add new verbs to it. In the Verbs List dialog
box:

1. Check the verb is not in the existingVerbs List by entering the verb in the find field.

2. If the verb is not shown in the list, click Add... to add it.

3. In the Verb Editor dialog box, press Tab to automatically conjugate the verb.

4. Check that all of the verb forms are correct.

5. Click OK to add the verb to the verb list.

NOTE: Oracle Policy Modeling does not recognize the difference between regular and irregular verbs and ini-
tially conjugates all verbs as regular verbs. If the verb you are adding is an irregular verb, you must know what
form the verb takes for each person/tense 1so that you can update the verb forms in the Verb Editor appro-
priately.

Modify existing verb forms
To modify an existing verb form:

1. In Oracle Policy Modeling, select File | Edit Verbs....

2. If you have not edited the verb list before, you will be prompted to create a custom verbs file. Click Yes.

3. In the Verbs List enter the verb you want to edit.

4. When the verb is highlighted, click Edit....

5. In the Verb Editormake the necessary changes and click OK. Then click OK in the Verbs List.

Delete a verb
To delete a verb from the verbs list for the project:

1. In Oracle Policy Modeling, select File | Edit Verbs....

2. In the Verbs List enter the verb you want to delete.

3. When the verb is highlighted, click Delete. Then click OK.

Delete a verbs file
To delete a custom verbs file that is no longer needed in a project:

1The simple present tense is used for habitual actions that are not just happening now. The simple past tense is used for actions that
took place in the past and that are not taking place now. The present progressive tense is used to express current actions. The past
perfect tense is used for actions that were completed before some other event.

1. In Oracle Policy Modeling, select the project name in the Project Explorer.

2. Right-click and select Locate in Explorer. A new Windows Explorer window will be opened showing the Development
folder for the project.

3. Select the verbs.xml file and click Delete.

Note that if the project still has attributes in it that use the deleted custom verbs file, these will be detected as
broken parses at build time and reported as errors.

See also:

l Language specific considerations

Format a numeric constant for the correct region
Depending on the region settings for your rulebase, the meaning of the comma "," can be as a decimal sep-
arator1 (rather than a full stop ".") or as a thousand separator. The space character " " may also be designated
as a thousand separator for some regions. It is important to note that this can affect the way numbers are used
in function definitions, since the parameter separator used in functions (ie to denote the different values being
provided to the function) is a comma, and spaces are also used to separate the parameters visually.
Consider the following example:

the man’s first initial = substring(the man’s name, 0, 1)

When authoring for a region which uses a decimal point as the separator, this reads as 'the man’s first initial is
equal to a substring of the man’s name from position 0 for 1 character'.
When authoring for a region which uses a comma as a decimal separator, the compiler has no way of knowing
whether or not the "0," is a number which has not been entered correctly (ie missing the decimal part as in
0,15).
A similar situation can arise with the use of the comma or space character as a thousand separator, when enter-
ing larger numbers into functions.
With this in mind, when authoring function rules where ambiguity such as this could occur, numbers used in func-
tions should be encased in further brackets. For example:

the man’s first initial = substring(the man’s name, (0), (1))

Or where the comma is used as a thousand separator:

the product key = substring(the full product code, (2,050), (27))

It can also help to avoid ambiguity if the space characters are used to separate each of the parameters in a func-
tion, although this is not a requirement enforced by Oracle Policy Modeling.
Note that this does not affect the use of number variables, only stated constants.

See also:

1The symbol marking the point between the whole and decimal parts of a number.

l Use constant values in rules

l Use variables in rules

l Formatting of variable values

Language specific considerations
Topics in "Language specific considerations"

l Write rules in Arabic

l Write rules in Finnish

l Write rules in French

l Write rules in Hebrew

l Write rules in Italian

l Write rules in Japanese

l Write rules in Korean

l Write rules in Portuguese

l Write rules in Russian

l Write rules in Spanish

l Write rules in Turkish

Write rules in Arabic

Supported sentence structures
The Arabic parser supports equational (verbless) sentences of the form Subject – Object, and verbed sentences
of one of the forms Verb – Subject – Object (VSO) or Subject – Verb – Object (SVO). Note that the parser only
supports single-word objects in verbless and VSO sentences. If a multi-word object is required, you should reph-
rase the sentence as an SVO sentence.

Supported verb forms
Arabic verbs conjugate for mood (Active/Passive), tense (Present Indicative / Present Jussive / Past), gender
(Masculine/Feminine), person (1st, 2nd, 3rd) and number (Singular, Dual, Plural). Note that in many grammar
books, Present is known as Imperfect and Past is known as Perfect.
For each mood, tense and gender, the verbs list contains the following person and number combinations: 2nd
person singular, 3rd person singular and 3rd person plural.
When adding new verbs to the dictionary, the parser correctly auto-conjugates all regular tri-literal verbs, and
irregular tri-literal Hamzated verbs. For all other kinds of verbs, you need to manually review and edit the verb
conjugations.
The Jussive form is used to form the negation of Past tense verbs. The Jussive form is also used to form uncer-
tain sentences. Please note that in actual Arabic grammar, the form used for uncertain sentences would be Sub-
junctive. However, in Oracle Policy Modeling Jussive and Subjunctive are equivalent because these forms only
differ in short vowels which Oracle Policy Modeling omits.

Limitations

Vocalizations

The Arabic parser supports Modern Standard Arabic (MSA). An important feature of written MSA is that short
vowels (that might otherwise be denoted using diacritical marks above/below consonant symbols) are omitted
and the language users infer them from the context. In particular, this means that the default Arabic verbs list
does not contain these short vowels, and the parser will only recognize verbs that are written without short
vowel diacritical marks. If other versions of verbs are required, these need to be added to the verbs list.

Hamza on Alef

There are some Arabic verbs which begin with the Alef character and may have an implicit Hamza above Alef,
or below Alef (e.g. ستخدم andا .(اكل The default verbs list has explicit Hamzated versions of these verbs with
Hamza above Alef (e.g. ستخدم أ and ,(أكل so the parser will only recognise these Hamzated versions in rule doc-
uments. If other implicit versions are required to be parsed, these need to be added to the verbs list.

No demonstratives

In order for substitution to work, demonstratives should not be used before substituted attributes. For example,
instead of the following sentence (literally "this the person which"):

نمرت شخصهذاطردتمأنمنذسنتا المدنيةالخدمةمنال
use "the person":

نمرت شخصطردتمأنمنذسنتا المدنيةالخدمةمنال

Attached pronouns

The sentence generation and substitution mechanism currently does not support attached pronouns. Spe-
cifically, when substituting a pronoun in place of an attribute, the parser replaces the attribute with an unat-
tached pronoun. This should be correct in most cases, ie when the pronoun occurs at the beginning of the
sentence. However, it may cause suboptimal sentences when the pronoun occurs at the end of a sentence. In
such cases, the user may override the generated sentences as described in Customize sentence text.

Write rules in Finnish

Supported sentence structures
The Finnish parser supports two kinds of sentences: Subject – Verb – Object (SVO) and Subject – Verb – Com-
plement (SVC).

1. In SVO sentences, the verb performs some action on the object, or has some effect on the object. For most SVO sen-
tences, the parser produces two parse matches, and the first parse match has a case transformation for the object of a
negative sentence.See Object case transformation in SVO sentences below.

2. In SVC sentences, the verb is often "to be" and denotes equality, or assignment. In these sentences, the object is usually
in the nominative case.

Supported verb forms
In Oracle Policy Modeling the verbs list contains four tenses for each verb: Present, Past, Perfect and Plu-
perfect. For each tense, it contains the positive and negative forms for 2nd person singular, 3rd person singular,
3rd person plural and passive.

Limitations

Object case transformation in SVO sentences

In SVO sentences, the divisibility of the object determines its case. If the object is divisible, it is in partitive.
Otherwise, the object is in genitive. Irrespective of the case of the object in a positive SVO sentence, the object
of a negative SVO sentence is always in partitive. As a result, when transforming between positive and negative
SVO sentences that have non-divisible objects, the Finnish parser changes the case of the object.
The following criteria determine when the parser changes the case of the object:

a. Either the original sentence is negative and the object is partitive, or

b. The original sentence is positive and the object is nominative/genitive.

In case (a), the object is transformed into genitive for the positive/question/uncertain sentences.
In case (b), the object is transformed into partitive for the negative sentence.
Note that in the case of a multiple-word object, only the case of the first word of the object is checked. Addi-
tionally, the case transformations are not guaranteed 100% correct, since in some cases the parser cannot cor-
rectly determine the partitive stem of a word.
Additionally, since in some cases this transformation is not required, for each SVO sentence the parser also sup-
plies another parse match which keeps the object intact between positive/negative sentence forms. The trans-
formed parse match is displayed first (default) if:

a. Either the original sentence is negative and the object is partitive, or

b. The original sentence is positive and the object is genitive.

Thus, if the original sentence is positive and the object is nominative, the default parse match is the untrans-
formed one.
If neither of the supplied parse matches is appropriate,you need to override the generated sentence text as
described in Customize sentence text.

Pronoun possessives

In possessive phrases, there is a variation in the possessed object depending on the possessor. If the possessor
is a regular noun or a person's name, then the possessed object takes a basic nominative form. For example:
Henkilön lapsi on onnellinen = The person's child is happy
Jussin lapsi on onnellinen = Jussi's child is happy
However, if the possessor is a personal pronoun (eg my, his), then the possessed object takes on an additional
ending that depends on the plurality of the possessor. For example:
Sinun lapsesi on onnellinen = Your child is happy
The Finnish parser currently does not support this change in the possessed object. That is, second person sub-
stitution would (incorrectly) generate:
Sinun lapsi on onnellinen = Your child is happy
Similarly, third person substitution would (incorrectly) generate:
Hänen lapsi on onnellinen = His/her child is happy
In this case, the user needs to override the generated sentence text as described in Customize sentence text.

Write rules in French

Limitations

Contractions

The French parser does not currently support creating contractions after substitution has taken place. For
example, consider the following attributes that allow for substitution:
la personne
la maladie
and the following Boolean attribute, which conveys that "the person's family has a history of the disease":
la famille de la personne a une histoire de la maladie

Oracle Policy Modeling generates the following interrogative form for the Boolean attribute:
Est-ce que la famille de %personne?% a une histoire de %maladie?%?
If the person is identified as John and the disease is identified as arthrite, Oracle Policy Modeling would gen-
erate the following question:
Est-ce que la famille de John a une histoire de arthrite?

Unfortunately, the question should contract the "de" and "arthite" as follows:
Est-ce que la famille de John a une histoire d'arthrite?
Currently, Oracle Policy Modeling will not perform the contraction.

Write rules in Hebrew

Verbs list
The default Hebrew verbs list contains conjugations for 4142 verbs. Because the Verbs List dialog sorts the
verbs by their shoresh (root) and because multiple verbs may share the same shoresh, you may have to look at
more than one entry in the Verbs List to find the particular verb of interest to you.
In Oracle Policy Modeling, vowels (denoted by diacritical marks above/below consonant symbols) are omitted,
and users infer them from the context. In particular, the default Hebrew verbs list does not contain vowel dia-
critical marks, and the parser will recognize only those verbs that are written without vowel diacritical marks.

Negation
To indicate negation in present tense in a Boolean attribute, use the appropriate formal word (" ",אינך"",אינך

ו" ינ ן"",אינכם"",אינה"",א ן"",אינם"",אינכ ינ א ") rather than the informal word ."לא"

Parsing
When attributes are parsed in Hebrew, Oracle Policy Modeling looks for words, such as personal pronouns, that
act like verbs. This may result in multiple parses for an attribute (shown in the Confirm New Attributes dia-
log with a gray background). These will need to be checked to ensure the correct parse is chosen. For more
information, see Review the attribute parses in a rules document.

Excel rule tables
In an Excel rule table, boolean conclusion cells must be either ן" ו "נכ ("true") and " ןלא ו נכ " ("not true", ie "false").
In these cells Oracle Policy Modeling will not properly interpret other Hebrew words that mean "true" and
"false" such as י" וב "חי and י" יל ."של

Write rules in Italian

Supported sentence structures
The Italian parser supports Subject – Verb – Object sentences.

Supported verb forms
Italian verbs conjugate in a significant number of tenses and several moods. The indicative mood is used for fac-
tual statements. The subjunctive mood is used for uncertain sentences, as well as some "if ... then ..." sen-
tences.
Although gender (masculine and feminine) is present in Italian, the third person forms in most tenses are the
same for both genders. Additionally, the polite second person form in Italian uses the third person verb con-
jugation.

The verbs list in Oracle Policy Modeling contains entries for the following tense and mood combinations:

Mood Tense Verb forms

Gerund Present One form

Participle Past Masculine singular, masculine plural, feminine singular, feminine plural

Indicative Present Singular, plural

Indicative Imperfect Singular, plural

Indicative Past absolute Singular, plural

Indicative Future Singular, plural

Subjunctive Present Singular, plural

Subjunctive Imperfect Singular, plural

The Italian parser supports both simple and compound verb constructions. For example:

l a simple verb sentence is lo student studia la lezione (the student studies the lesson)

l a compound verb sentence is la figlia è stata accompagnata dal genitore (the daughter has been accompanied by the
parent)

Limitations

Substitutions

In order for the substitution to work correctly, every variable and entity should either be preceded by the art-
icle, or by a contracted preposition + article.
The following prepositions are supported for substitution:

1. di – the contracted forms del, dello, della, dell’, dei, degli and delle are supported.

a. For example, il libro dello studente (the mug of the student) becomes il libro di Marco whenMarco is sub-
stituted for lo studente.

2. da – the contracted forms dal, dallo, dalla, dall’, dai, dagli and dalle are supported.

a. For example, l’amico è sostenuto dallo studente (the friend is supported by the student) becomes l’amico è
sostenuto di Luna when Luna is substituted for lo studente.

The following guidelines must be followed for substitution to work correctly:

1. Each variable attribute should include the article. For example, use lo studente instead of studente.

2. Each variable used in a nominative sentence should include the article. For example, use lo studente studia la
lezione instead of studente studia la lezione.

3. Each variable used in a sentence with a preposition should include the appropriate contracted preposition + article. For
example, use il libro dello studente è verde instead of il libro di studente è verde.

4. There must be exactly one space between the article/preposition and the variable name. For example, use il libro dello
studente è verde instead of il libro dello studente è verde.

In order for 2nd person substitution of possessives to work correctly, the object possessed may consist of one
word only. For example, il libro dello studente (the student's book) can be correctly transformed into il suo
libro. However, il libro verde dello studente (the student's green book) cannot be correctly transformed into a
2nd person sentence. It can, however, be transformed into a 3rd person sentence il libro verde di %varid?%
where "varid" is the public name for the variable lo studente.

Write rules in Japanese

Supported sentence structures
The Japanese parser supports two kinds of sentences:

1. Verbless sentences
An example of a verbless sentence is彼の行動は法律的に正しかった(His action was legal).

2. Subject – Object – Verb (SOV) sentences
An example of a SOV sentence is当人は子供が５人以上いる(The person has more than five children).

Supported verb forms
Japanese verbs are inflected for politeness level, tense, aspect, voice and sense.
The verb dictionary provides the plain (colloquial) and the polite forms of the verbs.

There are only two tenses in Japanese, past and non-past. The non-past covers both the present and the future
tense.
The verb aspect denotes the conjugations for perfect, progressive and potential forms. The perfect aspect is the
stative form of the verb.
The verb voice refers to whether the verb is an active or passive mode.
The verb sense indicates whether the verb inflects for a positive or a negative statement. For each of the above,
the verbs are inflected by suffixing some ending based on which verb group they belong to.
The verbs do not inflect for gender or person.
The copula だ (da) which is the infinitive form of です (desu), andである(dearu) which is the infinitive form of で
あります, have been included in the verbs list.
For compound verbs where only the second verb is inflected, eg benkyo + suru, suru is taken to be the active
verb. For such noun + suru verbs, there is no need to enter the compound verbs separately as long as suru is in
the verbs list.

The following are the verb forms present in the verb dictionary:

l Dictionary form: the verb conjugations below are derived from the dictionary form which has to end in an -u such as iku,
kangaeru.

l Present tense forms:

l polite

l plain

l Past tense forms:

l polite

l plain

l For each of the polite and plain forms above, the following verb conjugations are provided:

l positive and negative

l passive positive and passive negative

l potential positive and potential negative

l progressive positive and progressive negative

The automatic verb conjugations works for the majority of the ichidan and godan verbs. The conjugations for
irregular verbs, and verbs where the use of kanji character introduces ambiguity as to whether the verb is
ichidan or godan, will have to be entered manually. See Configure list of recognized verbs for more information.

Verb recognition

The active verb in a sentence is recognized based on the dictionary. When a compound verb is present, the act-
ive verb is selected based on the longest match.
For example, verbs nakatta (なかった) and kawa nakatta (買った/買わなかった) are both present in the dictionary.
In this case, if a sentence has kawa nakatta as its active verb (ie the verb at the end), the parser will recognise
the compound verb kawa nakatta instead of just nakatta.

In cases where the sentence uses a compound verb, where the compound verb itself has not been entered in the
dictionary, the parser will try to recognize the longest match it can find. For example, if nakatta is in the dic-
tionary, and the verb shitagawa nakatta is not in the dictionary then the parses generated for the sentence con-
taining shitagawa nakatta will be based on the conjugations of the verb nakatta. To avoid this problem, you
need to add the missing verb.

Adjectives
In an SOV sentence, the verb at the end is taken to be the active verb. If adjectives are present within the sen-
tence, they are not inflected.
In a verbless sentence, the adjectives may be inflected. There are two form of Japanese adjectives, the -na
adjectives and the -i adjectives.

l The -na adjectives are followed by some form of copula. In such sentences, the copula inflects to indicate tense, mood,
aspect, etc. The adjective remains unmodified.

l The -i adjectives can occur on their own at the end of the sentence or they may be followed by some form of copula. If an -i
adjective is present in a verbless sentence, then the -i adjective is inflected. The copula remains untouched.

In both the above scenarios and also for an SOV sentence, when the uncertain form is constructed the copula is
omitted.

Limitations
The following verb inflections are currently not handled.

1. Presumptive mood – expresses probability, belief or intention (~daro/~desho forms)

2. Imperative mood – expresses commands

3. Causative mood – conveys the idea of making or causing someone to do something

4. Conditional mood – conveys 'if', 'unless', 'when' meaning (~eba/~tara/~nara/~to forms)

5. Clauses – conveys sequential, parallel or causal relationships (such as the ~te and ~de forms)

6. Necessity – expresses 'must' or 'necessity' using the to-ikenai form (といけない)

7. Counter words

The first three forms are unlikely to occur in the Oracle Policy Automation rulebase framework. For the fourth
and fifth verb forms, Oracle Policy Automation has an existing framework for expressing conditionals and
clausal relationships when developing a rulebase. As such, these verb inflections are redundant. For the sixth
form, expressing 'must', the sentence should be rephrased, for example using the verb 'obligated'. The parser
only supports limited number of counter words such as those for age and number of people.
For example, look at the following sentences.

Example 1 - Conditional mood

The person is eligible if the person pays tax.
当人は税金を払ったら、適格である。

In Oracle Policy Modeling this should be written as two separate sentences where the first one is formatted as
the conclusion and the second one as the level 1 condition.

The person is eligible.
当人は適格である。

The person pays tax.
当人は税金を払います。

Example 2 - Clauses

The person is retired and the person’s age is greater than 65.
当人は退職していて、(年齢が)６５歳以上である。

The above sentence should be broken down into two separate discrete sentences.

The person is retired and
当人は退職している。および

The person’s age is greater than 65
当人は(年齢が)６５歳以上である。

Here the sentences represent two conditions that need to occur simultaneously. This will be reflected by the
'and' rather than inflecting the verb to the -te form. Thus, if there are sentences where verb forms that are not
covered by the verb editor are used, you should try to rewrite them as separate attributes especially when the
sentences are clausal in nature.

Example 3 - Necessity

The parser provides the nakere nara bai (なければならない) form for expressing the notion of 'must' or necessity.
This form conjugates only for past and present tense; no conjugations are required for politeness level. If this
form does not suit the sentence being expressed in Oracle Policy Modeling, then the sentence can be restruc-
tured as follows.
Sentences can be rephrased to use a noun + copula form. Another way is to simply rephrase the sentences. For
example,
'A person must have a pension card' changes to
'A person owns a pension card'.

Write rules in Korean

Supported sentence structures
The Korean parser supports two kinds of sentences:

1. Verbless sentences
An example of a verbless sentence is 이사람은자영업자이다 (The person is self-employed).

2. Subject – Object – Verb sentences
An example of a SOV sentence is 나는사과을먹었다 (I ate an apple).

Supported verb forms
Korean verbs are inflected for politeness level, tense, aspect, voice and sense.
The verb dictionary provides the plain (colloquial) and the polite forms of the verbs.
There are only two tenses in Korean, past and non-past. The non-past covers both the present and the future
tense.
The verb aspect denotes the conjugations for perfect, progressive, potential and must forms. The perfect aspect
is the stative form of the verb. The must form denotes necessity.
The verb sense indicates whether the verb inflects for a positive or a negative statement. For each of the above,
the verbs are inflected by suffixing some ending based on which verb group they belong to.
The verbs do not inflect for gender or person.
The verb voice refers to whether the verb is an active or passive mode. In Korean, the passive form in turn
inflects for politeness level and aspect, and is therefore treated as a verb in its own right. The passive verb
forms are entered by using their dictionary form in the verb dictionary.
The postpositions 이다 (ida) and아니다 (anida) have also been included as part of the verb dictionary.
For compound verbs where only the second verb is inflected, for example 유명하다 which is the composite of 유
명 and 하다, 하다 is taken to be the active verb. For such (noun + verb) verbs, there is no need to enter the com-
pound verbs separately as long as the active verb belongs in the verb dictionary.

The following are the verb forms present in the verb dictionary:

l Dictionary form: the verb conjugations below are derived from the dictionary form which has to end in -da such as ha-da

l Present tense forms:

l polite

l plain

l Past tense forms:

l polite

l plain

l For each of the polite and plain forms above, the following verb conjugations are provided:

l positive and negative

l potential positive and potential negative

l progressive positive and progressive negative

l must positive andmust negative

The automatic verb conjugations works for majority of the verbs. The conjugations for irregular verbs will have
to be entered manually. See Configure list of recognized verbs for more information.
Adjectives in Korean behave very much like verbs. For example, all adjectives are conjugated for the politeness
level, sentence sense and aspects mentioned above. Thus, the adjectives are also entered using the verb dic-
tionary. In spite of all the similarities with verbs, the adjective conjugation has a few peculiarities. For
example, adjectives do not conjugate for progressive aspect. Therefore, the text boxes corresponding to pro-
gressive aspect will always be empty for adjectives. When using the verb editor, if you select the dictionary
form as being an adjective, these dissimilarities are handled by the verb conjugator.

If you follow the sentence structure guidelines here for creating Korean sentences, then the verbs or the adject-
ives in the sentence will always end in -da (다). Verb forms that end in characters other than da are not handled.
These include imperative form, inquisitive form, connective and, connective if and certain propositive form.
If adjectives ending in하다 are used in sentences, then these adjectives must first be entered in the verb editor.
This is because the verbs and the adjectives that end in hada behave differently. The system has no way of dif-
ferentiating between a verb and an adjective unless they are already a part of the verb dictionary. The verbs
ending in hada behave correctly because they use the inflections of hada as endings. On the other hand, with
adjectives in plain present positive form, the ending gets changed slightly (the ending hada is used as opposed
to한다).

Adjectives
In an SOV sentence, the verb is taken to be the active verb. If adjectives are present within the sentence, they
are not inflected.
In a verbless sentence, the adjectives are inflected based on the noun + verb combination or the postposition
used at the end of the sentence.

Sentence parsing
When parsing sentences in Oracle Policy Modeling, the following parts of the sentence are underlined:

1. verbs (that are already included in the verb dictionary)

2. adjectives (that are already included in the verb dictionary)

3. compound verb forms (the parser can recognize when the dictionary entry is preceded by characters making it a com-
pound verb form)

NOTES:

i. When two or more adjectives or verbs are present in the sentence, the last adjective or verb gets underlined. This is in
accordance with Korean grammar whereby the active component always occurs towards the end in a sentence.

ii. For compound verbs, if the full verb 'v1 + v2' already exists in the dictionary and is subsequently deleted, this does not
impact the parsing of the sentence. This is because the active part of the verb v2 still exists in the verb dictionary. Once
the first parse is deleted, the sentence can be successfully reparsed again.

Limitations
The following verb inflections are currently not handled.

1. Presumptive mood - expresses probability, belief or intention

2. Imperative mood - expresses commands

3. Causative mood - conveys the idea of making or causing someone to do something

4. Conditional mood - conveying 'if', 'unless', 'when' meaning

5. Clauses - conveys sequential, parallel or causal relationships (such as the ~te and ~de forms)

6. Counter words

The first three forms are unlikely to occur in the Oracle Policy Automation rulebase framework. For the fourth
and fifth verb forms, Oracle Policy Automation has an existing framework for expressing conditionals and
clausal relationships when developing a rulebase. As such, these verb inflections are redundant. For expressing
'must', the sentence should be rephrased, for example using the verb 'obligated'.
The parser only supports limited number of counter words such as those for age and number of people.

For example, look at the following sentences.

Example 1 - Conditional mood

The person is eligible if the person pays tax.
이사람은세금을납부한다면자격이있다

In Oracle Policy Modeling this should be written as two separate sentences where the first one is formatted as
the conclusion and the second one as the level 1 condition.

The person is eligible.
이사람은자격이있다

The person pays tax.
이사람은세금을납부한다

Example 2 - Clauses

The person is retired and the person’s age is greater than 65.
이사람은은퇴하였으며나이는 65세이상이다

The above sentence should be broken down into two separate discrete sentences.

The person is retired and
이사람은은퇴하였다그리고

The person’s age is greater than 65
이사람의나이는 65세이상이다

Here the sentences represent two conditions that need to occur simultaneously. This will be reflected by the
'and' (그리고) rather than inflecting the verb. Thus, if there are sentences where verb forms that are not covered
by the verb editor are used, one should try to rewrite them as separate attributes especially when the sentences
are clausal in nature.

Variable sentence generation
This refers to creating question, uncertain and unknown forms for sentences .
If you want to use "what" or "who" in the question form for variables (eg 'the person’s age'), it is really hard to
infer the correct form of the words to use since they depend on the semantics of the sentence in question.
As a rough rule if the last word (in this case '나이') ends without a tail consonant, just add "는" after the word. So
in this case, the sentence changes to "그사람의나이는?".
However, if the last word ends with a tail consonant (for example '생일' or '수입'), you need to add "은" after the
word. For instance, 'the person's birthday' is '그사람의생일은?' and 'the person's income' is '그사람의수입은?'.

Write rules in Portuguese

Supported sentence structures
Both Portuguese (European) and Portuguese (Brazilian) parsers support Subject – Verb – Object sentences.

Supported verb forms
Portuguese verbs conjugate in a significant number of tenses and several moods. The indicative mood is used
for factual statements; the subjunctive mood is used for uncertain sentences, as well as some "if ... then ..."
sentences.
Although gender (masculine and feminine) is present in Portuguese, the second and third person forms in most
tenses are the same for both genders. Additionally, the polite second person form uses the third person verb
conjugation.

The verbs list in Oracle Policy Modeling contains entries for the following tense and mood combinations:

Tense Mood Verb forms

Present Indicative Singular 3rd person, plural 3rd person

Imperfect Indicative Singular 3rd person, plural 3rd person

Future Indicative Singular 3rd person, plural 3rd person

Preterite Indicative Singular 3rd person, plural 3rd person

Present Subjunctive Singular 3rd person, plural 3rd person

Imperfect Subjunctive Singular 3rd person, plural 3rd person

Future Subjunctive Singular 3rd person, plural 3rd person

Gerund N/A One form

Past Participle N/A Masculine singular, masculine plural, feminine singular, feminine plural

The parser supports both simple and compound verb constructions. For example:

l a simple verb sentence is a moça estuda bem (the lady studies well)

l a compound verb sentence is os salários foram pagos pelas empresas públicas (the salaries were paid by the public com-
panies)

Limitations

Substitutions

In order for the substitution to work correctly, every variable and entity should either be preceded by the art-
icle, or by a contracted preposition + article.
The following prepositions are supported for substitution:

1. de – the contracted forms do and da are supported.

a. For example, a caneca do candidato (the mug of the candidate) becomes a caneca do Leo when Leo is sub-
stituted for o candidato.

2. por – the contracted forms pelo and pela are supported.

a. For example, pelo candidato (by the candidate) becomes por Leo when Leo is substituted for o candidato.

3. a – the contracted forms ao and à are supported.

a. For example, ao agente fiscal (to the fiscal agent) becomes à Lia when Lia is substituted for o agente fiscal
and the gender of the variable o agente fiscal is set to Feminine at runtime.

4. para – the form para is supported.

a. For example, para a senhora (for the lady) becomes para Lia when Lia is substituted for a senhora.

The following guidelines must be followed for substitution to work correctly:

1. Each variable attribute should include the article. For example, use o candidato instead of candidato.

2. Each variable used in a nominative sentence should include the article. For example, use o candidato tem a
caneca instead of candidato tem a caneca.

3. Each variable used in a sentence with a preposition should include the appropriate contracted preposition + article. For
example, use os pontos foram atribuídos ao agente fiscal instead of os pontos foram atribuídos o agente fiscal.

4. There must be exactly one space between the article/preposition and the variable name. For example, use os pontos
foram atribuídos ao agente fiscal instead of os pontos foram atribuídos ao agente fiscal.

In order for 2nd person substitution of possessives to work correctly, the object possessed may consist of one
word only. For example, a caneca do candidato can be correctly transformed into a sua caneca. However, a
caneca azul do candidato (the candidate's blue mug) cannot be correctly transformed into a 2nd person sen-
tence. It can, however, be transformed into a 3rd person sentence a caneca azul do %varid?% where "varid" is
the public name for the variable o candidato.

Write rules in Russian

Supported sentence structures
The Russian parser supports two kinds of sentences: verbless sentences and Subject – Verbed Predicate –
Object sentences.

1. An example of a verbless sentence is Налогоплательщик счастливый (The taxpayer [is] happy). Note that the parser
only supports single-word predicates in verbless sentences. If a multi-word predicate is required, use the explicit verb
является ("is").

2. A Subject – Verbed Predicate – Object sentence may have either a simple predicate (one verb), or a compound predicate
(multiple verbs). For example, Кандидат сделает это завтра (The candidate does this tomorrow) is a sentence with a
simple predicate. The following sentence has a compound predicate: Налогоплательщик был обязан уплатить налог
(The taxpayer was required to pay a tax).

Supported verb forms
The same Russian verb may have two different versions (two infinitive forms), attributing
to perfective and imperfective aspects. For example, the verb 'to do' has the versions сделать ("perfective", to
complete) and делать ("imperfective" to be doing). The parser considers each version of the verb as a separate
verb, therefore сделать and делать are two separate entries in the verbs list.
Passive voice in Russian is usually represented by participles, which in the sentence can play the role of either
an attribute (like an adjective) or a predicate (like a verb). The parser is only concerned with participles that act
like verbs.
The following are the verb forms present in the verbs list in Oracle Policy Modeling:

l Infinitive

l Present tense forms: singular third person, plural third person, plural second person

l Past tense forms: singular third personmasculine, singular third person feminine, singular third person neuter, plural

l Short form of past participle, used for forming the passive tense (only for perfective verbs): singular third person
masculine, singular third person feminine, singular third person neuter, plural

Limitations

Substitutions

Due to the difficulties of modifying case of nouns, the Russian parser only substitutes the following kinds of
nouns:

l 3rd person nominative nouns

l 2nd person nominative or genitive nouns

For example, the parser can substitute a name instead of the налогоплательщик variable "taxpayer" in the fol-
lowing sentence:
налогоплательщик был обязан уплатить налог (the taxpayer was required to pay tax)
becomes %taxpayer?% был обязан уплатить налог
which becomes, for example: Иванов был обязан уплатить налог (Ivanov was required to pay tax)

The 2nd person sentence for this variable is:
Вы были обязаны уплатить налог (You were required to pay tax)

However, the parser does not substitute 3rd person names into other noun forms. For example, the following
sentence will not have a 3rd person substitution for налогоплательщик, since налогоплательщик is in gen-
itive:
доход налогоплательщика является алиментами (the taxpayer's income is child support payments)
However, the same sentence will have a 2nd person substituted version for the налогоплательщик attribute:
Ваш доход является алиментами (Your income is child support payments)

NOTE: When substituting 2nd person genitive, the parser always places "yours" at the very beginning of the
phrase.
For example, given the attribute:
домашний адрес студента (the student's home address)
the 2nd person substitution for студент is:
ваш домашний адрес (your home address)

Gender of non-Boolean attributes

In order to form attributes such as Имя не известно (the first name is unknown) or Фамилия не определена
(the family name is uncertain), the parser needs to know the grammatical gender of each noun.
For text attributes, the user should choose the appropriate gender in the New Attribute dialog. For non-text
attributes, the parser attempts to determine the gender by examining the ending of the supplied noun. If the
determined gender is incorrect and hence the generated sentences are incorrect, the user may override the gen-
erated sentences (see Customize sentence text for more information).

Write rules in Spanish

Limitations

Contractions

The Spanish parser does not currently support creating contractions after substitution has taken place. For
example, consider the following attributes that allow for substitution:
la persona
la organización
and the following Boolean attribute, which conveys that "the person belongs to an organization":
la persona pertenece a una organización

Oracle Policy Modeling generates the following interrogative form for the Boolean attribute:
¿La %persona?% pertenece a %organización?%?
If the person is identified as John and the organization is defined as "the Iron Worker Guild", Oracle Policy
Modeling would generate the following question:
¿John pertenece a el Gremio de Trabajador de Hierro?

Unfortunately, the question should contract the "a" and "el" as follows:
¿John pertenece aul Gremio de Trabajador de Hierro?
Currently, Oracle Policy Modeling will not perform the contraction.

Write rules in Turkish

Verb editor
The Turkish verb editor automatically conjugates verbs according to basic sound rules. However, for some
verbs, it may create an incorrect 3rd person singular Present Aorist positive form, and derived forms.

For example, the verb derletmek ("to make compile") has the following automatically conjugated forms:

You can update the 3rd person singular Present Aorist positive form with the appropriate verb conjugation:

The other related verb forms have now been correctly updated by the verb editor.

Variables and constant values
Topics in "Variables and constant values"

l Define an attribute to use in a rule

l Choose a name for an entity, relationship or attribute

l Choose a data type for an attribute

l Use variables in rules

l Walkthrough: Creating and using a variable in a rule

l Use constant values in rules

l Check if a value is within a certain range

l Create a synonym for a variable

l Convert a text string into a number or date

l Convert a number or date into a text string

l Combine multiple text strings into a single text variable

l Extract part of a text string

l Check if a text string contains a given substring

l Check if a text string is a number

l Find the length of a text string

l Get a date, day, month or year

l Get a time, second, minute or hour

l Get a date and time

l Get the latest or earliest date or time

l Calculate a relative date

l Find a date in a year

l Count periods between two dates or times

l Calculate the number of days in a month

l Find the day from a date

See also:

l Format a numeric constant for the correct region

Define an attribute to use in a rule
An attribute is a single unit of data or fact. For example:

l the cost of the movie ticket

l the person is a full-time student

Rules are constructed by combining attributes. For example:

CONCLUSION: the cost of the movie ticket = $12 if

CONDITION: the person is a full-time student

Attributes can either have a Boolean values (true/false) or take on a Variable value (eg a number, date, text
etc.). The following are some examples of attributes and types:

l the person is hungry (Boolean attribute)

l the person's name (Variable attribute – Text)

l the person's date of birth (Variable attribute – Date)

l the number of cookies the person wants to eat (Variable attribute – Number)

l the cost of the person's meal (Variable attribute – Currency)

l the time of sunrise (Variable attribute – Time of day)

A variable attribute must be created before it can be used in a rule. Creating a variable tells Oracle Policy Model-
ing how you are intending to use the variable and the type of information you want it to represent. (Boolean
attributes do not need to be created before they can be used in rules but it can be useful to do so in order to
define public names. For more information, see Define attribute names for use by external applications.)
Attributes are typically created in a properties file in Oracle Policy Modeling. This allows the attribute to be
added once and used across all rule documents. This also allows you to define public names, validation and
other properties for the attribute. Attributes can be added to an existing properties file from within Word while
writing the rules.
Attributes can also be created directly in a Word or Excel rules file. This method is only appropriate for vari-
ables that are only used in a single rule document.
Every attribute is assigned to an entity. An attribute is assigned to an entity if it contains the entity text.

What do you want to do?
Create a new attribute from within a Word document
Create a new attribute in an Excel document
Create a new attribute in a properties file
Check attribute entity levels

Create a new attribute fromwithin a Word document
To add an attribute within Word:

1. Write your rules using your yet-to-be-created attribute, but before compiling your rules, select the attribute text and click
the Add Attribute button on the Oracle Policy Modeling toolbar. NOTE: The text of the attribute must contain the name
of the entity to which it belongs, otherwise it will not be associated with that entity. For more information on naming attrib-
utes, see Choose non-boolean attribute text and Check attribute entity levels.

2. In the Add Attribute dialog box, select the Type of the attribute from the drop-down list. For more information on
attribute data types, see Choose a data type for an attribute.

3. Select the properties file that you want to add the attribute to from the File drop-down list. Alternatively, if the attribute is
only going to be used in this document, you can put the attribute at the top of the document rather than in a properties file
by selecting<Top>.

4. If you have chosen to add the attribute to a properties file, enter a Public name for the attribute if required. (NOTE: All
base level attributes and all top level attributes need public names. Important intermediate attributes also need to have
public names. For more information, see Set public identifiers for entities and attributes.)

5. If you have chosen to add the attribute to a properties file, select the Entity that the attribute belongs to. (NOTE: Usually
this will have been automatically determined based on the inclusion of entity text in the attribute text, but if the entity is
ambiguous you will need to select the appropriate entity.)

6. Click OK.

Create a new attribute in an Excel document
Attributes that are not used by any other document can be created directly in the Excel document itself, rather
than in the project's properties files.
To create an attribute directly in an Excel document:

1. Open theDeclarations worksheet.

2. In the Attribute Type column enter the type of attribute, and in the Attribute Text column enter the text of the attrib-
ute.

TIP: If the default Declarations worksheet has been deleted or altered and these columns don't exist, simply
enter your attribute type and attribute text in adjacent cells and apply the appropriate Oracle Policy Modeling
styles using either the Oracle Policy Modeling menu or the Oracle Policy Modeling toolbar.

Create a new attribute in a properties file
To create an attribute in a properties file:

1. In Oracle Policy Modeling, double click the properties file in the Project Explorer to open it for editing.

2. On the Attributes tab, right-click and selectNew Attribute...

3. In theData type drop-down list, select the type of attribute from the drop-down list.

4. In the Text field, enter the attribute text.

5. Click OK to create your attribute.

Check attribute entity levels
After you have defined an entity, every attribute added to a Word document which contains the entity text will
attach to that entity. Attributes which do not contain entity text are global.
For example, assume the attributes in the following table have been added to a Word document where "the
household member" has been defined as an entity in the rulebase:

Attribute Text Entity Level Explanation

the household member is male the household member contains "the household member"

a household member is eligible global
"a household member" does not match "the household mem-
ber"

the former household member has left global "former" interrupts the attribute text

the household member’s annual
income

the household member
adding extra letters or characters on the left or right hand
side is ok

the date of birth of the household
member

the household member entity text may appear anywhere in the attribute text

Both Boolean and non-Boolean attributes can be defined to belong to an entity in this way.
Once you have compiled your rules, you can check that all attributes have been associated with the correct
entity in the Build Model in Oracle Policy Modeling.
Attributes which do not contain any entity text are placed in the Global level. The list of global attributes are dis-
played in the right-hand pane:

To view a list of entity-level attributes, click on the entity name. The list of entity-level attributes will be dis-
played in the right-hand pane:

See also:

l View list of entities and attributes

Choose a name for an entity, relationship or attribute
The naming of entities, relationships and attributes is an important consideration when creating a rulebase.

What do you want to do?
Choose a name for an entity
Choose a name for a relationship
Choose attribute text
Document the naming convention for a project

Choose a name for an entity
Entities should be named using the definite article 'the', as in 'the family', 'the child', 'the friend', 'the school'
etc.

Choose a name for a relationship
When creating a relationship you should give the relationship a meaningful name. Remember that the rela-
tionship describes the reference from one entity instance to one or more of another entity instance. The rela-
tionship name should therefore include the source entity text so that it is clear from the relationship name who
the relationship is from.

The name of the relationship should reflect the everyday expression used to describe the relationship (if there is
one), and should be clear in and out of context what is being referred to. Try to consider that nature of the rela-
tionship you are capturing and give it a name that represents this relationship.
Where you are referring to a single instance ("to-one" relationships), your relationship text must therefore be
singular. When you are referring to multiple instances ("to-many" relationships), your relationship text must be
plural. Where one entity is the global entity, you may simply refer to the target entity.

Examples of relationship names

Relationship type Entity 1 Entity 2 Relationship text

One-to-one "the child" "the friend" "the child's best friend"

Many-to-one "the child" "the family" "the child's family"

One-to-many Global "the child" "the children"

Many-to-many "the child" "the friend" "the child's friends"

Self-referential one-to-one "the child" "the child" "the child's twin"

Choose attribute text
Selecting correct attribute wording is fundamental to capturing logic accurately in your Oracle Policy Modeling
application and conveying information to a user in a meaningful way. Specifically, attribute text influences:

l The logic of a rule condition
The logic of a rule is not just captured in the rule levels. There is intrinsic logic in the construction of a sentence and the neg-
ation of that sentence. For example: "No child appears in the photo" will be negated as "no child does not appear in the
photo" which is logically incorrect.

l The connections between rules
Rules are connected in the rulebase using plain text matching. A condition of one rule will only be automatically linked to the
conclusion of another rule if the text is exactly the same. For example, the text "the doctor’s waiting room is full" will not
automatically connect to "the doctors’ waiting room is full" as the apostrophe is in a different place in the sentence.

l The display of question text on interview screens
The user will see the wording of the attribute on any question screens created for the application unless you override this
text.

l The wording of attributes in decision reports
The decision report is an important mechanism for understanding how the rules are operating. Incorrect attribute text will
make it more difficult to debug errors andmay mislead or confuse users.

Choose boolean attribute text
The following general principles apply to the writing of Oracle Policy Modeling boolean attributes.
1. Boolean attributes should be complete grammatical sentences
An Oracle Policy Modeling boolean attribute must include at a minimum a subject and verb. The subject is what
or who the sentence is about. The verb tells us something about the subject. Most sentences also contain an
object which is the thing the action is being performed on.
Examples of grammatical sentences are:

the investigation continued (subject – verb)
the lion stalked the gazelle (subject – verb – object)

2. Boolean attributes should generally be written in the past tense
The tense of a verb is used to indicate when the action took place. Your top level goal should usually be worded
in the present tense as it describes the current state of affairs. However, everything below the top level goal
should be written in the past tense as it describes what occurred for the top level conclusion to have been
reached.
For example:

the person is eligible for an award (PRESENT TENSE) if

the person has demonstrated exceptional conduct (PAST TENSE)

the person has demonstrated exceptional conduct (PAST TENSE) if

the person has been commended by peers (PAST TENSE)

This principle applies regardless of the tense of the source material.
3. Boolean attributes should be written in the third person
In English grammar we make a distinction between the speaker/s (I, we), the addressee (you), and the one/th-
ing spoken about (he, she, it, they). This is known as person: first, second and third person, respectively.
Boolean attributes should be written in the third person. (Note that there is a mechanism in Oracle Policy Model-
ing for switching attribute forms to second person for use in interviews.)
For example:

the person can go to the movies
the person has done a good job

Rather than:

I can go to the movies
you have done a good job

4. Boolean attributes must be able to be negated
Some boolean attributes can be difficult to negate and for this reason should be avoided.
Examples are attributes which use the conjunctions 'and' and 'or'. In these attributes ambiguity can result from
the negation of the attribute as we don't necessarily know how the negation of the verb should affect each of the
components. For instance, let's look at the attribute "the cat and the dog ate the man's dinner".
If this attribute is false, this could mean that:

i. neither the cat or the dog ate the man's dinner

ii. the cat ate the man's dinner but the dog did not

iii. the dog ate the man's dinner but the cat did not

Given that there are three possible interpretations means that this attribute cannot be negated conclusively and
should not be used.
5. Boolean attributes should represent a single concept
In many instances, it may be tempting to word an attribute that could be split into two separate clauses as a

single attribute.
However, if it is likely that part of the attribute is going to be used in other attributes, it is best to separate it
into two attributes which each represent distinct concepts.
6. Boolean attributes should not use contractions
Contractions are used in more informal styles of writing and speech and should not be used in Oracle Policy
Modeling attributes.
For example, rather than "there's an application pending", you should write "there is an application pending".
7. Boolean attributes should make sense without reference to another attribute
Each boolean attribute should be meaningful without reference to another. To do otherwise makes the rulebase
more difficult to develop, maintain and audit.
The following are examples of attributes which do not make sense in isolation:

l This section has been satisfied

l That discussion was recorded

l The person qualifies for the reasons above

l The latest of these two dates applies

8. Boolean attributes should be kept simple but explicit
The wording of the attribute should be as simple as possible while still retaining its full intended meaning.
9. Boolean attributes should indicate entity membership
If the attribute belongs to an entity, the exact text of the entity should be included in the attribute text to make
it clear which entity it belongs to. For example, if you have an entity 'the child', then attributes which belong to
that entity group should include the text "the child":

the child is happy
the child’s toy is educational
the birthdate of the child

10. Boolean attributes should not use personal pronouns
A variable can be replaced with the appropriate pronoun the second (and any subsequent times) the variable is
used in a boolean attribute. For example, if we had a variable 'the claimant' we could write a boolean attribute
'the claimant owns the claimant's home' and then once we know the name and gender of the claimant this would
be rendered as 'John owns his home'. This is preferable to hard-coding "his/her" or "their" in the attribute text.
11. Boolean attributes which refer to amounts should indicate the unit of measurement
Boolean attributes which refer to amounts should specify the unit of measurement to avoid any ambiguity. For
example:

the person was 100 feet from the scene of the crime

See also:

l Basic English grammar

Choose non-boolean attribute text
When creating non-boolean attributes (variables) the following guidelines apply:
1. Non-boolean attributes need to start with the definite article 'the'

The definite article 'the' is used to refer to some specific thing (in contrast to the indefinite article 'a' or 'an'
which does not refer to one specific thing). As variables are always referring to a particular thing, they must
start with 'the'. For example,
the claimant's name
the type of animal
the price of the car
2. Non-boolean attributes should indicate entity membership
If a variable belongs to an entity, the text of the entity should be included in the variable text to make it clear
which entity it belongs to. For example, if you have an entity 'the child', then variables which belong to that
entity group should include the text "the child":
the child's age
the child's date of birth
the school that the child attends
3. Non-boolean attributes which refer to amounts should indicate the unit of measurement
To make it clear what unit of measurement is expected for amount variables, this should be included in the vari-
able text. For example:
the distance between home and work (kilometers)
the weight of the truck (tonnes)
4. Non-boolean attributes should reference their source
References to values derived in other sections of the material should explicitly state the origin of these values in
the variable text.

Document the naming convention for a project
A Rulebase Naming Conventions document should be created at the start of every Oracle Policy Modeling pro-
ject to clearly set out a consistent method of wording attributes. This is critical because automatic linking will
only work when attributes are an exact text match. If different rule developers use different text when creating
separate chunks of rules the attributes will not tie together. The Rulebase Naming Conventions document should
define which nouns will be capitalized and whether particular acronyms should be used.
The Rulebase Naming Conventions document can be kept in the Oracle Policy Modeling project under Docu-
ments/Design.

Choose a data type for an attribute
When you create a new attribute you need to define the type of attribute it is, based on the kind of information it
represents.
The table below shows the types of attributes that are supported in Oracle Policy Modeling:

Attribute
type

Icon When used Example

Boolean for statements the claimant is eligible for family benefits

Currency
for amounts of
money

the claimant's annual income

Attribute
type

Icon When used Example

Number
for any type of
number

the claimant's age

Text for text strings the claimant's name

Date for date values the claimant's date of birth

Date and
time

when a date and
time together is
needed

the date and time of the car accident

Time of
day

for times of day the store's opening time

Note that for datetime and time of day attributes, you have the option in the Attribute Editor to specify whether
seconds will be displayed. If 'Display seconds' is unchecked, any seconds values entered in Web Determinations
will be discarded.
The format that values of non-boolean attributes (variables) must take in rules is specified in Use constant val-
ues in rules.
The format that values of attributes must take when being entered into input fields, and the format as they
appear in decision reports, is specified in Formatting of attribute values.

Use variables in rules
Variables can be used in rules as conditions and as conclusions. For example, you might want to prove the per-
son's age (a number) from a person's date of birth (a date) and perhaps use this attribute as a condition determ-
ining whether the person is over the age of 18 (a boolean).

What do you want to do?
Specify the value for a variable in a rule
Use a variable in a condition
Use a variable in a mathematical calculation in a rule conclusion
Use a variable in a straight calculation in a rule calculation

Specify the value for a variable in a rule
To avoid ambiguity, the Oracle Policy Modeling compiler enforces strict formatting on the values of variables
where the value is explicitly used in a rule. For the formatting requirements and other considerations when set-
ting the value of a variable in a rule, see Use constant values in rules.

Use a variable in a condition
Like boolean attributes, variables can be used as conditions in any rule proving another attribute. When using
variables in conditions you must state the value, or range of acceptable values, that are sufficient to satisfy the

condition. To do this, you must use one of the standard logical operators. The value of the attribute may either
be compared to a fixed value ("= 18") or to the value of another attribute ("= the spouse's date of birth").
NOTE: Where two variable attributes are being compared, they must be of the same variable type. When com-
paring a variable attribute with a constant value, the value must be in the specified format for that type of vari-
able attribute. See Use constant values in rules for more information.

Operator Example

Greater than (>)
the person is over 18 if

the person's age > 18

Less than (<)
the employee is early for work if

the time the employee starts work < the specified
start time for the employee

Equals (=)

the person was born on the same day as the per-
son's spouse if

the person's date of birth = the person's spouse's
date of birth

Not equal to (<>)
the pet is not a monkey if

the type of pet <> "monkey"

Greater than or equal to (>=)
the applicant is eligible for a loan if

the applicant's annual income >= 50000

Less than or equal to (<=)
the submission is valid if

the submission's date and time <= the latest sub-
mission date and time

Use a variable in a mathematical calculation in a rule conclusion
It is possible to perform a variety of mathematical calculations using variables. These operations include:

l standard arithmetic calculations (eg addition, subtraction, multiplication, division)

l mathematical expressions (eg square root, round, truncation)

For the full list of supported operators and functions, see Numerical functions in the function reference.
For example,

the cost of the school lunch = the cost of the meat pie + the cost of the bag of the chips + the cost of the
soft drink - the amount of the student discount

the person's share of household income = (the person's income + the partner's income)/2

TIP: Whilst the standard mathematical preference is applied to operators in the absence of parentheses (ie divi-
sion, multiplication, addition, subtraction), you should make the order explicit with the use of parentheses.

Use a variable in a straight calculation in a rule conclusion
In the same way that a boolean attribute is set to a value when used in a rule conclusion, a variable can be
assigned a value in a conclusion. For example, for the variable "the passenger’s allowance in Australian dollars"
we can write the following rule:

the passenger's allowance in Australian dollars = 350

In this case, no conditions are required so the value is always inferred. Therefore, no alternative conclusion is
produced.

See also

l Walkthrough: Creating and using a variable in a rule

l Formatting of variable values

l Use constant values in rules

Walkthrough: Creating and using a variable in a rule
This walkthrough will demonstrate how to create a variable and use it in a rule.

Source material
Take, for example, the following source material:

the claimant is eligible for a loan if the claimant’s annual income is more than $15000

Creating the variable
To create a variable to represent "the claimant’s annual income":

1. In Oracle Policy Modeling, double click the properties file in the Project Explorer to open it for editing.

2. On the Attributes tab, right-click and selectNew Attribute...

3. In the Public name field, enter "claimant_income".

4. In theData type drop-down list, selectCurrency.

5. In the Text field, enter "the claimant’s annual income".

6. Click OK to create the variable.

Using the variable in a Word rule
To use this variable in a rule in your Word document:

1. In Oracle Policy Modeling, double click the Word rules file in the Project Explorer to open it for editing.

2. On a blank line, type "the claimant is eligible for a loan", then click the Conclusion button on the Oracle Policy Modeling
toolbar or use the shortcut key Alt+C.

3. Place the cursor at the end of this line and press the Enter key to create a condition line.

4. Type "the claimant's annual income > 15000". Your rule should look like this:

the claimant is eligible for a loan if

the claimant's annual income > 15000

Use constant values in rules
Constant values can be used to set variable attributes in your rules, or in rule comparisons or calculations.
There are some formatting and value requirements to keep in mind when writing your rules in Word or Excel, as
detailed below.

Variable type Format Range Example rule Notes

Number
Any number (supports
decimals)

Approximately
30 significant
figures may
be used for
very small or
very large
numbers, oth-
erwise approx-
imately 15 can
be used.

the number of ants on the property =
15,000

Treatment of
commas ",",
periods "." and
spaces " " as
decimal and
thousand sep-
arators are
based on the
Region settings
for the rule-
base project.
Scientific nota-
tionmay not be
used. There
are also con-
siderations in
formatting of
numeric values
in functions.

Currency
Any number (supports
decimals)

Approximately
30 significant
figures may
be used for

the person's savings (in dollars) = 534.50

Leading $ and
£ symbols may
be used if this
enhances read-

Variable type Format Range Example rule Notes

very small or
very large
numbers, oth-
erwise approx-
imately 15 can
be used.

ability of your
rules, how-
ever, note that
the formatting
of attributes
values will be
determined by
the rulebase
region setting
when the rule-
base is run.

Text

Any string of alpha-
numeric characters may
be used, enclosed by
double quotes ".

The limit to
the length of a
text string
depends on
Word/Excel
and your sys-
tem, and
should not be
a practical lim-
itation in your
rule authoring.

the household's location = "New York"

To enter a
double quote
character into
the text string
itself inWord,
precede it with
a backslash
character "\".
For example,
using the string
"the child said
\"Hello\"" will
produce: the
child said
"Hello". Double
quote char-
acters may be
entered dir-
ectly in Excel
and will be
treated as
entered,
except where
they surround
the entire text
string in which
case they are
ignored.

Date yyyy-MM-dd
0002-01-01 to
9998-12-31

the date of the last interest rate rise =
2007-10-25

Oracle Web

Variable type Format Range Example rule Notes

Determinations
(OWD) has a
slightly dif-
ferent range of
acceptable
dates (0001-
01-02 to 9999-
09-09). When
writing rules to
set constant
values for date
variables, the
relevant date
range restric-
tion is the
Oracle Policy
Modeling
(OPM) restric-
tion, not the
OWD restric-
tion. For
example, a
rule attempting
to set a date
variable to the
value 9999-01-
01 will cause a
compile error
in OPM, even
though OWD
can process a
date of 9999-
01-01 as an
input. By con-
trast, the date
9999-12-31
will cause
errors in both
OWD and OPM.
That is, a rule
attempting to
set a date vari-
able to the
value 9999-12-

Variable type Format Range Example rule Notes

se a compile
error in OPM,
and an attempt
to input the
date 9999-12-
31 will cause
an error in
OWD.

Time of day hh:mm:ss
00:00:00 to
23:59:59

the store closing time = 17:30:00

Date and time yyyy-MM-dd hh:mm:ss

In the ranges
detailed above
for date and
time values

the submission date time = 2009-08-12
17:30:00

Time zones are
not varied
within the
scope of a
single rule-
base, ie there
is a single time
zone for a rule-
base, which is
taken to be
that of the
server on
which it is run-
ning. If custom
processing is
required to
handle multiple
time zones
within a rule-
base, a custom
functionmay
be imple-
mented to per-
form this.

To see the way Oracle Policy Modeling formats data values in other places such as the debugger or Oracle Web
Determinations, see Formatting of variable values.

See also:

l Use variables in rules

Check if a value is within a certain range
To check whether a value is within a certain range (eg the claimant is aged between 18 and 25), you write a rule
with two conditions. The first condition is used to check if the value is greater than the lower end of the range,
while the second condition is used to check if the value is less than the upper end of the range. The two con-
ditions must be connected by an and.

For example:

the claimant is in the eligible age group if

the claimant's age >= 18 and

the claimant's age <= 25

See also:

l Use variables in rules

l Comparison operator rule examples

Create a synonym for a variable
You can define synonyms for variables in your rules to make rules more succinct. To create a synonym for a
variable in Word:

1. Put the cursor on a new blank line in your rule document. Type the synonym using the following syntax: <synonym
text> is <variable text>.

2. Click the Table Legend button on the Oracle Policy Modeling toolbar.
TIP: Alternatively you can use the keyboard shortcutAlt+L.

3. Thereafter in your rules document you can refer to the variable using just the synonym text.

Example

a is the cost of school fees
b is the cost of school uniforms
c is the cost of school excursions

the total school cost = a + b + c

Convert a text string into a number or date
To convert a text string into a number, you can use the following syntax with the Number function:

l <number variable> = Number(<text>)

In combination with the Substring function, you could use the Number function to extract the number part of a
text string to a number variable. For example:

the number at the end of the course code = Number(Substring(the course code, 4, 4))

If the course code was LAWS2001, this rule would infer the number at the end of the course code to be 2001.

To convert a text string into a date, you can use the following syntax with the Date function:

l <date variable> = Date (<text>)

The text string in these functions can be either a value or a variable. If it is a value it must be in quotation
marks (eg "2000-04-17").

Convert a number or date into a text string
To convert a number or date (including date and time, and time of day attributes) into a text string, you can use
the following syntax with the Text function:

l <text variable> = Text(<variable>)

For example:

the date of effect text = Text(the date of effect)

See also:

l Text function reference

Combine multiple text strings into a single text variable
To combine the values of two or more variables or text strings into a single text value, you use the string con-
catenation function. For example, you might want to combine 'the person's first name' (Harriet) with 'the per-
son's last name' (Jones) to create 'the person's name' (Harriet Jones).
The concatenation function is commonly used to create variables that can be substituted into screen headings
and labels.

The syntax for using the string concatenation function is:

l the concatenation of <text1> & <text2> & ...

l <text1> & <text2> & ...

For example:

the person’s name = the concatenation of the person’s first name & " " & the person's last name

NOTE: The (" ") part of the rule will insert a blank space between the first name and the last name. Similarly
you could use (", ") to insert a comma and blank space in between text variables.
TIP: You can use variables of any type with this function. Values are formatted using the formatter that is
installed in the rule session (refer to the topic Formatter Plugin Overview in the Oracle Policy Automation
Developer's Guide for more information about formatters). To convert individual non-text variables into text,
use the Text function.

Extract part of a text string
To extract a substring from a text string you use the Substring function.

The syntax for using the substring function is:

l Substring("<text>", <offset>, <length>)

To use the substring function you need to specify:

a. the offset number - this represents the number of characters from the beginning of the string, including spaces.

b. the length number - this is the number of characters collected, starting at the offset point.

For example, to extract the substring 'johns' from the text string 'johnsmith' you could write the following rule:

username = Substring("johnsmith", 0, 5)

Check if a text string contains a given substring
You can check whether a text string contains a particular substring, at the start, end or anywhere within the text
string. Either of these text strings can be text variables or text constants. The text comparison is case-insens-
itive.

What do you want to do?
Check if a text string contains a particular substring
Check if a text string contains a particular substring at the start of the string
Check if a text string contains a particular substring at the end of the string

Check if a text string contains a particular substring
To determine if a particular string is contained anywhere in a text variable or text constant, you can use the fol-
lowing syntax with the Contains function:

l Contains(<text value>, <text substring>)

l <text value> contains <text substring>

For example:

the system is using US English if

the system code contains "en-US"

Check if a text string contains a particular substring at the start of the string
To determine if a particular string is contained at the start of a text variable or text constant, you can use the fol-
lowing syntax with the StartsWith function:

l StartsWith(<text value>, <text substring>)

l <text value> starts with <text substring>

For example:

the record was created before 2000 if

the record identification code starts with "19"

Check if a text string contains a particular substring at the end of the string
To determine if a particular string is contained at the end of a text variable or text constant, you can use the fol-
lowing syntax with the EndsWith function:

l EndsWith(<text value>, <text substring>)

l <text value> ends with <text substring>

For example:

the person has a government email address if

the person's email address ends with ".gov"

Check if a text string is a number
To check whether a text string is a number, ie whether it contains only valid number characters, you can use the
following syntax with the IsNumber function:

l IsNumber(<text value>)

l <text value> is a number

For example, to check that an identification number contains only valid number characters, you would write the
following rule:

the identification number is valid if

the identification number is a number

The text value may be a text attribute, text constant or any expression that returns a text constant.
TIP: any valid number characters may be present in the text string, eg minus sign, decimal point, etc.

Find the length of a text string
To find the length of a text string, ie the number of characters it contains, you can use the following syntax with
the Length function:

l Length(<text value>)

l the length of <text value>

For example, to check that an identification number is the correct length (10 characters in this case), you would
write the following rule:

the identification number is valid if

the length of the identification number = 10

The text value may be a text attribute, text constant or any expression that returns a text constant.

Get a date, day, month or year
There are functions which you can use in your rules to get particular dates, days, months or years.

What do you want to do?
Get today's date
Get the day component of an input date
Get the month component of an input date
Get the year component of an input date
Get the date from a date and time
Get a date formed from a specified year, month and day

Get today's date
To insert the system date into a rule, you use the Current Date function. To do this you insert the words "the cur-
rent date" in the rule. NOTE: These words operate as a function and should therefore not be added as a variable
attribute.
For example, the following comparison:

the date of assessment = the current date

will infer the date of assessment to be 12/12/2008 if the rule is run on 12/12/2008.
The current date can also be used as an input date in a calculation. For example:

the date 2 weeks from today = the date 2 weeks after the current date

will infer the date 2 weeks from today to be 26/12/2008 if the rule is run on 12/12/2008. Here the current date
is the input date in an Add Weeks function.
NOTE: The Current Date function returns the system date at the start of the session.

Get the day component of an input date
To extract the day component of an input date (or date time), you use the Extract Day function. For example:

the day of expiry = ExtractDay(2009-01-08)

will infer the day of expiry to be 08. Note that the input date can be a constant as in this example, or a variable,
as in the example below:

the day of expiry = ExtractDay(the use-by date on the packet)

Get the month component of an input date
To extract the month component of an input date (or date time), you use the Extract Month function. For
example:

the birth month = ExtractMonth(2004-11-21)

will infer the birth month to be 11. Note that the input date can be a constant as in this example, or a variable,
as in the example below:

the birth month = ExtractMonth(the date of birth)

Get the year component of an input date
To extract the year component of an input date (or date time), you use the Extract Year function. For example:

the year the warranty expires = ExtractYear(2013-11-21)

will infer the year the warranty expires to be 2013. Note that the input date can be a constant as in this
example, or a variable, as in the example below:

the year the warranty expires = ExtractYear(the date 5 years after the purchase date)

Get the date from a date and time
To extract the date from a date and time attribute, you use the ExtractDate function. For example:

the date of manufacture = ExtractDate(the datetime of manufacture)

will infer the date of manufacture to be 2011-12-05 when the datetime of manufacture is 2011-12-05 11:31:45.

Get a date formed from a specified year, month and day
To form a date from a specified year, month and day, you use the Make date function. For example:

the calculation date = MakeDate(2007, 10, 17)

would make the calculation date 17-10-2007.

See also:

l Date function reference

l Date function rule examples

Get a time, second, minute or hour
There are functions which you can use in your rules to get particular times, seconds, minutes or hours.

What do you want to do?
Get the second component of an input time
Get the minute component of an input time
Get the hour component of an input time
Get the time of day from a date and time
Get the time of day from a text string

Get the second component of an input time
To extract the second component of an input time (ie from a time of day variable or a date time variable), you
use the Extract Second function. For example:

the second component of the submission time = ExtractSecond(16:30:42)

will infer the second component of the submission time to be 42. Note that the input time can be a constant as in
this example, or a variable, as in the example below:

the second component of the submission time = ExtractSecond(the submission time)

In all cases the value returned is a number.

Get the minute component of an input time
To extract the minute component of an input time (ie from a time of day variable or a date time variable), you
use the Extract Minute function. For example:

the minute component of the submission time = ExtractMinute(16:30:42)

will infer the minute component of the submission time to be 30. Note that the input time can be a constant as in
this example, or a variable, as in the example below:

the minute component of the submission time = ExtractMinute(the submission time)

In all cases the value returned is a number.

Get the hour component of an input time
To extract the hour component of an input time (ie from a time of day variable or a date time variable), you use
the Extract Hour function. For example:

the hour component of the submission time = ExtractHour(16:30:42)

will infer the hour component of the submission time to be 16. Note that the input time can be a constant as in
this example, or a variable, as in the example below:

the hour component of the submission time = ExtractHour(the submission time)

In all cases the value returned is a number.

Get the time of day from a date and time
To extract the time of day from a date and time attribute, you use the Extract Time of Day function. For
example, to determine the current time (ie at the start of the session), you would use the Current Date Time
function and extract the time from it using the Extract Time of Day function:

the current time = ExtractTimeOfDay(the current date time)

This will infer the current time to be 15:30:00 if the rule is run on 2008-12-12 at 15:30:00.

Get the time of day from a text string
To convert a text string into a time of day variable, you use the Time Of Day function. For example:

the latest submission time = TimeOfDay("17:00:00")

will infer the latest submission time to be 17:00:00 if the text string is "17:00:00".

See also:

l Time of day function reference

l Time of day function rule examples

l Date and time function reference

l Date and time function rule examples

Get a date and time
There are functions which you can use in your rules to get a particular date and time.

What do you want to do?
Get the current date and time
Get a date and time by joining together a separate date and time
Get a date and time from a text string
Get a date and time by adding or subtracting a specified number of hours to another date and time
Get a date and time by adding or subtracting a specified number of minutes to another date and time
Get a date and time by adding or subtracting a specified number of seconds to another date and time

Get the current date and time
To insert the system date and time into a rule, you use the Current Date Time function. For example, the fol-
lowing comparison:

the date and time of the investigation = CurrentDateTime()

will infer the date and time of the investigation to be 2007-11-12 15:37:00 if the rule is run on 2007-11-12 at
15:37:00.
NOTE: The Current Date Time function returns the system date/time at the start of the session.

Get a date and time by joining together a separate date and time
To set a date and time from a separate date and a separate time, you use the Concatenate Date Time function.
For example:

the latest submission time = ConcatenateDateTime(the submission date, the submission closing time)

will infer the latest submission time to be 2010-01-15 17:00:00 if the submission date is 2010-01-15 and the sub-
mission closing time is 17:00:00.

Get a date and time from a text string
To set the value of a date and time variable from a text string, you use the DateTime function. For example:

the latest submission date and time= DateTime(the submission date and time specified on the application
form)

will infer the latest submission date and time to be 2012-12-31 18:00:00 if the submission date and time spe-
cified on the application form is a text variable with the value of 2012-12-31 18:00:00.

Get a date and time by adding or subtracting a specified number of hours to another date and time
To add or subtract a specified number of hours to an input date and time to get a new date and time, you use the
Add Hours function. For example:

the start datetime for the B grade runners = the time 2 hours before the start datetime for the A grade run-
ners

will infer the start datetime for the B grade runners to be 2011-02-03 08:00:00 if the start datetime for the A
grade runners is 2011-02-03 10:00:00.

Get a date and time by adding or subtracting a specified number of minutes to another date and time
To add or subtract a specified number of minutes to an input date and time to get a new date and time, you use
the Add Minutes function. For example:

the datetime that the parking meter expires = the time 60 minutes after the datetime that the parking fee
was paid

will infer the datetime that the parking meter expires to be 2012-10-10 12:04:17 if the datetime that the park-
ing fee was paid is 2012-10-10 11:04:17.

Get a date and time by adding or subtracting a specified number of seconds to another date and time
To add or subtract a specified number of seconds to an input date and time to get a new date and time, you use
the Add Seconds function. For example:

the completion datetime = AddSeconds(the start datetime, 30)

will infer the completion datetime to be 2009-01-01 16:30:00 if the start time is 2009-01-01 16:29:30.

See also:

l Date and time function reference

l Date and time function rule examples

Get the latest or earliest date or time
To get the latest or earliest date, date and time, or time of day, you use the Maximum and Minimum functions.

l Maximum(<date/timeofday/datetime1>, <date/timeofday/datetime2>)

l the latest of <date/timeofday/datetime1> and <date/timeofday/datetime2>

l Minimum(<date/timeofday/datetime1>, <date/timeofday/datetime2>)

l the earliest of <date/timeofday/datetime1> and <date/timeofday/datetime2>

For example, to get the date of the most recent event, you could write

the most recent event date = the latest of the date of the annual Arts Festival and the date of the annual
Music Festival

If the date of the annual Arts Festival was 2001-05-05 and the date of the annual Music Festival was 2001-03-
15, then the most recent event date is 2001-05-05.

To get the earliest completion time of two teams, you could write:

the earliest completion time = Minimum(the completion time of Team A, the completion time of Team B)

If the completion time of Team A is 16:45:02, and the completion time of Team B is 16:14:18, then the earliest
completion time is 16:14:18.

Calculate a relative date
There are functions that you can use in your rules to calculate a date relative to another date. You can use both
constants and variables for both date and number inputs in these rules.

What do you want to do?
Get the date of the next or previous specified day
Add or subtract a specified number of days to an input date
Add or subtract a specified number of weeks to an input date
Add or subtract a specified number of months to an input date
Add or subtract a specified number of years to an input date

Get the date of the next or previous specified day
To get the date of the next or previous specified day (eg Monday, Tuesday etc) following an input date, you use
the Next/Previous Day of the Week function. For example,

the first Thursday of October = the next Thursday on or after 2009-10-01

the last Monday of April = the Monday on or before 2009-04-30

Add or subtract a specified number of days to an input date
To add or subtract a specified number of days to an input date to get a new date, you use the Add Days function.
For example,

the settlement date for the property = the date 42 days after 2009-04-17

the date of the auction listing = the date 9 days before the auction completion date

Add or subtract a specified number of weeks to an input date
To add or subtract a specified number of weeks to an input date to get a new date, you use the Add Weeks func-
tion. For example,

the end date of the exclusion period = the date 2 weeks after the date of contraction

the date the books were borrowed = the date 3 weeks before the due date of the books

Add or subtract a specified number of months to an input date
To add or subtract a specified number of months to an input date to get a new date, you use the Add Months func-
tion. For example,

the waiting period end date = the date 6 months after 2008-10-16

the date the wedding invitations should be sent by = the date 2 months before the wedding date

Add or subtract a specified number of years to an input date
To add or subtract a specified number of years to an input date to get a new date, you use the Add Years func-
tion. For example,

the warranty expiry date = the date 5 years after the date of purchase

the date the application was lodged = the date 2 years before 2006-12-23

See also:

l Date function reference

l Date function rule examples

Find a date in a year
There are functions that you can use to find particular dates in a year.

What do you want to do?
Find the first date in the year
Find the last date in the year
Find the next instance of the given day/month
Find the start or the end date for the previous or next UK tax year

Find the first date in the year
You use the Year Start function to return the first date in the year in which the input date falls. For example,

the start of the relevant year = the first day of the year in which 2000-08-07 falls

would infer the start of the relevant year to be 01/01/2000.

Find the last date in the year
You use the Year End function to return the last date in the year in which the input date falls. For example,

the end of the relevant year = the last day of the year in which 2002-03-24 falls

would infer the end of the relevant year to be 31/12/2002.

Find the next instance of the given day/month
You use the Next Date function to return the next instance of the given day/month. For example,

the end of the next Australian tax year = NextDate(the current date, 30, 6)

would infer the end of the next Australian tax year to be 30/6/2010 if the current date is 21/07/2009.

Find the start or the end date for the previous or next UK tax year
You use the UK Tax Year functions to return the start or the end date for the previous or next UK tax year, rel-
ative to the input date. (The start date of the UK tax year is 6 April, and the end date is 5 April.) For example,

the previous UK tax year start date = the previous UK tax year start date on or before 2005-06-01

the next UK tax year end date = the next UK tax year end date on or after 2007-11-07

The first of these rules would infer that the previous UK tax year start date is 06/04/2005, and the second rule
would infer that the next UK tax year end date is 05/04/2008.

See also:

l Date function reference

l Date function rule examples

Count periods between two dates or times
There are functions that you can use in your rules to count the number of days, weeks, months or years
between two input dates, or the number of seconds, minutes or hours between two times.

What do you want to do?
Count the number of weekdays between two dates
Count the number of whole days between two dates
Count the number of whole weeks between two dates
Count the number of whole months between two dates
Count the number of whole years between two dates
Count the number of seconds between two times
Count the number of whole minutes between two times
Count the number of whole hours between two times

Count the number of weekdays between two dates
To count the number of weekdays between two dates, you use the Weekday Count function. The earlier input
date is inclusive and the later input date is exclusive. For example:

the number of business days in May 2009 = the number of weekdays (inclusive) between 2009-05-01 and
2009-06-01

would calculate the number of business days in May 2009 to be 21. Note that if the first date in the function is
after the second date, then the result will be 0.

Count the number of whole days between two dates
To count the number of whole days between two dates, you use one of the day difference functions.
The Day Difference function returns the number of whole days between two dates. This calculation includes only
one endpoint. For example:

the number of days in the billing period = DayDifference(2007-12-01, 2007-12-14)

would calculate the number of days in the billing period to be 13.
The Day Difference Inclusive function returns the number of whole days (inclusive) between two dates. This cal-
culation includes both endpoints. For example:

the number of days in the billing period = DayDifferenceInclusive(2007-12-01, 2007-12-14)

would calculate the number of days in the billing period to be 14.

The Day Difference Exclusive function Returns the number of whole days (exclusive) between two dates. This
calculation excludes both endpoints. For example:

the number of days in the billing period = DayDifferenceExclusive(2007-12-01, 2007-12-14)

would calculate the number of days in the billing period to be 12.
Date and time values and variables can also be used in these functions.
Note that the order of the two dates (or datetimes) in the function does not affect the result.

Count the number of whole weeks between two dates
To count the number of weeks between two dates, you use one of the Week Difference functions.
The Week Difference function returns the number of whole weeks between two dates. This calculation includes
only one endpoint. For example:

the number of weeks until the baby is due = WeekDifference(the current date, the baby's due date)

If the current date is 26/6/2009 and the baby's due date is 25/12/2009, the number of weeks until the baby is
due is 26.
The Week Difference Inclusive function returns the number of whole weeks (inclusive) between two dates. This
calculation includes both endpoints. For example:

the number of weeks until the baby is due = WeekDifferenceInclusive(the current date, the baby's due
date)

If the current date is 26/6/2009 and the baby's due date is 25/12/2009, the number of weeks (inclusive) until
the baby is due is 27.
The Week Difference Exclusive function returns the number of whole weeks (exclusive) between two dates. This
calculation excludes both endpoints. For example:

the number of weeks until the baby is due = WeekDifferenceExclusive(the current date, the baby's due
date)

If the current date is 26/6/2009 and the baby's due date is 25/12/2009, the number of weeks (exclusive) until
the baby is due is 25.
Date and time values and variables can also be used in these functions.
Note that the order of the two dates (or datetimes) in the function does not affect the result.

Count the number of whole months between two dates
To count the number of months between two dates, you use one of the Month Difference functions.
The Month Difference function returns the number of whole months between two dates. This calculation includes
only one endpoint. For example:

the number of monthly repayments remaining = MonthDifference(2008-01-15, the final payment due
date)

If the final payment due date is 04/09/2009, the number of monthly repayments remaining is 19.
The Month Difference Inclusive function returns the number of whole months (inclusive) between two dates.
This calculation includes both endpoints. For example:

the number of monthly repayments remaining = MonthDifferenceInclusive(2008-01-15, the final payment
due date)

If the final payment due date is 04/09/2009, the number of monthly repayments remaining is 20.
The Month Difference Exclusive function returns the number of whole months (exclusive) between two dates.
This calculation excludes both endpoints. For example:

the number of monthly repayments remaining = MonthDifferenceExclusive(2008-01-15, the final payment
due date)

If the final payment due date is 04/09/2009, the number of monthly repayments remaining is 18.
Date and time values and variables can also be used in these functions.
Note that the order of the two dates (or datetimes) in the function does not affect the result.

Count the number of whole years between two dates
To count the number of years between two dates, you use one of the Year Difference functions.
The Year Difference function returns the number of whole years between two dates. This calculation includes
only one endpoint. For example:

the person's age = YearDifference(the person's date of birth, the current date)

If the person's date of birth is 31/10/1910 and the current date is 26/06/2009, the person's age is 98.
The Year Difference Inclusive function returns the number of whole years (inclusive) between two dates. This
calculation includes both endpoints. For example:

the person's age = YearDifferenceInclusive(the person's date of birth, the current date)

If the person's date of birth is 31/10/1910 and the current date is 26/06/2009, the person's age is 99.
The Year Difference Exclusive function returns the number of whole years (exclusive) between two dates. This
calculation excludes both endpoints. For example:

the person's age = YearDifferenceExclusive(the person's date of birth, the current date)

If the person's date of birth is 31/10/1910 and the current date is 26/06/2009, the person's age is 97.
Date and time values and variables can also be used in these functions.
Note that the order of the two dates (or datetimes) in the function does not affect the result.

Count the number of seconds between two times
To count the number of seconds between two times, you use one of the Second Difference functions with date
and time inputs.
The Second Difference function returns the number of whole seconds between two datetimes. This calculation
includes only one endpoint. For example:

the number of seconds between first place and second place = SecondDifference(the first place time, the
second place time)

If the first place time is 2008-06-30 09:31:05 and the second place time is 2008-06-30 09:31:10, then the num-
ber of seconds between first place and second place is 5.

The Second Difference Inclusive function returns the number of whole seconds (inclusive) between two dat-
etimes. This calculation includes both endpoints. For example:

the number of seconds between first place and second place = SecondDifferenceInclusive(the first place
time, the second place time)

If the first place time is 2008-06-30 09:31:05 and the second place time is 2008-06-30 09:31:10, then the num-
ber of seconds (inclusive) between first place and second place is 6.
The Second Difference Exclusive function returns the number of whole seconds (exclusive) between two dat-
etimes. This calculation excludes both endpoints. For example:

the number of seconds between first place and second place = SecondDifferenceExclusive(the first place
time, the second place time)

If the first place time is 2008-06-30 09:31:05 and the second place time is 2008-06-30 09:31:10, then the num-
ber of seconds (exclusive) between first place and second place is 4.
Note that the order of the two dates (or datetimes) in these functions does not affect the result.

Count the number of whole minutes between two times
To count the number of whole minutes between two times, you use one of the Minute Difference functions with
date and time inputs.
The Minute Difference function returns the number of whole minutes between two datetimes. This calculation
includes only one endpoint. For example:

the number of minutes late the plumber is = MinuteDifference(the time the plumber was meant to arrive,
the time that the plumber actually arrived)

If the time the plumber was meant to arrive is 2009-10-18 08:30:00 and the time that the plumber actually
arrived is 2009-10-18 09:00:40, then the number of minutes late the plumber is is 30.
The Minute Difference Inclusive function returns the number of whole minutes (inclusive) between two dat-
etimes. This calculation includes both endpoints. For example:

the number of minutes late the plumber is = MinuteDifferenceInclusive(the time the plumber was meant
to arrive, the time that the plumber actually arrived)

If the time the plumber was meant to arrive is 2009-10-18 08:30:00 and the time that the plumber actually
arrived is 2009-10-18 09:00:40, then the number of minutes (inclusive) late the plumber is is 31.
The Minute Difference Exclusive function returns the number of whole minutes (exclusive) between two dat-
etimes. This calculation excludes both endpoints. For example:

the number of minutes late the plumber is = MinuteDifferenceExclusive(the time the plumber was meant
to arrive, the time that the plumber actually arrived)

If the time the plumber was meant to arrive is 2009-10-18 08:30:00 and the time that the plumber actually
arrived is 2009-10-18 09:00:40, then the number of minutes (exclusive) late the plumber is is 29.
Note that the order of the two dates (or datetimes) in these functions does not affect the result.

Count the number of whole hours between two times
To count the number of whole hours between two times, you use one of the Hour Difference functions with date
and time inputs.

The Hour Difference function returns the number of whole hours between two datetimes. This calculation
includes only one endpoint. For example:

the number of hours the plane was delayed by = HourDifference(the scheduled arrival time of the flight,
the arrival time of the delayed flight)

If the scheduled arrival time of the flight is 2006-10-13 09:50:00 and the arrival time of the delayed flight is
2006-10-13 11:00:00, then the number of hours the plane was delayed by is 1.
The Hour Difference Inclusive function returns the number of whole hours (inclusive) between two datetimes.
This calculation includes both endpoints. For example:

the number of hours the plane was delayed by = HourDifferenceInclusive(the scheduled arrival time of the
flight, the arrival time of the delayed flight)

If the scheduled arrival time of the flight is 2006-10-13 09:50:00 and the arrival time of the delayed flight is
2006-10-13 11:00:00, then the number of hours (inclusive) the plane was delayed by is 2.
The Hour Difference Exclusive function returns the number of whole hours (exclusive) between two datetimes.
This calculation excludes both endpoints. For example:

the number of hours the plane was delayed by = HourDifferenceExclusive(the scheduled arrival time of the
flight, the arrival time of the delayed flight)

If the scheduled arrival time of the flight is 2006-10-13 09:50:00 and the arrival time of the delayed flight is
2006-10-13 11:00:00, then the number of hours (exclusive) the plane was delayed by is 0.
Note that the order of the two dates (or datetimes) in these functions does not affect the result.

See also:

l Date function reference

l Date function rule examples

Calculate the number of days in a month
Using a combination of date functions you can calculate the number of days in a given month.
Basically, you get the first day of the month, add a month to get the first day of the next month, and then get
the number of days between them, which will give you the number of days in the month of the specified date
("the date").
The rules are as follows:

the number of days in the month = DayDifference(the start of the month, the start of the next month)

the start of the month =MakeDate(the year, the month, 1)

the start of the next month = AddMonths(the start of the month, 1)

the year = ExtractYear(the date)

the month = ExtractMonth(the date)

Find the day from a date
To find the day from a particular date, you can use the modulo function with a date in the past that was a
Monday.
For example, we know that the 7th of January 1980 was a Monday, so every 7th day after that is also a Monday.
Subtracting this baseline date from the given date, and then using the modulo operator we can determine a num-
ber for each day of the week as follows:

the numerical form of the day of the week = (the date - 1980-01-07) modulo 7

This number can then be used in a rule table to find the day of the week:

the day of the week

"Monday" the numerical form of day of the week = 0

"Tuesday" the numerical form of day of the week = 1

"Wednesday" the numerical form of day of the week = 2

"Thursday" the numerical form of day of the week = 3

"Friday" the numerical form of day of the week = 4

"Saturday" the numerical form of day of the week = 5

"Sunday" the numerical form of day of the week = 6

uncertain otherwise

NOTE: Dates before the baseline date (eg before 1980-01-07) will give a negative modulo (ie Monday 0, Tues-
day -6, Wednesday -5, Thursday -4, Friday -3, Saturday -2, Sunday -1). You can either choose to write rules to
take this into account, or choose a baseline date so far in the past that it is unnecessary. If you want to take
earlier dates into account, you would need a rule table like this:

the day of the week

"Monday" the numerical form of day of the week = 0

"Tuesday"
the numerical form of day of the week = 1;
or
the numerical form of day of the week = -6

"Wednesday"
the numerical form of day of the week = 2;
or
the numerical form of day of the week = -5

"Thursday"
the numerical form of day of the week = 3;
or
the numerical form of day of the week = -4

"Friday" the numerical form of day of the week = 4;
or

the numerical form of day of the week = -3

"Saturday"
the numerical form of day of the week = 5;
or
the numerical form of day of the week = -2

"Sunday"
the numerical form of day of the week = 6;
or
the numerical form of day of the week = -1

uncertain otherwise

Data model
Topics in "Data model"

l Define a data model

l Create, modify or delete a properties file

l Define an entity

l Define a relationship

l Choose a name for an entity, relationship or attribute

l Choose a data type for an attribute

l Use an attribute in a rule

l Use an entity or relationship in a rule

l Rename an entity, attribute or relationship

l Remove an entity, attribute or relationship

l Visualize the data model

l Export or import a data model

l Check the rulebase against the data model

l Understand partial knowledge of relationships

l Understand containment relationships and entity completion

See also:

l View list of entities and attributes

l Find the entity for an attribute

l View and amend the data model while writing rules

Define a data model
A data model is defined using one or more properties files in an Oracle Policy Modeling project. These prop-
erties files contain the attributes, entities and relationships for the project. Having this information contained in
a properties file for the project, rather than in individual Word and Excel documents, eliminates the need to re-
add the same attributes, entities and relationships in each rule file.

Entities
An entity can represent a thing such as a person, a child or a corporation, about which attributes can be col-
lected. An entity can have multiple instances. For example, data can be collected and inferred about more than
one child in the same session.

Relationships
Relationships are the connectors between instances of an entity. By specifying the relationship you are spe-
cifying whether an instance of an entity is related to one or more of the instances of another (or even the same)
entity group.

Attributes
An attribute is a single unit of data or fact. An attribute is of a particular data type: boolean, text, number, cur-
rency, date, time of day or date and time, and the value of an attribute can be 'known' or 'unknown'. An attrib-
ute always belongs to a particular entity even if it is the global entity.

An example of a data model
Let's say we want to capture the entity relationships for a family who may have children. There may be twins
amongst the children. The children may go to school and the siblings may go to the same school or different
schools. Each child has friends which may be the same friends as their siblings but they each have a single best
friend who they do not share with other siblings.

Choose entities
We can capture this example using three entities:

l the child

l the friend

l the school

We do not need to create a separate entity for the twin, as we know the twin is one of the children. Similarly,
we do not need to create a separate entity for the best friend as we know that the best friend will be one of the
child's friends. We do not need to create an entity for the family as we do not need to enter multiple families, so
information about the family can be represented in the global entity.

Choose relationships
Containment relationships must be defined for each entity. Additional reference relationships are also defined
where required for the data model logic. In our case, we know that:

l a family (represented in the global entity) has children, so there must be a relationship between the global entity and
the child

l each child has a friend so there must be a relationship between the child and the friend

l each child has a best friend, so there must be a more specific relationship between the child and the friend

l some childrenmay be a twin so there must be a relationship between the child and itself

l children go to school, so there must be a relationship between the child and the school

We don't know:

l whether it is important to know, for a particular school, which children go to that school

l whether it is important to know, for a particular friend, which children they are friends with

We can either model these last two relationships 'just in case' or not capture these relationships. We have left
these relationships out of this example for simplicity.

Choose relationship types
Now we need to decide what type of relationship there is between each of the entities. There are two questions
you can ask yourself to help identify the type of relationship. (NOTE: The text in parentheses is the relationship
text.) This will also help you see which relationships can be containment relationships (which must be "to-one"
relationships to the containing entity).

l Global entity and Child (the children):
Canmore than one family have the same child? No.
Can there be multiple children in the family? Yes.
Therefore it must be a one-to-many relationship.
This will be the containment relationship for the child entity.

l Child and Friend (the child's friends):
Can the children share friends? Yes.
Can a child have more than one friend? Yes.
Therefore it must be amany-to-many relationship.

l Child and Friend (the child's best friend):
Can children share best friends? No.
Can a child have more than one best friend? No.
Therefore it must be a one-to-one relationship.

l Child and Child (the child's twin):
Canmore than one child share the same twin? No (otherwise it would be a triplet).
Can a child have more than one twin? No.
Therefore it must be a one-to-one self-referential relationship.

l Child and School (the child's school):
Can the children share a school? Yes.
Can a child go to more than one school? No.
Therefore it must be amany-to-one relationship.

l Containment relationships are also required for the Friend and School entities, since the above relationships for these entit-
ies are not suitable "to-one" relationships. We would define:

l Global entity and Friend (the friends): this is a one-to-many containment relationship.

l Global entity and School (the schools): this is a one-to-many containment relationship.

The relationships about which we wish to reason therefore look like:

See also:

l Create a properties file

l Define attributes

l Define entities

l Define relationships

Create, modify or delete a properties file
Properties files are created and managed in Oracle Policy Modeling. They are the only file type that allows for
persistence of the associated data.
Every project should have at least one properties file. This file should contain all the property information for
the attributes in the project. This file should also contain all of the data about entities and relationships in the
project. It is recommended that this file is named 'Properties' for consistency across projects. It should be cre-
ated in the Properties folder in Oracle Policy Modeling.
On larger projects with several developers it might make sense to have more than one properties file. For more
information, see Use multiple properties files on a multi-developer project.

What do you want to do?
Create a properties file
Modify a properties file
Delete a properties file

Create a properties file
To add a new properties file to your project:

1. In Oracle Policy Modeling, select the Properties folder in the Project Explorer.

2. Right-click and selectAdd New Properties File. A new properties file will be added to your project. The new file will
be selected and highlighted in the list.

3. Type a name for your properties file, for example, "Properties".

4. Save your project by selecting File | Save All from the mainmenu in Oracle Policy Modeling.

Modify a properties file
To make changes to a properties file:

1. In Oracle Policy Modeling, double-click the properties file in the Project Explorer. The file will open in the right hand pane.

2. Double-click on any item (eg an attribute, an entity, a relationship) to edit it.

3. Save your project by selecting File | Save All from the mainmenu in Oracle Policy Modeling.

Delete a properties file
To delete a properties file:

1. In the Project Explorer in Oracle Policy Modeling, right-click the properties file and selectDelete.

2. Click OK to confirm the permanent deletion.

TIP: To only remove the file from your Oracle Policy Modeling project (but not delete it from your file system as
well), right-click it in Oracle Policy Modeling and select Remove from Project.

Define an entity
An entity is a grouping of things with rules or data in common. An entity often represents a group of people (eg
children, applicants, stakeholders) but it can also represent a group of objects (eg textbooks), activities (eg
assignments) or concepts (eg school terms).
Entities may be used to allow the same rule to be applied multiple times to make a determination. For example,
you may have a rule to say that if any child of the applicant is of school age then the applicant is eligible for a
tax rebate. You may collect the details of each of the person's children in order to infer whether each child is of
school age, and from that infer whether or not the person is eligible.
Your rules might look something like this:
Rule 1:

the applicant is eligible for a tax rebate if

at least one of the applicant's children is of school age

Rule 2:

the child is of school age if

the child's age > 4

In this situation, the value of "the child's age" (base level) and "the child is of school age" (inferred) may be dif-
ferent for each instance of the child. For example:

Child 1 (Mary) Child 2 (Darryl)

the child's age = 2 the child's age = 6

the child is of school age = false the child is of school age = true

These attributes are called entity-level attributes. Rules which use entity-level attributes are called entity-level
rules.
A member of the entity group is called an entity instance. In the example above, Mary would be one instance of
"the child" entity and Darryl would be another instance of "the child" entity.

What do you want to do?
Understand the different types of entities
Create an entity
Give an entity a public name

Understand the different types of entities
There are two types of entities: regular entities and the global entity.

Entities

An entity can have zero or more entity instances. For example, children in a family, applicants on an applic-
ation form, taxable events in a tax period. Using entities you can apply the same rules, or collect the same
data, for multiple instances of an entity.
An attribute of an entity may hold one value at a time during an investigation for each instance of the entity.
That attribute may have as many values as there are instances of the entity, and will only operate within the
context of that entity instance.

Global Entities

Not all information relevant to your rules may belong to a particular entity. As such, Oracle Policy Modeling
has a global entity which acts as a catch-all for information that does not belong to any other entity. For
example "the sun is shining" is a global attribute that does not belong to the entity "the family, "the child" and so
forth.
An attribute of a global entity may only hold one value at a time during an investigation, and that value persists
across the entire rulebase, common to all entities and instances of entities.
The global entity is the default location of attributes. If you do not create entities in your rulebase, or if you cre-
ate an attribute which does not belong to another entity, the attribute will be stored in the global entity.
The following diagram shows how instances of a child in a family situation have entity attributes:

In the diagram, both children are in the same family and are going to the same holiday destination, but each
has their own distinct properties (entity attributes), such as name, age and favorite animal.

Create an entity
Entities are defined in a properties file for the project, rather than in individual Word and Excel documents. This
eliminates the need to re-define the same entities in each rule file.
To add an entity to a properties file:

1. In Oracle Policy Modeling, double-click the properties file in the Project Explorer. The file will open in the right hand pane.

2. Right-click on the Global entity (or other parent entity) in the Entities tab and selectNew Entity.

3. Type a name for the new entity, then press Enter. TIP: Entities should be named using the definite article 'the', eg 'the
family', 'the child', 'the friend', 'the school' etc.

The entity that you have added will now be displayed in the left-hand pane of the properties file:

After you have defined an entity in this way, every attribute which uses the exact entity text (eg 'the child')
becomes an entity-level attribute belonging to that entity.

When an entity is created:

1. a containment relationship is automatically created for the new entity, to ensure that the containment structure in the rule-
base data model is well-defined, and

2. an identifying attribute is automatically created for the new entity (see below).

Identifying attributes
The identifying attribute for an entity is the text attribute whose value is used for labeling instances of the entity
in decision reports, Web Determinations and the debugger. So for example, if you had 'the child' text attribute
as the identifying attribute for the entity 'the child', then after you have set values for 'the child' attribute (eg,
'Reid', 'Cohen' and 'Emery'), the child entity instances would be labeled accordingly.

As mentioned earlier, an identifying attribute is automatically created when a new entity is created.

By default, this text attribute has:

l The same text as the entity (eg 'the child').

l No public name defined.

l A gender of Generic (he/she). If the entity is something that does not have a gender, or has a specifically male or female
gender, you will need to change this setting. For more information on gender, see Substitute a gender pronoun for a text
variable.

l Substitution switched on. You need to consider if this is how youwant the attribute to operate. For more information on sub-
stitution, see Substitute the actual value of a variable for its text.

If you want to change any of these default settings you will need to edit the attribute. To do this:

1. In Oracle Policy Modeling, double click the properties file in the Project Explorer to open it for editing.

2. In the left hand pane, select the entity that the attribute belongs to.

3. On the Attributes tab in the right hand pane, double click the identifying attribute to open the Attribute Editor.

4. Make the necessary changes to the attribute.

5. Click OK.

To change the attribute that is used to identify an entity (or to specify one if there isn't one):

1. In Oracle Policy Modeling, double-click the properties file in the Project Explorer. The file will open in the right hand pane.

2. Double click the entity to open the Edit Entity dialog.

3. Click the browse button next to the Identifying attribute field.

4. In the Attribute Selector, select the appropriate attribute, then click OK.

5. Click OK again to close the Edit Entity dialog.

Give an entity a public name
You can define a public name for your entity in the same way as you can define a public name for an attribute of
an entity. The public name overrides the entity text. You should define a public name for an entity when the
entity name in the data model differs from the entity name in the source material.
To define a public name for an entity, do the following:

1. In Oracle Policy Modeling, double-click the properties file in the Project Explorer. The file will open in the right hand pane.

2. Double click the entity to open the Edit Entity dialog.

3. Enter a public name. Then click OK.

See also:

l Use an entity in a rule

l View list of entities and attributes

l Check attribute entity levels

Define a relationship
Relationships define how entities relate to one another. All entities must have a containment relationship
defined, which specifies the overall structure of the rulebase. In addition, reference relationships can be defined
between entities if appropriate for your data model. You need to have already defined your entities before you
can add reference relationships.
By specifying a relationship you are specifying whether an instance of an entity is related to one or more of the
instances of another (or even the same) entity group.
For example, if you have:

l An entity 'the person', and

l An entity 'the car', and

l A relationship from the person to the car 'the cars belonging to the person', and

l Instances of the entity 'the person' called "Tom", "Dick" and "Harry", and

l Instances of the entity 'the car' called "VW", "Mazda", "Holden" and "Ford".

Then there is a single relationship, but there are three relationship instances, because each person has a list of
the cars that belong to them.
That is, Tom has a VW and Mazda, Dick has a Ford, and Harry has a Holden and Ford.

What do you want to do?
Understand the different types of relationships

Create a relationship in a properties file

Understand the different types of relationships

One-to-One
A one-to-one relationship is where one entity instance interacts only with one other entity instance.

Entity 1: the nut
Entity 2: the bolt
Relationship from the nut to the bolt: the nut's bolt

One-to-Many
A one-to-many relationship is where one entity instance interacts with many other entity instances. This is the
traditional hierarchical model relationship.

Entity 1: the owner
Entity 2: the pet
Relationship from the owner to the pet: the owner's pets

Many-to-Many
A many-to-many relationship is where multiple instances can interact with many other entity instances. In the
example below, the Pets "Bella" and "Lochie" share the Owners "Ping" and "Euan", whilst Chip has only one

owner Euan.

Entity 1: the pet
Entity 2: the owner
Relationship from the pet to the owner: the pet's owners
TIP: To see a simple example of a complete rulebase with a many-to-many relationship, open and run the Par-
ents And Children example rulebase project provided in the Examples folder in the Oracle Policy Modeling install-
ation folder.

Many-to-One
A many-to-one relationship is where many entity instance belong to only one entity instance. This is the reverse
of a one-to-many relationship.

Entity 1: the pet
Entity 2: the owner
Relationship from the pet to the owner: the pet's owner

Reverse Relationships
Reverse relationships occur where an entity has a relationship to another entity, and that entity has a rela-
tionship back again. For example, a parent has a child and a child has a parent.

However, not all relationships have a logic reverse and not all relationships require capturing the reverse rela-
tionship. For example, it might be useful to collect that an applicant has applied for multiple benefits but there is
no need to identify all of the applicants for a particular benefit.
In determining whether or not to capture a reverse relationship, consider whether both directions of the rela-
tionship will be useful in your rules. If in doubt, create the reverse relationship - it won't be activated unless you
have rules which refer to it.

Primary Direction

The primary direction of a relationship applies to relationships that also have reverse relationships. The primary
direction determines the primary relationship for the pairing of relationship to reverse relationship. This is
important for inferred relationships: an inferred relationship may only be proved by a rule in its primary dir-
ection.

Self-Referential Relationships
Sometimes it is necessary to relate one entity instance to another entity instance in the same entity. For
example, a child in a family may have a special relationship with another child in the family, such as being twins
or sharing a room.
This type of a relationship is treated the same as other relationship types, except that both the source and the
target of the relationship are the same entity.

Containment Relationships
All entities must have a containment relationship defined. The collection of containment relationships that link
entities in the rulebase together allows us to see the logical structure of the data model. For example, a rule-
base may have two entities 'the guardian' and 'the child', with two containment relationships defined: a one-to-
many relationship "the guardians" from the global entity to the guardian entity, and a one-to-many relationship
"the guardian's children" from the guardian entity to the child entity. The containment relationship for an entity
must be either many-to-one or one-to-one, ie each entity instance must be contained by a single parent entity
instance. Additional relationships (reference relationships, see below) between entities can be defined as
needed for your rulebase data model. See Understand containment relationships and entity completion for more
information.

Reference Relationships
Reference relationships define meaningful connections between entities that exist in addition to the entities' con-
tainment relationships. For example, an entity 'the person' may have a containment relationship from the
global entity called "the people", and an additional reference relationship to capture groups of people who live
together called "the person's housemate", which is a self-referential relationship between instances of the per-
son entity.

Inferred Relationships
An inferred relationship is a many-to-many relationship that has its membership concluded by rules in the rule-
base.

Create a relationship in a properties file
Relationships are defined in a properties file for the project, rather than in individual Word and Excel doc-
uments. This eliminates the need to re-define the same relationships in each rule file.

Create a containment relationship
Containment relationships are automatically created when the associated entities are first created in the rule-
base. However, you should provide more meaningful relationship text by editing the relationship before using
the relationship in your rules.
To edit a containment relationship:

1. In Oracle Policy Modeling, double click your properties file to open it. Select the entity that you want to edit the con-
tainment relationship for. The containment relationships already created for the entity will be shown on the Rela-
tionships tab.

2. Double click on the relationship to open the Relationship Editor dialog box.

3. Change the Text for the relationship.

Click OK. You can now use your new relationship text in rules.

Create a reference relationship
To create a reference relationship between two entities in a properties file:

1. In Oracle Policy Modeling, double click your properties file to open it. Select the entity that you want to create a rela-
tionship for.

2. In the Relationships window, right-click and selectNew Relationship...

3. In the Relationship Editor dialog box, select the browse button next to the Target field to select the target entity.

4. In the Entity Selector dialog box select the target entity.

Then click OK.

5. In the Relationship Editor dialog select the type of relationship from the drop-downmenu.

6. Enter the textual form of the relationship name in the Text field. Relationships should be given a meaningful name, usu-
ally using the definite article 'the' (for example, 'the children', 'the child's school' etc). For more information, see Choose
a name for a relationship.

7. Enter the textual form of the reverse relationship in the Reverse Text field. If a reverse relationship is not specified
then by default it is not possible to traverse the relationship backwards.

8. Click OK. Repeat this process for any additional relationships you want to add. The relationships that you have added will
now be displayed on the Relationships tab.

NOTE: For any relationships that you want to export in a module, you need to specify public names on both ends
(ie in the Public Name and Reverse fields in the Relationship Editor).

Flip the direction of a relationship
The primary direction of a relationship is important - you cannot infer a relationship or collect one on a screen
from the non-primary direction. The primary direction will be assumed to be the direction in which the rela-
tionship was first created. If you want to set it in the reverse direction, you will need to flip it. To do this:

1. In Oracle Policy Modeling, double click your properties file to open it. Select the entity that the relationship relates to.

2. In the Relationships window, double click the relationship to open the Relationship Editor.

3. Click the Flip Primary Direction button. You will notice that:

i. the Source and Target entities have swapped, and

ii. the primary Public Name has swapped with the Reverse public name, and

iii. the Relationship type has been reversed, and

iv. the primary Text andReverse Text have swapped.

4. Click OK.

Choose a name for an entity, relationship or attribute
The naming of entities, relationships and attributes is an important consideration when creating a rulebase.

What do you want to do?
Choose a name for an entity
Choose a name for a relationship
Choose attribute text
Document the naming convention for a project

Choose a name for an entity
Entities should be named using the definite article 'the', as in 'the family', 'the child', 'the friend', 'the school'
etc.

Choose a name for a relationship
When creating a relationship you should give the relationship a meaningful name. Remember that the rela-
tionship describes the reference from one entity instance to one or more of another entity instance. The rela-
tionship name should therefore include the source entity text so that it is clear from the relationship name who
the relationship is from.
The name of the relationship should reflect the everyday expression used to describe the relationship (if there is
one), and should be clear in and out of context what is being referred to. Try to consider that nature of the rela-
tionship you are capturing and give it a name that represents this relationship.
Where you are referring to a single instance ("to-one" relationships), your relationship text must therefore be
singular. When you are referring to multiple instances ("to-many" relationships), your relationship text must be
plural. Where one entity is the global entity, you may simply refer to the target entity.

Examples of relationship names

Relationship type Entity 1 Entity 2 Relationship text

One-to-one "the child" "the friend" "the child's best friend"

Many-to-one "the child" "the family" "the child's family"

One-to-many Global "the child" "the children"

Many-to-many "the child" "the friend" "the child's friends"

Self-referential one-to-one "the child" "the child" "the child's twin"

Choose attribute text
Selecting correct attribute wording is fundamental to capturing logic accurately in your Oracle Policy Modeling
application and conveying information to a user in a meaningful way. Specifically, attribute text influences:

l The logic of a rule condition
The logic of a rule is not just captured in the rule levels. There is intrinsic logic in the construction of a sentence and the neg-
ation of that sentence. For example: "No child appears in the photo" will be negated as "no child does not appear in the
photo" which is logically incorrect.

l The connections between rules
Rules are connected in the rulebase using plain text matching. A condition of one rule will only be automatically linked to the
conclusion of another rule if the text is exactly the same. For example, the text "the doctor’s waiting room is full" will not
automatically connect to "the doctors’ waiting room is full" as the apostrophe is in a different place in the sentence.

l The display of question text on interview screens
The user will see the wording of the attribute on any question screens created for the application unless you override this
text.

l The wording of attributes in decision reports
The decision report is an important mechanism for understanding how the rules are operating. Incorrect attribute text will
make it more difficult to debug errors andmay mislead or confuse users.

Choose boolean attribute text
The following general principles apply to the writing of Oracle Policy Modeling boolean attributes.

1. Boolean attributes should be complete grammatical sentences
An Oracle Policy Modeling boolean attribute must include at a minimum a subject and verb. The subject is what
or who the sentence is about. The verb tells us something about the subject. Most sentences also contain an
object which is the thing the action is being performed on.
Examples of grammatical sentences are:

the investigation continued (subject – verb)
the lion stalked the gazelle (subject – verb – object)

2. Boolean attributes should generally be written in the past tense
The tense of a verb is used to indicate when the action took place. Your top level goal should usually be worded
in the present tense as it describes the current state of affairs. However, everything below the top level goal
should be written in the past tense as it describes what occurred for the top level conclusion to have been
reached.
For example:

the person is eligible for an award (PRESENT TENSE) if

the person has demonstrated exceptional conduct (PAST TENSE)

the person has demonstrated exceptional conduct (PAST TENSE) if

the person has been commended by peers (PAST TENSE)

This principle applies regardless of the tense of the source material.
3. Boolean attributes should be written in the third person
In English grammar we make a distinction between the speaker/s (I, we), the addressee (you), and the one/th-
ing spoken about (he, she, it, they). This is known as person: first, second and third person, respectively.
Boolean attributes should be written in the third person. (Note that there is a mechanism in Oracle Policy Model-
ing for switching attribute forms to second person for use in interviews.)
For example:

the person can go to the movies
the person has done a good job

Rather than:

I can go to the movies
you have done a good job

4. Boolean attributes must be able to be negated
Some boolean attributes can be difficult to negate and for this reason should be avoided.
Examples are attributes which use the conjunctions 'and' and 'or'. In these attributes ambiguity can result from
the negation of the attribute as we don't necessarily know how the negation of the verb should affect each of the
components. For instance, let's look at the attribute "the cat and the dog ate the man's dinner".
If this attribute is false, this could mean that:

i. neither the cat or the dog ate the man's dinner

ii. the cat ate the man's dinner but the dog did not

iii. the dog ate the man's dinner but the cat did not

Given that there are three possible interpretations means that this attribute cannot be negated conclusively and
should not be used.
5. Boolean attributes should represent a single concept
In many instances, it may be tempting to word an attribute that could be split into two separate clauses as a
single attribute.
However, if it is likely that part of the attribute is going to be used in other attributes, it is best to separate it
into two attributes which each represent distinct concepts.
6. Boolean attributes should not use contractions
Contractions are used in more informal styles of writing and speech and should not be used in Oracle Policy
Modeling attributes.
For example, rather than "there's an application pending", you should write "there is an application pending".
7. Boolean attributes should make sense without reference to another attribute
Each boolean attribute should be meaningful without reference to another. To do otherwise makes the rulebase
more difficult to develop, maintain and audit.
The following are examples of attributes which do not make sense in isolation:

l This section has been satisfied

l That discussion was recorded

l The person qualifies for the reasons above

l The latest of these two dates applies

8. Boolean attributes should be kept simple but explicit
The wording of the attribute should be as simple as possible while still retaining its full intended meaning.
9. Boolean attributes should indicate entity membership
If the attribute belongs to an entity, the exact text of the entity should be included in the attribute text to make
it clear which entity it belongs to. For example, if you have an entity 'the child', then attributes which belong to
that entity group should include the text "the child":

the child is happy
the child’s toy is educational
the birthdate of the child

10. Boolean attributes should not use personal pronouns
A variable can be replaced with the appropriate pronoun the second (and any subsequent times) the variable is
used in a boolean attribute. For example, if we had a variable 'the claimant' we could write a boolean attribute
'the claimant owns the claimant's home' and then once we know the name and gender of the claimant this would
be rendered as 'John owns his home'. This is preferable to hard-coding "his/her" or "their" in the attribute text.
11. Boolean attributes which refer to amounts should indicate the unit of measurement
Boolean attributes which refer to amounts should specify the unit of measurement to avoid any ambiguity. For
example:

the person was 100 feet from the scene of the crime

See also:

l Basic English grammar

Choose non-boolean attribute text
When creating non-boolean attributes (variables) the following guidelines apply:
1. Non-boolean attributes need to start with the definite article 'the'
The definite article 'the' is used to refer to some specific thing (in contrast to the indefinite article 'a' or 'an'
which does not refer to one specific thing). As variables are always referring to a particular thing, they must
start with 'the'. For example,
the claimant's name
the type of animal
the price of the car
2. Non-boolean attributes should indicate entity membership
If a variable belongs to an entity, the text of the entity should be included in the variable text to make it clear
which entity it belongs to. For example, if you have an entity 'the child', then variables which belong to that
entity group should include the text "the child":
the child's age
the child's date of birth
the school that the child attends
3. Non-boolean attributes which refer to amounts should indicate the unit of measurement
To make it clear what unit of measurement is expected for amount variables, this should be included in the vari-
able text. For example:
the distance between home and work (kilometers)
the weight of the truck (tonnes)
4. Non-boolean attributes should reference their source
References to values derived in other sections of the material should explicitly state the origin of these values in
the variable text.

Document the naming convention for a project
A Rulebase Naming Conventions document should be created at the start of every Oracle Policy Modeling pro-
ject to clearly set out a consistent method of wording attributes. This is critical because automatic linking will
only work when attributes are an exact text match. If different rule developers use different text when creating
separate chunks of rules the attributes will not tie together. The Rulebase Naming Conventions document should
define which nouns will be capitalized and whether particular acronyms should be used.
The Rulebase Naming Conventions document can be kept in the Oracle Policy Modeling project under Docu-
ments/Design.

Choose a data type for an attribute
When you create a new attribute you need to define the type of attribute it is, based on the kind of information it
represents.
The table below shows the types of attributes that are supported in Oracle Policy Modeling:

Attribute
type

Icon When used Example

Boolean for statements the claimant is eligible for family benefits

Currency
for amounts of
money

the claimant's annual income

Number
for any type of
number

the claimant's age

Text for text strings the claimant's name

Date for date values the claimant's date of birth

Date and
time

when a date and
time together is
needed

the date and time of the car accident

Time of
day

for times of day the store's opening time

Note that for datetime and time of day attributes, you have the option in the Attribute Editor to specify whether
seconds will be displayed. If 'Display seconds' is unchecked, any seconds values entered in Web Determinations
will be discarded.
The format that values of non-boolean attributes (variables) must take in rules is specified in Use constant val-
ues in rules.
The format that values of attributes must take when being entered into input fields, and the format as they
appear in decision reports, is specified in Formatting of attribute values.

Use an attribute in a rule
Variable attributes should be added in a properties file before being used in rules in Word and Excel. (There is
no need to explicitly add boolean attributes before using them in rules.)
To use an existing attribute from your data model in your rule you simply need to ensure that the exact attribute
text is used (ie the same text as in the properties file where the attribute has been added). When the attribute
text is exactly the same (including capitalization), the Oracle Policy Modeling compiler recognizes that the text
is the same and labels the attributes the same accordingly. Note that you can use the negative form of the attrib-
ute and the compiler will recognize it as the negative form of the same attribute.
The easiest way to ensure you are using the same text of an attribute is to use the copy-paste function in Word
or 'drag and drop' the text of the attribute from the Data Model Browser which is accessed via the Oracle
Policy Modeling toolbar in Word.

See also:

l Use variables in rules

l Write rules inWord

l Define decision tables in Excel workbooks

Use an entity or relationship in a rule
To write rules in Oracle Policy Modeling you need to understand how to refer to the different parts of the data
model within your rules.

What do you want to do?
Refer to entities connected by a to-many relationship
Refer to entities connected by a to-one relationship
Compare entities within the same relationship
Count the number of instances of an entity
Get the highest/most recent value of an entity-level variable
Get the lowest/least recent value of an entity-level variable
Add up numerical values gathered from each instance of an entity

Refer to entities connected by a to-many relationship
Anytime you refer from one entity to another entity in a "to-many" relationship, you need to indicate whether
one or all members of the target entity group need to satisfy the rule.
Consider the following rule:

A family may board the plane first if their child is under 8 years of age

We know that families can have more than one child, however, this rule does not specify whether one or all of
the family's children must be under 8 years of age in order for the family to board the plane first. If the family
had 2 children, one aged 4 and one aged 16, how would you decide?
The rule would be clearer if written in such a way that the reader can tell whether the rule applies to one or all
children. For example:

A family may board the plane first if they have at least one child under 8 years of age

We use quantifiers, which are a type of Oracle Policy Modeling syntax, to write these kinds of rules. Quantifiers
are operators which access data across the instances of an entity. The two quantifiers we use are:

l the universal quantifier - used to check that the condition returns true for every instance of an entity. For example, "All of
the apples are red".

l the existential quantifier - used to check that the condition returns true for at least one instance of an entity. For example,
"At least one of the bananas is yellow".

Check that a condition returns true for every instance of an entity
The universal quantifier must be used when you refer from one entity to another entity in a "to-many" rela-
tionship, AND you need to determine whether all members of the target entity group need to satisfy the rule.
This quantifier works in much the same way across entities as the 'and' operator does across attributes. This
means that the rule using the universal quantifier will only evaluate to true when the condition is true for all

instances of an entity. In other words, the conclusion will evaluate to false if its condition is false for one of the
targets of the relationship provided. This applies even when the relationship provided is only partially known.
There are two types of entity function that are used as universal quantifiers: the For All function and the For All
Scope function. This section describes the use of the For All function which is used where there is only one con-
dition (ie the rule only refers to one relationship). The use of the For All Scope function, where there are one or
more conditions (eg when you want to reason across several different relationships in the one rule), is more
advanced and is covered in Extend the For, For All and Exists functions.
As mentioned above, the For All function is used where there is only one condition. For example, you could have
the following rule where 'the family' is an entity (the source entity), 'the child' is an entity (the target entity),
and 'the family's children' is the relationship between the entities (the relationship text).

the family is ready to travel overseas if

ForAll(the family's children, the child has a passport)

There are several ways of writing a For All function - see the Entity and relationship function reference for more
detail.
Note that if there are zero instances of the entity, then the rule using the For All operator will evaluate to true.

Check that a condition returns true for at least one instance of an entity
The existential quantifier must be used when you refer from one entity to another entity in a "to-many" rela-
tionship, AND you need to determine whether any members of the target entity group need to satisfy the rule.
This quantifier works in much the same way across entities as the 'or' operator does across attributes. This
means that only one instantiation of the entity must be true for the attribute using the operator to be true. In
other words, the conclusion will evaluate to true if its condition is true for one of the targets of the relationship
provided. This applies even when the relationship provided is only partially known.
There are two types of entity function that are used as existential quantifiers: the Exists function and the Exists
Scope function. This section describes the use of the Exists function which is used where there is only one con-
dition (ie the rule only refers to one relationship). The use of the Exists Scope function, where there are one or
more conditions (eg when you want to reason across several different relationships in the one rule), is more
advanced and is covered in Extend the For, For All and Exists functions.
As mentioned above, the Exists function is used where there is only one condition. For example, you could have
the following rule where 'the family' is an entity (the source entity), 'the child' is an entity (the target entity),
and 'the family's children' is the relationship between the entities (the relationship text).

the family is eligible for the benefit if

Exists(the family's children, the child is a qualifying child)

There are several ways of writing an Exists function - see the Entity and relationship function reference for
more detail.
Note that if there are zero instances of the entity, then the rule using the Exists operator will evaluate to false.

Refer to entities connected by a to-one relationship
When you refer from one entity to another entity in a "to-one" relationship that is not a containment rela-
tionship, you need to use a particular syntax to connect the two entities together. There are two types of entity
functions used for this purpose: the For function and the For Scope function. This section describes the For func-
tion which is used where there is only one condition (ie the rule only refers to one relationship). The use of the
For Scope function, where there are one or more conditions (eg when you want to reason across several dif-
ferent relationships in the one rule), is more advanced and is covered in Extend the For, For All and Exists func-
tions.
As mentioned above, the For function is used where there is only one condition. For example, you could have
the following rule where 'the child' is an entity (the source entity), 'the school' is an entity (the target entity),
and 'the child's school' is the many-to-one relationship between the entities (the relationship text).

the child has a day off school if

For(the child's school, the school is closed)

There are a couple of ways of writing a For function - see the Entity and relationship function reference for more
detail.
NOTES:

i. The For syntax can also be used for many-to-many relationships. (The only relationship type that it can't be used with is
one-to-many.)

ii. The For syntax does not need to be used when referring to a parent relationship in the entity's containment relationships.
For example, if an entity 'the pet' is contained within an entity 'the child', you could write the following rule without need-
ing to refer to the containment relationship explicitly:

the pet is playing outside if

the child is playing outside

Compare entities within the same relationship
To compare entities within the same relationship, you need to add an alias to the entities involved. Aliasing
allows you to provide an alternative name used to refer to an entity instance. For more information, see
Remove ambiguity when reasoning about more than one instance of the same entity.

Count the number of instances of an entity
To count the number of instances there are of an entity, you use the Instance Count function. The syntax for this
function is:

n InstanceCount(<relationship text>)

n the number of <relationship text>

For example, the Instance Count function could be used to determine the number of children belonging to the
claimant:

the number of children that the claimant has = InstanceCount(the claimant's children)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 4 for the following data:

the child

Anthony

Peter

Rebecca

Fiona

Get the highest/most recent value of an entity-level variable
To obtain the highest or most recent value of an entity-level variable for all instances of the entity, you use the
Instance Maximum function. The syntax for this function is:

n InstanceMaximum(<relationship text>,<entity-level variable>)

n the greatest of <entity-level variable> for all of <relationship text>

n <entity-level date> which is the latest for all of <relationship text>

n the latest of all <entity-level date> for <relationship text>

n <entity-level variable> which is the greatest for all of <relationship text>

For example, the Instance Maximum function could be used to determine the highest bank balance for a child of
the claimant:

the highest bank balance for a child of the claimant = InstanceMaximum(the claimant's children, the
child's bank balance)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.

The function returns a value of $175 for the following data:

the child the child's bank balance

Annabel $50

Katrina $175

Mike $120

Get the lowest/least recent value of an entity-level variable
To obtain the lowest or least recent value of an entity-level variable for all instances of the entity, you use the
Instance Minimum function. The syntax for this function is:

n InstanceMinimum(<relationship text>,<entity-level variable>)

n the least of <entity-level variable> for all of <relationship text>

n <entity-level variable> which is the least for all of <relationship text>

n <entity-level date> which is the earliest for all of <relationship text>

n the earliest of all <entity-level date> for <relationship text>

For example, the Instance Minimum function could be used to determine the lightest of the claimant's children:

the lightest weight for a child of the claimant = InstanceMinimum(the claimant's children, the child's
weight in kilograms)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 15 for the following data:

the child the child's weight in kilograms

Harry 15

Sharon 30

Fran 45

Add up numerical values gathered from each instance of an entity
To obtain the sum of all instances of an entity-level variable, you use the Instance Sum function. The syntax for
this function is:

n InstanceSum(<relationship text>,<entity-level variable>)

n <entity-level variable> totaled for all of <relationship text>

For example, the Instance Sum function could be used to determine the total Child Care Benefit payable to the
claimant:

the total Child Care Benefit payable to the claimant = InstanceSum(the claimant's children, the Child Care
Benefit amount for the child)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of $900 for the following data:

the child the Child Care Benefit amount for the child

Mary $500

Sam $250

Lizzie $150

See also:

l Reason across multiple entities

l Entity and relationship function reference

l Entity and relationship function rule examples

Rename an entity, attribute or relationship
If you need to rename an entity, attribute or relationship you need to ensure that the change is made through-
out the rule project.

Rename an attribute
To rename an attribute:

1. In Oracle Policy Modeling, selectView | Build Model.

2. In the Build Model view, find the attribute whose text you want to change in the Attributes tab.

3. Right-click the attribute and selectChange Text Globally.

4. Click Replace.

Rename an entity
To rename an entity:

1. In the properties file for your project, double-click the entity to open the Edit Entity dialog box.

2. Change the Entity Text, then click OK.

3. You will be asked to confirm that you want to update the text of the attributes belonging to this entity. SelectYes.

Any attributes in your property file, including the identifying attribute, will have their text updated to use the
new entity name. Note that all other entity-level attributes in your rulebase will need to be manually updated.
To do this, open each rules file and do a "find and replace" to change the old entity text to the new entity text.

Rename a relationship
To rename a relationship:

1. In the properties file for your project, select the source entity for the relationship and then click on the Relationships
tab.

2. Double click on the relationship to open the Relationship Editor dialog box.

3. Change the Text for the relationship, then click OK.

You now need to update the relationship text in your rules. The easiest way to identify where these changes
need to be made is simply to re-compile each rules document and fix the errors that the compiler highlights.

Remove an entity, attribute or relationship
You may from time to time want to remove an attribute, entity or relationship that is not used or is no longer
needed.

Remove an attribute
To remove an attribute:

1. In Oracle Policy Modeling, select Tools | Clean Up Unused Attributes and Relationships.

2. In the Clean Up Unused Attributes and Relationships dialog box, select the unused attributes that you want to
delete.

3. Click OK.

Remove an entity
To remove an entity:

1. In the properties file for your project, select the entity that you want to remove.

2. Right-click the entity and selectDelete Entity. Click Yes when asked to confirm the deletion.

3. Re-compile all rule documents in the project.

NOTE: If there were attributes using the entity that has been deleted, those attributes will now be global.

Remove a relationship
To remove a relationship:

1. In Oracle Policy Modeling, select Tools | Clean Up Unused Attributes and Relationships.

2. In the Clean Up Unused Attributes and Relationships dialog box, select the unused relationships that you want
to delete.

3. Click OK.

Visualize the data model
A data model diagram can be created in Oracle Policy Modeling once you are happy with all of your base level
attributes.

To create a data model diagram:

1. In Oracle Policy Modeling, selectView | Data Model. The data model view will open in the right hand pane.

Each entity in the rulebase is displayed as a separate box with base-level and inferred attributes belonging to that entity
displayed in the box.
Relationships between entities are shown as connectors between the entity boxes: a bold connector indicates a con-
tainment relationship, a plain connector indicates a reference relationship, and a dashed connector indicates an inferred
relationship.
Relationship names are shown on the connector, including a reverse relationship name in brackets if defined.
The relationship type is also shown (eg one-to-many, many-to-many, etc): 1 at the end of the connector indicates a 'to
one' relationship, * indicates a 'to many' relationship.

2. To save this diagram, right-click anywhere in this view and select Save...

3. In the Save As dialog box specify a location to save the data model to. This process will save the data model diagram in
a .wmf picture file format.

See also:

Define an entity

Define a relationship

Export or import a data model
Using XML files you can import and export data models to and from Oracle Policy Modeling.

What do you want to do?
Export the data model to XML
Import an existing project using XML
Import and export a project to and from an external rules repository

Export the data model to XML
You can export the data model to integrate with your deployment environment. For example, to show what
attributes and entities you have in the rulebase so those entities and attributes can be mapped to the data
model of whatever is sending/receiving data to/from the rulebase at runtime.
To export the data model to XML:

1. In Oracle Policy Modeling, selectView | Data Model. The data model view will open in the right hand pane.

2. In this view, right-click anywhere and select Export to XML...

3. In the Save As dialog box specify a location to save the data model to. This process will save the data model in the XML
format recognized by Oracle Policy Modeling.

Import an existing project using XML
A new project can be created in Oracle Policy Modeling by importing an existing project interchange file. To
import an existing project in this way:

1. In Oracle Policy Modeling, select File | Import Project.

2. In the Import Project dialog box, specify the project interchange XML file to import from in the Interchange file
field.

3. In the Project folder field, specify a folder to contain the Oracle Policy Modeling project files. The specified folder
should be the Development folder for the imported project, such as "C:\Projects\MyImportedProject\Development". (If
the original project contains modules, the imported project should be saved at the same directory level relative to the
module as the original project.)

4. Click Create to create your project.

Your imported project will open in Oracle Policy Modeling.

Import and export a project to and from an external rules repository
Oracle Policy Modeling supports the import and export of business rules and associated data and metadata using
an intermediate XML file format. The integrity of the content is preserved as it is moved from the external rules
repository into Oracle Policy Modeling and back out again. You can view and report on this material in both par-
ticipating environments.
The steps in this process are given below:

1. Convert rules, data andmetadata in the external repository to the standard Oracle Policy Modeling project interchange
format.

2. Import the project into Oracle Policy Modeling. The project will be seeded with the various project folders and documents
based on the data in the project interchange file. For more information, see Seeded data in imported projects.

3. View and report on the project in Oracle Policy Modeling as necessary. Note that you cannot make changes to the
external data model or to the project in Oracle Policy Modeling.

4. Export the project to the standard Oracle Policy Modeling project interchange format.

5. Upload the content of the file to the external repository.

External rulebase data integrators are responsible for steps 1 and 5.

Export a project to an external rules repository
The contents of an Oracle Policy Modeling project can be exported to an external rules repository using a project
interchange file.
To export a project:

1. Select File | Export... in Oracle Policy Modeling. The progress of the export process will be shown in the Output win-
dow in Oracle Policy Modeling.

2. Click Export to export the Oracle Policy Modeling project. NOTE: References to module files are exported, as are the
data model elements defined in a module. Rules defined in a module are not exported. For more information on what is
re-imported in relation to modules, see Seeded data in imported projects.

3. In the Export Project dialog box, browse to the folder or drive where you want to save the file and type a name for the
project interchange file. By default this will be the name of the project.

4. Click the Save button to save and export the file.

Check the rulebase against the data model
Once you have created the external data model, you can check that every base level attribute in the project has
an attribute with the same ID, data type and entity level in the external data model. Validating against the data
model will also check to ensure all base attributes have public names, thus ensuring attribute IDs are reliable
and static. Applying data model constraints are turned off by default.

What do you want to do?
Check the rulebase against an external data model
Create an external data model file for use with Oracle Policy Modeling
View the data model

Check the rulebase against an external data model
To check the rulebase against an external data model:

1. In the Project Explorer in Oracle Policy Modeling, select the project name, right-click and selectAdd Existing File.

2. Browse to and select your external data model file. Click Open. NOTE: The external data model file needs to be in a spe-
cific format. For more information, see Create an external data model file for use with Oracle Policy Modeling below.

3. From the mainmenu in Oracle Policy Modeling, select Tools | Options | Rulebase Development | Build Val-
idation and then select the option Check Data Model.

The validation will now be performed when the rulebase is built.

NOTE: The validation setting is a user-specific setting and will need to be performed on every developer's
machine.

Create an external data model file for use with Oracle Policy Modeling
An external data model file can either be created by Oracle Policy Modeling or it can be created elsewhere.
Creating the data model file from within Oracle Policy Modeling requires having a rulebase which already
reflects the desired data model. This means creating all the entities and attributes you need in a blank new pro-
ject or, if the rules are already quite well progressed, making sure the rulebase you are working with already
has the desired data model. You then export the data model to XML in the usual way, to create an external data
file that you can use with Oracle Policy Modeling.
If the data model is not created by Oracle Policy Modeling, then the file needs to be transformed into the correct
format. See Oracle Policy Automation Developer's Guide for more information.

View the data model
The Data Model view in Oracle Policy Modeling shows the rulebase data model.
To open the Data Model view select View | Data Model. The Data Model view will open in the top right hand
pane of Oracle Policy Modeling.

Each entity in the rulebase is displayed as a separate box with base-level and inferred attributes belonging to
that entity displayed in the box. Relationships between entities are shown as connectors between the entity
boxes.

Understand partial knowledge of relationships
In some situations it is possible to draw valid conclusions where attributes or relationships used in a rule have
an unknown value, as enough information is known to still make a decision.
Partially complete relationships are those for which some, but not all of the targets are known. Because all the
targets are not known, such a relationship is marked as unknown. Both inferred and static relationships can be
partially known.

What do you want to do?
Understand how partial knowledge reasoning works
Make a partially known relationship known in the debugger

Understand how partial knowledge reasoning works

Partial knowledge of inferred relationships
An inferred relationship will be partially known if the rule used to infer it returns unknown for some, but not all,
of the potential target entity instances. Take the following example rule where 'the customer' entity has a
many-to-many relationship ('the customer's triple A products') to 'the product' entity.

the product is a member of the customer's triple A products if

the product's rating = "AAA"

If we have the following entity instances:

l Customer "customer0"

l Product "product0" with rating "AAA"

l Product "product1" with rating "BBB"

l Product "product2" with unknown rating

then when the above rule is evaluated to infer customer0's "the customer's triple A products" relationship, the
rule will return true for product0, false for product1, and unknown for product2. Hence product0 is a target of
the relationship, and product1 is not a target of the relationship. product2 on the other hand may or may not be
part of the relationship - this cannot be determined until its rating is provided.
Therefore customer0's "the customer's triple A products" relationship is partially known, with one known target
(product0), and one known "not target" (product1).

Entity completion status and inferred relationships
An inferred relationship can also be partially known because the target entity is not complete. This is because
more target entity instances may yet be added, and some of these may satisfy the inferred relationship's mem-
bership rule.
For more information, refer to the topic Understand containment relationships and entity completion.

Partially known inferred relationships in the debugger

The screenshot below shows how a partially known inferred relationship is displayed in the debugger:

Here the relationship 'the child's favorite pets' is being examined for the child Will. The relationship editor is
showing that:

l the relationship is unknown - therefore this is a partial knowledge situation

l the pet Kitty is known to be a target of the relationship

l the pet Spot is known to not be a target of the relationship

l the pets Patch and Fido may or may not be targets of the relationship - this cannot be determined until more information is
provided.

A tri-state checkbox is used in the relationship editor. It is important to understand the meaning of each state of
the checkbox:

l Green tick - entity instance is known to be a target of the relationship

l No tick - entity instance is known to not be a target of the relationship

l Green square - entity instance may or may not be a target of the relationship.

Partial knowledge of static relationships
When a relationship is set, the rule engine automatically sets the reverse relationship. In the case of many-to-
one and many-to-many relationships, this can result in the reverse relationship being partially known. Take the
following example:

Here we have:

l Two entities: the dog and the person

l Three instances of the dog: d1, d2, and d3

l Three instances of the person: p1, p2, and p3

l A many-to-one relationship between the dog and the person called the dog's owner. The reverse (one-to-many) rela-
tionship is called the person's dogs.

If d2's owner is set to be p2 (the solid black line), then the rule engine will set p2's dogs automatically. It is
known that d2 is one of the person's dogs (the solid red line). There is no information about d1 and d3 however;
the dog's owner is unknown for both of these entity instances. Hence it is not known whether d1 or d3 are mem-
ber's of p2's dogs - they may or may not be, hence they are represented with a red dotted line.
This leads to a situation of partial knowledge. For p2, the person's dogs is a partially known relationship. There
is one known target, d2, and d1 and d3 may or may not be members of the relationship.
In the same way, setting many-to-many relationships can lead to a partially known reverse relationship.
NOTE: The rule engine does not currently determine "not targets" for partially known static relationships. A par-
tially known static relationship can currently only consist of known targets, and entity instances that may or
may not be members of the relationship.

Static relationships and entity completion status

Take the following example:

Here:

l d1, d2, and d3 all have the dog's owner set to p2.

l the engine then determines that the person's dogs for p2 has three known targets, d1, d2 and d3.

If the entity the dog is "not complete" (ie not all instances of the entity have potentially been collected), then
despite all the available dogs being known targets, we still have a partial knowledge situation. This is because
extra dogs could be created, which may or may not be members of the relationship. On the other hand, if the
entity the dog is "complete" (ie all the instances of the entity are known to have been collected), then this can-
not occur, and the engine will determine that the person's dogs is a fully known relationship for p2.

Partially known static relationships in the debugger

Partially known static (ie non-inferred) relationships are displayed in the debugger in a similar fashion to
inferred relationships, as seen below:

Here the relationship 'the child's pets' is being examined for the child Sam. The relationship editor is showing
that:

l the pet Spot is a target of the relationship

l the pets Patch, Kitty and Fido may or may not be a target of the relationship - this cannot be determined until more inform-
ation is provided.

Note that unlike for inferred relationships, only two states are shown when displaying a partially known static
relationship in the debugger:

l Green tick - entity instance is known to be a target of the relationship

l Green square - entity instance may or may not be a target of the relationship.

This is because the rule engine does not support "not targets" for static relationships.

Make a partially known relationship known in the debugger

Make a partially known inferred relationship known in the debugger
To make an inferred relationship known in the debugger you need to investigate the relationship. To do this:

1. In the Data view, select the inferred relationship that you want to investigate. (TIP: Inferred relationships are shown by
a yellow multi-cube icon.)

2. In the right hand pane, click the Investigate button.

3. The Decision view will be shownwith any relevant unknown attributes or relationships highlighted.

(If any unknown containment relationships are highlighted, right-click and choose Edit Relationship, to go to the
relationship editor in the Data view. Complete the relationship by adding entity instances or using the Containment
Complete option on the relationship in the Data view, then return to the Decision view.)

Double-click any unknown attributes to set values for them. The Decision view will then update to show which attributes
contributed to this conclusion.

4. You can also switch back to the Data view to see which entity instances, if any, have been inferred as target instances of
this relationship.

Make a partially known static relationship known in the debugger
Unlike partially known inferred relationships in the debugger, partially known static relationships can be directly
set to being known. To do this:

1. In the Data view, select the static relationship in the left hand pane. (TIP: Static relationships are shown by a multi-col-
oured cube icon.) This will display any existing entity instances in the relationship editor in the right hand pane.

2. In the right hand pane, select the Known option. NOTE: Any entity instances whichmay or may not have been targets
of that relationship (the checkboxes with the green square) will now be set as not being targets of the relationship. (In
this example, the pet Spot was a known target and remains this way. The pets Patch, Kitty and Fido on the other hand,
may or may not have been targets and are now marked as not being targets of the relationship.)

3. Select the check box for any existing entity instances that you want to associate with that relationship.

Understand containment relationships and entity completion
When an entity is considered to be complete, the rule engine assumes that it knows about the entire set of
instances for that entity. An entity's completion status (whether or not it is considered to be complete) is of
major importance when determining whether or not a relationship is partially known. See Understand partial
knowledge of relationships.
The completion status of an entity is determined by the engine through the use of containment relationships. A
containment relationship is a one-to-many relationship from a parent entity to a child entity, and is created auto-
matically when an entity instance is added, based on the entity and containment definition defined in the prop-
erties file for the rulebase. An entity Y is considered to be complete if:

1. A one-to-many containment relationship is defined from some other entity X to entity Y. We say that Y is contained by X,
and we refer to the relationship as entity Y's containment relationship.

2. Entity Y's containment relationship is set (ie it is known) for all instances of entity X.

3. Entity X is also considered to be complete.

NOTE: The global entity is always automatically complete. It is not necessary (or possible) to create a con-
tainment relationship for the global entity.

Consider the example provided in the following diagram:

In this scenario:

1. The global entity is automatically complete.

2. Entity X is complete. This is because its containment relationship from the global is known.

3. Entity Y is complete. This is because its containment relationship is known for all instances of entity X, and entity X is com-
plete.

Consider this second scenario:

In this scenario:

1. The global entity is automatically complete.

2. Entity X is complete. This is because its containment relationship from the global is known.

3. Entity Y is not complete, because its containment relationship is not known for all instances of entity X.

Consider this third scenario:

In this scenario:

1. The global entity is automatically complete.

2. Entity X is not complete, as its containment relationship is not known.

3. Entity Y is not complete, as entity X is not complete. This is the case even though entity Y's containment relationship is
known for all instances of entity X.

Rules using entity instances
Topics in "Rules using entity instances"

l Use an entity or relationship in a rule

l Check whether entity instances match a condition

l Reason across multiple entities

l Write rules that infer relationships and entities

l View and amend the data model while writing rules

See also:

l Use an entity or relationship in a rule

l Build a temporal value from entity instances

Use an entity or relationship in a rule
To write rules in Oracle Policy Modeling you need to understand how to refer to the different parts of the data
model within your rules.

What do you want to do?
Refer to entities connected by a to-many relationship
Refer to entities connected by a to-one relationship
Compare entities within the same relationship
Count the number of instances of an entity
Get the highest/most recent value of an entity-level variable
Get the lowest/least recent value of an entity-level variable
Add up numerical values gathered from each instance of an entity

Refer to entities connected by a to-many relationship
Anytime you refer from one entity to another entity in a "to-many" relationship, you need to indicate whether
one or all members of the target entity group need to satisfy the rule.
Consider the following rule:

A family may board the plane first if their child is under 8 years of age

We know that families can have more than one child, however, this rule does not specify whether one or all of
the family's children must be under 8 years of age in order for the family to board the plane first. If the family
had 2 children, one aged 4 and one aged 16, how would you decide?
The rule would be clearer if written in such a way that the reader can tell whether the rule applies to one or all
children. For example:

A family may board the plane first if they have at least one child under 8 years of age

We use quantifiers, which are a type of Oracle Policy Modeling syntax, to write these kinds of rules. Quantifiers
are operators which access data across the instances of an entity. The two quantifiers we use are:

l the universal quantifier - used to check that the condition returns true for every instance of an entity. For example, "All of
the apples are red".

l the existential quantifier - used to check that the condition returns true for at least one instance of an entity. For example,
"At least one of the bananas is yellow".

Check that a condition returns true for every instance of an entity
The universal quantifier must be used when you refer from one entity to another entity in a "to-many" rela-
tionship, AND you need to determine whether all members of the target entity group need to satisfy the rule.
This quantifier works in much the same way across entities as the 'and' operator does across attributes. This
means that the rule using the universal quantifier will only evaluate to true when the condition is true for all
instances of an entity. In other words, the conclusion will evaluate to false if its condition is false for one of the
targets of the relationship provided. This applies even when the relationship provided is only partially known.
There are two types of entity function that are used as universal quantifiers: the For All function and the For All
Scope function. This section describes the use of the For All function which is used where there is only one con-
dition (ie the rule only refers to one relationship). The use of the For All Scope function, where there are one or
more conditions (eg when you want to reason across several different relationships in the one rule), is more
advanced and is covered in Extend the For, For All and Exists functions.
As mentioned above, the For All function is used where there is only one condition. For example, you could have
the following rule where 'the family' is an entity (the source entity), 'the child' is an entity (the target entity),
and 'the family's children' is the relationship between the entities (the relationship text).

the family is ready to travel overseas if

ForAll(the family's children, the child has a passport)

There are several ways of writing a For All function - see the Entity and relationship function reference for more
detail.
Note that if there are zero instances of the entity, then the rule using the For All operator will evaluate to true.

Check that a condition returns true for at least one instance of an entity
The existential quantifier must be used when you refer from one entity to another entity in a "to-many" rela-
tionship, AND you need to determine whether any members of the target entity group need to satisfy the rule.
This quantifier works in much the same way across entities as the 'or' operator does across attributes. This
means that only one instantiation of the entity must be true for the attribute using the operator to be true. In
other words, the conclusion will evaluate to true if its condition is true for one of the targets of the relationship
provided. This applies even when the relationship provided is only partially known.
There are two types of entity function that are used as existential quantifiers: the Exists function and the Exists
Scope function. This section describes the use of the Exists function which is used where there is only one con-
dition (ie the rule only refers to one relationship). The use of the Exists Scope function, where there are one or
more conditions (eg when you want to reason across several different relationships in the one rule), is more
advanced and is covered in Extend the For, For All and Exists functions.

As mentioned above, the Exists function is used where there is only one condition. For example, you could have
the following rule where 'the family' is an entity (the source entity), 'the child' is an entity (the target entity),
and 'the family's children' is the relationship between the entities (the relationship text).

the family is eligible for the benefit if

Exists(the family's children, the child is a qualifying child)

There are several ways of writing an Exists function - see the Entity and relationship function reference for
more detail.
Note that if there are zero instances of the entity, then the rule using the Exists operator will evaluate to false.

Refer to entities connected by a to-one relationship
When you refer from one entity to another entity in a "to-one" relationship that is not a containment rela-
tionship, you need to use a particular syntax to connect the two entities together. There are two types of entity
functions used for this purpose: the For function and the For Scope function. This section describes the For func-
tion which is used where there is only one condition (ie the rule only refers to one relationship). The use of the
For Scope function, where there are one or more conditions (eg when you want to reason across several dif-
ferent relationships in the one rule), is more advanced and is covered in Extend the For, For All and Exists func-
tions.
As mentioned above, the For function is used where there is only one condition. For example, you could have
the following rule where 'the child' is an entity (the source entity), 'the school' is an entity (the target entity),
and 'the child's school' is the many-to-one relationship between the entities (the relationship text).

the child has a day off school if

For(the child's school, the school is closed)

There are a couple of ways of writing a For function - see the Entity and relationship function reference for more
detail.
NOTES:

i. The For syntax can also be used for many-to-many relationships. (The only relationship type that it can't be used with is
one-to-many.)

ii. The For syntax does not need to be used when referring to a parent relationship in the entity's containment relationships.
For example, if an entity 'the pet' is contained within an entity 'the child', you could write the following rule without need-
ing to refer to the containment relationship explicitly:

the pet is playing outside if

the child is playing outside

Compare entities within the same relationship
To compare entities within the same relationship, you need to add an alias to the entities involved. Aliasing
allows you to provide an alternative name used to refer to an entity instance. For more information, see
Remove ambiguity when reasoning about more than one instance of the same entity.

Count the number of instances of an entity
To count the number of instances there are of an entity, you use the Instance Count function. The syntax for this
function is:

n InstanceCount(<relationship text>)

n the number of <relationship text>

For example, the Instance Count function could be used to determine the number of children belonging to the
claimant:

the number of children that the claimant has = InstanceCount(the claimant's children)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 4 for the following data:

the child

Anthony

Peter

Rebecca

Fiona

Get the highest/most recent value of an entity-level variable
To obtain the highest or most recent value of an entity-level variable for all instances of the entity, you use the
Instance Maximum function. The syntax for this function is:

n InstanceMaximum(<relationship text>,<entity-level variable>)

n the greatest of <entity-level variable> for all of <relationship text>

n <entity-level date> which is the latest for all of <relationship text>

n the latest of all <entity-level date> for <relationship text>

n <entity-level variable> which is the greatest for all of <relationship text>

For example, the Instance Maximum function could be used to determine the highest bank balance for a child of
the claimant:

the highest bank balance for a child of the claimant = InstanceMaximum(the claimant's children, the
child's bank balance)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.

The function returns a value of $175 for the following data:

the child the child's bank balance

Annabel $50

Katrina $175

Mike $120

Get the lowest/least recent value of an entity-level variable
To obtain the lowest or least recent value of an entity-level variable for all instances of the entity, you use the
Instance Minimum function. The syntax for this function is:

n InstanceMinimum(<relationship text>,<entity-level variable>)

n the least of <entity-level variable> for all of <relationship text>

n <entity-level variable> which is the least for all of <relationship text>

n <entity-level date> which is the earliest for all of <relationship text>

n the earliest of all <entity-level date> for <relationship text>

For example, the Instance Minimum function could be used to determine the lightest of the claimant's children:

the lightest weight for a child of the claimant = InstanceMinimum(the claimant's children, the child's
weight in kilograms)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 15 for the following data:

the child the child's weight in kilograms

Harry 15

Sharon 30

Fran 45

Add up numerical values gathered from each instance of an entity
To obtain the sum of all instances of an entity-level variable, you use the Instance Sum function. The syntax for
this function is:

n InstanceSum(<relationship text>,<entity-level variable>)

n <entity-level variable> totaled for all of <relationship text>

For example, the Instance Sum function could be used to determine the total Child Care Benefit payable to the
claimant:

the total Child Care Benefit payable to the claimant = InstanceSum(the claimant's children, the Child Care
Benefit amount for the child)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of $900 for the following data:

the child the Child Care Benefit amount for the child

Mary $500

Sam $250

Lizzie $150

See also:

l Reason across multiple entities

l Entity and relationship function reference

l Entity and relationship function rule examples

Check whether entity instances match a condition
When using entities in a rulebase, you can check whether entity instances match particular conditions.

What do you want to do?
Count the number of instances of an entity for which a particular attribute is true
Get the highest/most recent value of an entity-level variable for which a particular attribute is true
Get the lowest/least recent value of an entity-level variable for which a particular attribute is true
Add up numerical values gathered from each instance of an entity for which a particular attribute is true

Count the number of instances of an entity for which a particular attribute is true
To count the number of instances there are of an entity for which a particular entity-level attribute has a par-
ticular value, you use the Instance Count If function. The syntax for this function is:

n InstanceCountIf(<relationship text>,<entity-level condition>)

n the number of <relationship text> for which it is the case that <entity-level attribute>

For example, the Instance Count If function could be used to determine the number of school students for the
claimant:

the number of school students that the claimant has = InstanceCountIf(the claimant's children, the child
is a school student)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 1 for the following data:

the child the child is a school student

Rachel false

Michael false

Simon true

NOTES:

i. You can only put one attribute as the 'If' parameter in the function, but that attribute can be proven in a separate rule by
any number of other conditions.

ii. The InstanceCountIf() function will return unknown if the relationship supplied to it is unknown, regardless of whether or
not any of the relationship's targets are known. It will also return unknown if the attribute being examined is unknown for
any of the relationship's targets.

Get the highest/most recent value of an entity-level variable for which a particular attribute is true
To obtain the highest or most recent value of an entity-level variable for all instances of the entity for which a
particular entity-level attribute has a particular value, you use the Instance Maximum If function. The syntax
for this function is:

n InstanceMaximumIf(<relationship text>,<entity-level variable>,<entity-level condition>)

For example, the Instance Maximum If function could be used to determine the most recent date of employ-
ment of a permanent employee by a company:

the most recent date of employment of a permanent employee by the company = InstanceMaximumIf(the
company's employees, the employee's date of employment, the employee is a permanent employee)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the company' , an entity 'the employee' and a one-to-many relationship 'the company's
employees'.)

The function returns a value of 15/05/2006 for the following data:

the employee the employee's date of employment the employee is a permanent employee

David 01/01/2006 true

Shaun 24/08/2006 false

Anita 15/05/2006 true

NOTES:

i. You can only put one attribute as the 'If' parameter in the function, but that attribute can be proven in a separate rule by
any number of other conditions.

ii. The InstanceMaximumIf() function will return unknown if the relationship supplied to it is unknown, regardless of
whether or not any of the relationship's targets are known. It will also return unknown if the attribute being examined is
unknown for any of the relationship's targets.

Get the lowest/least recent value of an entity-level variable for which a particular attribute is true
To obtain the lowest or least recent value of an entity-level variable for all instances of the entity for which a
particular entity-level attribute has a particular value, you use the Instance Minimum If function. The syntax for
this function is:

n InstanceMinimumIf(<relationship text>,<entity-level variable>,<entity-level condition>)

For example, the Instance Minimum If function could be used to determine the youngest of the claimant's
female children:

the youngest of the claimant's female children = InstanceMinimumIf(the claimant's children, the child's
age, the child is female)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of 4 for the following data:

the child the child's age the child is female

Sam 3 false

Alex 4 true

Shannon 6 false

Paris 8 true

NOTES:

i. You can only put one attribute as the 'If' parameter in the function, but that attribute can be proven in a separate rule by
any number of other conditions.

ii. The InstanceMinimumIf() function will return unknown if the relationship supplied to it is unknown, regardless of whether
or not any of the relationship's targets are known. It will also return unknown if the attribute being examined is unknown
for any of the relationship's targets.

Add up numerical values gathered from each instance of an entity for which a particular attribute is true
To obtain the sum of all instances of an entity-level variable for which it is true of the entity that a specific
entity-level boolean attribute is true, you use the Instance Sum If function. The syntax for this function is:

n InstanceSumIf(<relationship text>,<entity-level variable being summed>,<entity-level condition>)

n total for all <relationship text>, <entity-level variable> only where <entity-level attribute>

n <entity-level variable> totaled for all of <relationship text> for which it is the case that <entity-level attribute>

For example, the Instance Sum If function could be used to determine the total boarding school fees for the
claimant:

the total cost of boarding school fees for the claimant = InstanceSumIf(the claimant's children, the annual
school fees for the child, the child attends a boarding school)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the claimant' , an entity 'the child' and a one-to-many relationship 'the claimant's children'.)

The function returns a value of $33000 for the following data:

the child the annual school fees for the child the child attends a boarding school

Sally $18000 true

James $15000 true

Bob $10000 false

NOTES:

i. You can only put one attribute as the 'If' parameter in the function, but that attribute can be proven in a separate rule by
any number of other conditions.

ii. The InstanceSumIf() function will return unknown if the relationship supplied to it is unknown, regardless of whether or
not any of the relationship's targets are known. It will also return unknown if the attribute being examined is unknown for
any of the relationship's targets.

See also:

l Check that a condition returns true for every instance of an entity

l Check that a condition returns true for at least one instance of an entity

l Count the number of instances of an entity

l Get the highest/most recent value of an entity-level variable

l Get the lowest/least recent value of an entity-level variable

l Add up numerical values gathered from each instance of an entity

Reason across multiple entities
Using extended forms of the For, Exists and ForAll functions, you can reason across several different entities in
a single rule. You can also reason with different instances of the same entity, and compare instances of the
same entity.

What do you want to do?
Extend the For, For All and Exists functions
Use relationship membership as a rule input
Remove ambiguity when reasoning about more than one instance of the same entity
Compare instances of the same entity

Extend the For, For All and Exists functions
Entity functions, such as For, Exists and For All, allow you to reason across a single relationship from a source
entity to a target entity. If, however, you want to cross multiple relationships in a rule and reason against sev-
eral entities in that rule, you need to use different entity functions (For Scope, For All Scope and Exists Scope)
that specify the 'scope' of the entities.

The concept of scope in rules
To fully understand cross entity reasoning, it is important to understand the concept of scoping in relation to a
rule. The Word compiler processes a rule in a top-to-bottom fashion. The top (conclusion) line is evaluated, then
the second line, and so on. For a particular line in a rule, the scope is the set of entity instances that have been
previously mentioned in parent rule lines. These are the only entity instances that reasoning can be done on. In
most cases, the conclusion line introduces a single entity instance into scope. (The exception to this is a mem-
bership conclusion which introduces two entities into scope - the source of the inferred relationship and the tar-
get of the inferred relationship. See Write rules that infer relationships and entities for more information). Once
an entity instance has been introduced to the scope, it can be reasoned with in all rule lines that are children of
the line that introduced it. The global entity is always available to the rule scope, as are the parent entities in
the entity's containment relationship.
The For Scope, For All Scope and Exists Scope functions are used as scoping statements to cross a relationship
and thereby introduce the target of the relationship into scope.

An example of cross entity reasoning
This example is based on a telecommunications retail style model where a customer entity has a one-to-one
relationship to a plan entity (the customer's current plan) which has a many-to-many relationship to specific
products (the plan's products). That is:

the customer -> the customer's current plan (one-to-one) -> the plan -> the plan's products
(many-to-many) -> the product

You could then have the following rule which uses the For Scope and Exists Scope entity functions:

the customer has incompatible products if

ForScope(the customer's current plan)

ExistsScope(the plan's products)

the plan's network <> the product's network

In the example above, the initial scope for this rule is "the customer", established by the conclusion on line 1.
"The plan" was brought into the scope in line 2 by crossing the relationship "the customer's current plan", and
"the product" was brought into the scope in line 3 by crossing the relationship "the plan's products". Finally in
line 4 we compare an attribute of "the plan" with and attribute of "the product". Both entities are now in scope
so this reasoning is possible.

An example of the For All Scope function using the same data model would be:

the customer is satisfied if

in the case of the customer's current plan

ForAllScope(the plan's products)

the product's rating = "AAA"

Use relationship membership as a rule input
Relationship membership can be used as a rule input by creating a membership statement and using it as a con-
dition in a rule. A membership statement always reasons against the source entity and the target entity. The
membership statement will be true if the target entity is the target of the relationship for the source entity. A
membership statement can be used for any type of relationship.

A membership statement used as a condition takes one of the following forms:

l Positive form

l <target entity> is a member of <relationship text>

l IsMemberOf(<target entity>, <relationship text>)

l Negative form

l <target entity> is a not member of <relationship text>

l IsNotMemberOf(<target entity>, <relationship text>)

In the example rule below, a membership statement is used as a condition to determine if a dog is happy based
on whether it is a member of the person's favorite dogs.

the dog is happy if

ForScope(the dog's owner)

IsMemberOf(the dog, the person's favorite dogs)

Both entities (ie the source entity and the target entity) must be brought into the scope of the rule, otherwise
the compiler will attempt to create an attribute "<target entity> is a member of <relationship text>".
NOTES:

a. A membership statement that is used as a condition cannot have any children under it in that rule. It must, however, be
proved by another rule. For example, the membership statement in the example above must be proved by another rule
(eg "the dog is a member of the person's favorite dogs if the dog is well-behaved").

b. A membership statement can true when the relationship is partially known. So long as it is known that the entity instance
in question is a member of the relationship, the membership statement will return as true.

Remove ambiguity when reasoning about more than one instance of the same entity
When you want to reason with more than one instance of the same entity, it can become ambiguous as to which
entity instances your rules are referring to. You can use an alias for the desired entity instances in your rules to
remove this ambiguity.
Aliasing allows you to use an alternative name to refer to an entity instance. An alias can be used in a con-
clusion or condition, and its use is limited to that particular conclusion or condition. NOTE: Once an alias is
defined it must be used in place of the regular name for the associated entity, otherwise an error will occur.
Also note that the name of an entity cannot be used as an alias.
An alias can be used in two places to resolve ambiguity: in a scope entity function, and in a relationship con-
clusion.

Using an alias in a scoped entity function
In a scoped entity function (ie the functions For Scope, For All Scope and Exists Scope) an alias can be assigned
to the target entity instance when the entity is already in the rule scope and you need to discriminate between
those entities instances.
For example, if you wanted to compare two person entity instances through the relationship "the person’s
spouse", you could define an alias to the target of "the person’s spouse". Once the alias is defined, you can then
refer to attributes of the target instance as "the spouse":

the person has the highest taxable income if

ForScope(the person's spouse, the spouse)

the person's income > the spouse's income

Note that in this rule, you only need to add an attribute for 'the person's income', not for 'the spouse's income',
as the compiler knows that any attributes using the alias text belong to the associated entity (in this case 'the
person').
If you want to compare entity instances in a relationship that does not include the global entity (eg from 'the
toy' to 'the child'), you need to traverse up and down the relationship as shown in the example below:

the toy is the same type as another owned by the same child if

ForScope(the child who owns the toy)

ExistsScope(the child's toys, the other toy)

the toy type = the other toy type and

the toy name <> the other toy name

Using an alias in a relationship conclusion
In a relationship conclusion (ie the function Is Member Of) an alias can be assigned to the target entity instance
in the membership statement. This is useful for situations where the source and the target of the relationship
are the same entity. For example, in the rule below, "the person's workplace" is a text attribute in the entity
"the person", and "the person's co-workers" is a many-to-many relationship whose source is "the person", and
whose target is also "the person":

the person (the colleague) is a member of the person's co-workers if

the person's workplace = the colleague's workplace

Compare instances of the same entity
When you are reasoning with more than one instance of the same entity, you may want to compare attribute val-
ues across entity instances. The comparison of the entity attribute values does not differentiate whether the tar-
get entity instance is the same as the one in which the rule is operating. This can result in the attribute
comparisons being satisfied with values of the same entity instance, which may not be the logic that you wish to
represent in your rules.
The InstanceEquals and InstanceNotEquals functions allow you to compare the entity instances themselves, so
you can avoid this situation.
For example, the following rule examines instances of the employee entity to see whether any employee ID is
used by multiple employees:

the employee has a conflicting ID if

ExistsScope(the employees, the other employee)

the employee's ID = the other employee's ID and

InstanceNotEquals(the employee, the other employee)

The ID for each employee entity instance is compared against all employee IDs, one of which will be a match
between the same entity instance. To eliminate this match from the concluded outcome of the rule, the
InstanceNotEquals function is used to ensure only ID matches from different entity instances cause the rule to
evaluate to true.

See also:

l Use an entity or relationship in a rule

l Write rules that infer relationships and entities

l Understand how partial knowledge reasoning works

l Entity and relationship function reference

l Entity and relationship function rule examples

Write rules that infer relationships and entities
Rules that infer relationships and entities can be useful for grouping entity instances in order to refer to the
group as a whole in your rules and use the standard entity functions in a more powerful way. For example, you
could:

l Collect payments and write rules to sum all payments made within the same year

l Determine eligibility for benefits and write rules to sum all eligible benefits or create a payment plan for all eligible benefits

l Collect product information and write rules to determine which services should be created based on the customer’s product

Further examples are provided under Worked Examples below.

What do you want to do?
Infer membership of a relationship
Infer existence of entities to satisfy the relationship
See worked examples

Infermembership of a relationship
The syntax to use to infer that existing entity instances are members of a relationship is:

l <target entity> is a member of <relationship text> if

l IsMemberOf(<target entity>, <relationship text>) if

Note that membership rules must be written in the positive form. That is, it is not possible to infer that an entity
is not a member of a relationship.
All subsequent rule levels for this conclusion must have the source entity and the target entity in its reasoning
scope. The relationship used must be defined as a many-to-many relationship type in the properties file for the
project. (See Define a relationship for more information.)
In the example rule below, a membership statement is used to conclude membership of the inferred rela-
tionship 'the parent’s school-aged children'.

the child is a member of the parent’s school-aged children if

the child is of school age

Notes /Limitations

1. A relationship conclusion can only ever be the top line of a rule. If the syntax is used anywhere else in a rule, then it will
be treated as a membership statement (see Use relationship membership as a rule input).

2. An inferred relationship will be partially known if the rule used to infer it returns unknown for any of the potential target
entity instances.

3. An inferred relationship will be partially known if its target entity is not complete.

4. Combiningmanually created relationships with inferred relationships is not allowed.

5. Combining inferred relationships with temporal values is not supported.

6. A relationship must only be inferred in its primary direction.

Infer existence of entities to satisfy the relationship
You can also write a rule that creates entity instances to become members of a relationship.

The syntax to use to infer that entity instances should be created (or deleted) as members of a relationship is:

l <relationship> (<identifying value>) exists if

l InferInstance(<relationship>,<identifying value>) if

or in table form (where multiple instances are needed):

Relationship

<identifying value> Condition

<identifying value> Condition

The identifying value can either be a fixed value ("spouse") or a variable (the tax year) which is then used as
the identifying attribute for the entity instances created.
At runtime, the engine will evaluate each rule in the above form, evaluate the condition(s) and will create an
instance for any condition that is true, and destroy any instance for which no condition returns true.
For example, assuming you have the following data model:

Example 1: Creating a single instance
Writing the rule:

the locations ("Main office") exists

will create a single instance of the entity "the location" which is a member of the containment relationship "the
locations". The instance will have "Main office" as the value of the identifying attribute.

Example 2: Creating multiple instances using a rule table
Writing the rule:

the locations

"Main office" the assessment date >= 2009-10-01

"Warehouse" the assessment date >= 2000-01-15

"Factory" the assessment date >= 2000-01-15

will create instances of the entity "the location" (depending on the assessment date), which are members of the
containment relationship "the locations". These instances will have "Main office", "Warehouse" and "Factory" as
the value of their identifying attributes.

Example 3: Creating multiple instances from a single entity level-attribute
Writing the rule:

the location in which the employee works (the employee’s local office) exists

will create an instance of the location entity for each unique value of "the employee’s local office". These
instances will be members of the relationship "the location in which the employee works" and have the value of
the employee’s local office as the value of the identifying attribute.

Notes /Limitations

1. Combiningmanually created instances with inferred instances is not allowed.

2. Combining inferred entity instances with temporal values is not supported.

3. Only a single attribute of the entity instance can be inferred as a part of the entity rule. For example, the type of benefit
("unemployment benefit") can be set but the amount of the benefit would have to be set via a separate rule.

4. Inferred entity instances may not contain base level attributes.

5. A relationship that participates in an inferred entity instance rule is considered to be an inferred relationship. This means
that an inferred relationship rule cannot be used to prove the same relationship used in an inferred entity instance rule.

See worked examples
The following example rulebases installed with Oracle Policy Modeling demonstrate the inferred entity instance
functionality. For how to view these rulebases, see Open an example rulebase.

l Inferred Brand Discount rulebase

This rulebase models a generic purchase order scenario using inferred entity instances to group order items by brand and
then apply a brand discount for purchases over $100 for any given brand.

l Inferred Benefits rulebase

This rulebase infers the existence of benefits and tallies the number of people eligible for each benefit. It also demonstrates
inferred instances using rule tables.

l Inferred Tax Years rulebase

This rulebase infers the existence of tax year entity instances so that further rules related to those tax years can be
applied. This can be helpful if you want to ask further information about previous years (ie "did you submit a tax return for
<tax year>") but only ask about tax years relevant to the interview, without pre-populating every possible tax year.

l Inferred Service Delta rulebase

This rulebase infers the existence of service entity instances in order to identify which services should be started, stopped
or retained when a customer changes phone plans. It also demonstrates inferred instances from global values.

See also:

l Reason across multiple entities

l Investigate an inferred relationship

View and amend the data model while writing rules
Using the Data Model Browser, you can view and change the rulebase data model while writing your rules in
Microsoft Word.

What do you want to do?
View the attributes, entities and relationships
Edit an attribute from within Word
Edit an entity from within Word
Edit a relationship from within Word

View the attributes, entities and relationships
To open the Data Model Browser from within Microsoft Word, press Alt+D or click the Data Model Browser
button on the Oracle Policy Modeling toolbar.
At the top of the Data Model Browser are several options to help you navigate and filter the display of attributes
and entities.

The Back and Forward buttons allow you to move back and forward between previous views.
The search field allows you to filter the lists according to the text provided. This search is case-insensitive.
The Filter drop down list allows you to filter the lists by attribute type.
You can also sort lists by clicking on the column header - this will alternate between ascending and descending
order.
The Data Model Browser shows four different views of the model. These views are:

l project attributes

l project entities

l entity attributes

l entity relationships

View the project attributes
The project attributes view lists the attributes for all the entities in the project. This view is accessed by clicking
on the Attributes tab.

The following attribute properties are displayed:

l attribute ID (public name, if defined, otherwise build model id) and attribute type (indicated by an icon)

l entity that the attribute belongs to (this is a link to the entity attributes view for that entity)

l attribute text

View the project entities
The project entities view lists all the entities in the project. This view is accessed by clicking on the Entities tab
(and clicking the Back button if the view is showing the attributes for a particular entity).

The following entity properties are displayed:

l entity ID (this is a link to the entity attributes view for that entity)

l entity text and entity type (shown by a globe for global entities and a yellow cube for non-global entities)

l identifying attribute

View the entity attributes
The entity attributes view lists all the attributes for a particular entity. This view is accessed by clicking on an
entity link in any of the other views or by selecting Show Attributes from the context menu in the project entit-
ies view.

The following attribute properties are displayed:

l attribute ID (public name, if defined, otherwise build model id) and attribute type (indicated by an icon)

l attribute text

View the entity relationships
The entity relationships view lists all the relationships for a particular entity. This view is accessed by selecting
Show Relationships from the context menu in the project entities view.

The following relationship properties are displayed:

l relationship ID

l relationship type

l relationship text

l the target entity for the relationship (this is a link to the entity attributes view for that entity)

Edit an attribute fromwithinWord
To edit an attribute from within Word:

1. In the Data Model Browser, open the project attributes view or the entity attributes view.

2. Right-click the attribute text and select Edit Attribute....The Attribute Editor dialog box will open for the selected
attribute in Oracle Policy Modeling.

3. Edit the attribute properties as required, then click OK.

Edit an entity fromwithinWord
To edit an entity from within Word:

1. In the Data Model Browser, open the project entities view.

2. Right-click the entity text and select Edit Entity in....The Edit Entity dialog box will open for the selected entity in
Oracle Policy Modeling. (This option is only available for non-global entities.)

3. Edit the entity properties as required, then click OK.

Edit a relationship fromwithinWord
To edit a relationship from within Word:

1. In the Data Model Browser, open the entity relationships view.

2. Right-click the relationship and select Edit Relationship....The Relationship Editor dialog box will open for the
selected relationship in Oracle Policy Modeling.

3. Edit the relationship properties as required, then click OK.

Temporal reasoning
Topics in "Temporal reasoning"

l Decide if temporal reasoning is needed

l Set the date a rule comes into effect

l Calculate an amount in a time period

l Calculate a monthly amount

l Find the maximum or minimum amount in a period

l Check if a condition is true within a time period

l Build a temporal value from entity instances

l Set the time period to use for calculations

l Determine a rule attribute on a given date

l Find the closest date when an attribute was true

l Calculate the number of days/weeks/months/years since a given date

l Check if a condition is true relative to a given date

See also:

l Create test cases with temporal data or outcomes

l Debug temporal rules and data

Decide if temporal reasoning is needed
Temporal reasoning refers to Oracle Policy Modeling's ability to reason with rulebase attributes or outcomes
whose values change over time. Rules written in Oracle Policy Modeling are thus time-aware, operating sim-
ultaneously both at a specific point in time (eg the time at which you run an investigation, or some specific point
in the past or future), as well as across time periods (eg 'in the last three months', or 'until the person's 18th
birthday').
When analyzing potential rulebase source material, you should take particular note of rules, data or cir-
cumstances that may change over time. Oracle Policy Modeling's temporal reasoning functionality may be the
ideal choice for modeling situations that suggest changeability. Using temporal reasoning functions, even in
some situations that could be modeled without them, can considerably reduce the effort needed both to write
the rules and to maintain them in the future.

What do you want to learn about?
How conclusions can change over time
What kinds of temporal variation can Oracle Policy Modeling deal with?
Temporal reasoning and areas of change
What does temporal reasoning offer?
When to use temporal reasoning

A worked example of temporal reasoning

How conclusions can change over time
All attributes have a value. However, when you view a value (eg using the debugger or a decision report), you
are only seeing the value of the attribute at a particular point in time (eg the current time, or 'the date of the
investigation'). That value may change depending on when we look at it.
For instance, take a simple rule which infers whether a person can obtain a driver licence:

the person can obtain a driver licence if

the person has passed a driving test and

the person's age is greater than or equal to 16

Imagine that we ran an investigation using this rulebase in 2006, and provided the information that the person
had passed a driving test and was born on 1 January 1992. The rulebase would infer that the person can not
obtain a driver licence, as they would not be 16 years of age. However, if we saved that interview and reopened
it two years later (in 2008), it would immediately tell us that the person can obtain a driver licence, because
they would be 16 years old. The interview was not altered - no new information has been given, and no existing
information has been changed. Yet the value of some attributes have changed, due solely to the lapse of time.
Hence, an inherent property of every attribute is its value at a point in time. Oracle Policy Modeling allows you
to write rules that reach conclusions based not only on values as they exist at a particular instant, but also
based on how that value changes over time.

What drives changes in rulebase conclusions?
There are two ways in which a rulebase conclusion may change over time. The first is where the rule's outcome
changes based solely on time. In this case, a conclusion can change even though the values of the rule's con-
ditions have not. The age-based rule above is an example of this - different outcomes are reached at different
times, even though the input data is always identical.
The second way in which conclusions might change over time is where the data that proves a goal itself
changes. For instance, the interest rate of a bank account, or a legislatively-mandated amount of pension can
change. As a result, other attributes that depend on this changeable data (eg the monthly amount of interest,
the total pension payable) will also inherit different values as time passes. This differs from the age-based
example above, because in this case, it is the change of information over time that dictates how the outcome
value changes, not merely the passage of time by itself.

What kinds of temporal variation can Oracle Policy Modeling deal with?
Oracle Policy Modeling includes a large number of functions to reason with the changing values of attributes
over time. Some examples of rules that can be expressed are:

l Whether a particular condition is true for a given number of days/months/years in a given time period. For instance 'the
employee has been sick for three or more days in the last month'.

l The total amount for a currency or numeric variable based on complex logic spanning a given time period. For instance 'the
cumulative amount of interest earned on the account for the previous financial year'. Oracle Policy Modeling takes account
of variations in how relevant amounts are calculated over that time (eg time periods spanning interest rate changes).

l Whether or not a condition is true, false, uncertain or unknown on, before or after a specified time or time period. For
instance 'has the person been continually employed for all of the previous 12 months', or 'will the applicant be eligible on
this day next year'.

Temporal reasoning and areas of change
Temporal reasoning is used to handle three intersecting areas of change: changes in policy and rules, changes
in rates and other reference data, and changes in circumstances. Common scenarios to watch out for include:

l Calculations of premiums payable by insurance companies;

l Payment of pensions or other government benefits that are affected by personal circumstances (eg unemployment, hous-
ing situation, income, age) - includes both determinations of eligibility for the benefit and also calculating the amount of pay-
ments;

l Calculation of interest rates to debtors and creditors of a financial institution;

l Calculation of taxes payable;

l Payment of salaries or wages, whichmay be affected by varying pay rates, overtime hours worked etc. Such data can
change on a daily or even hourly basis. Temporal reasoning allows you to determine wages due over any desired time-
frame (you are not tied to static, predetermined pay periods).

Changes in policy and rules
Policy and legislation are constantly changing. Business rules need to keep pace with that change if they are to
be useful and accurate. Temporal reasoning functionality allows you to extend a rulebase's ability to cope with
changing rules beyond what can be achieved by hard coded trigger dates alone.
For example, changing social security laws may lead to the introduction of a Government benefit, or a bank
may implement a tough new policy for high risk debtors. In these cases, there are likely to be certain 'trigger
dates' on which new parts of a rulebase need to become active. However, there may be calculations performed
over time periods which overlap these dates, or new rules may apply to new clients in a different fashion than
existing clients. Thus there is a need to write rules that can handle situations where both old and new rules may
have a simultaneous role in reaching the overall conclusion. Temporal reasoning allows you to do this.

Changes in rates and other reference data
It is common for rulebases to feature reference data that is periodically changed. This data is generally kept
either in the rulebase or an external database and is known at runtime (ie it is not user-entered data). Typically,
these pieces of data take the form of rates (eg pay rates or interest rates) or thresholds (eg the minimum allow-
able pension payable, the monthly fee cap for a telephone plan). Oracle Policy Modeling allows you to make
updates to reference data easily, while keeping deprecated or historical reference data intact. Temporal reas-
oning functionality then allows you to reuse a rule to calculate outcomes based on any time period, whether that
period uses older, newer or a mix of reference data. Decision reports for outcomes that encompass changing
reference data allow you to easily see the components of that calculation or result attributable to each ref-
erence data period.

Changes in circumstances
In rulebases that calculate outcomes based on the circumstances surrounding a particular entity or group of
entities (eg people, businesses), difficulties can arise when those circumstances change on a rapid (eg daily)
basis. As an example, the total amount of money a health insurer pays to a customer may be dependent on the
severity of the illness or injury, which can vary from day to day. Similarly, a government might pay an

allowance that is affected by whether the recipient is co-habiting with someone else. If the recipient concerned
is continually moving in and out of co-habitation status, it quickly becomes onerous to calculate the cumulative
amount of allowance payable over, say, a year, unless temporal reasoning is used.

What does temporal reasoning offer?
Temporal reasoning provides:

l A simple way of representing data for a period of time, over which a calculation can then be made (eg over a financial year
or over the last three months);

l A simple way of showing the results of these calculations, identifying the rates or rules applied to each time period and
aggregating these into a total amount for the period;

l The capacity to readily change the rules and reference data andmeasure the impact of that change on those affected by
the rule change.

When to use temporal reasoning
An inherent property of every attribute is its value at a point in time. Temporal operators are provided to tap
into this property, including functions to calculate time-dependent items like:

l Whether a particular condition is true for a given number of days/months/years in a specific time period.

l The total amount for a data item based on complex logic spanning any given time period. For example, the total amount of
a social security benefit over any given time period.

l Whether or not a condition is true on, before or after a specified time period.

These functions enable logic which is natural to a person to be captured in a readily understandable way, nat-
urally handling conditions like the following:

l "You should have at least three alcohol-free days each week."

l "Retirement age is 55 if you started work before 1950, and 65 if you started work in or after 1950."

l "You are eligible for disability pension if you have been off work due to an injury for three consecutive months in any
twelve month period."

l "Until the end of the current financial year, the levy is 1%, at which time it goes up to 2%. However, if your age at the end
of the financial year is over 65, it will initially stay at 1%, and increase by 0.25% a year until it reaches 2%."

A worked example of temporal reasoning
How to model temporal rules is best illustrated with a worked example.

Pension calculation rules
For this example, a pension payment is payable based on the following rules:

l To receive their payment, the personmust satisfy an age threshold:

l Up until 1 January 2007, this age threshold was 55 years of age;

l From 1 January 2007 inclusive, the age threshold has changed to 65 years of age.

l The standard daily rate of a person’s benefit is calculated according to the following:

l $5 per day regardless of marital status up until 1 July 2006;

l After 1 July 2006, it is either:

l $6 per day if the person is not married; or

l $7 per day if the person is married.

l The actual daily rate paid to a person (the amount they are entitled to) is based on the following, regardless of which time
period they fall into:

l 1 x the standard daily rate if the person is not married;

l 1.5 x the standard daily rate if the person is married.

Oracle Policy Modeling rules
The business logic described above is captured in the following rules written in Microsoft Word:

Total entitlement

the person's total entitlement for pension for the period = IntervalDailySum(the start of the period, the
end of the period, the person's daily entitlement for pension)

Daily entitlement

the person's daily entitlement for pension

the standard daily rate of bene-
fit

the person is not married and
the person satisfies the age
requirement

the standard daily rate of bene-
fit * 1.5

the person is married and
the person satisfies the age
requirement

0 otherwise

Standard daily rate

the standard daily rate of benefit

5 TemporalBefore(2006-07-01)

6
TemporalOnOrAfter(2006-07-01) and
the person is not married

7
TemporalOnOrAfter(2006-07-01) and
the person is married

0 otherwise

Age requirements

the person satisfies the age requirement if

both

TemporalBefore(2007-01-01) and

the person's age in years >= 55

or

both

TemporalOnOrAfter(2007-01-01) and

the person's age in years >= 65

Person's age

the person's age in years = TemporalYearsSince(the person's date of birth, the current date)

Simple scenario
Take a simple scenario, in which the person who will receive the pension:

l Is born on the 1st January 1950; and

l Was initially single, thenmarried on 1 April 2007.

The assessment period is 1 January 2005 until 1 January 2020.

Input timeline
The person is assessed over a period from 1 January 2005 until 1 January 2020, generating the following
timeline for the inputs:

Date Relevant Change Type of Change

1 January 1950 The person is born Circumstance

1 July 2006 Rate change for single/married people Rate

1 January 2007 New rules for age criteria Rules

1 April 2007 The person is married Circumstance

Output timeline
The inputs above generate the following results for the person. Note there is no change in result on 1 April 2007,
as the person’s rate does not change on that date (they do not satisfy the age requirements).

Date Conclusion

1 January
2005

The person turns 55

The person's daily entitlement for pension is $5 per day

1 July 2006 The person's daily entitlement for pension is $6 per day

1 January
2007

The person's daily entitlement for pension is $0 per day as they no longer satisfy the age requirements which
have changed

1 January
2015

The person's daily entitlement for pension is $10.50 per day

Set the date a rule comes into effect
To apply one set of rules before a particular date, and another set of rules after that date, you can use the Tem-
poral Before and Temporal On Or After functions.

For example, you could have the following simple rule to determine the age requirements for a pension:

the person satisfies the age requirement if

both

TemporalBefore(2007-01-01) and

the person's age in years >= 55

or

both

TemporalOnOrAfter(2007-01-01) and

the person's age in years >= 65

You can also use these functions in tabular rules, for example, to determine a person's standard daily rate of
benefit:

the standard daily rate of benefit

5 TemporalBefore(2006-07-01)

6
TemporalOnOrAfter(2006-07-01) and
the person is not married

7
TemporalOnOrAfter(2006-07-01) and
the person is married

0 otherwise

Calculate an amount in a time period
To calculate an amount within a time interval you use the Interval Aggregate functions. These functions aggreg-
ate the values of a time-varying attribute within a time interval, into a single value. You can also specify that
the value of the attribute is only to be included in the aggregation if a given boolean attribute is true at that
time.
In general the result of these functions will not vary over time, however, if time-varying start or end dates are
passed in as parameters, the result will vary too.
The functions are: Interval Count Distinct, Interval Count Distinct If, Interval Daily Sum, Interval Daily Sum If,
Interval Weighted Average, and Interval Weighted Average If.

What do you want to do?
Calculate the number of distinct values for a variable in a time period
Calculate the number of distinct values for a variable in a time period only when a condition is true
Calculate the sum of a variable in a time period
Calculate the sum of a variable in a time period only when a condition is true
Calculate the average value of a variable in a time period
Calculate the average value of a variable in a time period when a condition is true

Calculate the number of distinct values for a variable in a time period
The Interval Count Distinct function counts the number of known distinct values for a variable, in the interval
from the specified start date (inclusive) to the end date (exclusive). The syntax for this function is:

n IntervalCountDistinct(<start date>,<end date>,<variable>)

For example, the Interval Count Distinct function could be used to determine the number of distinct addresses
the client had between 1 July 2005 and 30 June 2006 (inclusive). In Word you would write this rule as:

the client's distinct address count = IntervalCountDistinct(2005-07-01,2006-07-01,the client's address)

This function returns a value of 2 for 'the client's address count' for the following data where p1 is 'the client's
address':

Calculate the number of distinct values for a variable in a time period only when a condition is true
The Interval Count Distinct If function counts the number of known distinct values for an attribute, in the inter-
val from the specified start date (inclusive) to the end date (exclusive), only including times when a boolean fil-
ter is true. The syntax for this function is:

n IntervalCountDistinctIf(<start date>,<end date>,<variable>,<boolean filter>)

For example, the Interval Count Distinct If function could be used to determine the number of distinct addresses
the client had between 1 January 2000 and 31 December 2006 (inclusive) where the client was aged over 18. In
Word you would write this rule as:

the client's distinct address count = IntervalCountDistinctIf(2000-01-01,2007-01-01,the client's
address,the client is aged over 18)

This function returns a value of 3 for 'the client's distinct address count' for the following data where b5 is 'the
client is aged over 18' and p12 is 'the client's address':

Calculate the sum of a variable in a time period
The Interval Daily Sum function calculates the sum of a currency or number variable, in the interval from the
specified start date (inclusive) to the end date (exclusive). The attribute is assumed to be a daily quantity. The
syntax for this function is:

n IntervalDailySum(<start date>,<end date>,<currency|number>)

For example, the Interval Daily Sum function could be used to sum the daily rate of benefit into the amount of
benefit payable for the assessment period between 5 July 2006 and 31 July 2006 (inclusive). In Word you would
write this rule as:

the amount of benefit payable for the assessment period = IntervalDailySum(2006-07-05,2006-08-01,the
daily rate of benefit)

This function returns a value of $575 for 'the amount of benefit payable for the assessment period' for the fol-
lowing data where p2 is 'the daily rate of benefit':

That is, $15 * days from 5 July 2006 to 9 July 2006 = $15 * 5 = $75
+ $20 * days from 10 July 2006 to 19 July 2006 = $20 * 10 = $200
+ $25 * days from 20 July 2006 to 31 July 2006 = $25 * 12 = $300
Total = $575

Calculate the sum of a variable in a time period only when a condition is true
The Interval Daily Sum If function calculates the sum of all the daily values for a currency or number variable,
in the interval from the specified start date (inclusive) to the end date (exclusive), only including times when a
boolean filter is true. The syntax for this function is:

n IntervalDailySumIf(<start date>,<end date>,<currency|number>,<boolean filter>)

For example, the Interval Daily Sum If function could be used to determine the total amount spent on weekends
in December 2006. In Word you would write this rule as:

the total amount spent on weekends in December = IntervalDailySumIf(2006-12-01,2007-01-01,the daily
amount spent,the day is a weekend)

This function returns a value of $530 for 'the total amount spent on weekends in December' for the following
data:

That is, $30 + $50 + $45 + $15 + $65 + $40 + $75 + $100 + $70 + $40 = $530

Calculate the average value of a variable in a time period
The Weighted Average function calculates the average value of a currency or number variable in the interval
from the specified start date (inclusive) to the end date (exclusive) weighted by the time span to which each
value applies. The syntax for this function is:

n IntervalWeightedAverage(<start date>,<end date>,<currency|number>)

For example, the Interval Weighted Average function could be used to determine the average number of chil-
dren in care in a particular week. In Word you would write this rule as:

the average number of children in care = IntervalWeightedAverage(2007-01-22,2007-01-29,the number
of children in care)

This function returns a value of 8.28571 for 'the average number of children in care' for the following data
where p5 is 'the number of children in care':

Calculate the average value of a variable in a time period when a condition is true
The Weighted Average If function calculates the average value of a currency or number variable in the interval
from the specified start date (inclusive) to the end date (exclusive), only including times when a boolean filter is
true (weighted by the time span to which each value applies and where the filter is true). The syntax for this
function is:

n IntervalWeightedAverageIf(<start date>,<end date>,<currency|number>,<boolean filter>)

For example, the Interval Weighted Average If function could be used to determine the average number of chil-
dren in care for the weekdays in a specified period. In Word you would write this rule as:

the average number of children in care for the weekdays in the assessment period = Inter-
valWeightedAverageIf(2007-01-22,2007-01-29,the number of children in care,the day is a weekday)

This function returns a value of 9.2 for 'the average number of children in care for the weekdays in the assess-
ment period' for the following data where b4 is 'the day is a weekday' and p10 is 'the number of children in
care':

Calculate a monthly amount
Temporal rules can be used to calculate an amount for each month within a specified time period. To do this you
would use an Interval Aggregate function (or a Filtered Interval Aggregate function if there are dependencies on
the inclusion of values in the calculation). (See Calculate an amount in a time period for more information on
these functions.)

For example, a family benefit is calculated on a daily rate that is summed to give an amount that is paid
monthly. To calculate the family's monthly benefit you would use the Interval Daily Sum function as follows:

the family's monthly benefit = IntervalDailySum(the start of the payment month, the start of the fol-
lowing month, the family's daily benefit)

To calculate the start of the following month, you use the Add Months function as follows:

the start of the following month = AddMonths(the start of the payment month, 1)

Using these rules you would need to enter the start date of the payment month as an input. It might be prefer-
able, however, to have the start of the payment month as a time-varying attribute which gives the start date of
the current month. To do this, you would add the following rule using the Temporal Months Since function:

the start of the payment month = AddMonths(the start date, TemporalMonthsSince(the start date, the end
date))

If you wanted to calculate the start date of every month from the specified start date onwards for 20 years, you
could replace 'the end date' in the rule above with a variable which calculates 20 years from the specified start
date (using the Add Years function).

the start of the payment month = AddMonths(the start date, TemporalMonthsSince(the start date,
AddYears(the start date, 20)))

Using these rules, the rulebase would return the family's monthly benefits for each month within the specified
20 year time period.

In a similar way you could calculate a weekly or yearly amount using the Add Weeks and Add Years functions in
place of the Add Months functions.

Find the maximum or minimum amount in a period
To find the maximum or the minimum amount in a specified period you use the Interval Maximum and Interval
Minimum functions. There are also filtered equivalents of these functions where a value is only included in the
aggregation if a given boolean attribute is true at that time. These functions are Interval Maximum If and Inter-
val Minimum If.
In general the result of these functions will not vary over time, however, if time-varying start or end dates are
passed in as parameters, the result will vary too.

What do you want to do?
Find the maximum amount in a period
Find the minimum amount in a period
Find the maximum amount in a period when a boolean attribute is true
Find the minimum amount in a period when a boolean attribute is true

Find the maximumamount in a period
To find the maximum value of a variable in the interval from the specified start date (inclusive) to the end date
(exclusive) you use the Interval Maximum function. The syntax for this function is:

n IntervalMaximum(<start date>,<end date>,<variable>)

For example, to determine the maximum rate of daily benefit calculated between 5 July 2006 and 31 July 2006
(inclusive), you would write the following rule in Word:

the maximum rate of benefit during the assessment period = IntervalMaximum(2006-07-05,2006-08-
01,the daily rate of benefit)

This function returns a value of $25 for 'the maximum rate of daily benefit during the assessment period' (p2)
for the following data:

Find the minimumamount in a period
To find the minimum value of a variable in the interval from the specified start date (inclusive) to the end date
(exclusive) you use the Interval Minimum function. The syntax for this function is:

n IntervalMinimum(<start date>,<end date>,<variable>)

For example, to determine the minimum rate of daily benefit calculated between 5 July 2006 and 31 July 2006
(inclusive), you would write the following rule in Word:

the minimum rate of benefit during the assessment period = IntervalMinimum(2006-07-05,2006-08-
01,the daily rate of benefit)

This function returns a value of $15 for 'the minimum rate of benefit during the assessment period' (p2) for the
following data:

Find the maximumamount in a period when a boolean attribute is true
To find the maximum value of a variable in the interval from the specified start date (inclusive) to the end date
(exclusive), only including times when a boolean filter is true, you use the Interval Maximum If function. The
syntax for this function is:

n IntervalMaximumIf(<start date>,<end date>,<variable>,<boolean filter>)

For example, to determine the maximum rate of benefit calculated between 5 July 2006 and 31 July 2006 (inclus-
ive) where the client is also eligible for the benefit, you would write the following rule in Word:

the maximum rate of benefit payable during the assessment period = IntervalMaximumIf(2006-07-
05,2006-08-01,the maximum daily rate of benefit,the client is eligible for the benefit)

This function returns a value of $20 for 'the maximum rate of benefit payable during the assessment period'
(p6) where b3 is 'the client is also eligible for the benefit' for the following data:

Find the minimumamount in a period when a boolean attribute is true
To find the minimum value of a variable in the interval from the specified start date (inclusive) to the end date
(exclusive), only including times when a boolean filter is true, you use the Interval Minimum If function. The
syntax for this function is:

n IntervalMinimumIf(<start date>,<end date>,<variable>,<boolean filter>)

For example, to determine the minimum rate of benefit calculated between 5 July 2006 and 31 July 2006 (inclus-
ive) for days where the client is also eligible for the benefit, you would write the following rule in Word:

the minimum rate of benefit payable during the assessment period = IntervalMinimumIf(2006-07-
05,2006-08-01,the minimum daily rate of benefit,the client is eligible for the benefit)

This function returns a value of $25 for 'the minimum rate of benefit payable during the assessment period' (p8)
where b3 is 'the client is also eligible for the benefit' for the following data:

Check if a condition is true within a time period
To check if a condition is true within a time period you use the Interval Verifier functions (Interval Always, Inter-
val Sometimes, Interval At Least Days, Interval Consecutive Days) and the Temporal Verifier functions (Tem-
poral Always Days, Temporal Consecutive Days, Temporal Sometimes Days).
The Interval Verifier functions work on boolean attributes and verify whether the attribute is true always, some-
times or for a consecutive number of days within a time span.
The Temporal Verifier functions operate on boolean attributes and return a boolean attribute that varies over
time. They verify if the boolean attribute is true always, sometimes or for a consecutive number of days within
a specified number of preceding days.

What do you want to do?
Check if a condition is true at all times in the time period
Check if a condition is ever true in the time period
Check if a condition is true for at least the specified number of days in the time period
Check if a condition is true for at least the specified number of consecutive days in the time period
Check if a condition is true for all of a specified number of preceding days
Check if a condition is true for at least the specified number of consecutive preceding days
Check if a condition is ever true within a specified number of preceding days

Check if a condition is true at all times in the time period
The Interval Always function returns true if and only if the attribute is true at all times in the interval from the
specified start date (inclusive) to the end date (exclusive). The syntax for this function is:

n IntervalAlways(<start date>,<end date>,<boolean>)

For example, the Interval Always function could be used to determine whether the client was in jail at all times
between 10 July 2006 and 20 July 2006 (inclusive). In Word you would write this rule as:

the client was in jail at all times during the assessment period if

IntervalAlways(2006-07-10,2006-07-21,the client was in jail)

The function returns a value of true for 'the client was in jail at all times during the assessment period' for the
following data where b1 is 'the client was in jail':

Check if a condition is ever true in the time period
The Interval Sometimes function returns true if and only if the attribute is ever true in the interval from the spe-
cified start date (inclusive) to the end date (exclusive). The syntax for this function is:

n IntervalSometimes(<start date>,<end date>,<boolean>)

For example, the Interval Sometimes function could be used to determine whether the client was in Australia at
any time between 8 January 2007 and 22 January 2007 (inclusive). In Word you would write this rule as:

the client has been in Australia if

IntervalSometimes(2007-01-08,2007-01-23,the client was in Australia)

This function returns a value of true for 'the client has been in Australia' for the following data where b4 is 'the
client was in Australia':

Check if a condition is true for at least the specified number of days in the time period
The Interval At Least Days function returns true if and only if the attribute is true for at least the specified num-
ber of days (not necessarily consecutive) in the interval from the specified start date (inclusive) to the end date
(exclusive). The syntax for this function is:

n IntervalAtLeastDays(<start date>,<end date>,<number>,<boolean>)

For example, the Interval At Least Days function could be used to determine whether an employee has been at
work for at least 5 days during the assessment period. The assessment period begins on 1/7/07 and ends on
7/7/07 (inclusive). In Word you would write this rule as:

the employee has been at work for at least 5 days during the assessment period if

IntervalAtLeastDays(2007-07-01,2007-07-08,5,the employee was working)

The function returns a value of true for 'the employee has been at work for at least 5 days during the assess-
ment period' for the following data where b3 is 'the employee was working':

Check if a condition is true for at least the specified number of consecutive days in the time period
The Interval Consecutive Days function returns true if and only if the attribute is true for at least the specified
number of consecutive days in the interval from the specified start date (inclusive) to the end date (exclusive).
The syntax for this function is:

n IntervalConsecutiveDays(<start date>,<end date>,<number>,<boolean>)

For example, the Interval Consecutive Days function could be used to determine whether an employee has been
at work for at least 5 consecutive days during the assessment period. The assessment period begins on 1/7/07
and ends on 7/7/07 (inclusive). In Word you would write this rule as:

the employee has been at work for at least 5 consecutive days during the assessment period if

IntervalConsecutiveDays(2007-07-01,2007-07-08,5,the employee was working)

This function returns a value of false for 'the employee has been at work for at least 5 consecutive days during
the assessment period' for the following data where b3 is 'the employee was working':

Check if a condition is true for all of a specified number of preceding days
The Temporal Always Days function returns a boolean attribute that varies over time and is true if and only if
the given boolean attribute is true for all of a specified number of preceding days, not including the current day.
The syntax for this function is:

n TemporalAlwaysDays(<number>,<boolean>)

For example, the Temporal Always Days function could be used to determine whether an employee has been at
work for the last 4 days. In Word you would write this rule as:

the employee has been at work for the last 4 days if

TemporalAlwaysDays(4,the employee was working)

If this rule is applied to the sample data below where b1 is 'the employee was working', b2 'the employee has
been at work for the last 4 days' would take the following temporal result: {false, true from Day 6, false from
Day 9}.

NOTE: If <number> is defined as zero, the result will always be true regardless of the value of the <boolean>
parameter.
TIP: To see an example of a complete rulebase using this function, open and run the Aged Care Approval rule-
base project provided in the Examples folder in the Oracle Policy Modeling installation folder.

Check if a condition is true for at least the specified number of consecutive preceding days
The Temporal Consecutive Days function returns a boolean attribute that varies over time and is true if and only
if the given boolean attribute is true for at least a specified number of consecutive days at any time within the
preceding specified number of days, not including the current day. The syntax for this function is:

n TemporalConsecutiveDays(<mindays number>,<daycount number>,<boolean>)

For example, the Temporal Consecutive Days function could be used to determine whether a customer's bank
account balance has exceeded $50 for at least 2 consecutive days at any time in the last 5 days. In Word you
would write this rule as:

the customer's bank balance has exceeded $50 for at least 2 consecutive days in the last 5 days if

TemporalConsecutiveDays(2,5,the customer's bank balance exceeds $50)

If this rule is applied to the sample data below, b3 'the customer's bank balance has exceeded $50 for at least 2
consecutive days in the last 5 days' would take the following temporal result: {false, true from Day 4, false
from Day 9}. b5 is 'the customer's bank balance exceeds $50'.

NOTES:

a. If <mindays number> is defined as zero, the result will always be true regardless of the values of <daycount number>
and the <boolean> parameter.

b. If the <daycount number> is defined as zero, the result will be false if <mindays number> is known and is not equal to
zero.

c. If <mindays number> is greater than <daycount number>, the result will always be false regardless of the value of the
<boolean> parameter.

Check if a condition is ever true within a specified number of preceding days
The Temporal Sometimes Days function returns a boolean attribute that varies over time and is true if and only
if the given boolean attribute is ever true within a specified number of preceding days, not including the current
day. The syntax for this function is:

n TemporalSometimesDays(<number>,<boolean>)

For example, the Temporal Sometimes Days function could be used to determine whether a customer's bank
account balance has exceeded $100 at any time in the last 4 days. In Word you would write this rule as:

the customer's bank balance has exceeded $100 in the last 4 days if

TemporalSometimesDays(4,the customer's bank balance exceeds $100)

If this rule is applied to the sample data below, 'the customer's bank balance has exceeded $100 in the last 4
days' (b4) would take the following temporal result: {false, true from Day 3, false from Day 9}. b6 is 'the cus-
tomer's bank balance exceeds $100'.

NOTE: If <number> is defined as a zero, the result will always be false regardless of the value of the
<boolean> parameter.

Build a temporal value from entity instances
You can convert entities into temporal attributes using the Temporal From Start Date, Temporal From End Date,
and Temporal From Range functions. The entities contain a value attribute and either a start date, an end date,
or both. The functions also take a default value that is applied to any uncovered periods. The default value must
be a constant or expression of the same type as the value attribute, or uncertain or unknown.

What do you want to do?
Get a temporal attribute from entity instances with values from the start date

Get a temporal attribute from entity instances with values up until the end date
Get a temporal attribute from entity instances with values from the start date until the end date

Get a temporal attribute from entity instances with values from the start date
The Temporal From Start Date function takes a relationship, a start date attribute on the entities in the rela-
tionship, and a value attribute on the entities, and returns a single temporal attribute (at the source entity level)
with values that take effect from the start date. Care should be taken that the start dates are unique, because
the result will be 'uncertain' if two entities have the same start date.

The syntax for this function is:

n TemporalFromStartDate(<relationship>,<start date>,<target entity-level attribute>)

For example, if a person has various jobs over the years, you could use the Temporal From Start Date function
to determine the person's employer at a given time. To do this you would write the following rule in Word:

the person's most recent employer = TemporalFromStartDate(the person's jobs, the job's start date, the
job's employer)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the person' , an entity 'the job' and a one-to-many relationship 'the person's jobs'.)

If this rule is applied to the sample data below, 'the person's most recent employer' would take the following
temporal result: {uncertain, Big Bank from 12/05/1995, Superannuation Company from 24/12/2002, Insurance
Agency from 03/10/2007}.

employer start date

Big Bank 12/05/1995

Superannuation Company 24/12/2002

Insurance Agency 03/10/2007

Get a temporal attribute from entity instances with values up until the end date
The Temporal From End Date function takes a relationship, an end date attribute on the entities in the rela-
tionship, and a value attribute on the entities, and returns a single temporal attribute (at the source entity level)
with values that take effect up until the end date.
NOTE:

l If no entity has an uncertain end date then the value is uncertain after the last end date (see Example 1 below)

l If one entity has an uncertain end date, the value for that entity holds from the last specified end date onwards (see
Example 2 below)

l If two entities have the same end date, the result will be 'uncertain' for a period (see Example 3 below)

The syntax for this function is:

n TemporalFromEndDate(<relationship>,<end date>,<target entity-level attribute>)

Example 1: All end dates are specified
A person has a first aid certificate that must be renewed every year. Each certificate has an ID number that has
been recorded with its expiry date. The Temporal From End Date function is used to determine the ID number
that was current at any time. In Word you would write this rule as:

the person's effective first aid certificate ID = TemporalFromEndDate(the person's first aid certificates, the
first aid certificate's expiry date, the first aid certificate ID)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the person' , an entity 'the first aid certificate' and a one-to-many relationship 'the person's
first aid certificates'.)

If this rule is applied to the sample data below, 'the person's effective first aid certificate ID' would take the fol-
lowing temporal result: {4534545A, 4943234E from 15/08/2005, 3404329F from 20/08/2006, uncertain from
12/08/2007}.

certificate ID expiry date

4534545A 15/08/2005

4943234E 20/08/2006

3404329F 12/08/2007

Example 2: One end date is open
In this example, one of the certificates has an open-ended expiry date.

certificate ID expiry date

4534545A 15/08/2005

4943234E 20/08/2006

3404329F uncertain

The intention is that this record remains in effect until further notice. When the data is collected, the expiry date
for this record remains unanswered so it is initially uncertain. A rule table is required to convert the uncertain
date to the latest possible date:

the first aid certificate's expiry date allowing for open ended
entries

the first aid certificate's expiry
date

the first aid certificate's expiry
date is certain

latest() otherwise

The original rule then uses the expiry date allowing for open ended entries:

the person's effective first aid certificate ID = TemporalFromEndDate(the person's first aid certificates, the
first aid certificate's expiry date allowing for open ended entries, the first aid certificate ID)

The result is that 'the person's effective first aid certificate ID' is {4534545A, 4943234E from 15/08/2005,
3404329F from 20/08/2006}.

Example 3: Two end dates are equal (an error)
In this example, an error has been made resulting in two end dates that are equal:

certificate ID expiry date

4534545A 15/08/2005

9984993B 20/08/2006

4943234E 20/08/2006

3404329F 12/08/2007

Using the same rules as in the previous example, the result is that 'the person's effective first aid certificate ID'
is {4534545A, uncertain from 15/08/2005, 3404329F from 20/08/2006, uncertain from 12/08/2007}.

Get a temporal attribute from entity instances with values from the start date until the end date
The Temporal From Range function takes a relationship, an effective start date attribute and an expiry date on
the entities in the relationship, and a value attribute on the entities, and returns a single temporal attribute (at
the source entity level) with values that takes effect from the start date (inclusive) until the end date (exclus-
ive). The value is uncertain if it expires before the next start date. Care should be taken that the start dates are
unique, because the result will be 'uncertain' for a while, if two entities have the same start dates.

The syntax for this function is:

n TemporalFromRange(<relationship>,<start date>,<end date>,<target entity-level attribute>)

For example, if a person working for the Government has a certain level of security clearance (valid for a spe-
cified period), you could use the Temporal From Range function to determine the person's security clearance at
a point in time. To do this you would write the following rule in Word:

the person's effective security clearance = TemporalFromRange(the person's security clearances, the secur-
ity clearance's start date, the security clearance's expiry date, the security clearance)

(For this rule to compile the following entities and relationship must be included in a properties files in the
project: an entity 'the person' , an entity 'the security clearance' and a one-to-many relationship 'the person's
security clearances'.)

If this rule is applied to the sample data below, the result is that 'the person's effective security clearance' is
{uncertain, Low from 01/07/2005, Medium from 01/07/2006, High from 01/07/2007, uncertain from
01/07/2008}.

Security Clearance Start Date Expiry Date

Low 01/07/2005 30/06/2006

Medium 01/07/2006 30/06/2007

High 01/07/2007 30/06/2008

In reality, a security clearance may be open-ended, and security clearances may overlap. For example:

Security Clearance Start Date Expiry Date

Low 12/01/2004 uncertain

Medium 01/08/2006 20/08/2006

High 15/08/2006 20/08/2006

If more than one security clearance is valid at a particular time, the one with the most recent start date applies,
as seen with this example:

When this data is collected, the expiry date for the open-ended record remains unanswered, so it is initially
uncertain. A rule table is required to convert the uncertain date to the latest possible date:

the security clearance's expiry date allowing for open ended
clearances

the security clearance's expiry
date

the security clearance's expiry
date is certain

latest() otherwise

The original rule then uses the expiry date allowing for open ended entries:

the person's effective security clearance = TemporalFromRange(the person's security clearances, the secur-
ity clearance's start date, the security clearance's expiry date allowing for open ended clearances, the secur-
ity clearance)

The result is that 'the person's effective security clearance' is {uncertain, Low from 12/01/2004, Medium from
01/08/2006, High from 15/08/2006, Low from 20/8/2006}.
TIP: To see an example of a complete rulebase using this function, open and run the Aged Care Approval rule-
base project provided in the Examples folder in the Oracle Policy Modeling installation folder.

Set the time period to use for calculations
To set the time period to use in calculations you can use the Earliest and Latest functions as start and end dates
respectively. These functions allow extension of the time period under consideration, to the beginning or end of
time. (Note that attempting to calculate any date differences with these values will result in uncertain.)

What do you want to do?
Get a date value equivalent to the earliest possible date
Get a date value equivalent to the latest possible date

Get a date value equivalent to the earliest possible date
To get a date value equivalent to the earliest possible date, you use the Earliest function. This function will
return a date guaranteed to be earlier than the value of any date attribute or expression.
The syntax for this function is:

n Earliest()

For example, an applicant is paid a benefit monthly, and the amount of the payment is a temporal value with val-
ues on specific days as follows (and 0 elsewhere):

15/4/2007: $120, 15/5/2007: $100, 15/6/2007: $120, 15/7/2007: $90

To calculate the amount of the benefit paid to the applicant up to 1/7/2007, the Earliest function is used as the
start date in an Interval Daily Sum function. In Word you would write this rule as:

the amount of benefit paid to the applicant up until 1/7/2007 = IntervalDailySum(Earliest(),2007-07-

01,the amount of the monthly payment)

The result for 'the amount of benefit paid to the applicant up until 1/7/2007' would be $340 (ie
$120+$100+$120) where p2 is 'the amount of the monthly payment'.

Get a date value equivalent to the latest possible date
To get a date value equivalent to the latest possible date, you use the Latest function.This function will return a
date guaranteed to be later than the value of any date attribute or expression.
The syntax for this function is:

n Latest()

For example, an applicant is paid a benefit monthly, and the amount of the payment is a temporal value with val-
ues on specific days as follows (and 0 elsewhere):

15/4/2007: $120, 15/5/2007: $100, 15/6/2007: $120, 15/7/2007: $90

To calculate the amount of the benefit paid to the applicant since 6/5/2007, the Latest function is used as the
end date in an Interval Daily Sum function. In Word you would write this rule as:

the amount of benefit paid to the applicant since 1/7/2007 = IntervalDailySum(2007-07-01,Latest(),the
amount of the monthly payment)

The result for 'the amount of benefit paid to the applicant since 1/7/2007' would be $210 (ie $120+$90) where
p2 is 'the amount of the monthly payment'.

Determine a rule attribute on a given date
To determine the value of an attribute at a particular date you use the Value At function. This function has the
following syntax:

n ValueAt(<date>,<attribute>)

For example, to determine that rate of benefit on the date of claim, you would write the following rule in Word:

the rate of benefit payable on the date of claim = ValueAt(the date of claim,the rate of benefit)

Using the sample data below, where 'the date of claim' (p2) is 18 July 2007, the function would return $20 for
'the rate of benefit payable on the date of claim' (p3):

Find the closest date when an attribute was true
To find the closest date when an attribute was true you use the When Last and When Next functions. These func-
tions look forwards or backwards from a reference date and return a date when a specified boolean attribute is
true.

Find the date on which a boolean attribute was last true
To return the date on which a boolean attribute was last true, looking backwards from a reference date (includ-
ing the reference date), you use the When Last function. This function has the following syntax:

n WhenLast(<date>,<boolean>)

For example, to determine when a customer's bank balance was last over $100, you would write the following
rule in Word:

the date the customer's bank balance was last over $100 = WhenLast(the current date,the customer's bank
balance > 100)

Find the date on which a boolean attribute will next be true
To return the date on which a boolean attribute will next be true, looking forwards from a reference date (includ-
ing the reference date), you use the When Next function. This function has the following syntax:

n WhenNext(<date>,<boolean>)

For example, to determine when was the first time in 2007 that a customer's bank balance was over $100, you
would write the following rule in Word:

the date the customer's bank balance was over $100 for the first time in 2007= WhenNext(2007-01-
01,the customer's bank balance > 100)

TIP: To see an example of a complete rulebase using this function, open and run the Aged Care Approval rule-
base project provided in the Examples folder in the Oracle Policy Modeling installation folder.

Calculate the number of days/weeks/months/years since a given date
To calculate the number of days/weeks/months/years since a given date you use the following Temporal Since
functions: Temporal Days Since, Temporal Weeks Since, Temporal Months Since, and Temporal Years Since.
The calculation stops by a given (exclusive) end date.

What do you want to do?
Calculate the number of days since a given date
Calculate the number of weeks since a given date
Calculate the number of months since a given date
Calculate the number of years since a given date
Calculate the weekdays in a given time period
Calculate a specific day in a month for a given time period

Calculate the number of days since a given date
To calculate the number of full days since a given date, you use the Temporal Days Since function. Note that
this function will return a number variable that varies every day. The function has the following syntax:

n TemporalDaysSince(<start date>,<end date>)

For example, to determine the number of days since it has rained, you would write this rule in Word:

the number of days since it has rained = TemporalDaysSince(the date of the most recent rainfall,the cur-
rent date)

The function returns a temporal value with the number of days incrementing on the date of each daily change
point. Where 'the date of the most recent rainfall' (p6) is 15 May 2007, the calculation of 'the number of days
since it has rained' (p5) is shown in the diagram below:

Calculate the number of weeks since a given date
To calculate the number of full weeks since a given date, you use the Temporal Weeks Since function. Note that
this function will return a number variable that varies every week. The function has the following syntax:

n TemporalWeeksSince(<start date>,<end date>)

For example, to determine the number of weeks in the assessment period where the start date is 12 March 2007
and the end date is 11 April 2007 you would write this rule in Word:

the number of weeks in the assessment period = TemporalWeeksSince(2007-03-12,2007-04-11)

The function returns a temporal value with the number of weeks incrementing on the date of each weekly
change point. This is shown in the diagram below (p7 is 'the number of weeks in the assessment period'):

Calculate the number of months since a given date
To calculate the number of full months since a given date, you use the Temporal Months Since function. Note
that this function will return a number variable that varies every month. The function has the following syntax:

n TemporalMonthsSince(<start date>,<end date>)

For example, to determine the number of months a mobile phone contract has been in effect, you would write
this rule in Word:

the number of months the mobile phone contract has been in effect = TemporalMonthsSince(the start date
of the mobile phone contract,the current date)

The function returns a temporal value with the number of months incrementing on the date of each monthly
change point. NOTE: Where the supplied date is after the 28th day of the month, and a subsequent month has
fewer days than the supplied month, the change point for the anniversary month will be created on the last day
of that month. For example, if the supplied date is 28, 29, 30 or 31 January 2007, the first change point will be
28 February 2007.

The earlier example is shown in the diagram below where 'the start date of the mobile phone contract' (p4) is
31 August 2006, and the current date is 20 December 2006 (p3 is 'the number of months the mobile phone con-
tract has been in effect'):

Calculate the number of years since a given date
To calculate the number of full years since a given date, you use the Temporal Years Since function. Note that
this function will return a number variable that varies every year. The function has the following syntax:

n TemporalYearsSince(<start date>,<end date>)

For example, to determine the child's age up to the child's fifth birthday, you would write this rule in Word:

the child's age = TemporalYearsSince(the child's date of birth,the child’s fifth birthday)

The function returns a temporal value with the number of years incrementing on the date of each annual change
point. This is shown in the diagram below where 'the child's date of birth' (p2) is 03 October 2003 (p1 is 'the
child's age', and p8 is 'the child's fifth birthday'):

Calculate the weekdays in a given time period
The Temporal Is Weekday function returns true on dates that are weekdays and false on dates that are week-
ends from the specified start date (inclusive) to the end date (exclusive). Note that this function will return
uncertain outside of the date range. The syntax for this function is:

n TemporalIsWeekday(<start date>,<end date>)

For example, the Temporal Is Weekday function could be used to determine if an applicant is receiving money
on a given day when that person is receiving money each weekday between 1 July 2006 and 15 July 2006. In
Word you would write this rule as:

the applicant receives money if

TemporalIsWeekday(2006-07-01, 2006-07-15)

The function returns a value of true for dates that are weekdays and false for the dates that are weekends:

Calculate a specific day in a month for a given time period
The Temporal Once Per Month function returns true if the day is equal to the day-of-month parameter and false
on all other days of the month from the specified start date (inclusive) to the end date (exclusive). Note that
this function will return uncertain outside of the date range. When the day-of-month exceeds the number of
days in the current month, the value is true on the last day of that month. Therefore the function returns a value
that is true exactly one day per month. The syntax for this function is:

n TemporalOncePerMonth(<start date>,<end date>,<day-of-month>)

For example, the Temporal Once Per Month function could be used to calculate the allowance given to an applic-
ant who is receiving an allowance on the 15th of every month between 1 July 2006 and August 31, 2006. In
Word you would write this rule as:

the applicant receives an allowance if

TemporalOncePerMonth(2006-07-01, 2006-08-31, 15)

The function returns a value of true for dates that are equal to the specified day of the month and false for all
other dates:

Check if a condition is true relative to a given date
To check if a boolean attribute is true relative to a given date you use the following Temporal Date functions:
Temporal Before, Temporal After, Temporal On, Temporal On Or Before, Temporal On Or After.

What do you want to do?
Check if a condition is true before a given date and false on and afterwards
Check if a condition is true after a given date and false on and before
Check if a condition is true on a given date and false before and afterwards
Check if a condition is true on and before a given date and false afterwards
Check if a condition is true on or after a given date and false before

Check if a condition is true before a given date and false on and afterwards
The Temporal Before function returns a boolean attribute that varies over time and is true before a given date
and false on and afterwards. The syntax for this function is:

n TemporalBefore(<date>)

For example, the Temporal Before function could be used to determine if the pre-2007 Ministerial Determination
is in force (this was in force before 1/1/2007). In Word you would write this rule as:

the pre-2007 Ministerial Determination is in force if

TemporalBefore(2007-01-01)

As the diagram below illustrates, 'the pre-2007 Ministerial Determination is in force' (b2) is true before the
given date (1/1/2007) and false on and after that date.

TIP: To see an example of a complete rulebase using this function in combination with the Temporal On Or After
function, open and run the Aged Care Approval rulebase project provided in the Examples folder in the Oracle
Policy Modeling installation folder.

Check if a condition is true after a given date and false on and before
The Temporal After function returns a boolean attribute that varies over time and is true after a given date and
false on and before. The syntax for this function is:

n TemporalAfter(<date>)

For example, the Temporal After function could be used to determine if the July 2005 rate changes apply (these
rates take effect after 30/6/2005). In Word you would write this rule as:

the July 2005 rate changes apply if

TemporalAfter(2005-06-30)

As the diagram below illustrates, 'the July 2005 rate changes apply' (b1) is false up to and on the given date
(30/6/2005) and true after that date (ie from 1/7/2005 onwards).

Check if a condition is true on a given date and false before and afterwards
The Temporal On function returns a boolean attribute that varies over time and is true on a given date and false
before and afterwards. The syntax for this function is:

n TemporalOn(<date>)

For example, the Temporal On function could be used to determine if the New Millennium Promotion is available
to customers (this promotion is only offered on 1/1/2000). In Word you would write this rule as:

the New Millennium Promotion is available to customers if

TemporalOn(2000-01-01)

As the diagram below illustrates, 'the New Millennium Promotion is available to customers' (b3) is only true on
the given date (1/1/2000) and false before and after that date.

Check if a condition is true on and before a given date and false afterwards
The Temporal On Or Before function returns a boolean attribute that varies over time and is true on and before
a given date and false afterwards. The syntax for this function is:

n TemporalOnOrBefore(<date>)

For example, the Temporal On Or Before function could be used to determine if the pre-Christmas price list
applies (it applies up to 24/12/2007). In Word you would write this rule as:

the pre-Christmas price list applies if

TemporalOnOrBefore(2007-12-24)

As the diagram below illustrates, 'the pre-Christmas price list applies' (b5) is true up to and including the given
date (24/12/2007) and false after that date (ie from 25/12/2007 onwards).

Check if a condition is true on or after a given date and false before
The Temporal On Or After function returns a boolean attribute that varies over time and is true on or after a
given date and false before. The syntax for this function is:

n TemporalOnOrAfter(<date>)

For example, the Temporal On Or After function could be used to determine if the 2007 Ministerial Determin-
ation is in force (in force from 1/1/2007). In Word you would write this rule as:

the 2007 Ministerial Determination is in force if

TemporalOnOrAfter(2007-01-01)

As the diagram below illustrates, 'the 2007 Ministerial Determination is in force' (b4) is false before the given
date (1/1/2007) and true on and after that date.

TIP: To see an example of a complete rulebase using this function in combination with the Temporal Before func-
tion, open and run the Aged Care Approval rulebase project provided in the Examples folder in the Oracle Policy
Modeling installation folder.

Interviews and flows
Topics in "Interviews and flows"

l Design an interview

l Create, modify or delete a screens file

l Create, modify or delete a question screen

l Collect information about entity instances

l Customize interview user input options

l Decide whether to allow uncertainty in user answers

l Hide, display and disable an interview screen element

l Tutorial: Hiding and displaying summary screen elements

l Change the text of an interview question or sentence

l Change the layout or appearance of interview screens

l Customize Oracle Web Determinations

l Define interview screen order

l Define interview screen flow

l Change how interview data is summarized and reviewed

l Check attribute inclusion on interview screens

l Create, update or delete interview help

l Overview: The process of creating an interview document

l Create, update or delete an interview document

l Develop a template for an interview document

l Test an interview or screen flow

See also:

l Validate user input using errors and warnings

l Deploy an interview toWeb Determinations

l Deploy a rulebase or interview to Determinations Server

Design an interview
If your rules will be deployed in an interactive software application, defining an interview allows you to specify
the way in which users will interact with the rulebase.
When the rulebase is run, the Oracle Determinations Engine collects information in order to find a value for the
specified goal (see Oracle Determinations Engine and the Inference Cycle for more on this process). The inter-
view you define specifies the user's experience while providing this information and reviewing the conclusions
reached by the rules. The aim of your interview design is to provide users with a logical and easy-to-understand
interface to your rulebase.

Interview features
There are many options available that allow you to design a user's experience of your rulebase in the best pos-
sible way. Consider the options available and allow some time to identify the characteristics that your users
would find most effective and usable in interacting with your rulebase.
Options you can use in the design of your interview include:

l Grouping of questions into separate screens. This allows you to group logically related attributes so that values are entered
for them at the same. For example, a group of attributes collecting income from different sources may be defined on a
single "Income" screen.

l Controlling the order of the question screens shown in the interview. By default, the order in which question screens are dis-
played to the user will be driven by the question search. This will collect information in the most efficient manner, but may
not provide your users with interview navigation that they find predictable and intuitive. For more control over the question
screen navigation, you can specify the order that you would like screens to appear in, or you can also define a precise
screen flow, which provides even tighter control over the display of question screens and can be used to mirror application
forms.

l Using the known operator in your rules to collect certain base data first to feed into the investigation of the substantive rule
model. Certain attributes might play a "streaming" role, providing sufficient information to infer conclusions across the rule
model quickly without asking redundant questions.

l Controlling what users see when they first start the interview, and how they are guided into investigating the rulebase, as
well as how the conclusions of the rulebase are displayed to them.

l Options controlling the answers that users can provide for individual questions. For example, youmay wish to provide a
drop-down list of options that a user must select from, or to restrict the highest value that can be entered for a particular
question.

l Options controlling the layout or appearance of questions and screens. For example, youmay wish to emphasize some
parts of your screen text in bold font.

l Additional integrated help text, linked to questions, screens or key terms, to help users clearly understand the interview
and how to answer questions.

l Ability to produce a printable report or form with results and data from the interview.

Most interview elements are defined in a screens file. This contains details of questions screens and questions,
as well as the summary screen, which guides users through available goals to investigate and presents con-
clusions. Specific screen orders for your question screens, and screen flows are also defined in the screens file.
Other interview features, such as integrated help files or interview documents, are added as additional files and
linked to from within the screens file.
To see an example of a complete rulebase with many interview features, open and run the Social Services
Screening example rulebase project provided in the Examples folder in the Oracle Policy Modeling installation
folder.

See also:

l Create, modify or delete a screens file

l Test an interview or screen flow

Create, modify or delete a screens file
Oracle Policy Modeling has integrated screen development tools which allow you to develop software applic-
ations around your rule model to produce efficient, streamlined interview paths.
The first step to building screens for your rulebase application is to add a screens file to your project. You can
have one or more screens files as is convenient – on building all screens in the project will be brought together
to form a single screen definition file.

What do you want to do?
Create a screens file
Modify a screens file
Delete a screens file

Create a screens file
To add a new screens file to your project:

1. In Oracle Policy Modeling, right-click the Interviews folder in the Project Explorer and selectAdd New Screens File.
A new Screens file will be added to your project. The new file will be selected and highlighted in the list.

2. Type a name for your screens file, for example, "Screens".

3. Save your project by selecting File | Save All.

Modify a screens file
To open your screens file for editing, double-click on the file in the Project Explorer.

Organize a screens file
Folders can be added to your screens file to help organize your screens. (By default, the first screens file that is
added to a project will contain a Questions Screens folder and a Documents folder.)
To add additional folders to your screens file:

1. Right-click the *.xint filename, or another folder, in the screens view.

2. SelectNew Folder from the pop-upmenu.

3. Enter an appropriate name for your screen folder.

Edit a screens file
In your screens file you can define and edit:

l Questions screens

l Summary screens

l Screen orders

l Screen flows

l Interview documents

Delete a screens file
To delete a question screens file:

1. In the Project Explorer in Oracle Policy Modeling, right-click the screens file and selectDelete.

2. Click OK to confirm the permanent deletion.

TIP: To only remove the file from your Oracle Policy Modeling project (but not delete it from your file system as
well), right-click it in Oracle Policy Modeling and select Remove from Project.

Create, modify or delete a question screen
A question screen is a screen displayed to the user during an assessment to collect data. It contains question
text and answer fields. Building question screens allows you to group attributes onto single views and provide
the user with a sense of context by adding labels and headings to those screens. Used with Oracle Web
Determinations, these screens can also display integrated help for each screen question. Question screens are
created in a screens file in Oracle Policy Modeling.

What do you want to do?
Create a question screens folder
Create a question screen
Add questions to screens
Add labels to question screens
Create a screen attribute
Preview a question screen in Oracle Web Determinations
Modify a question screen
Find a question screen
Delete a question screen
Organize question screens within a folder

Create a question screens folder
By default, the first screens file that is added to a project will contain a Questions Screens folder. To add addi-
tional folders to your screens file:

1. Right-click the *.xint filename, or another folder, in the screens view.

2. SelectNew Folder from the pop-upmenu.

3. Enter an appropriate name for your screen folder.

TIP: Question screen folders in a screen order are used to define the 'stages' or groupings that are displayed at
the top of an interview to indicate progress through the investigation.
Once you have defined folders, you can add new screens to them.

Create a question screen
To create a question screen:

1. Right-click theQuestion Screens folder in your screens file.

2. SelectNew Question Screen from the pop-upmenu.
The following dialog will appear:

3. Enter an appropriate name for the screen in the Screen Title text box.
TIP: Screen names are used as the first heading on a screen. If you use a clear screen name whichmakes it easy to
understand the point of the current screen, the user will be muchmore receptive to the application. Screen names should
be descriptive of the logical group or purpose of questions contained on that screen. You can use substitution in the
screen name. For more information, see Substitute an attribute value into the text on screens.

4. Click OK to apply the name change.

5. Save the screens file by selecting File | Save <Screens_File_Name>.xint from the mainmenu in Oracle Policy
Modeling.

Add questions to screens
There are two steps to adding a question to your screen: adding a new input control and customizing the attrib-
ute input control.

To add a new input (question) control to your screen:

1. Double click your question screen in your screens file to open it for editing.

2. Click theNew Attribute Input button in the question screen dialog.

The right hand side of the question screen dialog will show the following controls:

3. Select the attribute you want to place on the screen as a question. NOTE: You can filter the attribute list by typing in the
text box above. You can also limit the list to only showing base level attributes and/or only showing attributes which are
not already on a question screen by using the check boxes provided.

4. Click the Create button (or simply double-click the attribute in the list) to add it as a question on the screen.

To customize the attribute input control:

1. Select the attribute on the left hand side of the screen. The right side of the question screen edit dialog will be replaced
with a set of edit controls for the question based on its data type.

Here you can customize questions and customize user input options. You can also change the appearance of text and con-
trols.

2. Click OK to apply any changes you have made to the screen. This will close the screen edit dialog. To save the changes
permanently to your screen file, you will need to save it from the mainmenu in Oracle Policy Modeling.

Add labels to question screens
Labels provide a means for assisting the user to understand the context within which questions are being asked.
To add a new label to your screen:

1. Open your question screen in your screens file.

2. Click theNew Label button in the question screen dialog.

The right hand side of the question screen dialog will display options for the label.

3. Enter the Text for the label.

4. Select a Style for the label from the drop-down list (eg Normal, Heading 1, Heading 2, Heading 3 etc).
TIP: Generally, each screen should have a Heading 1 style label at the top. Additional heading styles may be used to
break questions into sub-groups, and Normal style labels can be added to provide additional information and context.

5. If required, select the Is HTML checkbox. See Change the appearance of text for more information on this setting.

6. If required, enter a CSS Class and/or CSS Style. See Change the appearance of a control for more information on this
setting.

Create a screen attribute
A screen attribute is an attribute in the rulebase that is associated with a question screen and is used to prompt
the display of the screen. Screen attributes are not displayed to the user but are given a value of 'true' auto-
matically once the question screen has been displayed during an interview.
To create a screen attribute:

1. Open your question screen in your screens file.

2. Click the Create button next to the Screen Attribute field. The id and text of the automatically created screen attribute
will be shown:

3. Click OK.

You can now use this screen attribute in your rules. For example:

the interview is complete if

the screen 'Disclaimer' has been displayed and

it is known whether or not the claimant is eligible for the benefit

NOTE: You need to ensure that the text of the screen attribute in your rule is identical to the text of the screen
attribute in the screens file to ensure that the attribute created locally in your Word document links to the one in
the screens file.

Preview a question screen in Oracle Web Determinations
While you are creating and reviewing your question screens, you may wish to check the layout and formatting in
the context of how they will appear in Oracle Web Determinations.

1. In your screens file, right click on the question screen you wish to preview and selectPreview in Web Determin-
ations. Alternatively, click the Preview button at the bottom left of the screen editor, if your screen is open.

2. TheDebug Options dialog is displayed if no current debug session exists. Select the debug options you wish to use to
preview the screen in Oracle Web Determinations and click OK.

3. The Screen Preview window is displayed showing how your question screen will appear in Oracle Web Determin-
ations, including any customizations that have beenmade to Oracle Web Determinations. The buttons and links are dis-
abled, as this window is to preview your question screen only and is not a fully functional interview.

TIP: You can import data from a debug session prior to using the Preview option, and this data will be used in
the screen preview and will allow you to check substitution, visibility attributes and other screen display ele-
ments on your question screen.

Modify a question screen
To open the edit dialog for the screen again, double-click on the screen name in your screens file, or right-click
and select Open from the pop-up menu. Make the necessary changes and then click OK.

Find a question screen
To find a question screen:

1. In Oracle Policy Modeling, select Edit | Find Screen...
This will open the Find Screen dialog box.

2. Enter the text or screen ID you want to search for in the text field provided. Only those screens that match the search cri-
teria will be displayed in the list below.

3. Click OK to locate the screen in the screens file and open the screen for editing.

Delete a question screen
To delete a question screen, select the screen name in your screens file and press Delete, or right-click and
select Delete from the pop-up menu.

Organize question screens within a folder
By ordering the question screens in your Question Screens folder as you would like them to appear in an inter-
view, you can simply use this folder to define your screen order. (See Use the order of screens in the Question
Screens folder to define the interview screen order for more information.)
To change the order of question screens in a folder:

1. Open your question screens folder in your screens file.

2. Select the screen that you want to move and drag it to its new location.

3. Repeat for any additional screens that you want to reorder.

4. Click OK.

Collect information about entity instances
An entity instance collection screen in Web Determinations is used to collect both a relationship and data about
the related entity instances.

What do you want to do?
Define a screen for collecting entity instances
Collect attributes for the entity
Create entity question screens
Use substitution on entity screens to identify the entity instance
Associate an entity instance with another set of entity instances via a reference relationship

Define a screen for collecting entity instances
To set up a screen to collect entity instances:

1. Right-click theQuestion Screens folder in your screens file and selectNew Question Screen.

2. Enter an appropriate name for the screen in the Screen Title text box. TIP: The screen name should include the rela-
tionship text.

3. Select the Collect Entity Instances on this screen check box.

The Entity Control window will be displayed:

4. Click the browse button next to the Entity field to open the Entity Selector dialog. Select the appropriate entity.

5. Click OK. The entity name will now appear in the Entity text box in the Entity Control window. The Screen Entity is also
shown, based on the containment relationship defined for the entity you have selected. TIP: The entity control is dis-
played as a cube in the screen control list on the left hand side of the question screen dialog. You can return to the entity
control window at any point by clicking on this icon.

6. Specify the Add Instance Text andRemove Instance Text, if you wish to customize the text for the Add and
Remove Instance buttons on the entity collect screen. If you leave these fields blank, the default text used for these but-
tons is "Add New Instance" and "Remove Instance(s)".

7. Specify the Base Value for the names of entity instances (eg "instance #", "child #", "pet #"). This is the base name
used to generate the entity instance ID which is set behind the scenes. There are two circumstances in which youmight
see it on screens: either on automatic data review screens, or in a decision report that lists the entities associated with a
relationship node where you have not specified an identifying attribute for the entity in question.

8. Select the Add default blank instance checkbox if you want a blank instance of the entity instance created by default
when the screen is displayed.

9. Select theDisplay style from the drop-down list. This will determine how entity instances are displayed on the screen.
The options are: Portrait, Landscape, Tabular andCustom. (If you select the Custom display style you will also
need to specify the Custom style.)

10. Click OK.

Collect attributes for the entity
On your entity collect screen, you should also collect some basic information about each entity instance in order
to identify the entity instances at later points in the interview; for example, the identifying attribute. To collect
an attribute for the entity, do the following:

1. Double-click on the entity collect screen in your screens file to open it for editing.

2. Click on theNew Attribute Input button.

3. In theNew Input Control window, select the attribute you want to place on the screen as a question for each instance
of the entity.

NOTE: You can only add attributes which belong to the target entity as questions to the screen. Adding attributes which
do not belong to this entity will cause problems at runtime and will be reported as compilation errors.

4. Click Create.

5. Select the attribute on the left hand side of the screen. The right side of the question screen edit dialog will be replaced
with a set of edit controls for the question based on its data type. Here you can customize questions and customize user
input options.

6. Click OK.

Create entity question screens
Further question screens can be created to collect additional information about each entity instance. Each ques-
tion screen can only collect attributes which belong to a particular entity, so for example, you cannot collect a
global attribute and an entity attribute on the same screen. (Adding attributes from multiple entities to the same
screen will cause problems at runtime and will be reported as compilation errors.)
To create an entity question screen:

1. Follow the steps outlined in Create a question screen.

2. Add questions to the screen. NOTE: All attributes need to be for the same entity.

3. Select the Screen Entity. If theDetermine Automatically checkbox is selected for the screen, the entity to which
the questions relate is automatically determined based on the entity of the attributes on the screen.

(If theDetermine Automatically checkbox is not selected for the screen, you will need to manually select the screen
entity. To do this, use the browse button next to the Screen Entity field to open the Entity Selector and then select
the entity for the screen.)

4. Click OK.

Control the order of entity question screens
The default behavior of entity question screens is to show a screen for all instances of an entity before moving
on to the next screen. For example, the following screen structure:

would ask "Is the child is well behaved?" for all children before asking the next question "Can the child catch a
ball?" for all children.

To collect all information about an entity instance before moving on to the next instance of the entity, simply
group the entity-level screens into a folder together. For example, the following screen structure:

would display all screens in the "Child Information" folder for one child (where relevant) before moving on to
the next child.
The entity-level folder must only contain entity-level question screens for it to be identified as an entity-level
folder and behave in this way.
Note that the entity collect screen "Child Details" is only shown once in the interview (to collect how many chil-
dren there are) so should not be placed in the entity-level folder.

Use substitution on entity screens to identify the entity instance
Where questions on a screen could be taken to relate to one of several instances of an entity, it is necessary to
place the questions in context by clarifying the entity instance to which the questions relate. For example, a
screen heading "The child's hobbies" will not provide enough information for the user to answer the questions if
there is more than one child.
A variable should be substituted in all headings and controls where entity clarification is required. See Sub-
stitute an attribute value into the text on screens for how to do this.
TIP: The concatenation function can be used to create substitution variables such as "Bob (claimant, 32 years)",
"Jane (daughter, 3 years)".

Associate an entity instance with another set of entity instances via a reference relationship
On question screens, a relationship input control is used to set a relationship between entity instances that
already exist in the interview. For example, if you wanted to collect a list of children (ie 'the child' entity
instances) and collect a list of schools (ie 'the school' entity instances), then you would also want to find out
which school (of the previously entered schools) each child goes to (ie to set the relationship 'the child’s
school'). To do this you would use a relationship input on a question screen as per the steps below.

1. After defining your entity collect screens for the two entities in the relationship, create a new question screen. TIP: The
screen title should include substitution for the name of the source entity (eg "The school for %child_name%") so that it is
clear to which entity instance the screen is referring.

2. Click on theNew Relationship Input button.

3. In the Relationship Input window, click the browse button next to the Relationship field to open the Relationship
Selector where you can pick the relationship that you want to set for the entities (eg 'the child's school').

4. Click the browse button next to theDisplay Attribute field to open the Attribute Selector where you can pick the
attribute that is used to identify the target entity instances (eg 'the school'). This will be the attribute that is shown for
each of the target entity instances, from which the user will select to set up the relationship. Note that you can control the
list of target entity instances that is displayed - see Filter the list of available target entities below for more information.

5. Enter a Caption. This is the text that will appear next to the display attribute (eg "Pick the school that%child_name%
attends:"). TIP: You can use substitution of the name of the target entity in the caption to further clarify who you are set-
ting the relationship for.

6. Click OK.

Filter the list of available target entities
You can filter the list of entity instances that are able to be selected as a target of the relationship being col-
lected. There are three options available to do this in the List Options Filter section for a relationship input
control:

1. Exclude source instance: This option is useful where the source and target entities of the relationship you are col-
lecting are the same. Selecting this optionmeans that the source entity instance will not show up in the list of possible tar-
gets. (This option is selected by default.)
For example, if you had an entity "the person" and a relationship "the person's spouse" where both the source and the tar-
get of the entity were the same. Since a person can not be their own spouse, selecting this option would remove the
source instance from the list of target entity instances.

2. Filter by Attribute: This option lets you specify a boolean attribute in the relationship's target entity that (i) if true, will
make that entity instance appear in the list of targets, and (ii) if false, will hide that entity instance in the list of targets.
TheDefault State option can be used to specify what happens if the attribute is unknown or uncertain.

3. Filter by Relationship: This option lets you specify a relationship whose known targets are to be used as the set of
possible targets for the relationship you are collecting. The source and target entities of the filter relationship must be the
same as the relationship you are collecting. TheDefault State option is useful where the filter relationship is inferred
and lets you control whether a target instance should be displayed in the list if it is unknown or uncertain whether it is a
member of the relationship.

Note that the last two options are mutually exclusive.

Customize interview user input options
A number of options are provided to customize user input options in a Web Determinations interview.

What do you want to do?
Specify the type of input
Specify individual date and time edits
Specify the values for a restrictive input control
Source list contents from an external file
Specify a dynamic default for an input
Specify a default value for an input
Make an input mandatory

Specify the type of input
For every attribute collected on a screen, you have several choices when defining your screen as to how the
user can input their answer:

l Default (creates radio buttons for boolean attributes and a text box for all other attribute types)

l Checkbox (only selectable for booleans)

l Drop Down List

l List

l Radio Buttons (not selectable for booleans, use the Default option instead)

To specify the input type:

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. Select the Input type from the drop-down list.

4. Click OK.

NOTE: For booleans collected with a checkbox, checked means true and unchecked means false. As a con-
sequence, any boolean that is collected via a checkbox will always get a value as soon as the screen is sub-
mitted. It also means that the concept of mandatory is meaningless, so all boolean checkbox inputs will always
be rendered without the mandatory flag.

Specify individual date and time edits
For inputs for date, time and date/time variables, you can choose whether to display a single text entry edit, or
individual edits for the components of the attribute (date/time/year/month/day/hour/minute/second com-
ponents, depending on the attribute).

1. In your screens file, double click to open the screen containing the date, time or date/time question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. The Input typemust be set toDefault to use individual edits.

4. Under the Style section, select the appropriate Input Type option. All controls have the Single Edit option, which pro-
duces a single text entry box for the user to type freely into. Additional options are:

l Date variables have an option for individual Year, Month and Day Edits.

l Time variables have the option of either individualHour, Minute and Second Edits or individualHour and
Minute Edits.

l Date/time variables have options for individualDate and Time Edits, or individual Year, Month, Day,
Hour, Minute and Second Edits or individual Year, Month, Day, Hour and Minute Edits.

5. Additionally, youmay specify the minimumMinute increment and Second increment for time and date/time vari-
ables, in common increments. (Note that Second increment is disabled if the input type chosen does not include
seconds.)

6. Most of these individual edits are displayed as drop down lists, allowing users to select from valid options. Year/d-
ate/time edits are displayed as text entry fields.

Note that if the Single Edit option is chosen for a date/time or time variable, the user can omit seconds and
these will be set to 00 by default.

Specify the values for a restrictive input control
When collecting data, particularly variable data, you may want to limit the set of possible answers a user may
provide using a restrictive input control (ie list boxes, drop down lists or radio buttons). For example,

l List box:

l Drop down list:

l Radio buttons:

NOTE: By default drop down lists are searchable and configurable. For more information, see Change the
appearance of a drop down list in Oracle Web Determinations.
TIP: Where a variable can only take on one of a fixed list of values, use a drop down list to collect the value
from the user. Use this variable in interpretive rules to infer a number of separate boolean attributes, one for

each possible value. Then use these boolean attributes in source rules. Do not use the variable value directly in
source rules.

Once you have defined the restrictive input control (see Specify the type of input above), you need to specify
the range of possible values for it. To do this:

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. In the Values section, select the Specify selection items option.

4. Click theNew button.

5. Change the values in the Value andDisplay Text text boxes from "new" to the values you want in the control. Ensure
the values you enter are in the correct format.

NOTE: Value is the actual value passed to the Oracle Determinations Engine, whilstDisplay Text is what the user sees
on the screen. Sometimes it is appropriate for these two values to be different. Display Text is a text value and will
always be shown in the form you specify here; it will not be formatted according to the rulebase regional settings.

TIP: You can use attribute substitution in the Display Text. For example:

This would appear in Oracle Web Determinations as:

For more information on using attribute substitution, see Substitute an attribute value into the text on screens.

Source list contents from an external file
For attributes of input type "List Box", "Drop Down List" or "Radio Buttons", it is possible to source attribute val-
ues from an external XML file.
To source list contents from an external file, do the following:

1. Create a new folder \Development\include\lists\<session locale>.

2. Create an XML file in this directory.
Note: The name of the XML file should be related to the list it will be used for (for example, JobIndustry.xml).

3. In the XML file, add XML nodes for the various list options. For example, to create list options for a Job Industry list input,
with Finance and IT as the list options:

<?xml version="1.0" encoding="utf-8"?>

<list>

<option text="Finance" value="Finance" />

<option text="IT" value="IT" />

</list>

4. Save the XML file using UTF-8 encoding.

5. In Oracle Policy Modeling, open your screens file and double click to open the screen containing the question.

6. Click on the question in the left hand pane to open it for editing in the right hand pane.

7. In the Values section, select the Specify list name option.

8. In the text field, enter the name of the XML file (eg JobIndustry).

9. Click OK.

If there are any problems with this file at runtime (for example, the file doesn't exist or uses the wrong XML
structure), the static list options are used (if they exist for the list control).
NOTE: This xml list implementation does not currently support visibility or default values, but it does support
the use of attribute substitution in option text.

Specify a dynamic default for an input
It is possible for controls to have a dynamic default value, that is, a default value that is derived from the value
of another attribute. During a Web Determinations interview, the default value for the control will be set to the
value of the attribute that it is based on if it is known, or it will default to the user specified value if the dynamic
default value is unknown.
To specify a dynamic default value for an attribute control:

1. In your screens file, double click to open the screen containing the question that you want to add the dynamic default to.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. In theDynamic Default Value section, click the browse button next to the Attribute field.

4. In the Attribute Selector, select the attribute to base the default value on, then click OK.

5. Click OK.

NOTE: A dynamic default attribute may be in the global entity, in the same entity as the control it is attached to,
or if the control is for an entity collect, it may be in the screen entity.

Specify a default value for an input
Specifying default values for inputs speeds data collection and assessment processing. The default value is the
value that will be selected/shown when the input control is displayed.
To specify a default value for an input:

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. If the attribute has an input type of Default, then in the Value section select or specify a default value for the input.

4. If the attribute has an input type of List Box, Drop Down List or Radio Buttons, then in the Value section select the value
in the list that you want as the default, and then click the Selected by default checkbox.

Make an input mandatory
The rulebase will not necessarily need answers other than uncertain to any or all the questions on a screen.
When designing screens you should therefore consider which answers should be mandatory and which ones
should allow uncertainty. For more information, see Decide whether to allow uncertainty in user answers.

To specify that an input control can allow uncertainty (ie allow a user to enter an uncertain value for the input
control):

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. In theMandatory section, select the Allow Uncertain option from the drop-down list for Default State.

4. Click OK.

This will mean that the input will always allow an uncertain option.

To specify that an input control can only allow uncertainty in some situations, then you need to create an attrib-
ute (and associated rules) to control in which circumstances the question will be mandatory. For example,

the pregnancy question should be mandatory if

the pregnancy question should be displayed

the pregnancy question should not be displayed if

there is not a female in the household who is aged 10 to 60 years (inclusive)

To add this attribute to the input control:

1. In theMandatory section, click the browse button next to the Attribute field.

2. In the Attribute Selector, select the attribute to base the value on, then click OK.
TIP: The mandatory control attribute is expected to be boolean – a value of true means mandatory, a value of false
means not mandatory (ie optional) so a wording for the control attribute such as "x should be mandatory" is recom-
mended.
NOTE: A mandatory attribute may be in the global entity, in the same entity as the control it is attached to, or if the con-
trol is for an entity collect, it may be in the screen entity. The value of the mandatory attribute can not be temporal.

3. Select theDefault State for the input control (ieMandatory or Allow Uncertain). This is the state that the attribute
will appear in if the mandatory control attribute is unknown or uncertain.

4. Click OK.

The rules relating to the use of Allow Uncertain are as follows:

1. For inputs where Allow Uncertain is not selected (that is, mandatory inputs), a blank string will be treated as not hav-
ing supplied a value for this input and will therefore trigger an error.

2. For inputs where Allow Uncertain is selected, a blank string:

i. Will be treated as the value Uncertain for all inputs except text inputs.

ii. In the case of text inputs, a blank string will be treated as blank string and the text 'uncertain' will be treated
as setting the input to the string value Uncertain.

3. For boolean checkbox inputs, the concept of mandatory is meaningless, so these inputs will always be rendered without
the mandatory flag.

See also:

l Hide, display and disable an interview screen element

Decide whether to allow uncertainty in user answers
During an interview, it is possible for attributes to all have a value of "uncertain". "Uncertain" is considered a
valid attribute value, allowing the assessment to continue without requiring the user to answer every question.
An assessment can continue until the goal attribute has a value, which may itself be uncertain, but which may
be able to return true or false based on other information provided by the user. If a definite answer to the invest-
igated goal can be proved by some means, then it may be that the user does not have to obtain the missing
information (eg where one option in a OR rule is uncertain, but another returns true).
In contrast, if the user could answer only 'yes' or 'no' or select a fixed value to every question, the assessment
would stop until the user was able to answer the question.

Uncertainty and rulebase inheritance
In its most straightforward application, uncertainty reasoning operates to infer attributes to uncertain when the
conditions that prove the attribute are uncertain. Consider the following hierarchy of rules:

attribute 1 is true if

attribute 2 is true

attribute 3 is true

attribute 4 is true

In an interview, if attribute 4 is set to uncertain, then that propagates through the rulebase in the following way:

attribute 3 is inferred to uncertain;

then attribute 2 is inferred to uncertain;

then attribute 1 is inferred to uncertain.

Higher-level attributes inherit uncertainty through inferencing. Unhandled, uncertainty can introduce unintended
consequences in your applications. This idea applies equally to the 'unknown' operator.

See also:

l Make an input mandatory

Hide, display and disable an interview screen element
There are frequent situations where you will want to hide and make visible input controls (questions and ref-
erence relationships), input control values (for restricted input controls) and labels based on user data. You may
also wish to control summary screen elements in the same way, presenting different options on the screen at
different stages of the interview.
You can do so by defining an attribute specifically to control the visibility of a screen element, and then writing
rules to set the respective value of that attribute to control its state.
For example,

the maternity leave question should be displayed if

the applicant is female

In this example, we only want to show the maternity leave question if the applicant is female. If the applicant is
male we do not want to ask about maternity leave.
NOTE: Visibility can only be based on an attribute that is known before a screen is displayed in Oracle Web
Determinations. It cannot be based on the value of another attribute on the same screen. This is because the
input values on a screen are not submitted by Oracle Web Determinations to the engine immediately after each
value is entered - only once the screen is submitted. If you are using a custom user interface, however, then it
is possible to submit data after each question and have the screen behave dynamically as values are entered.
There are also times when you may want to make an input control read-only thereby preventing users from
altering data on that control.

What do you want to do?
Control the visibility of questions, labels and relationships
Control the visibility of restricted input options
Control the visibility of summary screen elements
Make an input read-only

Control the visibility of questions, labels and relationships
Once you have written rules to control the logic of when a question, label or relationship should be displayed,
you then need to connect it to the related input control. To do this:

1. In your screens file, double click to open the screen containing the question, label or relationship input.

2. Click on the question, label or relationship in the left hand pane to open it for editing in the right hand pane.

3. In the Visibility section, click the browse button next to the Attribute field.

4. In the Attribute Selector dialog, select the visibility attribute from the list.

5. Click OK. Select theDefault State for the input control (ie Visible or Hidden). This is the state that the attribute will
appear in if the visibility control attribute is unknown or uncertain.

6. Click OK.

TIP: You can use the Preview button in the Screen Editor, assuming you have a debug session running con-
taining the requisite data, to quickly check if the visibility attribute is working as expected.
NOTES:

i. The Visibility control attribute is expected to be boolean - a value of true means visible, false means not visible (ie hid-
den). Generally, you should use an existing rulebase attribute as the visibility attribute if possible. If there is more com-
plexity in the logic then you should create a rule proving the attribute (eg "question xxx should be displayed") which will
become the visibility attribute.

ii. A visibility attribute may be in the global entity, in the same entity as the control it is attached to, or if the control is for an
entity collect it may be in the screen entity.

iii. The value of the visibility attribute can not be temporal.

iv. If all the relevant questions that need a value in order to continue through the investigation are hidden on the screen,
then the interview will not be able to progress. This will be reported as a ScreenLoopingException in your logs.

Control the visibility of restricted input options
The method for controlling restricted input control values (ie members of a drop-down list, list box or radio but-
ton group) is identical to that for controlling individual screen controls.

1. Write a rule to control the visibility of the control value:
the Long Service Leave option should be displayed if
the employee has worked for the company for more than 10 years

2. In your screens file, double click to open the screen containing the restricted input control.

3. Click on the restricted input control in the left hand pane to open it for editing in the right hand pane.

4. In the Values section, select the control value in the list, then click the browse button next to the Visibility Attribute
field.

5. In the Attribute Selector dialog, select the visibility attribute from the list, then click OK.

6. Select theDefault State for the input control (ie Visible or Hidden).

7. Click OK.

Visibility of the value will depend on the truth value of the visibility attribute - visible if the value is true and hid-
den if the value is false.
NOTE: A visibility attribute may be in the global entity, in the same entity as the control it is attached to, or if
the control is for an entity collect it may be in the screen entity. The value of the visibility attribute can not be
temporal.
TIP: You can use the Preview button in the Screen Editor, assuming you have a debug session running con-
taining the requisite data, to quickly check if the visibility attribute is working as expected.

Control the visibility of summary screen elements
Summary screen elements may be controlled using the same method as screen controls and list elements, how-
ever three states are available: hidden, enabled (actionable) and disabled (displayed but not actionable). The
visibility attribute for summary screen elements can be either a boolean or a text attribute. Use boolean logic
to switch between two of these states, or a text variable to switch between the three states (setting the text
variable to "hidden", "enabled" and/or "disabled" as required).

1. Write a rule to control the visibility of the summary screen element:
the end of interview items should be displayed on the summary screen if
the health interview is complete

2. In your screens file, double click to open the summary screen.

3. Click on the element in the left hand pane to open it for editing in the right hand pane.

4. In the Visibility section, click the browse button next to the Attribute field.

5. In the Attribute Selector dialog, select the visibility attribute from the list, then click OK.

6. Select theDefault State for the input control (ie Enabled, Disabled or Hidden). This is the state that the element
will appear in if the visibility control attribute is unknown or uncertain.

7. Click OK.

If you need to switch between the three states (enabled, disabled and hidden), create a text variable to control
the visibility and write a rule (eg a rule table) accordingly.
NOTE: A summary screen visibility attribute may be in the global entity or in the same entity as the summary
screen element it is attached to. The value of the visibility attribute can not be temporal.
TIP: You can use the Preview button in the Screen Editor, assuming you have a debug session running con-
taining the requisite data, to quickly check if the visibility attribute is working as expected.

Make an input read-only
By making an attribute read-only, you can prevent users from altering data on the input control. During a Web
Determinations interview, the control will be rendered read-only if the attribute that it is based on is known, or
it will default to the user specified value (editable or read only) if the attribute is unknown or uncertain.
To make an input read-only:

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. In the Read-Only section, click the browse button next to the Attribute field.

4. In the Attribute Selector dialog, select the attribute to base the read-only status on, then click OK. TIP: The Read-
only control attribute is expected to be boolean – a value of true means read-only, a value of false means not read-only
(ie editable) so a wording for the control attribute such as "x should be read-only" is recommended.

5. Select theDefault State for the control (ie whether the control should be Editable or Read Only if the attribute that it
is based on is unknown or uncertain).

6. Click OK.

NOTE: A read-only control attribute may be in the global entity, in the same entity as the control it is attached
to, or if the control is for an entity collect it may be in the screen entity. The value of the read-only attribute can
not be temporal.
TIP: You can use the Preview button in the Screen Editor, assuming you have a debug session running con-
taining the requisite data, to quickly check if the visibility attribute is working as expected.

Tutorial: Hiding and displaying summary screen elements
To control what the user sees on the summary screen at different stages of an interview, you apply visibility
attributes to the associated controls in the summary screen definition. Rules set the values of these attribute to
control their state.
Common uses of visibility attributes on the summary screen are:

l to display a goal to investigate at the start of the interview, but then to hide it at the end, and

l to display additional labels at the end of the interview, but have them hidden initially

Example
Let's say you have a procedural rule such as this:

the interview is complete if

the claimant is known and

it is known whether or not the claimant is eligible for low income allowance

You want to use this as your goal on the summary screen at the start of the interview, but at the end of the inter-
view you instead want to display whether or not the claimant is eligible for the allowance.
To do this you would follow the process described below:

Step 1. Write the rules to control the display of the summary screen elements
In Microsoft Word, add the following rules:

the goal for completing the interview should not be displayed on the summary screen if

the interview is complete

the eligibility goal should be displayed on the summary screen if

the interview is complete

These rule conclusions are the attributes you will use as your visibility attributes.

Step 2. Add the procedural goal and visibility attribute to the summary screen

1. Open the summary screen in your screens file.

2. Add a new goal for the attribute "the interview is complete".

3. Change the Unknown caption to "Click here to determine eligibility for low income allowance".

4. Add the visibility attribute "the goal for completing the interview should be displayed on the summary screen" with the
default state of Enabled.

Step 3. Add the eligibility goal and visibility attribute to the summary screen

1. On your summary screen, add a new goal for the attribute "the claimant is eligible for low income allowance".

2. Add the Visibility attribute "the eligibility goal should be displayed on the summary screen" with the default state of
Hidden.

Change the text of an interview question or sentence
Oracle Policy Modeling allows you to override the sentence and question forms generated by the inbuilt parser.
You can also set up substitution which allows the text of a variable to be substituted with its actual value when it
is used in another boolean attribute. Substitution can also be used to replace variables with pronouns rather
than the text of the variable's value, and to substitute and attribute's value into headings and screen names on
interview screens.

What do you want to do?
Customize sentence text

Customize question text
Substitute the actual value of a variable for its text
Substitute a gender pronoun for a text variable
Set up substitution
Collect the gender of a person
Substitute an attribute value into the text on screens
Display interview questions in second person form

Customize sentence text
Oracle Policy Modeling provides an alternate mechanism for sentence generation. This can be used for "canned
text" (where a fixed statement, question, negation and uncertain form is used for each attribute). Overriding
the text in this way should only be used:

a. when you need to simplify a complex sentence, or

b. in a Rapid Language Support rulebase where the generic form defined in the RLS parser does not create the correct sen-
tence text. For more information on using an RLS parser, and changing individual sentence forms in such a project, see
the Help available in the Rapid Language Support Tool.

Text overriding should never:

i. change the meaning of the sentence, or

ii. be used instead of alternate parsing. If the sentences forms for an attribute are not what you expect, you should first con-
sider an alternate parse for the attribute. See Select an alternate parse for more information.

To customize the sentence text for an attribute follow these steps:

1. In Oracle Policy Modeling, open the properties file for your project.

2. Double-click the attribute whose sentence text you want to change. This will open the Attribute Editor.

3. Select theOverride button. This will open theOverride Text dialog.

4. Select the check box next to the sentence form youwant to change (statement, question, negative, uncertain). This will
activate the text field for that form and you can then change the sentence text as required.

5. SelectOK in the Override Text dialog box and thenOK in the Attribute Editor dialog box.

Customize question text
Not all question forms generated by Oracle Policy Modeling's automatic parsing of attributes are suitable for the
required purpose. In many cases, rather than asking a question in question form, you might want to abbreviate
this to a label for the text field.
For example, instead of asking "Who is the person?" in question form, it might be better to express this more
simply as "Name:"
Overriding the default question text in this way is used when you need to abbreviate or shorten the text. The
change in text should NEVER change the meaning of the sentence. If you want to simplify the sentence concept
you should not use this mechanism – you should use the Override feature available in the properties file in
Oracle Policy Modeling. For more information, see Customize sentence text above.

To override the default question text obtained from the automatic attribute parse:

1. In the Attribute Input Control pane, select the Free Form Text radio button.

2. Enter the override text which you would like displayed.

Tips for question wording
General principles to bear in mind when editing question text are:

l use plain English rather than legal language

l use terminology the target audience (ie assessors) are familiar with

l do not assume the user is familiar with the source material unless instructed otherwise

l use substitution (see below) to make questions easier to understand

l keep questions short, cover additional detail in interview help text

l avoid superfluous phrases like "in respect of", "in the UK or elsewhere", etc.

l simplify questions so that users find it easier to determine what they are being asked (as long as you can do so without com-
promising the meaning of the underlying legislation/business rules/etc)

Substitute the actual value of a variable for its text
It is possible to substitute the text of a variable with its actual value when it is used in another attribute in the
rulebase.
For example, having the following attribute:

the claimant lives in the country of residence

and the variable:

the country of residence

allows substitution of the words "the country of residence" for the value of the variable.

So if the country of residence is "France" then

the claimant lives in the country of residence

becomes:

the claimant lives in France

This sort of substitution can occur at a more complex level, for example:

the claimant’s sibling lives in the claimant’s sibling’s country with the claimant

can become:

Charlene lives in Morocco with Anne

where "the claimant’s sibling", "the claimant’s sibling’s country" and "the claimant" are all substituting vari-
ables.

Using name substitution is particularly important when using entities. For example, asking:

"Is the child a full-time student?"

is not helpful if there are multiple children in the family. It is more useful to ask:

"Is Bart a full-time student?", "Is Lisa a full-time student?" etc.

How to set up substitution is explained below. For more information on how variable substitution operates, see
Text substitution principles.

Substitute a gender pronoun for a text variable
Variables can be replaced with pronouns rather than the text of the variable's value. The pronoun substitution is
based on the default gender specified for an attribute. This applies only to text variables which have substitution
allowed (see Set up substitution below).
For example, if we had the following attribute which uses the substituting text variable "the claimant":

the claimant lodged the claimant's form

we would not want this to become:

Tom lodged Tom's form

Rather we would want this to become:

Tom lodged his form

To set the default gender for a text variable:

1. In Oracle Policy Modeling, double click the properties file in the Project Explorer to open it for editing.

2. On the Attributes tab, double-click the variable to open it in the Attribute Editor.

3. Select an option from theDefault Gender drop-down list (see below for an explanation of these choices), then click
OK.

There are four default gender options to choose from:

Default Gender When to use Example

Impersonal (it)
This is typically used for things which don't have a gender like company
names or inanimate objects.

The client company expen-
ded more than thirty per-
cent of the client
company's income in the
relevant tax year.

becomes
Parker Incorporated expen-
ded more than thirty per-
cent of its income in the
relevant tax year.

Generic (he/she)

This is the most commonly used gender option for variables specifying
people. The substitution pronounwill be automatically determined based on
what gender the variable is given at runtime. NOTE: This setting should be
used in conjunction with a gender attribute which is a means for collecting
whether or not a person is male or female at runtime. See Collect the
gender of a person below.

The client expended more
that thirty percent of the
client's income in the rel-
evant tax year.

becomes
He expended more that
thirty percent of his
income in the relevant tax
year.

Male (he)
This is used where the gender is known to be masculine (eg "the man"). In
this case the sex of the phrase need not be set at runtime - it will per-
manently be set to male.

The man has had surgery
to the man's knee.

becomes

Bob has had surgery to
his knee.

Female (she)
This is used where the gender is known to be feminine (eg "the girl"). In this
case the sex of the phrase need not be set at runtime - it will permanently
be set to female.

The client is in the second
trimester of the cli-
ent's pregnancy.

becomes

Gillian is in the second tri-
mester of her preg-
nancy.

Set up substitution
Values can only be substituted into other attributes if the variable is set to allow substitution. To specify this, fol-
low the steps below.

1. Once you have created your variable in your rules document and compiled your rules, open the properties file for the pro-
ject.

2. Create a public name for your attribute.

3. Select your variable in the attribute list, and double-click to open the Attribute Editor.

4. Check the Allow Substitution check box. If the variable is a text variable select theDefault Gender from the drop-
down box. This is to ensure that the correct pronoun is substituted for subsequent occurrences of the variable in the attrib-
ute. For more information, see Substitute a gender pronoun for a text variable below.

5. Click OK and save your document to apply these changes.

TIPS:

i. To prevent unwanted substitution occurring in your rules, when specifying substitution in a variable you should ensure
that the same text is only used in other attributes in which substitution is appropriate.

ii. Use the string concatenation function if you have collected a person's first name and last name separately but you want
to combine them for the purpose of name substitution. See Combine multiple text strings into a single text variable for
more information.

iii. When substitution is enabled, any existing translations will need to be manually updated. For more information, see
Update a translation file.

NOTE: Most attributes will not use the substitution option as it can lead to nonsensical attributes being produced
during interviews.
For example, if you had an attribute:

the claimant's weekly rent doubled is more than one half of the claimant's weekly pay

and the variables "the claimant's weekly rent" and "the claimant's weekly pay" had substitution turned on, an
attribute like the following would be generated:

$200 doubled is more than one half of $1,500

Collect the gender of a person
A gender collect control is used to provide a means for collecting whether or not a person is male or female.
This is done by adding a gender attribute as a control on a screen. Essentially, the gender attribute is a text type
variable, and the control will set it to a value of either "male" or "female".
This is important for determining the correct pronoun to substitute when the default gender of a variable is gen-
eric (he/she), otherwise we will end up with attributes like "Tom lodged his/her form".

To set up a gender attribute:

1. In your properties file, create a new text variable to be used as the gender attribute (eg "the person's gender").

2. In the Attribute view for the properties file, right-click on the gender attribute and selectCopy Attribute ID.

3. Also in the Attribute view, double-click on the attribute with which the gender attribute is to be associated (eg "the per-
son") to open the Attribute Editor dialog box for that attribute.

4. In the Gender Attribute text box paste the attribute ID for your gender attribute.

5. Click OK and then compile your document.

You also need to create a new input control for the gender attribute in your screen file. To do this:

1. In Oracle Policy Modeling, open your screen file and select the screen where you want to collect the gender.

2. Create a new input control on the screen and select the gender attribute. Click Create.

3. Set the control type to an appropriate restricted input control type (list box, drop-down list or radio button). You will
notice that the values "male" and "female" will automatically be added to those control definitions. Click OK.

Substitute an attribute value into the text on screens
It is possible to substitute an attribute value into free form question text, list display text, a heading or a screen
name. For instance, we could substitute the person's name into the screen name, enabling the "Financial
Details" screen to appear as "John’s Financial Details". Substituting the person's name in this way can help per-
sonalize the interview process for the user.
To substitute an attribute value into the text on an interview screen:

1. In Oracle Policy Modeling, open your screen file and select the screen where you want the substitution to occur.

2. In the appropriate field (ie the Screen Title field for screen name, theDisplay Text field for list items, the Text field
for the heading label, or the Free Form Text field for the question text) use the syntax "%<Attribute ID>%" or "%<At-
tribute ID>?%" where you would like the substitution to occur. (How these two different options operate is explained
below.) NOTE: The attribute ID can be either the public name (eg%applicant_name%) or the automatically assigned
attribute ID (eg%p1@veterans_doc%).

3. Click OK.

In the example above, you would get the Financial Details screen to appear as John’s Financial Details by defin-
ing the screen name as either:

l %p1@veterans_doc%'s Financial Details , or

l %applicant_name%'s Financial Details

Handling unknown and uncertain values
When an attribute is unknown or uncertain, the value substituted depends on the variation of the syntax used.
If the syntax "%<Attribute ID>%" is used, the formatted values for unknown and uncertain are used for the val-
ues unknown and uncertain respectively. For example, the caption "%applicant_name%'s Financial Details"
would be substituted as "unknown's Financial Details" and "uncertain's Financial Details" for unknown and uncer-
tain respectively.
If the syntax "%<Attribute ID>?%" is used, the basic attribute text (eg the applicant's name) is substituted for
both unknown and uncertain values. For example, "%applicant_name?%'s Financial Details" would be sub-
stituted as "The applicant's name's Financial Details" for both unknown and uncertain.

Substituting gender pronoun attributes
If you wish to substitute a gender pronoun attribute onto screen text, you can use the syntax "%<Attribute
ID>:his/her/its%", where <Attribute ID> is the main attribute to which the gender is applied (eg "the person"),
rather than the gender attribute itself (eg "the person's gender").
For example, you may wish to define your screen title to read "Jane and her assets" (for an interview involving
a person Jane who is female). You would do this with a screen title "%person% and %person:his/her/its%
assets".

Display interview questions in second person form
You can debug or run your rulebase with the questions being asked in second person form, rather than the more
usual third person form. For example, "What is your taxable income?" instead of "What is Fred's taxable
income?". This can be useful for self-service style interviews.
To have your rulebase questions asked in second-person form, you must first have a text variable set up to sub-
stitute into other attributes, for example "the applicant".

1. Open the Project Properties window from File | Project Properties.

2. In the Build and Deploy Properties, select the 2nd Person Sentence Generation option.

3. All text attributes in the rulebase which have substitution enabled are displayed. Tick the checkbox next to the attribute
which you wish to designate as the second person attribute, and click OK.
TIP: You would usually only tick one attribute for second person question forms in a rulebase.

4. The next time you debug or run your rulebase, any questions or statements using the attribute you ticked will be phrased
in second person form.

NOTE: Youmay select entity attributes for second person sentence generation, however for this to operate in a mean-
ingful way, you will require customizations to the application in which the rulebase runs. Entity instances by definition rep-
resent multiple items, so it is not meaningful for an interview to use second person form questions for every entity

instance. However, application customizations may allow a particular entity instance to be designated as the single
instance for which the second person questions should be shown, which would make this arrangementmore meaningful
to a user.

Change the layout or appearance of interview screens
The default layout and appearance of interview screens can be changed by editing the screen definitions in
Oracle Policy Modeling.

What do you want to do?
Change the appearance of text
Change the appearance of a control
Change the size of a text box
Add an image to a screen
Show/hide features used for debugging
Improve the appearance and layout of screens

Change the appearance of text
You can change the appearance of text (ie for a question, label or goal) on a question or summary screen using
HTML tags defined in your screens file. For example, you may want to make some text bold, or add a hyperlink
to a website on your screen.
TIP: In order to use this feature you should have a basic working knowledge of HTML and web development. A
good tutorial on HTML can be found at http://www.w3schools.com/html/.
To change the appearance of text using HTML tags:

1. In Oracle Policy Modeling, open your screens file and select the relevant question or summary screen.

2. Select the label or control that you want to alter the appearance of.

3. Change the text of the label, question or goal to include the HTML tags.

4. Select the Is HTML checkbox.

http://www.w3schools.com/html/

5. Click OK. InWeb Determinations this would be rendered as:

NOTE: When authoring a rulebase that is to be deployed in the Interview Portlet, relative links to static
resources or screens can not be specified using IsHTML and . This is because portlets require
special URL rewriting, which is only available at runtime. Instead, the URL rewriter should be used. Refer to the
Oracle Policy Automation Developer's Guide for more information.

Allowable HTML tags
Entry of HTML tags in this manner has certain security implications and by default Oracle Policy Modeling and
Oracle Web Determinations limit the set of HTML tags that can be entered. The default set of tags allowed are
any of the following:

b,i,del,s,div,p,span,pre,table,td,tr,ol,ul,li,blockquote,font,a,h1,h2,h3,h4,h5,h6,img,hr,br

If extra HTML tags are required then they must be added to both Oracle Policy Modeling and Oracle Web
Determinations as described below:

1. Oracle Policy Modeling - Go to File | Project Properties | Common Properties | Platform. In theWeb
Determinations section enter any additional HTML tags in theHTML tags allowable in screen content field.
If a tag is used in a screens file that is not in this comma separated list, then a build error will occur.

2. Web Determinations - Open the application.properties file located in \Release\web-determinations\WEB-INF\-
classes\configuration for the rulebase project. In the Rulebase Loading Properties section, add any additional
HTML tags to the screens.html.tags.whitelist.

screens.html.tags.whitelist =b;i;del;s-

s;div;p;span;pre;table;td;tr;ol;ul;li;blockquote;font;a;h1;h2;h3;h4;h5;h6;img;hr;br;u

If a tag is used in a screens file that is not in this list, the rulebase will not load inWeb Determinations. If necessary, this
HTML validation can be turned off by setting the screens.validate.html setting in the file above to "false".

Change the appearance of a control
The appearance of a control can be customized using Cascading Style Sheet (CSS) classes and styles. For
example, you may want to make a control appear with a yellow background. TIP: In order to use this feature
you should have a basic working knowledge of CSS. A good tutorial on CSS can be found at
http://www.w3schools.com/CSS/.
To change the appearance of a control using CSS class and/or style:

1. In Oracle Policy Modeling, open your screens file and select the relevant question or summary screen.

2. Select the control that you want to alter the appearance of.

3. Enter a CSS Class and/or CSS Style in the fields provided. Style definitions must be entered in the format "property:
value;" and all style definitions, including the last one, must finish with a semicolon. For example,

4. Click OK. InWeb Determinations this would be rendered as:

http://www.w3schools.com/CSS/

NOTE: CSS Class definitions need support from a web developer in order to work. The web developer will need
to modify the CSS and/or Velocity templates for that control type to give controls with that Class their distinct
appearance. Bear in mind that the default Oracle Web Determinations (OWD) user interface has a number of
accessibility features (for more information, see Accessibility features in OWD). You will need to perform your
own checks to ensure that your modifications do not compromise the accessibility of your application. For more
information on the development of custom controls, refer to the Oracle Policy Automation Developer's Guide.

Change the size of a text box
For text attributes that are being collected using a text box (ie by selecting an Input Type of Default), you can
specify the number of lines for the text box. To do this:

1. In your screens file, double click to open the screen containing the question.

2. Click on the question in the left hand pane to open it for editing in the right hand pane.

3. In the Value section, change theNo. of Lines to the desired number of lines for the text box.

Add an image to a screen
To include an image on a screen you can use add it as a HTML link on a screen control as follows:

1. In Oracle Policy Modeling, open your screens file and select the relevant question or summary screen.

2. Double click to open the screen for editing.

3. Add a new control (ie an attribute, label or goal control - the type does not matter for this purpose) to the screen.

4. In the text field for the control, add the HTML reference to the image file in the following format:

i. <img src="../../../images/<file>"> (the format for adding images to the summary screen)
For example,

ii. <img src="../../../../images/<file>"> (the format for adding images to question screens)
For example,

5. Select the Is HTML checkbox.

6. Click OK.

7. Copy the image file to \Release\web-determinations\WEB-INF\classes\images.

Show/hide features used for debugging
There are several features that may be useful to display in Web Determinations while debugging. These settings
are made in the appearance.properties file that is located in \Release\web-determinations\WEB-INF\-
classes\configuration for the project. This file can be opened, modified and saved using Notepad.
TIP: Properties in this file can be overridden on a per-locale basis by creating an appear-
ance.<locale>.properties file (eg appearance.en-GB.properties) file.

Attribute question identifiers
By default, attribute ids are not shown in Web Determinations. To enable this feature, change the show-attrib-
ute-question-identifiers setting to true. Attribute ids (either the automatically generated id or the public
name) will then be displayed before the question text:

Status bar
By default, a status bar is shown in the top right area of Web Determinations that shows the name of the rule-
base, the locale, the user id, and the case id (for saved cases) for the current session:

l To hide this status bar, change the show-status-bar setting to false.

l To hide the name of the rulebase in the status bar, change the show-rulebase setting to false.

l To hide the name of the locale in the status bar, change the show-locale setting to false.

l To hide the user id in the status bar, change the show-user-id setting to false.

l To hide the case id in the status bar, change the show-case-id setting to false.

Improve the appearance and layout of screens
To improve the appearance and user experience of your screens, follow these tips:

Limit the number of questions per screen
Placing a large number of attributes on one screen, particularly where the user is required to scroll down the
screen before continuing, can make system confusing and difficult to use. Generally, each screen should contain
a maximum of 4 questions. However, more questions per screen are acceptable where the questions are simple
and take less than one line (eg Title, Forename, Surname, Date of Birth, Address), or if you are collecting a
group of related questions which will all be defaulted (eg asking about a set of uncommon exceptions).

Use headings to convey meaning about the screen
Web Determinations uses the screen name defined in Oracle Policy Modeling as the first heading on the screen.
Additional headings are an important mechanism for conveying meaning about the screen. Variable sub-
stitution, eg %Claimant_name_age%, may be used in headings. Headings can be a useful tool to identify factors
that will have a significant impact on the course of an investigation. The following are recommended uses for
each of the heading levels:

l Heading 1 for major headings (eg "Assets of %Claimant_name_age%)

l Heading 2 for short labels (eg "If so...")

l Heading 3 for long labels (eg where the screen is effectively asking a head question followed by dot points)

l Heading 4 for sentences of explanatory text.

Group related questions together
Generally, unrelated questions should not be placed on a screen together. It is much easier to focus on one
issue at a time rather than on many different ones.Think about when a question will most naturally be asked in
the screen flow. In particular, try to avoid splitting similar concepts.

Use visibility attributes on controls on the summary screen
Visibility attributes should be used on the summary screen so that key outcomes, warnings and links to doc-
ument generation are only displayed when an attribute proved by a system rule (such as "the investigation is
complete") is true or partially true.

Use visibility attributes to hide mutually exclusive attributes
Visibility attributes can be used on question screens to hide mutually exclusive attributes. For example, if you
want one question to be asked if the person is single and another if they are a member of a couple, or if you
want to hide a question where a person is not in a couple. For attributes which are mutually exclusive, you need
to be sure that the visibility attribute will be known prior to hitting the screen.

Use visibility attributes to hide attributes proven by shortcut rules
The general rule for attributes which might be proven with shortcut rules prior to hitting a screen is that the
attribute should not be shown if it is already known. There will be some exceptions to this:

l where the attribute is on the screen largely to display an intermediate conclusion

l where it might be useful to the user to see the conclusion (eg to give context to other questions on the screen).

Default questions following an "if so…" or "if not…" label to uncertain
You may want to group questions on screens where answers to some questions are only required if another
question on screen has been answered in a particular way. For example you may only require information on

the child’s school if the child goes to school. Both "does the child go to school?" and "what is the name of the
child’s school?" can be collected on the same screen, separated by an "If so…" label.
Questions following an "if so…" or "if not…" label should always be defaulted to uncertain. A validation event
rule should be used to force the user to answer the question when required.

Put questions linked by shortcut rules on separate screens
Shortcut rules should only be used when you can prove a base level attribute before it is asked. If two attributes
can be linked by a shortcut rule, then they should generally not be collected on the same screen. If you do have
to collect them on the same screen and they are both mandatory the shortcut rule should be removed. You may
need to add some validation rules (events) to ensure logical consistency.

See also:

l Customize Oracle Web Determinations

Customize Oracle Web Determinations
The styling of Oracle Web Determinations can be customized to suit your needs. Some simple changes can be
done by modifying themessages.<locale>.properties file and the appearance.properties file. The default
location for these files in a rulebase project is: \Release\web-determinations\WEB-INF\classes\configuration.
For information on more advanced customizations of Web Determinations, see the Oracle Policy Automation
Developer's Guide.
Note: The default Oracle Web Determinations (OWD) user interface has a number of accessibility features (for
more information, see Accessibility features in OWD). If you customize this user interface, you will need to per-
form your own checks to ensure that your modifications do not compromise the accessibility of your application.

What do you want to do?
Change the Oracle Web Determinations banner
Configure the Oracle Web Determinations labels
Change the appearance of a drop down list in Oracle Web Determinations
Change the locale list in Oracle Web Determinations

Change the Oracle Web Determinations banner
The Web Determinations banner is made up of an Oracle graphic (oralogo_small.gif) and the text "Web
Determinations":

This banner can be modified to use a different logo and name.

Change the image in the Oracle Web Determinations banner
To replace the Oracle graphic:

1. Save the new graphic as oralogo_small.gif in \Release\web-determinations\WEB-INF\classes\images.

2. Build and run the rulebase to view the new image in the Web Determinations banner.

TIP: To hide the banner image completely, modify the 'show header image' setting in the appearance.properties
file as follows:

show-header-image = false

Change the text in the Oracle Web Determinations banner
The "Web Determinations" banner text is defined in the 'application-name' setting in the mes-
sages.<locale>.properties file:
To change the text in the banner:

1. Open the messages.<locale>.properties file using Notepad.

2. Edit the 'application-name' configuration line, eg
application-name = Income Assistance

3. Save the file.

4. Build and run the rulebase to view the new text in the Web Determinations banner.

TIP: To remove the banner text completely (eg if your image/logo contains the necessary text), modify the
'show application name' setting in the appearance.properties file as follows:

show-application-name = false

Configure the Oracle Web Determinations labels
The label text of all links and buttons (eg Save As, Load, Restart, Close, Yes, No, Submit, Add Instance, [Why?])
in Oracle Web Determinations can be modified in the messages.<locale>.properties file. For example:

Here the out-of-the-box label text for the boolean answers "Yes" and "No", has been replaced with "True" and
"False" respectively.
To change the text of a label:

1. Open the messages.<locale>.properties file using Notepad.

2. Edit the appropriate configuration line for the text, eg
boolean-true = True
boolean-false = False

3. Save the file.

4. Build and run the rulebase to view the new label text inWeb Determinations.

Change the appearance of a drop down list in Oracle Web Determinations
By default, drop down lists in Oracle Web Determinations are searchable. This means that the list of items is
filtered based on the text that the user inputs.
Matches that take place at the start of the string will take priority over ones that occur somewhere else in the
string and will be shown higher up in the list. Note that the text search is case insensitive.

To turn off searchable drop down lists in your project (making them render as normal HTML drop down lists):

1. Open the appearance.properties file using Notepad.

2. Modify the 'enable-searching-comboboxes' configuration line as follows:
enable-searching-comboboxes = false

3. Save the file.

4. Build and run the rulebase to view the change inWeb Determinations.

In searchable drop down lists you can configure the number of results displayed, the tooltip displayed for the
trigger button, and the text displayed when the maximum number of results has been exceeded.

To change the maximum number of results to be displayed in the drop down list at any one time (the default is
10):

1. Open the appearance.properties file using Notepad.

2. Modify the 'max-search-results' configuration line as follows:
max-search-results =20

3. Save the file.

4. Build and run the rulebase to view the change inWeb Determinations.

Note that this number can have a substantial impact on performance - the lower the number is, the better the
performance will be. Setting this number to 0 will cause all matching results to be displayed.

By default, the tooltip text that is displayed when the user hovers over the drop down trigger button is "Show all
items". To change the tooltip text:

1. Open the messages.<locale>.properties file using Notepad.

2. Edit the 'searching-combo-trigger-tooltip' configuration line, eg
searching-combo-trigger-tooltip =Show list

3. Save the file.

4. Build and run the rulebase to view the change inWeb Determinations.

You can change the text that is displayed at the bottom of the drop down list when the maximum number of
search results has been exceeded (by default it is "..."). To change this text:

1. Open the messages.<locale>.properties file using Notepad.

2. Edit the 'searching-combo-more-results' configuration line, eg
searching-combo-more-results =Start typing text to see more options

3. Save the file.

4. Build and run the rulebase to view the change inWeb Determinations.

Change the locale list in Oracle Web Determinations
The locale list that is displayed when running a translated rulebase in Web Determinations can be modified in
the appearance.properties file as follows:

1. Open the appearance.properties file using Notepad.

2. In the locale list (under 'Locale listings for localizing your language selection') change the locale name, eg
locale-en-NZ =English (New Zealand)
could be changed to
locale-en-NZ =English (NZ)

3. Save the file.

4. Build and run the rulebase to view the new locale text inWeb Determinations.

See also:

l Change the layout or appearance of interview screens

Define interview screen order
By default, the screen order in an interview is primarily driven by the question search. There are several lim-
itations, however, to solely using the question search to drive question or screen order. For instance, using the
question search alone to drive question or screen order:

l You cannot revisit screens in an investigation without resorting to the data review screen.

l Backtracking through an investigation is unreliable.

l It is difficult to control screen ordering. In order to control the screen order, screen order rules are intermixed with declar-
ative logic which obscures the intent and source of the rules.

It is therefore beneficial to specify an explicit screen order in Oracle Policy Modeling that you would like your
interview to follow. Using a defined screen order, the interview will follow the specified order of the screens
only until enough information is known to make a decision, thereby avoiding making the user visit unnecessary
screens. (This is in contrast to the functioning of a Screen Flow in which the interview will follow exactly the spe-
cified flow to its completion even if sufficient information is already known to make a determination.)

What do you want to do?
Use the order of screens in the Question Screens folder to define the interview screen order
Create a new screen order
Edit a screen order

Use the order of screens in the Question Screens folder to define the interview screen order
By default, the first screens file that is added to a project will contain a default screen order (labeled Data
Review in the screens view). This screen order is automatically defined as being the order of the screens in the

Question Screens folder.

This means that you just need to order your screens in the Question Screens folder as you would like them to
appear in the interview, and this will automatically determine the screen order (and the order of the screens on
the data review screen). That is, you do not need to manually add a new screen order to your screens file.
Note that this default behavior only applies to the first screens file added to a project. Any subsequent screens
files added to the project will need to have a screen order added manually (see below).

Create a new screen order
If you need to manually add a new screen order follow the steps below. (By default, the first screens file that is
added to a project will already contain a default screen order - see above).
To create a new screen order:

1. Right-click the *.xint filename, or another folder, in the screens view.

2. SelectNew Screen Order from the pop-upmenu. The following dialog will appear:

3. Drag individual screens or folders from the screens file into the top pane to define the screen order.
TIP: If you have your question screens in a separate folder in your screens file, you can order the screens as you would
like them to appear in the interview in that folder. Then when creating your screen order here it is simply a matter of
dragging that Question Screens folder into the top pane.

4. New folders can be added to the screen order by clicking on theNew Folder button. (The folders in a screen order are
used to group screens into the 'stages' that are displayed at the top of an interview to indicate progress through the
investigation. If screens appear at the top level in the screen order (outside of any folder), they will also be used as stage
names).

5. Click OK.

Edit a screen order
To edit a screen order:

1. Double-click the screen order in the screens file to open it for editing.

2. Change the order of screens by dragging and dropping the screens into new locations. Alternatively, if your screen order
is defined by the Question Screens folder, reorganize the order of screens in that folder in the screens view.

3. Click OK.

Define interview screen flow
By default, the screen order in an interview is primarily driven by the question search. There are times, how-
ever, when you may want the interview to follow a very precise screen flow (for example, if modeling a claim
form). To enable this, you can define a Screen Flow in Oracle Policy Modeling in which you draw the flow

diagrams which represent the process or series of steps through your investigation. In this way you can have a
screen flow which is completely independent of the rulebase.

What do you want to do?
Create a new screen flow
Edit a screen flow

Create a new screen flow
Before you create a screen flow, first create a folder in which to store the flow:

1. In your screens file, right-click the *.xint filename in the screens view.

2. SelectNew Folder from the pop-upmenu.

3. Enter an appropriate name for your folder (eg "Screen Flows").

To create a screen flow:

1. Right-click the screen flows folder in your screens file.

2. SelectNew Screen Flow from the pop-upmenu.

The following dialog will appear:

The left hand pane shows the various tabs that you use to select which shapes to add to the flow diagram in the
right hand pane.

There are several steps involved in creating a typical flow as follows:

l Name the flow

l Add screens to the screen flow

l Add decision points to the screen flow

l Choose the entity that the screen flow operates within

l Add any subflows to the screen flow

A flow must start with a Start shape and end with an End shape.
Any errors that have been detected in the flow are shown by . To see a list of all errors, click on the link in the
top right hand corner of the Screen Flow dialog.

After completing your flow, the flow needs to be added to the summary screen for the project so that it can be
accessed in a Oracle Web Determinations investigation. For details on how to add the flow to the summary
screen, see Add a screen flow to the summary screen.

Name the flow
The name of a flow is referenced by the summary screen and other flows. To change the flow name, enter a
new name in the Title text field of the New Screen Flow dialog box.
NOTE: Flow names must be unique across all flows to allow references to subflows.
Add a public name for the flow if appropriate, in the Public Name field.

Add screens to the screen flow
Interview screens can only be created using the standard interface within Oracle Policy Modeling. In your
screen flow you can reference these screens.
To add an existing screen from Oracle Policy Modeling to your flow, follow these steps:

1. Click the Screens tab in the Screen Flow dialog box. This will show all the screens for the selected entity (the entity is
shown in the top right hand of the Screen Flow dialog box).

2. Select the screen you want to add to your flow. You can search or filter the list by typing in the Search text box.

3. Drag the screen to the diagram and place it just under the shape that it should flow from.

4. Drag between shapes to join them.

Add decision points to the screen flow
You can add conditions in your screen flow that control whether or not a path in the flow is taken. A condition is
an attribute and the attribute value controls which path is taken. Each condition is called a decision point and is
represented in the flow with a decision shape.

To add a decision point to your flow:

1. Click theDecisions tab in the Screen Flow dialog box.

2. Select the attribute you want to add to your flow. You can search or filter the list by entering part of the attribute text or
ID in the Search text box.

3. Drag the attribute to just under the shape that it should flow from in the diagram.

4. Drag from the decision shape to its related shapes to connect them.

5. For each connection that flows from a decision shape, double-click the connection and type a value condition. Then press
Enter.

A condition can just be a straight value (eg true|false|"cat"). For number, date, date and time and time of day
attributes, a condition can also be preceded by a comparison. For more information on what value conditions
can be applied to different attribute types, see Value conditions for screen flow connections.
If no conditions are provided for a decision point, the attribute will be investigated and then the flow will con-
tinue on from that point.
NOTES:

a. When a screen flow is executed, if it reaches a decision shape where the attribute is unknown, it will trigger an invest-
igation of that goal using the default screen order. If an attribute is required that doesn’t appear in the screen order, then
it will use the question search to investigate the attribute. It is best practice to have the screen flow for a rulebase fully
specified, therefore avoiding the need for the question search to drive the screens.

b. You can also have a decision shape with the condition "unknown" and it will be taken when the value is unknown instead
of investigating the goal. If you don’t have any such condition, the goal is investigated as described above.

c. If the text of a condition is blank or "else" or "otherwise", then this is the 'catch all' connection that is used if none of the
other conditions are fulfilled.

Choose the entity that the screen flow operates within
Screen flows all belong to a specific entity, and all screens in the flow must belong to that entity. The entity for
the flow is shown in the top right hand corner of the Screen Flow dialog box.

If you want to show a screen for another entity, you must call a subflow (see below) and specify the relationship
for that flow. When the (primary) flow is executed, the sub-flow will be executed once for each target of the
relationship.

Add subflows to the screen flow
Subflows are separate flows that can be added to the primary screen flow. A subflow is created in exactly the
same way as a normal screen flow.
If you want to have a different entity in your screen flow you must use a subflow to access that entity. When the
(primary) flow is executed, the subflow will be executed once for each target of the relationship.
To include a subflow in the screen flow:

1. Click the Flows tab in the Screen Flow dialog box.

2. Select the Relationship for the subflow. The list of flows will change to reflect the flows available for that particular rela-
tionship.

3. Select the (sub) flow that you want to add to your (parent) flow. You can search or filter the list by typing in the Search
text box.

4. Drag the flow to just under the shape that it should flow from in the diagram.

5. Drag from the flow shape to its related shapes to connect them.

NOTE: There can be no cyclical references in shapes, ie A requires B and B requires A.

Edit a screen flow
Once you have started creating a screen flow you will want to move and change the appearance of shapes
(screens, decisions, connections etc) in the editing pane to make the flow easier to understand.

Move a shape
To move a shape in a screen flow:

1. In the flow diagram, click anywhere on the shape to select it.

2. Select the centre white square (the hand will change to a multi-directional arrow).

3. Drag the shape to a new location in the editing pane.

Change the size of a shape
To change the size of a shape in a screen flow:

1. In the flow diagram, click anywhere on the shape to select it.

2. Use one of the white squares on the edges of the shape to drag that edge of the shape inwards or outwards.

Delete a shape
To delete a shape in a screen flow:

1. In the flow diagram, click anywhere on the shape to select it.

2. Press Delete.

Change how interview data is summarized and reviewed
The summary screen is the central task page for out-of-the-box Oracle Web Determinations applications. Essen-
tially a simple list of labels, goals, document generation triggers and flows, the summary screen provides an
interface to your rulebase and screens. The summary screen also provides access to additional session man-
agement tools, including session saving and clearing, data review screens, and decision reports for completed
rulebase goals.
The data review screen in Oracle Web Determinations provides a list of all the questions answered during an
interview. This allows the user to revisit any question in the interview.

What do you want to do?
Create a summary screen
Add a label to the summary screen
Add a goal to the summary screen
Add a screen flow to the summary screen
Add entity-level items to the summary screen
Add a document link to the summary screen
Change the order of screens on the data review screen
Change the title of the data review screen

Create a summary screen
Each project will normally have a single summary screen that appears at the start and at the end of the inter-
view, and that can also be viewed during an interview.
Explain this further

At the start of an interview, the summary screen will typically:

l provide an explanation of the purpose of the rulebase

l allow the user to commence an interview of one or more rulebase goals

l provide links to additional supporting documentation

At the end of an interview, the summary screen will typically:

l display the outcome(s) of the assessment and provide links to the decision report for important goals and sub-goals

l display any warning or message text

l allow the user to generate documentation based on the information provided or inferred outcomes

l allow the user to return to all or part of the interview

l provide links to additional supporting documentation

At any point in the interview, returning to the summary screen will typically allow the user to:

l review data already collected

l clear the session and start again

l save a copy of the assessment

l close the assessment

By default, the first screens file that is added to a project will contain an empty summary screen. If you need to
manually add a new summary screen follow the steps below.
To create a new summary screen:

1. Right-click the *.xint filename, or another folder, in the screens view and select theNew Summary Screen menu
option.
TheNew Summary Screen dialog will be displayed:

For out-of-the-box Oracle Web Determinations users, you should only define a single summary screen for your project,
and leave it named "summary", which is the default value for summary screens.

2. Click OK and save your screens file to keep the new screen.

You can add folders to your summary screen in Oracle Policy Modeling to sort your summary screen items into
manageable units, and to allow summary screen items to be added for entities. You can also add visibility attrib-
utes to summary screen folders, to control the display of all elements within the folder. The folders themselves
will not be displayed in Oracle Web Determinations – the summary screen will still be displayed as a flat list
based on the order of all controls as if no folder structures existed. To add a new folder, click the New Folder
button at the top of the summary screen dialog.

Add a label to the summary screen
Labels are used to provide headings, plain text and HTML paragraphs on the summary screen.
To add and edit a new label:

1. Open the summary screen editor dialog by double-clicking on the summary screen entry in the main list of screens for
your screens file.

2. Click theNew Label button at the top of the summary screen dialog.
You can then edit the label control by selecting it in the list of summary screen items in the left hand pane. The details for
the label control will appear on the right side of the screen edit dialog.

3. Specify the Text for the label.

4. Select the Style of the label from the drop-down list. Suggestions on the use of heading styles can be found in Use head-
ings to convey meaning about the screen.

5. If required, select the Is HTML checkbox. See Change the appearance of text for more information on this setting.

6. If required, enter a CSS Class and/or CSS Style. See Change the appearance of a control for more information on this
setting.

7. If required, specify a Visibility attribute. See Control the visibility of summary screen elements for more details.

8. Click OK.

Add a goal to the summary screen
Goals are used to provide an entry point into an assessment or an entry point into a decision report. To add and
edit a new goal:

1. Open the summary screen editor dialog by double-clicking on the summary screen entry in the main list of screens for
your screens file.

2. Click theNew Goal button at the top of the summary screen dialog. You can then edit the action control by selecting it in
the list of summary screen items in the left hand pane. The details for the action control will appear on the right side of
the screen edit dialog.

3. Click the browse button next to the Attribute text field. This will open the Attribute Selector dialog box.

4. Select the attribute you want as your goal attribute from the list of attributes. Click OK. In the Action Control pane, the
attribute you selected now appears in the Attribute field.

5. Enter Captions to define the text that will be displayed when the goal attribute has uncertain, unknown, true and false
values. (The Unknown caption text is defaulted for you based on the attribute name.)

6. Select the Is HTML checkbox if your label/control is HTML. See Change the appearance of text for more information on
this setting.

7. Specify a CSS Class and/or CSS Style if required. See Change the appearance of a control for more information on this
setting.

8. If required, specify a Visibility attribute. See Control the visibility of summary screen elements for more details.

9. Click OK.

Add a screen flow to the summary screen
If an interview screen flow has been defined, it needs to be added to the summary screen so that it can be
accessed in a Oracle Web Determinations investigation.
To add a screen flow to the summary screen:

1. Open your screens file and open your summary screen. Select theNew Flow button at the top of the summary screen
dialog. A Flow Control will be created.

2. Select the Browse button next to the Flow name text field and select your flow from the list of pre-existing flows in the
Flow Browser dialog box. Click OK.
In the Flow Control pane, the attribute you selected now appears in the Flow name field.

3. Modify the Caption if necessary. (By default this is set to the flow name.) This is the text that will appear for the link to
the flow on the summary screen.

4. Select the Is HTML checkbox if your label/control is HTML. See Change the appearance of text for more information on
this setting.

5. Specify a CSS Class and/or CSS Style if required. See Change the appearance of a control for more information on this
setting.

6. If required, specify a Visibility attribute. See Control the visibility of summary screen elements for more details.

7. Click OK.

Add entity-level items to the summary screen
Labels, goals and screen flows can also be added to the summary screen that operate within an entity. To do
this, entity-level items must be grouped within a summary screen folder which is associated with the entity.
To create a summary screen folder and associate it with an entity:

1. Open the summary screen editor dialog by double-clicking on the summary screen entry in the main list of screens for
your screens file.

2. Click New Folder and give the new folder an appropriate name.

3. In the Summary Screen Folder properties window, click on the Browse button to the right ofRelationship.

4. In the Relationship Selector, select the relationship in which the entity-level items will function on the summary
screen (most often this will be the entity's containment relationship, but it need not be), and click OK.
Note that the source entity for the selected relationship must be at the same entity level that the new summary screen
folder is in. For instance, in our example the source entity for the relationship is the global entity, which is the same entity
level as the base level of the summary screen, in which the new Children folder has been added.

5. The summary screen folder is now associated with the target entity for the relationship, and labels, goals or screen flows
which operate at the level of that entity may now be added within the folder. Oracle Policy Modeling will now expect all
goals or screen flows added within this folder to be within the entity, however labels may use text substitution using attrib-
ute values from the entity's parents (eg the source entity of the relationship you selected).

Note that summary screen folders with relationships may be nested, if this structure is reflected in the relevant
entity relationships.

Add a document link to the summary screen
A document link needs to be added to the summary screen to allow the user to generate and view an interview
document. (To do this you need to have already created the interview document that you want to link to. For

more information on this, see Create, update or delete an interview document.)
To add and edit a document link:

1. Open the summary screen editor dialog by double-clicking on the summary screen entry in the main list of screens for
your screens file.

2. Click theNew Document button at the top of the summary screen dialog.

3. Select the document control in the list of summary screen items in the left hand pane. The details for the document con-
trol will appear on the right side of the screen edit dialog.

4. Select the document you want to link to from theDocument drop down list. (This list contains all of the documents in
the DocGen folder in the Screens file.)

5. Specify a Caption for the document control. This is the text which will be displayed on the summary screen as a link for
the generated document.

6. Click OK.

Additional settings
In the Document Control window there are additional settings that you can specify for your document:

Setting Description

Generate Xml Data
When checked, clicking the document link on the summary screen will generate a raw XML rep-
resentation of the session that can be saved. This is useful not just for debugging purposes, but
for importing into the BI Publisher tool inWord as sample data.

Is HTML
When selected, indicates that the caption contains HTML tags. These are used to change the
appearance of the document link on the summary screen. See Change the appearance of text for
more information on this setting.

CSS Class and CSS Style
Using these settings, the appearance of the document link can be customized using Cascading
Style Sheet (CSS) classes and styles. See Change the appearance of a control for more inform-
ation.

Visibility Attribute and Default
State

These settings are used to control the visibility of the document link on the summary screen. See
Control the visibility of summary screen elements for more details.

Change the order of screens on the data review screen
The data review screen is the screen that is displayed when you click the "Data Review" link in Oracle Web
Determinations. The order that the screens are listed on the data review screen in Web Determinations is
determined by the order of screens defined in the screen order in the screens file (regardless of whether a
screen order or screen flow is being used to drive the interview).
So to change the order of screens on the data review screen:

1. First check that you have a screen order defined in your screens file. By default, the first screens file that is added to a
project will contain a default screen order (labeledData Review in the screens view). This screen order is auto-
matically defined as being the order of the screens in theQuestion Screens folder. If you don't have a screen order
defined, Oracle Web Determinations will simply display the screens in a randomly ordered list which canmake it difficult
to find the attribute/screen you are interested in from the data review screen. See Create a new screen order for more
information.

2. Edit the screen order.

Change the title of the data review screen
To change the title of the data review screen as it appears in Oracle Web Determinations:

1. Open your screens file in Oracle Policy Modeling, then double click theData Review entry.

2. In theData Review - Screen Order dialog, change the name in theData Review Title field, then click OK.

Check attribute inclusion on interview screens
In Oracle Policy Modeling you can see which attributes are collected on screens, and which attributes on screens
have broken references. There are also occasions when you might want to collect an attribute on multiple
screens.

What do you want to do?
View a list of attributes that are not collected on any interview screens
View a list of inferred attributes that are collected on interview screens

Find and fix any broken attribute references on screens
Collect an attribute on multiple screens

View a list of attributes that are not collected on any interview screens
An Uncollected Attributes Report lists all base level attributes not collected on a screen. This is useful for check-
ing that your question screens include all base level attributes. (If not, and an uncollected attribute is required
by the question search, that attribute will appear on an automatic screen in Oracle Web Determinations.)
To run an uncollected attributes report, in Oracle Policy Modeling select Reports | Uncollected Attributes.

View a list of inferred attributes that are collected on interview screens
An Inferred Screen Attributes Report shows a list of inferred attributes which appear on screens. Inferred attrib-
utes are attributes which are proved by other attributes in the rulebase.
To run an inferred screen attributes report, in Oracle Policy Modeling select Reports | Inferred Screen
Attributes. When generating this report you have the option to include base level attributes proven by shortcut
rules.

Find and fix any broken attribute references on screens
A broken attribute reference occurs on a screen when the attribute text has been changed in the source doc-
ument (including properties files) without a corresponding update to files that referenced that attribute text.
To find and fix any broken attribute references on screens:

1. In Oracle Policy Modeling, select Tools | Repair Attribute References...
The Repair Attribute References dialog box will open.

2. For each broken attribute reference, choose whether to leave it unchanged, or update the attribute on the screen to use
the new text (default option). (You also have the option to delete selected controls using theDelete Control button.)

3. Click OK.

Collect an attribute onmultiple screens
When developing a rulebase application, there may be situations where it makes sense to have the same attrib-
ute collected on multiple screens.
For example, assume you are creating a rulebase and interview about work related travel. The interview needs
to determine the number of nights that the participant is going to spend away, and the type of travel (domestic
or international). If international travel is being undertaken, then the destination country must also be known.
You can see from a user interface point of view, it makes sense to develop two screens, one for collecting
domestic travel details, and one for collecting international travel details:

Domestic Travel Details
- Number of nights away

International Travel Details
- Number of nights away
- Destination country

When an attribute is collected on multiple screens, the screen order defined in the screens file dictates which
screen will be shown first, and any subsequent screens will only be shown if some other attribute on the screen
is required and hasn’t already been collected.

Create, update or delete interview help
Integrated interview help text, also known as commentary, is provided in an Oracle Web Determinations applic-
ation to help people understand the questions that they are being asked, and the screens they are being presen-
ted.
Oracle Web Determinations uses HTML documents for each question on the screen. In other words, for every
question there is a corresponding HTML document. Clicking on a question will load the help for that question.
In addition to question-related help, help can also be provided for at the screen level or at the word-level. Click-
ing on the screen title or word, will open the help for that screen or word.

What do you want to do?
Generate commentary files for attributes and screens
Create commentary for a word in a label or question
Make the commentary open in a new window
Update a commentary file
Delete a commentary file
Localize a commentary file

Generate commentary files for attributes and screens
You can automatically generate commentary files for your project from Oracle Policy Modeling. To do this:

1. SelectBuild | Generate Commentary Files….
This opens the Generate Commentary Files dialog box.

By default, the commentary files will be located in \Development\include\commentary\<rulebase language>. To view
the files in this location, click the Explore button.
NOTE: The default commentary plug-in fetches HTML files out of the rulebase archive here. This default commentary
plug-in can be replaced with a custom-developed one that returns commentary from some other location like a database
or external web server. For more information on using another commentary plug-in, see the Oracle Policy Automation
Developer's Guide.

By default, the commentary template will be located in C:\Program Files\Oracle\Policy Modeling\Templates. This tem-
plate should include any styles, headings and information that are to be reasonably common across all attributes. To
select a different commentary template, use the browse button to locate and select another file.

2. Select whether you want to create commentary files:
* for screens
* for attributes on screens
* for other base level attributes (including attributes for which automatic screens will be shown)

3. Click Create.
The Confirm Commentary File Creation dialog box will open. This displays a list of attributes and screens that
meet your chosen criteria. The commentary file name is <attribute id>.html. (NOTE: If you change the commentary file
name, the commentary will not be displayed for that attribute/screen.)

4. Ensure that the check box is ticked for any attributes and screens that you want to create commentary files for, then click
OK. (The "default" (this rulebase) commentary file which is created will only appear on the locale selection screen. This
screen is only displayed if translations have been added to the rulebase, ie if the rulebase can be run inmore than one lan-
guage.)

5. You will then be advised when the commentary files have been generated and asked if you want to view them. Click OK
to open the folder containing the commentary file, or click Cancel to return to Oracle Policy Modeling.

Create commentary for a word in a label or question
You can also create "per-word" commentary for words in labels and questions. For example, the question "What
is the claimant's weekly net pay?" could have the word "pay" as a link to commentary which provides a defin-
ition of the term.

To add commentary for a word in a question or label:

1. In Oracle Policy Modeling, open your screens file and select the relevant question or summary screen.

2. Select the label or question that you want to add per-word commentary to.

3. Change the text of the label or question to include the HTML tag for the commentary in the following format: <a href-
f="../../../../commentary/<project name>/<rulebase language>?target=<file name>"><link text>
For example, "What is the claimant's weekly net <a href="../../../../commentary/Web Determinations/en-US?tar-
get=pay">pay?".
NOTES:
(i) If the link is on the summary screen one less "../" is required (because the link text is relative to the screen URL path).
For example, pay.
(ii) To make the per-word commentary appear in a separate pop-up window, include "target="_blank"" in the HTML, eg
"What is the claimant's weekly net <a href="../../../../commentary/Web Determinations/en-US?target=pay" target="_
blank">pay?".

4. Click OK.

5. Create a commentary file named exactly the same as the filename specified in the HTML text (eg "pay.html").

6. Put the commentary file in the commentary directory for the project (ie \Development\include\commentary\<rulebase
language>).

NOTE: When using per-word commentary in question text (ie on an attribute input control), the standard com-
mentary file for that attribute must not exist (that is, either delete it or do not create it when generating the
commentary files). Otherwise the control will render somewhat unusably as a link-within-a-link.

Make the commentary open in a new window
The default behaviour is for commentary to appear in the same window (that is, as a pane on the right hand side
of the window) when a question or screen is clicked on. If you want to have the commentary open in a new win-
dow you need to make the following change to the appearance.properties file:

1. Open the appearance.properties file which is located in \Release\web-determinations\WEB-INF\-
classes\configuration for the project.

2. Change the opa-commentary-type setting from "frameset" to "popup".

3. Save and close the file. TIP: You will need to close and restart your Web Determinations investigation to see this change
take effect.

NOTE: Setting the commentary to open in a new window doesn't work when running Web Determinations in the
debugger; it only works when running Web Determinations in an external web browser.

Update a commentary file
To update a commentary file:

1. Browse to the commentary file on your local drive: \Development\include\commentary\<project language>.
(TIP: Alternatively, you can selectBuild | Generate Commentary Files and click the Explore button next to the
Commentary Location field to open the directory containing the commentary files.)

2. Double click the file to open it.

3. Edit the file as required and then save it.

NOTE: Changes to commentary files will not appear until you re-build and start a new Web Determinations ses-
sion.

Delete a commentary file
To delete a commentary file:

1. Browse to the commentary file on your local drive: \Development\include\commentary\<project language>.
(TIP: Alternatively, you can selectBuild | Generate Commentary Files and click the Explore button next to the
Commentary Location field to open the directory containing the commentary files.)

2. Right-click and selectDelete. Click Yes to confirm the file deletion.

NOTE: If there is no commentary file for a particular attribute or screen, the question or screen will not appear
as a link in the application.

Localize a commentary file
If you have added a language translation to your rulebase, you may also wish to localize your rulebase com-
mentary files accordingly.

Overview: The process of creating an interview document
An interview document is a document that can be generated from an interview session in Oracle Web Determin-
ations. It provides the user with a record of the interview, including answers and conclusions, that they can
view and download. Interview documents have many uses, including pre-populated claim forms and advice let-
ters.
Oracle Policy Modeling supports the creation of HTML, RTF, PDF and Excel interview documents.
After you have authored your rulebase in Oracle Policy Modeling (including finalizing your data model) and you
have tested it in Web Determinations, you can then create an interview document by following these steps:

1. Add a new document definition to your screens file
This is where you associate a template with the document (see next step). This is also where you generate the XML
schema containing all of the publicly-named attributes in the project, and specify any decision reports that you would like
available to your interview document.

2. Develop the template for your interview document
Using Microsoft Word you develop the RTF template for the interview document using the BI Publisher Template Builder
and your XML Schema. Using sample data you can preview the document.

3. Add a document link to your summary screen
You add a document link to the summary screen to enable the user to generate and view your interview document.

4. Test the generation of the document
UsingWeb Determinations you can test that your document generates in the format and style with the content that you
expected.

The Social Services Screening rulebase and the Healthy Eating rulebase that are installed with Oracle Policy
Modeling (ie \Program Files\Oracle\Policy Modeling\examples\) are examples of complete rulebases containing
interview documents.

Create, update or delete an interview document
Customized interview documents can be generated from an Oracle Web Determinations application. Typical doc-
uments include an assessment notice and a personalized claim form.
Interview documents are defined in the screens file (associating them with an RTF template) and then integ-
rated into Oracle Web Determinations applications using document links on the summary screen.

What do you want to do?
Create a documents folder
Create a new interview document
Modify an interview document
Delete an interview document

Create a documents folder
By default, the first screens file that is added to a project will contain a Documents folder. To add additional
folders to your screens file:

1. Right-click the *.xint filename, or another folder, in the screens view.

2. SelectNew Folder from the pop-upmenu.

3. Enter an appropriate name for your screen folder.

Create a new interview document
To create an interview document:

1. Right-click theDocuments folder in your screens file and selectNew Document from the pop-upmenu.

The Document editor will appear:

2. Enter an appropriate name for the document in theDocument Name text box (by default this will be the name of the
rulebase).

3. Optionally provide a Public Name for the document. NOTE: This public name must be unique across all screen files in
the project.

4. Specify the Template file (.rtf) to be associated with the document. A default blank template is automatically created
(<Project name>_Template.rtf) in the project under \include\templates\<locale>. TIP: Use the Edit button to open the
template for editing in Microsoft Word. See Develop a template for an interview document for more information on edit-
ing templates.

5. Select theDocument Type from the drop-down list. The options are: Excel, HTML, PDF or RTF.

6. Add any Decision Report attributes that you would like available to your interview document. (Click on the Add button
and then select the attributes from the Attribute Selector. The only attributes available as decision report attributes
are top level and intermediate level attributes with public names. Then click OK.) Adding entries into the Decision
Reports list not only ensures that an attribute is present in the XML, but that a full decision report is also available for it.
TIP: Take care not to add unnecessary entries here, as they may slow down the document generation process.

7. Click the Export Schema button. This button exports an XSD representation of the document definition. (NOTE: Only
those attributes with public names are included in the generated XML schema. You therefore must have a Properties file
in your project which contains your public names.) This is important as you will generally need to import this XSD file into
the BI Publisher tool inWord in order to develop your document template. In the Save dialog box, enter a name for the
XML schema file, then click Save. (NOTE: Schema files are document, not rulebase, specific so be sure to name your
schema according to the document it relates to.)

8. Click OK.

Modify an interview document
To modify an existing interview document, double-click on the document name in your screens file, or right-
click and select Open from the pop-up menu. Make the necessary changes in the Document editor and then
click OK.

Delete an interview document
To delete an interview document, select the document name in your screens file and press Delete, or right-
click and select Delete from the pop-up menu.

Develop a template for an interview document
An RTF template is used to generate the interview document. This RTF file is created in Microsoft Word using the
BI Publisher Template Builder. The Template Builder is a tool that simplifies the development of RTF templates.

Note: If you cannot see the BI Publisher Ribbon in your Microsoft Word document after you open it from Policy
Modeling, you need to install BI Publisher Desktop. For more information, see Download BI Publisher.

There are 4 steps in the process of developing a template for an interview document:

1. Create a template file

2. Load the XML data into the file

3. Design the template

4. Preview the document

If you are familiar with developing BI Publisher templates and just need to know the format to use for the
fields, refer to the BI Publisher code for Oracle Policy Modeling topic.

Create a template file
A default RTF template is created automatically when you add a new document to your screens file. This file,
<project name>_Template.rtf, is located in the \include\templates\<locale> folder for the project.
Alternatively, you can reuse an existing RTF template file, but make sure that you select that file in the Tem-
plate field in the Document editor in your screens file (it will then be automatically copied into the include\tem-
plates\<locale> folder).

Open a template file
The template file can be opened for editing in Word by clicking on the Edit button in the Document editor in the
screens file in Oracle Policy Modeling:

Alternatively, you can open the template file from its location in the project under \include\templates\<locale>
using Microsoft Word or Windows Explorer.

Load the XML data
In order to add fields to your template you first need to load data into the BI Publisher Template Builder in
Word. The simplest way to do this is to import the XML schema file (XSD) that you created when you added the
document to your screens file.

Load the XML schema

1. On the BI Publisher toolbar, selectXML Schema:

2. In the dialog box, select the XML schema file (XSD) that you exported when you added the document to your screens file.
You will be told when this data has been loaded successfully.

NOTE: Sample data can also be loaded and used in the development of the template. You would only do this
though if you needed to see the full list of fields that are generated. Typically, you will only want to include the
text and/or the formatted value of the attributes in the session in your template in which case the XML schema,
rather than the sample XML, is considerably more user-friendly. TIP: Even if you do want other field types in
your template that are not included in the XML schema, you can use one of the fields for the attribute that is in
the schema and customize it to be what you need (see below).

Design the template
In addition to normal Word components, a template can include:

l fields

l tables

l charts

l pictures

Insert a field
Fields in BI Publisher are used to display values and properties of attributes (global and entity-level), decision
reports and conditional text.
To insert a field into a template:

1. Put your cursor in the place in your document template where you would like to insert the field. Click the Field button on
the BI Publisher menu:

(If you have not already loaded a data source, you will be prompted to do so now.)

2. In the Field dialog box, select the field that you want to insert (for example, to insert the text for the global attribute for
the claimant's name, select the Name Value field in the Global-instance folder):

3. Either drag and drop the field to the desired location in your template, or click the Insert button in the Field dialog box.
Close the Field dialog box. Your field should look something like this:

IMPORTANT NOTE: For attribute values (formatted for the project region) and attribute text this is all you need
to do. For other field types (eg unformatted attribute values, attribute question text, attribute type, decision
reports, conditional text etc) you need to customize a BI Publisher field (see below).

Customize a BI Publisher field

The BI Publisher code for all fields, other than attribute values (formatted) and attribute text, needs to be cus-
tomized.

1. Follow the steps above for inserting a field into your template. Use either the Value or Text field for the relevant attribute
(it does not matter which as you will be customizing the field anyway).

2. Double-click on the field in the template to open the BI Publisher Properties dialog box. (TIP: If double-clicking the
field does not open the BI Publisher Properties dialog, re-load your XML.)

3. Click on the Advanced tab. The code here needs to be modified to point to the property of the attribute that you want to
be displayed (note that the code is case-sensitive). For example, if you wanted to display the attribute question text for
the publicly-named 'improvements' attribute, you would enter the Code "<?improvements/@question?>":

4. Select this text and copy it (Ctrl+C), then paste it (Ctrl+V) into the Text to display field (either on the Properties or
Advanced tab).

5. Click OK. The field in your template should look something like this:

For the format required for other fields, see BI Publisher code for Oracle Policy Modeling.
TIP: The Healthy Eating example rulebase that is installed with Oracle Policy Modeling, contains a Raw Template
Example RTF file that you can use to copy and paste the code from for various fields. You just need to replace
the attribute id (ie public name) in the code, and update the display text as necessary.

Insert a decision report

To insert a decision report for an attribute into your template there are 3 things you need to do:

1. In Oracle Policy Modeling, add the attribute to the Decision Reports available for the document.

2. Somewhere in your template document, have a "decision-report template" field, which tells BI Publisher how to structure
and format a decision report. Follow the steps earlier for inserting a field into your template. The field needs to be cus-
tomized to have the following code specified in the Advanced tab for the field:

<?template@inlines:decision-report?>
<?if@inlines:"attribute-node"?>
<fo:list-block start-indent="{count(ancestor::attribute-node) * 7}mm">
<fo:list-item>
<fo:list-item-label>
<fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block><xsl:value-of select="@text"/></fo:block>
</fo:list-item-body>
</fo:list-item>
</fo:list-block>
<?for-each@inlines:./attribute-node?><?call-template:decision-report?><?end for-
each?>
<?end if?>
<?end template?>

The Text to display setting (on either the Properties or Advanced tab) should be updated to say decision-report
template.

3. In the place in your template document where you want the decision report to appear, have a "call decision report tem-
plate" field which specifies the attribute ("attribute_id") to give the decision report on. To do this, follow the steps earlier
for inserting a field into your template. The field needs to be customized to have the following code specified in the
Advanced tab for the field, where "attribute_id" is replaced by the goal attribute that will be used for the decision report:

<?for-each:/global-instance/attribute_id/decision-report/*?><?call-template:decision-
report?><?end for-each?>

For example:

The Text to display setting (either on the Properties or Advanced tab) also needs to be updated to say call
decision report template.

The resulting fields in your template should look like this:

Insert conditional text

You can specify that certain text is only shown when a particular condition is met. Both simple conditions and
multiple conditions are supported in BI Publisher. Conditional text can be achieved by:

1. Using the BI Publisher Conditional Region dialog, or

2. Manually defining the conditional fields.

The Conditional Region dialog can be used when the condition is that an attribute EQUALS a value. It can also be
used for greater/less than comparisons for number variables provided you select 'Number' from the drop-down
list (see below).

To insert conditional text using the Conditional Region dialog:

1. In your template write the text that you would like displayed under certain conditions.

2. Select the text.

3. Click on the Conditional Region button on the BI Publisher menu:

The following BI Publisher dialog will be displayed:

4. In the General box, select the attribute whose value you want to base the condition on from theData field drop-down
list. (TIP: Make sure you have the XML schema loaded in your document, not the sample data, to make it easier to use
and find attributes in this drop-down list.)

5. Also in the General box, select the attribute type from the drop-down list. NOTE: These are BI Publisher types so use
"Number" for Oracle Policy Automation number variables and "Date/Text" for Booleans and for all other variable types
including currency.

6. In the Condition 1 box, select the condition that applies to the attribute from theData field drop-down list.

7. Also in the Condition 1 box, type in the condition value (formatted).

8. Click OK. The following BI Publisher fields will appear around the conditional text in your template (C stand for Condition,
EC stands for End Condition):

Alternatively, you can manually define your own conditional region by following the format described below.
Simple conditions take the following format:

l <?if:condition?>Display text when conditionmet<?end if?>

Multiple conditions take this format:

l <?choose:?><?when:condition?>Display text when conditionmet<?end when?><?otherwise:?>Alternate display tex-
t<?end otherwise?><?end choose?>

Note that the conditions in these elements use unformatted attribute values and need to follow a particular syn-
tax (see examples BI Publisher code for Oracle Policy Modeling for more information).

To manually insert simple conditional text:

1. Insert a field for the relevant attribute value into your template.

2. Double-click on the field in the template to open the BI Publisher Properties dialog box. (TIP: If double-clicking the
field does not open the BI Publisher Properties dialog, re-load your XML.)

3. Click on the Advanced tab. Enter the code for the start of the condition (eg <?if:attribute_id/value='value'?>):

4. Select the code text and copy it (Ctrl+C), then paste it (Ctrl+V) into the Text to display field. Click OK.

5. In your template document after the if condition field, enter the text that you want to be displayed when the condition is
met.

6. After the display text, insert another field into your template (just as you did in step 1).

7. Double-click on the field to open the BI Publisher Properties dialog box.

8. Click on the Advanced tab. Enter the code for the end of the if condition, ie <?end if?>:

9. Select the code text and copy it (Ctrl+C), then paste it (Ctrl+V) into the Text to display field. Click OK. Your template
should look something like this:

Further examples of conditional text, including ones with multiple conditions and conditional formatting, are
given in BI Publisher code for Oracle Policy Modeling. The BI Publisher Users Guide also provides further inform-
ation on conditional formatting.

Insert entity-level attributes

To insert entity-level attributes in your template, you can use the Repeating Group button on the BI Publisher
menu:

See the Template Builder for Microsoft Word help file for more information on how to set up your entity attrib-
utes in this way.

Alternatively, you can add entity-level attribute values and properties by following the format described below.
Entity-level attribute values and properties can be added to template documents in the same way as global
attribute values and properties, but the group needs to:

l be preceded by <?for-each:entity_id?>, and

l be followed by <?end for-each?>

To insert an entity-level attribute:

1. Insert a field for the relevant entity-level attribute value into your template.

2. Double-click on the field in the template to open the BI Publisher Properties dialog box. (TIP: If double-clicking the
field does not open the BI Publisher Properties dialog, re-load your XML.)

3. Click on the Advanced tab. Enter the code that defines which entity the attribute belongs to, ie <?for-each:entity_
id?>:

4. Select the code text and copy it (Ctrl+C), then paste it (Ctrl+V) into the Text to display field. Click OK.

5. In your template document, on a new line after the "for-each" field, insert another field for the relevant entity-level attrib-
ute into your template (just as you did in step 1). If this field is for a formatted attribute value or attribute text continue on
to the next step. If the field is for another type of attribute value/property (eg unformatted attribute value, attribute ques-
tion text, attribute type) you will need to customize the BI Publisher field.

6. In your template document, on a new line after the entity-level attribute field, insert another field for the relevant entity-
level attribute into your template.

7. Double-click on the field to open the BI Publisher Properties dialog box.

8. Enter the code for the end of the "for-each" field, ie <?end for-each?>:

9. Select the code text and copy it (Ctrl+C), then paste it (Ctrl+V) into the Text to display field. Click OK. Your template
should look something like this:

Entity-level attributes can be displayed in several different ways.
To have information grouped by entity, have the "for-each" field around the whole group of attribute val-
ues/properties in your template document. For example:

<?for-each:child?>

<?child_name_text?>

<?child_rating_overall_text?>

<?child_rating_overall/@question?> <?child_rating_overall_value?>

<?end for-each?>

This would display as:

To have information grouped by attribute, have a "for-each" field around each individual attribute value/-
property in your template document. For instance:

<?for-each:child?> <?child_name_text?> <?end for-each?>

<?for-each:child?> <?child_rating_overall_text?> <?end for-each?>

<?for-each:child?> <?child_rating_overall/@question?> <?child_rating_overall_
value?> <?end for-each?>

This would display as:

To display entity-level attributes in table form, the first cell in the row needs to start with the <?for-
each:entity_id?> field, and the last cell in the same row needs to end with the <?end for-each?> field (with
the entity-level attribute fields in between). For example, a table like this in your template document:

This would display as:

To display entity-level attributes in table form sorted alphabetically by entity name, follow the directions above
but add an additional "sort" element to the opening "for-each" field:

<?sort:entity_name_id_value;'ascending';data-type='text'?>

For example,

This would display as:

TIP: Sometimes having the full display text for the "for each" fields at the start and end of the rows can upset
the formatting of your table. If so, replace the full display text with an abbreviation (eg "F" for the <?for-
each:entity_id?> field, and "E" for the <?end for-each?> field). See the Combined Form in the Social Services
Screening rulebase that is installed with Oracle Policy Modeling for an example of this.

Insert a table
To have a table in your template you can either:

l add a native Microsoft Word table and then add the necessary BI Publisher fields to it, or

l use the Table Wizard on the BI Publisher menu, or

l use the Table/Form button on the BI Publisher menu (advanced).

For more information on using the BI Publisher table formats, see the Template Builder for Microsoft Word help
file.

Insert a chart
To have a chart in your template you must create it using the Chart button on the BI Publisher menu (you can't
use a native Microsoft Word chart).

You then have the option of creating the chart yourself using the Builder, or, if you know the code for the chart
that you want, adding the code directly to the Advanced tab.
For more information on inserting a chart using the chart builder, see the Template Builder for Microsoft Word
help file.
An example of creating a pie chart by adding code to the Advanced tab is shown in the Raw Template Examples
file in the Healthy Eating rulebase that is installed with Oracle Policy Modeling.

Insert a repeating picture
You can have a picture repeated in a document depending on the value of a particular attribute. To do this you
need to specify BI Publisher code in the Format AutoShape | Alt Text field for the image in the template.
An example of displaying a number of star images to represent a child's diet rating is shown in the Raw Tem-
plate Examples file in the Healthy Eating rulebase that is installed with Oracle Policy Modeling.

Preview the document
Using BI Publisher you can preview your RTF template using "real" data. To do this you generate some sample
data, then load it into your template and then preview the output.

Generate the sample data
Sample data can be generated from an Oracle Web Determinations session. To do this:

1. Open the document control on the summary screen.

2. Select the Generate Xml Data checkbox, then click OK.

3. SelectBuild | Build and Debug. In theDebug Options dialog box, select the option to debugWith screens, and
select the optionBuild and deploy with built-in Oracle Web Determinations. It is important that you also
select the option toReplace deployed version of Web Determinations.

4. InWeb Determinations, enter your data until a conclusion is reached.

5. On the summary screen, click on the document link. Save the XML file from the session.

NOTE: When the XML data is generated, every attribute with a public name regardless of whether it is known,
unknown or uncertain is output. However, entity instances and change point values are only output if they actu-
ally exist in the session, so if you don’t have either of these you won’t see them in your sample XML.

Load the sample data
After you have generated your sample data you need to load it into the BI Publisher Template Builder in Word.

1. On the BI Publisher toolbar, select Sample XML:

2. In the dialog box, select the XML file that contains your sample data (see above). You will be told when this data has
been loaded successfully.

Preview the output
After you have loaded your sample data you can preview the document in your choice of format.

1. Click on the appropriate Preview option:

2. Review the generated document:

3. If necessary, go back to your RTF template file to make any changes. Remember to re-import your XML schema if you
want to continue editing your document using the BI Publisher Fields dialog.

If you are having problems with the display of any elements in your document, see the Troubleshooting guide
for using BI Publisher with Oracle Policy Modeling.

See also:

l the Template Builder for Word Help file (available under \Program Files\Oracle\BI Publisher\BI Publisher Desktop\Tem-
plate Builder for Word)

l the BI Publisher Users Guide (available under \Program Files\Oracle\BI Publisher\BI Publisher Desktop\Template Builder
for Word\doc)

l Localize interview document templates

Test an interview or screen flow
There are two ways in which you can test an interview or screen flow in Oracle Web Determinations:

l Using the debugger. This runs the rulebase using the server embedded in Oracle Policy Modeling.

l Using a deployed instance of Oracle Web Determinations. This runs the rulebase using an external server.

What do you want to do?
Use Oracle Web Determinations in the debugger
Use Oracle Web Determinations externally
Start an interview in Web Determinations
Investigate a goal in Web Determinations
Create entity instances in Web Determinations
Review the reason for a decision in Web Determinations
Review a document generated from the interview
Review the data collected in Web Determinations
Save an interview in Web Determinations
Know what to test for

Use Oracle Web Determinations in the debugger
When running Oracle Web Determinations from within Oracle Policy Modeling you have the advantage of being
able to use the other features available in the debugger. To start testing your rules using Oracle Web Determin-
ations embedded in Oracle Policy Modeling:

1. SelectBuild | Build and Debug.

2. In theDebug Options dialog box, select the option to debugWith screens.

3. Select the appropriate deployment option. The options are:
* Build and deploy with built-in Oracle Web Determinations - most commonly you would use this option. If
you want to completely replace the previously deployed version of the project , click the checkbox toReplace
deployed version of Web Determinations.
* Attach to existing Oracle Web Determinations Website - use this option if you want to connect to an existing
instance of Oracle Web Determinations for Java or .NET. Enter the URL of the deployed rulebase. See below for how to
enable debugging when choosing this option.

4. Click OK. This will launch a session of Web Determinations.
When you have finished testing your screens, stop the debugger by either closing theDebug view or by selecting Stop
Debugging from the Build menu.

Enable debugging in a deployed instance of Oracle Web Determinations
By default, a deployed instance of Oracle Web Determinations doesn't support debugging. To enable debugging
for either Java or .NET, the following change needs to be made to the configuration file:

1. Open the application.properties file located in \Release\web-determinations\WEB-INF\classes\configuration.

2. In the Deployment Properties section, change the enable.debugger setting to true.

3. Save the application.properties file.

4. Restart IIS. (To do this go to Control Panel/ Administrative Services/ Internet Information Services. Select the local com-
puter/Web Sites/Default Web Site. Right click and select Stop, and then right click and select Start.)

Use Oracle Web Determinations externally
To start testing your rules using Oracle Web Determinations deployed to an external server:

1. SelectBuild | Build and Run.

2. In the Build and Run dialog box, select the runmode.

The options are:
*Run with Oracle Web Determinations
*Run with Oracle Determinations Server
If you want to completely replace the previously deployed version of the project (located in the Release folder), click the
checkbox toReplace deployed version for project.

3. Click Run.

Start an interview inWeb Determinations
When you launch Web Determinations it opens to the summary screen which lists a set of goals that you can
investigate. What you see on this screen will depend on the labels and goals that you have defined for the
default summary screen in your screens file.

(If no summary screen has been defined in Oracle Policy Modeling, the summary screen in Web Determinations
will be blank.)
Click on any goal link to start investigating it.

Open a saved investigation
To open a saved investigation:

1. Click on the Load link in the menu bar.

2. This will open the Load Case screen which lists all of the existing saved cases.

3. Click on the case name to open the investigation.

Investigate a goal inWeb Determinations
Question screens are used to collect information during an interview. For example:

Questions
What you see on a question screen during your interview will depend on whether the attribute that needs an
answer is defined on a question screen in your screens file in Oracle Policy Modeling (see Create a question
screen for more information). If it is, the labels, format and behaviour of that attribute on the question screen
in Web Determinations will be as defined on the question screen in that file. If the attribute does not exist on a
question screen in the screens file then the attribute will be displayed on an Automatic question screen in Web
Determinations.
You must answer questions in the format specified by the Region setting for your rulebase, for example you
must enter dates or currency values in the correct format.
On question screens, mandatory questions are identified by the icon *. You must provide an answer to these
questions before you can continue on to the next screen in the interview.
TIP: If you are using Web Determinations in the debugger, at any point in an interview you can switch to the
Data view to see which attributes are known.

Progress stages
At the top of the interview screen is a section which shows the screen/stage you are currently on (in bold) and
gives a measure of 'how known' the goal is that you are investigating.

If question screens are grouped into sub-folders in the screens file, the subfolders will be used as the progress
stages.
This feature only works when a screen order is defined. To turn off this feature, change the show-progress-
stages setting to false in the appearance.properties file that is located in \Release\web-determ-
inations\WEB-INF\classes\configuration for the project.
NOTE: This is not a navigation tool.

Progress bar
Another option for the display of progress through an interview is a progress bar:

To turn on this feature, change the show-progress-bar setting to true in the appearance.properties file that
is located in \Release\web-determinations\WEB-INF\classes\configuration for the project.
NOTE: The calculation of progress is based entirely on attributes, not on screens, which means that the progress
bar works even if you are not using a screen order or even if you have automatic screens. It will not appear
while executing a screen flow.

Help text
If help text is available for a question, this can be accessed by clicking on the question text.
When you have answered the questions on a screen, click the Submit button to move to the next screen in the
interview. Continue to work through the interview process until no more question screens are presented to you.
The number of screens shown will depend on your answers to the questions.

Conclusions
When Web Determinations reaches a conclusion for the chosen goal in the assessment, no more questions will
be asked and you will be returned to the Summary screen where the conclusion is displayed.

At this point you have several options:

l Investigate another goal (if there are any)

l Review the reason for a decision

l View an interview document (if there are any)

l Review the data already collected

l Clear the session and start again

l Save the assessment (or a copy of it)

l Close the assessment

Create entity instances inWeb Determinations
To create an entity instance in Web Determinations, you click on the Add button (eg Add New Instance, Add
Child) when presented with the entity collection screen. (The entity collection screen is defined in Oracle Policy
Modeling, including the name of the Add New Instance button, see Define a screen for collecting entity instances

for more information. If you have not yet defined one, an automatic (default) entity collect screen will be dis-
played in Web Determinations.)

Fill in the required fields and use the Add button to create additional entity instances. Then click Submit to
move to the next screen in the interview.
NOTE: In Web Determinations, the entity completion status is set automatically.
Explain this further
The entity completion status is set as follows:

l the global entity is always set as complete

l a non-global entity is set as complete if all the screens that collect instances of the entity have been displayed.

For example, say a rulebase has an entity for 'the child' and 'the pet', and the following relationships are used
to collect instances of these entities:

l 'the children' (from global to 'the child')

l 'the child's pets' (from 'the child' to 'the pet')

The screen that collects instances of 'the child' uses 'the children' as the relationship. Since the screen (and rela-
tionship) belongs to the global entity, there is only one such occurrence of this screen, so as soon as it is dis-
played, the entity 'the child' is set as complete.
The screen that collects instances of 'the pet' uses 'the child's pets' as the relationship. Since this belongs to 'the
child', the screen can appear once for every child that the user has entered. If the user enters three children
then the screen for collecting pets must be displayed for all three children before 'the pet' will be set as a com-
plete entity.

Review the reason for a decision inWeb Determinations
When the interview has reached a conclusion, you can obtain a structured list of the reasons for that conclusion.
This type of audit trail is known as a decision report.
The decision report is a "map" of the rules traversed in the rulebase in order to prove the current conclusion.
Attributes that are proved by other attributes are displayed hierarchically, down to the level at which the user
has entered data.
To see the decision report for your assessment, click on the [Why ?] link next to the interview goal on the Sum-
mary screen.

A decision report looks like this:

You can expand and collapse nodes in the report by clicking on the + and - signs.

Clicking on a base level attribute will open the screen on which that attribute was collected, allowing you to
change the value for it.
Decision reports can be modified to prevent superfluous details from being shown. For more information, see
Hide information in a decision report.
Where an inferred attribute has several values over time these will be listed in the decision report:

Review a document generated from the interview
If there are any interview documents (eg assessment notices or personalized claim forms) you can access
these from the Summary screen. Click on the appropriate link to generate the document.

If the interview document is a PDF, RTF or Excel file, you will prompted to Open or Save the file. If the doc-
ument is a HTML file, it will open directly in Web Determinations.
NOTES:

a. If clicking the document link prompts you to save an XML file, the Generate Xml Data checkbox for the document control
in the summary screen has be selected, and will need to be unselected in order to view the actual generated document.

b. If your document is not generated, or if elements in your generated document do not appear, see the Troubleshooting
guide for using BI Publisher with Oracle Policy Modeling.

Review the data collected inWeb Determinations
You can review the data already collected in an investigation by visiting the data review screen. To access this
screen click on the Data Review link on the Summary screen. This screen provides a list of all the questions
answered during an interview. Pre-seeded data will also be displayed.
An example of a data review screen is:

On this screen you can click on the links provided to go directly to the relevant question screen. This allows you
to change the information entered on those screens, and determine whether changes to that information affects
system decisions.
If a screen order has been defined in the screens file in Oracle Policy Modeling, the data review screen in Web
Determinations will list screens according to that order.
If no screen order has been defined in your screens file, the screens will be listed in a random order without ref-
erence to the order in which they have appeared in the interview. It is therefore recommended that you always
define a screen order in your screens file. See Define interview screen order for more information.
The formatting of attribute values in Oracle Web Determinations, including date, number and currency values,
is set based on the Region specified in the Project Properties for the rulebase. See the Oracle Policy Automation
Developer's Guide for details on how to override this if required.
TIP: You can change the name of this screen. See Change the title of the data review screen for more inform-
ation.

Save an interview inWeb Determinations
At any point during an interview, you may want to save it. Saved interviews can be reloaded at a later time,
allowing you to continue the assessment or modify it.
To save a new interview, click the Save link on the Summary screen. To save an existing interview click on the
Save As link on the Summary screen.

The Save As screen will be shown. This allows you to enter a name for the assessment and save the case.

To save an interview that has previously been saved, on the Summary screen:

l click on the Save link to save the case, or

l click on the Save As link to save a copy of the case.

Know what to test for
Using Web Determinations you can undertake an interview to ensure that your screens are effective and work-
ing as expected. You should make sure that you check that:

l the screens appear in the anticipated order

l any HTML tags are effective

l any substituted attributes are appearing where you had anticipated

l no headings are repeated

l any restricted inputs are working as expected

l question text makes sense

l commentary links work correctly

l the visual appearance (eg fonts, background colors, pictures, etc.) is as intended

l "Uncertain" has been enabled/disabled for each question as appropriate

l there are no spelling errors

l no screens are 'looping'

Decision reports
Topics in "Decision reports"

l Design a decision report

l Hide information in a decision report

l Addmore information to a decision report

Design a decision report
A decision report is a report that can be viewed when the outcome of a goal is known, outlining the reasons for
that decision. The value of every base level and intermediate attribute relevant to the final outcome is displayed
in the decision report.
You may want to tailor your decision report to improve readability and to make sure the logic in the rules
presents sensibly to a user. You may also choose to censor information for a particular audience.
The following steps should be undertaken when designing a decision report:

l Checking the decision reports contain enough information to explain the answer. This may require adding intermediate con-
ditions and restructuring rules. See Improve the wording of a rule for more information.

l Checking the decision reports don't contain unnecessary information. Silent and invisible operators can be added to con-
ditions in rules to selectively omit the inclusion of lower-level attributes in decision reports. See Hide information in a
decision report for more information.

l Checking sentence construction and correcting parsing. Sometimes this can involve rewording attributes and even restruc-
turing rules to reflect the reworded attribute. See Change the text of an interview question or sentence for more inform-
ation.

l Checking that number variables are displaying as desired. By default, these will be shown as formatted values. If you
would like a number variable to display unformatted you need to select the checkbox "Unformatted" in the Attribute Editor
for that variable.

l Reviewing decision reports to ensure they conform with the principles for writing rules. See Rule principles for Oracle Policy
Modeling for more information.

Hide information in a decision report
Decision reports can often be too verbose to provide a useful explanation of reasons for a decision to the user,
particularly in these common areas:

l attributes which are used repeatedly throughout the rulebase (both base level and inferred)

l application-level rules, which only perform system functions which add no value to the user (eg the claimant is married ->
the claimantmarital status ="married")

l relationships, which are used repeatedly throughout the rulebase

You can trim decision reports with the use of the silent and invisible rule parameters, by preventing attributes
and relationships from being displayed in the decision report, or hiding entire decision trees.

What do you want to do?
Hide all attributes in the decision report below a particular attribute

Hide a particular attribute in the decision report
Cut off a decision report above a particular attribute
Hide a relationship in the decision report

Hide all attributes in the decision report below a particular attribute
The "silent" parameter is used to hide all attributes in the decision report below the attribute on which the para-
meter is used. You can make attributes silent at the rule level or globally.

To apply the silent parameter to an attribute at the rule level:

1. In your Word rules document place the cursor after the attribute text.

2. Click the Silent Operator button on the Oracle Policy Modeling toolbar or press Alt+S. (You can also apply the oper-
ator after an and or or operator, but never before the start of the attribute.)

For example:

[b7] the claimant is eligible for child care benefit if

[b15] the claimant satisfies the work/training/study test [silent] and

[b2] the claimant has at least one child in child care

The silent parameter can also be applied to a rule conditionally depending on the value of the attribute. To do
this, just add the text "if true", "if false", "if certain", or "if uncertain" after the "silent". For example:

[b7] the claimant is eligible for child care benefit if

[b15] the claimant satisfies the work/training/study test [silent if true] and

[b2] the claimant has at least one child in child care

To apply the silent parameter globally:

1. In your properties file in Oracle Policy Modeling, double-click on the attribute in the Attribute view to open it in the Attrib-
ute Editor.

2. Select theDecision Reports tab.

3. Select the appropriate check boxes in the Silent section. For boolean attributes, you canmark the attribute as always
silent, or silent only if the attribute is true, false or uncertain. Similarly, for non-boolean attributes, you canmark the
attribute as always silent, or silent only if it is certain or uncertain.

Hide a particular attribute in the decision report
The "invisible" parameter is used to hide the attribute on which the parameter is used in the decision report. As
for the silent parameter, you can make attributes invisible at the rule level or globally.

To apply the invisible parameter to an attribute at the rule level:

1. In your Word document place the cursor after the attribute text.

2. Click the Invisible Operator button on the Oracle Policy Modeling toolbar or press Alt+I. (You can also apply the oper-
ator after an and or or operator, but never before the start of the attribute.)

For example:

[b18] the claimant is eligible for long service leave if

[b21] the claimant qualifies for long service leave under section 45 [invisible]

The invisible parameter can also be applied to a rule conditionally depending on the value of the attribute. To do
this, just add the text "if true", "if false", "if certain", or "if uncertain" after the "invisible". For example:

[b18] the claimant is eligible for long service leave if

[b21] the claimant qualifies for long service leave under section 45 [invisible if false]

To apply the invisible parameter globally:

1. In your properties file in Oracle Policy Modeling, double-click on the attribute in the Attribute view to open it in the Attrib-
ute Editor.

2. Select theDecision Reports tab.

3. Select the appropriate check boxes in the Invisible section. You canmark the attribute as always invisible, or invisible
only if the boolean attribute is true, false or uncertain, or if the non-boolean attribute is certain or uncertain.

Cut off a decision report above a particular attribute
Silent and invisible rule parameters can be used together in rules so that both an intermediate attribute and any
rules that prove that attribute are not included in the decision report. It may help to think of this as "chopping
off" the decision report immediately above the attribute to which the pair of parameters is attached.

Hide a relationship in the decision report
The "invisible" parameter is used to hide a relationship, and the entity instances that are members of that rela-
tionship, in the decision report.
The "silent" parameter is only used with inferred relationships where it is used to show the target entities in the
membership rule but hide the decision report.

To apply the invisible and/or silent parameters to a relationship:

1. In your properties file in Oracle Policy Modeling, double-click on the relationship in the Relationship view to open it in the
Relationship Editor.

2. Select the Invisible and/or Silent checkboxes as appropriate.

See also:

l Definition of relevant in decision reports

Add more information to decision report
Decision reports may sometimes be too succinct to provide a user with a useful explanation of reasons for a
decision. There are several ways you can add more information to decision reports.

What do you want to do?
Add intermediate rules
Remove existing silent and invisible operators
Substitute the value of an attribute for its text
Show the names of entity instances

Add intermediate rules
You can add 'intermediate-level' rules to provide an additional layer of explanation between rules, which will
help users see how the rule logic is operating. You can do this by using variable comparisons to infer boolean
attributes, or by replacing grouping attributes with new attributes.

Remove existing silent and invisible operators
Sometimes when silent and/or invisible parameters have been used in the rules to hide attributes and decision
trees, the resulting decision reports can be difficult to read and understand. In this case you may need to find
where these parameters have been used and remove them. To do this:

1. In Oracle Policy Modeling, selectBuild | Build and Debug.

2. In theDebug Options dialog box, select theWithout screens option, then click OK.

3. In theData view, select the attribute you are interested in, right-click and select Investigate. TIP: It may be most
effective to identify an intermediate goal proving the section of your rules that you wish to examine, and check this attrib-
ute for silent and invisible operators applied to its influencing attributes.

4. In theDecision view, select the option to Show silent and invisible. If this changes the decision view, then silent
and/or invisible operators are being applied to the attributes in the decision view.

5. If this is the case, identify the attribute(s) that are affected, then open the properties file for the project and double-click
the attribute to open the Attribute Editor.

6. Select theDecision Reports tab and see if there any silent and/or invisible parameters set. If so, remove them.

7. If the attribute does not have any silent and/or invisible parameters set on it in the properties file, then these operators
must be operating at the rule level rather than globally. Open the rules document containing the rule, locate the rule and
delete the silent and/or invisible operator.

8. Repeat steps 5 to 7 for all relevant attributes in your decision report, until you are satisfied that all appropriate attributes
are being displayed correctly.

Substitute the value of an attribute for its text
You can substitute the text of a variable with its actual value when it is used in another attribute in the rulebase.
This substitution can make decision reports much more meaningful, for example:

the claimant’s sibling lives in the claimant’s sibling’s country with the claimant

can become:

Charlene lives in Morocco with Anne

where "the claimant’s sibling", "the claimant’s sibling’s country" and "the claimant" are all substituting vari-
ables.

For more information on how variable substitution operates, see Substitute the actual value of a variable for its
text.

Show the names of entity instances
You can show the names of entity instances in decision reports to improve the readability of your decision
report and make it clear which entity instance is being referred to. There are two places to do this:

1. In entity-level attributes. To substitute the name of the entity instance into entity-level attributes (eg "David's date of
birth is 10/03/96" instead of "The child's date of birth is 10/03/96") and into relationship text (eg "David's school" instead
of "the child's school"), you need to set up attribute substitution. See Substitute the actual value of a variable for its text
for details of how to set this up.

2. In lists of entity instances. To show the name of each entity instance in the details of entity or relationship collect screens
(eg "Sydney High", "Melbourne High", "Perth High" instead of generic labels like "#1", "#2", "#3" for the entity 'the
school'), you need to have an identifying attribute for the entity. By default, an identifying attribute is automatically cre-
ated when a new entity is created, so typically this will already work. (For details on how to set up an identifying attribute
if you don't already have one, click here.)

See also:

l Definition of relevant in decision reports

Compiling and building
Topics in "Compiling and building"

l Compile rules and correct errors

l Include extra files in the build

l Build a rulebase

l Create rules that can be shared with another project

l See the results of a recent build or deploy operation

l Define attribute names for use by external applications

l Check that a rule references the right data elements

l Fix a build error

l Exclude a rule file from the build

l Build the rulebase from the command line

See also:

l Check the rulebase against the data model

Compile rules and correct errors
The rulebase project is compiled to produce the required files to conduct an investigation.
After you have written your rules you need to compile them.

Compilation in Microsoft Word and Excel is triggered by the Compile button on the Oracle Policy Modeling
toolbar.
Clicking the Compile button starts the parse and validation process.
After your rules have been successfully compiled, you can then view your rules in Oracle Policy Modeling. There
is a one-way direction for editing Oracle Policy Modeling documents. This means that you must alter your rule
documents in Word or Excel and re-compile to make changes to your rule models. You cannot update your rules
or attributes in Oracle Policy Modeling.

What do you want to do?
Correct rule errors
Understand what parsing means
Review the attribute parses
Identify the operative verb
Select an alternate parse
Delete unused attributes
Understand attribute IDs
Compile rules from within Oracle Policy Modeling

Correct rule errors
If there are errors in your Oracle Policy Modeling format, the compilation process will cease, and you will be
prompted to correct those errors.
In the Compile Errors dialog, select the error message and then click the Go To button. The part of the rule
that is causing the error will be highlighted in the rules document. Fix the error and then re-compile.
After your rules have been successfully compiled, any changes to attributes will be displayed and you will be
informed that the process is complete. From this point, you can then view your rules in Oracle Policy Modeling.

Understand what parsingmeans
All boolean attributes need to be parsed to produce their positive, negative, uncertain and question forms. The
process of parsing is to identify the primary verb in the attribute and build these text forms around that verb.
For example, parsing the attribute "the dog bit the man" would generate:

the dog bit the man positive form

the dog did not bite the man negative form

did the dog bite the man? question form

the dogmight have bitten the man uncertain form

Attributes can be entered in rules using the positive, negative or uncertain form. The parser can handle this and
will still generate the other forms correctly.
NOTE: This description of parsing applies to the fully-featured parser (for example, English US) in Oracle Policy
Modeling. If you have a project which uses a RLS (Rapid Language Support) parser, the sentence parses are gen-
erated using a generic statement defined in the configuration for that particular RLS parser. For more inform-
ation on using an RLS parser, and changing individual sentence forms in such a project, see the Help available in
the Rapid Language Support Tool.

Review the attribute parses

Review the attribute parses in a rules document
In Word and Excel, when you click the Compile button on the Oracle Policy Modeling toolbar, any new attributes
will be automatically parsed.
You should review the attribute parses to see if any attributes have not been parsed correctly. You can do this
using the Confirm New Attributes dialog which is displayed whenever you compile after adding new attrib-
utes.
In this dialog, the verb which is being used for the parse is underlined for each attribute in the list.

The table below describes what you should be looking for when reviewing this list of new attributes.

What to look for What this means What to do

Attributes highlighted
with a gray back-
ground

The attribute contains more
than one recognized verb
(even if the word is not func-
tioning as a verb in that par-
ticular attribute, as in the
example above)

If the underlined verb is the correct verb (ie the operative verb around
which the sentence forms should be based) you can leave the parse as
is.

If the underlined verb is not the correct verb around which the parse
should be based, you need to select an alternate parse.

If you are not sure if the underlined verb is the correct verb around
which the parse should be based, you can view the sentences forms
generated for each parse. In the Confirm New Attributes dialog,
select the attribute and click the Edit button. Select the parse in the top
box to view the sentence forms for that parse in the box below.

Attributes shown in red
(and also highlighted in
gray)

The attribute does not contain
a recognized verb and no sen-
tence forms have been gen-
erated

Add the verb to the custom verbs list for the project and then reparse
the attribute

Attributes which con-
tain compound verbs
(ie verbs made up of
several words) where

The verb has not been recog-
nized by the parser as a com-
pound verb, resulting in
potentially incorrect sentence

Add the verb to the custom verbs list for the project and then reparse
the attribute

What to look for What this means What to do

the entire verb is not
underlined

generation

After you have confirmed your attributes, click OK in the Confirm New Attributes dialog box.

Review the attribute parses in a properties file
In Oracle Policy Modeling, when you add a new boolean attribute to your properties file, you click the Parse but-
ton in the Attribute Editor to parse the attribute. The sentence forms for that parse will be shown in the box
below.

Identify the operative verb
Sometimes, attributes only include one simple verb, in which case it is easy for the parser to identify the verb
and generate the correct sentence forms. Often though, a attribute will contain more than one verb. For this
reason, you need to be able to identify the operative verb in an attribute so that you can assess whether the
attribute has been parsed correctly.
Some attributes contain two verbs but only one verb is operating as a verb in the attribute. It is easy to identify
the operative verb if you consider how the attribute should be negated.
For example, the attribute "the car started to roll down the hill" contains two verbs, 'to start' and 'to roll'.
To negate this attribute you would place the "not" in front of the verb 'to start' (ie "the car did not start to roll
down the hill") so 'to start' is the operative verb.
Similarly, "the people watched the boat go by" contains two verbs, 'to watch' and 'to go. This attribute would be
negated by placing the "not" in front of the verb 'to watch' (ie "the people did not watch the boat go by") so 'to
watch' is the operative verb.

Select an alternate parse
If you want to change the parse for an attribute this should be done in the properties file in Oracle Policy Model-
ing to ensure that the change applies across all rule documents.
To select an alternate parse for an attribute:

1. Open the properties file for the project.

2. Double-click on the attribute in the Attribute view to open it in the Attribute Editor. (If the attribute does not already
exist in the properties file, ie because it was added directly in the rules document/s, you will need to add it to the prop-
erties file. Right-click in the Attributes view and selectNew Attribute.)

3. Select the Parse button to open the Select Parse dialog. In the Text field the attribute is shownwith the primary verb
underlined.

4. Select an alternate parse from the list. This will display the sentence forms for that parse in the box below.

5. Click OK. The Attribute Editor will now show the new parse for the attribute.

Show me an example of an attribute which needs to be reparsed
The attribute "the interview is complete'" has two possible parses as it contains two recognized verb forms, "is"
and "complete". If "complete" is the primary verb the sentence forms are:

do the interview is complete

the interview is do not complete

the interview is might complete

These are not the correct sentence forms. Selecting the parse using "is" as the primary verb shows the correct
forms:

is the interview complete

the interview is not complete

the interview might be complete

Delete unused attributes
If there are any attributes in your Word or Excel document that have been added but are not used, or that were
previously used but that are no longer used, you will be prompted to delete these attributes on compile:

Select the attributes that you want to delete and click the Yes button.

Understand attribute IDs
Oracle Policy Modeling automatically assigns an ID to each attribute as it is parsed during compiling. This is evid-
ent in the Oracle Policy Modeling mark-up (red text) which is inserted into your rule document in Word on com-
piling:

[b7] the claimant satisfies the Financial Qualification if

[b24] the claimant's weekly rent doubled is more than one half of the claimant's weekly net pay

[(p2*2)>(p3/2)] (the claimant's weekly rent * 2) > (the claimant's weekly net pay / 2)

Boolean attributes are named "bx" where x is a sequential integer (eg b1, b2, b3, etc). Non-boolean attributes
are named "px" where x is a sequential integer (eg p1, p2, p3 etc). These IDs are used by Oracle Policy Model-
ing to notate rules.
Because IDs are consecutively generated as b1, b2 etc on a per-document basis, Oracle Policy Modeling needs
to distinguish between IDs from one rule document and another.
To do so, it automatically assigns a document ID to each entity and attribute ID, based on the document location
and file name.
For example, b7 in the following document:

becomes:

Customize document IDs
Documents with long file and folder names can become somewhat unwieldy. To avoid this problem, Oracle
Policy Modeling allows you to rename the document ID used in the automatic generation of attribute IDs. To do
this:

1. Select the document in the Project Explorer, right-clicking it and selecting the Properties pop-upmenu option.

2. Uncheck the Base document ID on file name check box and define a new, more comprehensible name for the

document. (Names may only contain alphanumeric characters and the underscore ("_"). Spaces are not permitted.)

3. Click OK.

The attribute IDs for that document will be updated with the new document ID:

Compile rules fromwithin Oracle Policy Modeling
To compile your rules from within Oracle Policy Modeling, right-click on the document name in the Project
Explorer and select Compile from the pop-up menu. Oracle Policy Modeling will open the document in the appro-
priate program (Word or Excel) and automatically run the compile process.
It is also possible to compile all the documents in a project by selecting Compile All from the Tools menu.
Word or Excel will open each document in the project one-by-one and automatically run the compile process for
each one. NOTE: Compile All only compiles documents that have been modified (ie where the source document
has a more recent time-stamp than the xgen file).
Once you have compiled your rules, you can build and debug them using the debugger. This allows you to
explore your rules interactively.

Include extra files in the build
Sometimes it is useful to include extra files in the compiled rulebase zip file, either because they need to be
there or because it is convenient to do so because they directly relate to the compiled rules. Some examples
are:

l Commentary text when running the rules inWeb Determinations

l Compiled custom functions used by the rulebase

l Custom formatters for attribute values

l Custom inferencing listeners

l XML configuration of custom functions/formatters/inferencing listeners

Detailed information about these and other files that can be packaged in the compiled rulebase zip file is avail-
able in the Oracle Policy Automation Developer's Guide.
Files such as these are automatically added to the compiled rulebase zip file if they appear in \include folder of
the project. This is not created by default in a new project but can be easily created.
To include extra files in the rulebase zip file:

1. Use Windows Explorer to navigate to the folder containing a rulebase project.

2. Create a new folder called "include".

3. Copy any files or folders to be included into the include folder.

Folders copied into the include folder will retain their structure inside the zip file. Hidden files or folders (such
as those created by source control tools like Subversion) are not included.

Build a rulebase
In order to run your rules in the Oracle Determinations Engine you will need to build a set of files which rep-
resent the entire rulebase.
To build your rulebase, select Build from the Oracle Policy Modeling Build menu. A check will firstly be done to
ensure that there are no source documents that need compilation. If there are you will be prompted to recom-
pile these before continuing.
The build process will create the built rulebase files in the project output folder. The output folder is not visible
through Oracle Policy Modeling but can be viewed in Windows Explorer under the project folder.
Single file rulebase deployment means that building a project in Oracle Policy Modeling automatically builds a
<project>.zip file in the output folder. This package of all of the individual output components of a rulebase is
the preferred method of deploying rulebases rather than as individual files.
NOTE: Any other files placed into the output folder will also automatically be included as part of this zip file, so
unless the documentation explicitly directs you to, you should not put anything into the output folder. Also,
whenever you do a build of a rulebase, the entire contents of the output directory are deleted. If the build is suc-
cessful the only thing you will see in the output folder is the rulebase you have just built. If the build is not suc-
cessful the output directory will be empty.
There are a few checks that can be automatically performed every time you build the rulebase. These checks
are set up using the options under Tools| Options | Rulebase Development | Build Validation.

These options are:

l Check Data Model - Select this check box if you want a check to be performed of the data model when you build your
rulebase. This check ensures that each base level attribute and each entity have corresponding public names.

l Check Determinations Server Compatibility - Select this check box if you want a check to be performed when you
build your rulebase to ensure it is compatible with Oracle Determinations Server. This check ensures that all attributes,
including goals, have corresponding public names.

l Check Non-Latin Public Names - Select this check box if you want a check to be performed when you build your rule-
base for any attributes with public names containing non-Latin characters. (Non-Latin characters may cause problems
when deploying the rulebase in IIS 5.1 and earlier.)

See also:

l Build the rulebase from the command line

Create rules that can be shared with another project
Modules can be used to share aspects of a rulebase defined in one project with another project (or multiple pro-
jects). Information that can be exported through modules includes:

l the rules defined within a rulebase project, and

l entities, attributes and relationships defined in a project, including additional properties such as validations, defining attrib-
utes, as well as any custom property definitions.

Define what can be used by other projects
Modules work on the principle of abstraction behind an interface, which means that the user can define which
entities, attributes and relationships can be used by other rulebases but information on how those entities,
attributes and relationships are used within that module are kept private. This is important because it enables
modules to be altered and deployed independently of any other rulebase or module that might use them. For
example, if a module author wishes to allow other rulebases to use the goal attribute "the person is eligible for
benefit A", along with all the rules that prove it, they need only export that attribute and all the base level entit-
ies, attributes and relationships that participate in its proof. If the author subsequently wishes to change the
way in which that attribute is proved, they may alter the rules, re-compile and redeploy that module without
having to alter any of the rulebases or modules that depend on it (there are certain exceptions to this rule which
are detailed below).
Generally, exporting an entity, attribute or relationship is simply a matter of adding it to the project’s external
data model by adding a public name to it. More specifically, what gets put into the module interface is determ-
ined by the following rules:

l For an attribute to be exported, it must have a public name and the entity to which it is attachedmust also be exported. If
an attribute has a gender attribute defined for it, then the gender attribute must also be exported.

l For an entity to be exported, it must have a public name, its parent entity must also be exported and its containment rela-
tionship must have been exported. This has a flow-on effect such that if you had, for example, global -> parent -> child ->
pet, then you cannot export the entity "pet" unless the "child" and "parent" entities are also exported (the global is always
exported). Any specified identifying attribute must also be exported in order for an entity to be exported.

l For a relationship to be exported, both ends must have a public name, and both the source and target entities must also be
exported. This applies to both containment and reference relationships.

Additionally, custom properties, as well as intrinsic properties, on attributes (such as validation, decision
report, substitution parameters, "unformatted" flags for number attributes and "display seconds" flags for time
of day and date time), entities (identifying attributes) and relationships (decision report parameters) are expor-
ted into the module.
Any translations provided in a rulebase for attribute text, validation text and error/warning event message text
are also exported into the module.

Build a module
To build a module, select Build | Build Module from the main menu in Oracle Policy Modeling.

The build process will create the built module file in the project output folder. (The output folder is not visible
through Oracle Policy Modeling but can be viewed in Windows Explorer under the project folder.) Note that
whenever you build a module, the entire contents of the output directory are deleted. If the build is successful,
the only thing you will see in the output folder is the rulebase or module you have just built. If the build is not
successful, the output directory will be empty.
During a module build, there are two classes of module specific warnings that may be displayed:

l Warnings caused by an entity, attribute or relationship that has a public name but cannot be exported for some other
reason (see above).

l Warnings to indicate that a base level entity, attribute or relationship that participates in the proof of an exported inferred
entity, attribute or relationship is not itself exported.

These warnings can be ignored, but may result in unintended behavior of the module.
For information on how to link a module to a rulebase, see Include rules defined in a separate project.

Deploy changes to a single module
As noted above, a module works on the principle of abstraction behind an interface to allow it to be modified
independently of any other rulebase or module that might rely on it. Due to the need to maintain the integrity of
the resulting rulebase at runtime there is, however, a limit to what changes can be made to a module without
forcing any other rulebase or module that relies on it to also be recompiled.
Simply put, a module can be changed and redeployed without requiring any rulebase or module that relies on it
to be recompiled provided the changes do not affect the modules interface. The modules interface consists of
the following items:

l The ID, base text, data type and inferencing type (base or inferred) of any exported attributes.

l The ID, text and inferencing type (base or inferred) of any exported entities.

l The ID, reverse ID, text, reverse text, type, source entity, target entity and inferencing type (base or inferred) of any
exported relationships.

Additionally, the data model of the interface itself must remain static which means that entities, attributes
and/or relationships cannot be added or removed without affecting the interface.
Attempting to deploy a module with an altered interface will cause the engine to refuse to load any rulebase that
depends on that module. In such a case, all the modules and rulebases that directly rely on that module must
also be recompiled and redeployed. It is also possible that changes to a particular module could cause a loop or
multiply proven attribute when that updated module is loaded and the entire rulebase is re-formed at runtime,
and this would also result in the rulebase failing to load.
TIP: If you want to be able to update your module independently of the rulebases that rely on it, it is advisable
to only export the base level attributes that are required to prove the particular inferred attributes that the par-
ent rulebases use, rather than all the intermediate attributes as well.

See the results of a recent build or deploy operation
When you build the rulebase, the progress and results of that build are logged in the Output window and Error
List.

l The Output window displays the progress of various processes, such as compilation, importing and exporting. It also logs
the firing of any event rules.

l The Error List view shows any build andmodel errors and warnings encountered during the build process. You can double-
click on the error/warning in the error list to open the file in which the error has occurred or to access a report explaining
the error.

When you deploy a rulebase to the embedded web server, the progress and results of that deploy are logged in
the Embedded Web Server Output window. If there are any problems encountered during the deploy process,
they will be logged in this window.

Define attribute names for use by external applications
Oracle Policy Modeling automatically assigns an identifier to every attribute in the rulebase. These IDs are used
by Oracle Policy Modeling to notate rules. The attribute ID is stored in the rulebase along with the attribute text
and attribute type. By default, Boolean attributes are prefixed with the letter b and variable attributes are pre-
fixed with the letter p.
Attribute IDs are regenerated every time a rule document is compiled and change values as attributes are re-
worded. For this reason, public names, which are user-defined attribute IDs, should be used on a project
because they ensure that the attribute IDs for important attributes are reliable and static and are therefore suit-
able for use by external applications. For example, the automatically assigned attribute ID "b1@Doc1" could be
replaced with the more meaningful public name "date_of_birth".
Public name information is stored in the properties file for a project. After the rules have been written and com-
piled, public names should be assigned to all attributes that the application needs to access. This includes all
base level attributes and all top level attributes.
Important intermediate attributes also need to have public names. For more information, see Set public iden-
tifiers for entities and attributes.

What do you want to do?
Automatically generate public names for base and top level attributes
Replace auto-generated public names with meaningful ones
Check that all base level attributes have public names
Maintain public names

Automatically generate public names for base and top level attributes
Once you have created your rules in Word or Excel and compiled them, you need to generate public names for
all base and top level attributes.
To automatically generate public names:

1. In Oracle Policy Modeling, open the properties file for your project.

2. Right-click in the Attributes window and selectGenerate Public Names... from the pop-upmenu.

3. In the Generate Public Names dialog box you will be shown a list of base and top level attributes that do not have
public names. Ensure that all appropriate attributes are selected.

4. Change the prefix, if necessary, to somethingmore meaningful for the selected attributes (eg "claimant_").

5. Click OK. The Attributes list in the properties file will now show each attribute and its public name (ID).

Replace auto-generated public names withmeaningful ones
After you have generated your public names, you may want to replace the auto-generated name with something
more meaningful for each attribute.
To edit an attribute's public name:

1. In Oracle Policy Modeling, open the properties file for your project.

2. Right-click on the attribute in the Attributes list and select Edit Attribute... from the pop-upmenu.

3. In the Attribute Editor change the name in the Public Name text box to somethingmore meaningful (see below).

4. Click OK. The Attributes list in the properties file will be updated to reflect the new public name.

Choose a meaningful public name
Your choice of public name may be influenced by a number of factors including:

l the need to identify the attribute with related attributes (for example youmay want all attributes related to the claimant's
address to begin with "claimant_address_");

l the need to identify what entity the attribute belongs to (this does not need to be the full entity name, for example, "hhm_"
would be a suitable public name prefix for attributes belonging to 'the household member' entity)

l the way in which the attribute will be used (for example youmay want all attributes controlling screen behaviour to begin
with "screen_");

l any requirements imposed by an external data model, or the application in which the rulebase will be deployed.

Naming attributes clearly and consistently can make finding and sorting attributes much easier on large pro-
jects.
Note that public names cannot have spaces in them but underscores and dots can be used.

Check that all base level attributes have public names
It is important that all base level attributes in a project have public names. Oracle Policy Modeling can option-
ally check that all base level attributes have public names every time you build the rulebase. To turn on this fea-
ture, go to Tools | Options | Rulebase Development | Build Validation and select the Check Data
Model checkbox.

If base level attributes are detected without public names you will be informed that the Data Model Check has
not been successful. You will then need to provide public names to these base level attributes before you can
successfully build.

Maintain public names
Over time rules naturally change, either due to legislative changes or business policy. There are three different
scenarios that a rule developer may face regarding public name maintenance:

l If the meaning of the attribute associated with the public name stays the same but the rule proving the attribute changes -
there are no changes required to the public name.

l If the meaning of the attribute changes - if this occurs, and the public name was specific enough then the public name
attached to the attribute is probably out of date. A new public name which is associated with the attribute's meaning should
be attached to the attribute. The old public name should be either moved to a corresponding new attribute or deleted.

l If a new level of proof is needed for the base level attribute so that it no longer is a base level question - sometimes a base
level attribute will need to become an inferred attribute due to rule changes. Public names are typically only associated with
base level questions, which are at the user input level of an interview. In this scenario follow these steps:

1. Add a new proof to the current base level rule.

2. If the public name can now be moved to a new base level attribute that is used to prove the newly inferred
rule, move the public name.

3. If the public name cannot be moved onto a new identical attribute then delete the public name.

4. Add any new public names that are necessary for any new base level questions that have been created by
the new rule proof.

Check that a rule references the right data elements
Whenever you compile your rules you should check that the rules reference the correct data elements.
Things to check for when you compile a rule document:

l that any new attributes identified are exactly as you expect. For example, look in the New Attributes list for any attributes
which have been created unintentionally because they are slightly different from pre-existing attributes.

l that functions have been parsed correctly. You can do this by checking the redmark-up text at the start of rule. Functions
that have not been written correctly will be parsed as new attributes (so also check for this in the New Attributes list).

l that rules using entities and relationships correctly identify these components. Once again, check the redmark-up text to
see that the rule has been parsed in the right way.

After you have compiled and built your rules you can use the Rule Browser to confirm that the right attributes
are being referred to in the rule. For more information, see Check the structure of a rule.
If you have had to write rules within a constrained data model, you should also use the Check Data Model build
validation to ensure that the rules conform to that data model. For more information, see Check the rulebase
against an external data model.

See also

l Exclude a rule file from the build

Fix a build error
When you build the rulebase any errors or warnings that are detected will be automatically logged in the Error
List. Using this list you can see the type of error/warning (build warning, build error, model warning,
model error) and a description of the error. Where relevant, the file that the problem has occurred in will

also be listed.

There are two checks that are always performed when you build the rulebase:

l a check for multiply proven attributes, and

l a check for logical loops.

There are a couple of other optional checks that can be performed when you build the rulebase. See Build a rule-
base for more information.

To fix a build error, select the error in the Error List and double-click it. If the error relates to:

a. a multiply proven attribute, the Rule Browser will be shown. This view lists all the proving rules for the attribute and
allows you to navigate easily to the rules withinWord or Excel in order to fix them (either by using rule fragments, or by
making the attributes not multiply proven). An attribute which is proven by multiple rules, where these rules are not
tagged as rule fragments, will not function correctly in the Engine because of the operation of the automatic alternate con-
clusion in every rule. That is, the closed logic of alternative conclusions will prevent both rules being traversed - the first
traversed will close off the possibility of the other form operating.

b. logical loops, the Logical Loop Check report will be shown. A Logical Loop Check report generates a list of any
undefined self-referential rules, ie where an attribute is proved by itself and not defined as a rule loop, in the entire pro-
ject. The Attribute Chain column in this report shows the chain of connections between attributes resulting in the self-ref-
erence. The Participating Rules column shows each of the rules involved in the loop. Generally, loops do not occur in
single rules (eg x if x) but more commonly in highly nested layers of rules. Having self-referential rules has the result that
those rules can never be fully proved. That is, the rule will repeatedly undergo a question search down the looping
branch, cycling endlessly and never locating a base attribute within it. Use this report to identify the loop and then rectify
it in your rules. If you are sure that the logic you need to model requires a loop in your rules, youmay define the rules as
rule loops.

c. an attribute needing a public name, the xgen file for that attribute will be shown. You will need to add a public name for
that attribute in the associated properties file. To do this, select the attribute in the attributes list in the xgen file, right-
click and choose Create Public Name In and your properties file from the pop-upmenu.

To save a copy of the list of errors:

1. Right-click anywhere in the Error List window.

2. SelectCopy List.

3. OpenMicrosoft Excel or Word (or another authoring tool) and paste the list.

4. Save the list.

Exclude a rule file from the build
By default all documents contained in a project will be included in the build. In some circumstances it will not be
appropriate to include a particular document in a build, either permanently or temporarily.
To exclude a document from the build follow these steps:

1. Select the document in the Project Explorer in Oracle Policy Modeling.

2. Right-click and selectProperties... from the pop-upmenu.

3. In the Properties dialog box, clear the Include document in build check box.

4. Click OK. You will now notice in the Project Explorer that the document icon is grayed out to indicate that the document is
not included in the build.

Build the rulebase from the command line
The Oracle Policy Modeling Command Line Compiler provides a means of building a rulebase from an Oracle
Policy Modeling project using the command line. This allows the rulebase build process to be automated by
including the command in a script.
The tool operates off an Oracle Policy Modeling project file. The project file settings and the documents included
in the project are used to build the rulebase. The tool loads the project file, compiles the documents included in
the project and builds the rulebase and other output files. The build process performed is the same as using the
Build | Buildmenu item in Oracle Policy Modeling.
The build tool may also be used to compile and deploy a rulebase to the Determinations Server. The build and
deploy process performed is the same as using the Oracle Determinations Server option under the Build |
Build and Run... menu item in Oracle Policy Modeling.
By default, the tool performs validation on the rulebase model for rule loops and multiply-proven attributes. If
the options detailed below are specified, additional validation can be performed. The build will fail if any val-
idation errors are detected.
Projects created in old versions of Oracle Policy Modeling can be upgraded using the tool. Note that the project
files will be copied to a backup location to ensure that you have the original version of the project to refer to if
necessary. Release folders are not included in the upgrade process. The treatment of entities and their con-
tainment relationships in particular must be brought up to date from older project versions. See Principles for
the upgrading of entities and their containment relationships for more information.

Syntax
The Oracle Policy Modeling Command Line Compiler is executed from the command line using the following
format:

buildtoolpath projectpath [build options] [validation options] [report options] [upgrade options] [help
options]

Parameters

Parameter Description

buildtoolpath The relative or absolute path of the Oracle.Policy.Modeling.CommandLineCompiler.exe file

projectpath The relative or absolute path of the Oracle Policy Modeling project file to be built

Build Options

-sb Recompiles source documents before building the rulebase

-m Builds the project as a module

-n <build num-
ber>

Sets the version number of the built rulebase/module

Validation Options

-vd Validates the rulebase model against the data model specified in the Oracle Policy Modeling project

-vds
Validates the rulebase for compatibility with Oracle Determinations Server, notably that all relevant attrib-
utes have public names

Report Options

-cd Analyzes a *.coverage file and produces a document-oriented report (.xml)

-cg Analyzes a *.coverage file and produces a goal-oriented report(.xml)

Upgrade Options

-upgrade

Checks if the project is compatible with the current version.

If it is compatible, it proceeds to compilation.

If it needs upgrade, the project is upgraded before being compiled.

If it is not compatible (ie the project was created before v9.0), an error is displayed then it exits.

-remReadOnly

Removes write-protection for read-only files. This flag is only valid in the presence of the -upgrade flag.

When set, write-protection will be removed for read-only project files.

When not set, read-only project files will still be copied to the upgraded project directory but won't be pro-
cessed.

Help Options

Parameter Description

-h Prints the help message

--diagnostics Generates diagnostic information. The project path and other parameters are ignored.

Example
For example, a command to build a project called Eligibility, recompile the source documents and then validate
the rulebase model against the data model might look like this:
C:\Oracle.Policy.Modeling.CommandLineCompiler.exe C:\Eligibility\Eligibility.xprj -sb -vd

Finding and reporting
Topics in "Finding and reporting"

l Find your way around the Oracle Policy Modeling user interface

l View list of entities and attributes

l Find the entity for an attribute

l Find rules that use an attribute or relationship

l Find dependent rules

l See the structure of a rule

l Check rule structure and dependencies

l Find input data needed to reach a conclusion

l Spell-check all interview screens

l Create, modify or delete a rulebase visualization

Find your way around the Oracle Policy Modeling user interface
The Oracle Policy Modeling interface, as shown below, has a menu bar and a multiple pane view below it.

By default, the left hand pane displays the Project Explorer which is the main management tool for working
with project documents. The Project Explorer conveys important information about the project and the files
within it such as:

l whether the project needs saving because changes have beenmade - indicated by an asterisk next to the project name

l whether a file needs to be compiled - indicated with a green arrow next to the file icon

l whether a file is excluded from the build - indicated with a redmark in the bottom right corner of the file icon

l whether a project (and files) are under source control - indicated by a padlock next to the file icon

You can open any of the files in the project from the Project Explorer. Double clicking the file name will open:

l Word and Excel files in their own applications

l Screens, Source, Test Script and Visual Browser files in the top right hand pane in Oracle Policy Modeling

The Attribute Usage view can also be shown in the left hand pane.
The right hand pane is used to display tabs for each of the various files, views and reports in the rulebase. The
debugger is also shown in this pane.
The bottom pane displays the Output Window and Error List.
Each of these components can be closed and opened as needed.

Oracle Policy Modelingmenu bar and commands
The menu bar provides operations relating to the Oracle Policy Modeling project. The various menus and their
commands are explained below.

File menu

Command Description

New Pro-
ject...

Opens the New Project dialog which you use to create a new project

Open Pro-
ject...

Opens the Open Project dialog box where you can locate and open an existing Oracle Policy Modeling project

Close Pro-
ject

Closes the project

Import Pro-
ject...

Opens the Import Project dialog box where you specify the file and folder necessary to import a project

Export...
Opens the Export Project dialog box where you select the destination and file name for the project interchange file
which is used the export the project to an external rules repository

Add Accesses various options for adding files and folders to the project.

Save
<Selected
Item>

Saves the selected file

Save All Saves all the files in the project

Source Con-
trol

Accesses various options for managing your project using source control

Project Prop-
erties...

Opens the Properties dialog box used to specify common properties, deploy properties, custom property defin-
itions and regression tester properties

Project Stat-
istics

Opens the Project Statistics dialog box. This displays statistics for the build model and the files in the project.

Edit Verbs...
Prompts you to create a custom verbs file if you do not have one, and then opens the Verbs List dialog box where
you can find, add, edit and delete verbs for your project. NOTE: The Edit Verbs menu is not available for projects
which use a Rapid Language Support language parser.

Most Lists the most recently opened projects in Oracle Policy Modeling. (The number of items displayed in this list in the

Command Description

recently
used pro-
jects list

File menu is specified in the Tools | Options menu. The default setting is 4.) Clicking on a project name will opens
that project in Oracle Policy Modeling.

Exit Closes Oracle Policy Modeling

Edit menu

Command Description

Find Model
Attribute...

Opens the Find Model Attribute dialog box enabling you to search the list of attributes for a particular attribute
in the build model

Find Document
Attribute...

Opens the Find Document Attribute dialog box enabling you to search the list of attributes for a particular attrib-
ute contained within the Oracle Policy Modeling documents

Find Screen... Opens the Find Screen dialog box enabling you to find a particular screen in your project

View menu

Command Description

Project
Explorer

Shows the Project Explorer view in the left hand pane. The Project Explorer is the mainmanagement tool for
working with project documents. It displays all of the files in a project in a tree structure.

Attribute
Usage

Shows the Attribute Usage view in the left hand pane. This enables you to find rules that use a particular
attribute.

Build Model
Opens the Build Model view in the top right hand pane. This view shows the full list of entities and attributes from
all the documents in a project.

Attribute
Dependencies

Opens the Attribute Dependencies view in the top right hand pane. This is used to view the dependencies of a
selected attribute. This is handy for seeing the structure of a rule and for finding the input data needed to reach a
particular conclusion.

Data Model
Opens the Data Model view in the top right hand pane. This shows the rulebase data model which is a definition
of all data elements (base attributes) and their relationships to be maintained.

Error List
Opens the Error List in the bottom pane. This is a list of any errors or warnings that are detected when you build
the rulebase.

OutputWin-
dow

Opens the OutputWindow in the bottom right hand pane. This displays the progress of various processes, such
as compilation, importing and exporting. It also logs inferencing events during a debug session.

Embedded
Web Server
Output

Opens the EmbeddedWeb Server OutputWindow in the center pane. This displays the progress of various pro-
cesses when deploying to the embedded web server.

Reports menu

Command Description

Logical Loop
Check

Generates a Logical Loop Check report which is displayed in the right hand pane. This report contains a list of any
self-referential rules, where an attribute is proved by itself, in the entire project.

Multiply
Proven Attrib-
utes

Generates a Multiply Proven Attributes report which is displayed in the right hand pane. This report shows attrib-
utes which are proven by more than one rule, and which are not marked as being rule fragments.

Top Level
Attributes

Generates a Top Level Attributes report which is displayed in the right hand pane. This report shows a list of attrib-
utes in the rulebase which are only proved by other attributes in the rulebase (ie they don't prove other attributes
in the rulebase).

Base Level
Attributes

Generates a Base Level Attributes report which is displayed in the right hand pane.This report contains a list of
attributes in the rulebase which are not proved by any other normal rules (forward chaining only rules).

Uncollected
Attributes

Opens the Uncollected Attributes Report Options dialog where you can specify if you want to include base level
attributes proven by shortcut rules in the report. (This report lists all base level attributes not collected on a
screen.) The Uncollected Attributes report is then displayed in the right hand pane.

Attributes Col-
lected onMul-
tiple Screens

Generates an Attributes Collected onMultiple Screens Report which is displayed in the right hand pane. This
report lists any attributes that are collected onmore than one question screen.

Dependent
Base Attrib-
utes

Generates a Dependent Base Attributes report which is displayed in the right hand pane. This report shows a list
of base level attributes which are dependent on a selected attribute.

Screens
Generates a Screens report which is displayed in the right hand pane. This report lists the contents of all the ques-
tion and summary screens (including document links) defined in the project. This can be used for spell-checking
the screens.

Untranslated
Text

Generates an Untranslated Text report which is displayed in the right hand pane. This report lists all relevant rule-
base elements for which a translation has not yet been supplied.

Custom Prop-
erties

Opens the Custom Properties Report Options dialog box where you can specify the property types to include in
the report. The Custom Properties Report then opens in the right hand pane.

Inferred
Screen Attrib-
utes

Generates an Inferred Screen Attributes report which is displayed in the right hand pane. This report shows a list
of inferred attributes which appear on screens. Inferred attributes are attributes which are proved by other attrib-
utes in the rulebase.

View Test
Script Spe-
cification

Opens the View Test Script Specification dialog box where you can select the test scripts that you want to view the
details of. Test Specifications for each selected script are then displayed in the right hand pane.

RunMultiple
Test
Scripts...

Opens the RunMultiple Test Scripts dialog box where you can select which test scripts to run. The selected test
scripts will then run and the resulting Test Report will be displayed.

Command Description

Test Script
Coverage

Analyzes the test scripts in the project and generates a Test Script Coverage report in the right hand pane. This
report shows the coverage for each condition in every goal in any test case.

Analyze
Coverage
Report...

Opens a dialog box where you can select a coverage file (that has been generated using the batch processor) to
analyze in Oracle Policy Modeling.

Build menu

Command Description

Build Builds the rulebase project

Build and Debug

Opens the Debug Options dialog box where you specify whether to debug with
screens (ie in Oracle Web Determinations) or without (ie using the debugger).
NOTE: This dialog box is only shown if the "Show 'Debug Options' before starting
debugger" option is selected in Project Properties.

Stop Debugging
Ends the debugger session. (This menu is only enabled when debuggingmode is on
ie after Build and Debug has been selected.)

Build and Run
Opens the Build and Run dialog box where you have the option to run the rulebase
with Oracle Web Determinations or Oracle Determinations Server.

Build Module
Builds the rulebase project as a module that contains the external data model (ie all
entities and relationships, and any attributes with public names). Other projects can
then link to this module.

Generate Com-
mentary Files...

Opens the Generate Commentary Files dialog box. This is used to specify the set-
tings for the automatic generation of commentary files.

Tools menu

Command Description

Clean Up
Unused Attrib-
utes and Rela-
tionships...

Checks to see if there are any unused attributes or relationships in the project. (Unused attributes and rela-
tionships are those that have been defined in a properties file but that aren't used in a rule or screen.) If so, the
Clean Up Unused Attributes and Relationships dialog box opens which lists all of the unused attributes and rela-
tionships so that you can select which ones you want to delete.

Compile All
Compiles all the documents in the project that have beenmodified (ie where the source document has a more
recent time-stamp than the xgen file)

Repair Attrib-
ute Refer-
ences...

Checks to see if there are any attribute references that need repairing. If so, opens the Repair Attribute Refer-
ences dialog box so that you can select what to do with each broken reference.

Update Oracle
Policy Modeling

Opens the Template Update Wizard that allows you to do a bulk update of all Oracle Policy Modeling templates

Command Description

Templates...

Options...
Opens the Options dialog box. Here you can configure various options for the Oracle Policy Modeling envir-
onment and rulebase development.

Help menu

Command Description

Oracle Policy Modeling User's Guide
Opens the Oracle Policy Modeling User's Guide in a
new window

Function Reference
Opens the Function Reference in the language of the
rule project

About Oracle Policy Modeling
Displays the product version number, copyright and
patent details

View list of entities and attributes
To view a list of all the entities and attributes from all the documents in a project, you use the build model view.

What do you want to do?
View the entities and attributes in the build model
Find an attribute in the build model
Find where an attribute is used in the rulebase

View the entities and attributes in the build model
1. To open the build model view, go to View | Build Model.

2. The left hand pane in the build model shows the entities in the rulebase.

3. To view the attributes that belong to a particular entity, select the entity in the left hand pane. The right hand pane will
show the attributes (ID, data type and text) for the selected entity.

(Attributes which do not operate at the entity level are Global.)

You can also view the relationships for a particular entity by selecting the entity in the left hand pane, and then
selecting the Relationships tab in the right hand pane. The relationships (text, target, type and reverse text)
for the selected entity will be shown.

Find an attribute in the build model
The fastest way to find attributes is to use the Find Model Attribute search. To open the Find Model Attribute
search, go to Edit | Find Model Attribute...

All the model attributes in the rulebase are listed. To narrow the list down, enter the text or attribute ID you
want to search for in the text field provided. Only those attributes that match the search criteria will be shown.

Find where an attribute is used in the rulebase
To find where attributes are used in the rulebase, right-click on the attribute in the build model and select Find
Attribute Usage.
The Attribute Usage view will open displaying all rule documents, source files, properties files, screens and
flows on which the attribute appears:

Find the entity for an attribute
After you have defined an entity, every attribute which contains the entity text will attach to that entity. Attrib-
utes which do not contain entity text are global.
For example, assume the attributes in the following table are part of a rulebase where "the household member"
has been defined as an entity:

Attribute text Entity level Explanation

the household member is male
the household mem-
ber

contains "the household member"

a household member is eligible global
"a household member" does not match "the household mem-
ber"

the former household member has left global "former" interrupts the attribute text

the household member’s annual
income

the household mem-
ber

adding extra letters or characters on the left or right hand side
is ok

the date of birth of the household mem-
ber

the household mem-
ber

entity text may appear anywhere in the attribute text

Both boolean and non-boolean attributes can be defined to belong to an entity in this way.

Check attribute entity levels
Once you have compiled your rules, you can check entity levels in the build model in Oracle Policy Modeling. To
open the build model view, go to View | Build Model.
Attributes which are not within the scope of an entity are placed in the Global level. The list of global attributes
are displayed in the right-hand pane:

To view a list of entity-level attributes, click on the entity name. The list of entity-level attributes will be dis-
played in the right-hand pane:

Why attribute scope is important
Once you define an entity, you cannot use attributes which belong to that entity in rules which operate outside
the context of that entity.
For example, the following rule would be invalid (assume an entity "the child" has been defined):

the claimant is eligible for transport assistance if

the child travels a long distance to get to school

This is because we don't know which instance of the child (eg Max, Kat, Sarah) should be used in this rule.

Find rules that use an attribute or relationship

Find rules that use an attribute
To find the rules that use a particular attribute you can use the Attribute Usage view. To open the Attribute
Usage view:

1. Go to View | Attribute Usage. (TIP: If you are using the debugger you can access the Attribute Usage view by right-
clicking an attribute in theData view and selecting Show Attribute Usage.)

2. Click on the browse button in the Attribute Usage view.

3. In the Attribute Selector dialog box, search for the attribute you want to find in the build model. (TIP: If your rulebase
is very large, searching for an attribute in the Attribute Selector will be quicker if you turn off the Filter search results
on each keystroke option under File | Project Properties | Common Properties | General.)

4. Once you have selected the attribute, click OK.
The Attribute Usage view will display the selected attribute and show what it is used by, which document it is used in and

the type of usage. Rules that use a particular attribute are shown by the icon and have the type of usage 'Used by
rule'.

5. To view the rule in the rules document, right-click and selectView in Word or View in Excel.

Alternatively, you can use the Rule Browser to see how the attribute is used in rules. To do this:

1. SelectView | Build Model to open the build model view.

2. In the Attributes pane, right-click the attribute and selectRule Browser.
The Rule Browser will open to show any rules that prove the attribute, as well as any rules that are used by the attribute.

3. To view the rule in the rules document, click the edit link next to the name of the xgen file for the rule.

Find rules that use a relationship
You can use the Rule Browser to see how a relationship is used in rules. To do this:

1. SelectView | Build Model to open the build model view.

2. In the Relationship pane, right-click the relationship and selectRule Browser.
The Rule Browser will open to show any rules that prove the relationship, as well as any rules that are used by the rela-
tionship.

3. To view the rule in the rules document, click the edit link next to the name of the xgen file for the rule.

See also:

l Check rule structure and dependencies

Find dependent rules
To find dependent rules you can use the Rule Browser or a rulebase visualization.

Find dependent rules using the Rule Browser
To launch the Rule Browser, right-click on a rule document in the Project Explorer and select Open Rule
Browser. You can also right-click on an attribute in the Build Model view (View | Build Model) and select
Rule Browser.
In the Rule Browser linked attributes are displayed as hyperlinks, allowing you to click on any attribute to see
what rules the attribute is proved by and what rules the attribute is used by.

Find dependent rules using a rulebase visualization
Using a rulebase visualization you can generate diagrams of rule structures to see how the attributes influence
one another. For more information, see Create a rulebase visualization.
Once you have generated your rule structure you can click on any attribute in the tree and view the rule text in
the right hand pane.

See also:

l Check rule structure and dependencies

See the structure of a rule
To see the structure of a rule you can use the Attribute Dependencies view. This view shows the dependencies
of a selected attribute. This is a useful tool for checking whether or not intermediate attributes are only proved
by the attributes you expect to be proving them.
To open the Attribute Dependencies view, select View | Attribute Dependencies. In this view, use the
browse button to select the attribute whose dependencies you want to view.

TIP: If your rulebase is very large, searching for an attribute in the Attribute Selector will be quicker if you turn
off the Filter search results on each keystroke option under File | Project Properties | Common Prop-
erties | General.

Once you have selected the attribute, use the following options to customize the view.

l Influencing attributes option - shows only those attributes which influence the selected attribute.

l Influenced attributes option - shows only those attributes which are influenced by the selected attribute.

l Show as a flat list option - shows the attribute dependencies in a list view with attributes listed by ID, level and text. For
influencing attributes, the attributes will be either base or intermediate. For influenced attributes, the attributes will be
either top or intermediate. NOTE: Intermediate attributes are only shown if the Show intermediates check box is selec-
ted.
If the Show as a flat list option is not selected, the attribute dependencies will be shown in a tree view which can be
expanded and collapsed.

l Show attribute IDs check box - if selected, shows attribute IDs in the tree view. This check box is only enabled if the
Show as a flat list option is not selected above.

l Show intermediates check box - if selected, includes intermediate attributes in the list view. This check box is only
enabled if the Show as a flat list option is selected above.

As you change these options, the view will update in the pane below.

You can also see the structure of your rules using rulebase visualizations to see how the attributes influence one
another. For more information, see Create, modify or delete a rulebase visualization. Once you have created a
rulebase visualization you can add dependencies to it by selecting Generate Influencing Rules when gen-
erating the rule structure.

Check rule structure and dependencies
There are several reports you can generate in Oracle Policy Modeling to check the dependencies between rules.
To check the structure of rules, you use the Rule Browser.

What do you want to do?
Check connections between rules
Check the structure of a rule

Check connections between rules
Using the top and base level attribute reports in Oracle Policy Modeling you can check if there are any inter-
mediate attributes which have unintentionally become top or base level attributes because they have not been
correctly constructed to fit into the rule hierarchy.

A top level attributes report shows a list of attributes in the rulebase which are only proved by other attributes
in the rulebase (ie they don't prove other attributes in the rulebase).
To run a top level attributes report, select Reports | Top Level Attributes.

A base level attributes report generates a list of attributes in the rulebase which are not proved by any other nor-
mal rules (forward chaining only rules). These are the attributes which will be presented to users as questions
during interviews (if running the rules interactively), and which will be the basis for all decisions made with the
rulebase.
Generating the base level attributes report for your rules assists you in reviewing all of these attributes and
determining whether or not they are at an appropriate level of granularity.
To run a base level attributes report, select Reports | Base Level Attributes.

Check structural connectivity with the base level attributes report
An additional use of the base level attributes report is to determine whether any structural attributes have not
been connected to base attributes properly. Structural attributes are those which refer to structural elements of
your rules, such as "Section 1 is satisfied", "Paragraph 1(a) is satisfied", and which are typically generated auto-
matically by Oracle Policy Modeling.
A common error in rule formatting is to write similar but not exactly the same structural attributes, creating
duplicate attributes. Whilst you intend for these attributes to be identical, their textual difference means that
they are added as separate attributes to your model. The consequence of this is that these attributes become
accidental base level or top level attributes.
When you have completed work on a section of rules, you should generate the base level attributes report and
review the list to ensure that attributes have not unintentionally been duplicated through the use of inconsistent
text forms.

Check connections between rules using the dependent base level attributes report
The dependent base attributes report generates a list of base level attributes which go towards proving a par-
ticular inferred attribute. This report can be very useful when working with large rule models.
To generate the report, select an attribute in the Build Model, then select Reports | Dependent Base Attrib-
utes from the main menu.

Check the structure of a rule
The Rule Browser is a helpful way to understand the links between rules across your rule documents.
To launch the Rule Browser, right-click on a rule document in the Project Explorer and select Open Rule
Browser. You can also right-click on an attribute in the Build Model view (View | Build Model) and select
Rule Browser.
In the Rule Browser linked attributes are displayed as hyperlinks, allowing you to jump from rule to rule to
check the rule structure.
The Attributes drop down list allows you to specify the attribute ID format displayed:

l Build Model uses public names and fully qualified attribute IDs (which include the document name in which the attribute is
defined);

l Document Model uses the attribute IDs allocated within individual rule documents when they are compiled;

l None omits all attribute IDs and displays the attribute text only.

To quickly jump to a rule within a Word document, click on the Edit link in the Rule Browser. For rules defined
in Word documents, this will open the document and jump to the rule. For rules defined in Excel documents, the
Rule Editor is opened (although note that the rule may not actually be modified in this view).

Find input data needed to reach a conclusion
To find the input data needed to reach a particular conclusion you can use the Attribute Dependencies view. To
do this:

1. In Oracle Policy Modeling, selectView | Attribute Dependencies.

2. Browse to select your goal (conclusion) attribute. TIP: If your rulebase is very large, searching for an attribute in the
Attribute Selector will be quicker if you turn off the Filter search results on each keystroke option under File |
Project Properties | Common Properties | General.

3. Select the option to Show influencing attributes in a list.

4. Uncheck the Show intermediates in list view option.

This will give you a list of the base level attributes (input data) that need a value in order to prove the goal
attribute.
TIP: If you want to see what input data is needed at runtime to infer a goal for a specific scenario or subset of
scenarios you need to run the debugger.

Get a list of all attributes proving a goal
To get a list of all the attributes that prove a particular goal, follow the steps above to show the attributes in a
list in the Attribute Dependencies View. Then:

1. Right-click any attribute in the list and selectCopy List.

2. In the application where you want to save the list (eg Microsoft Excel), right-click and selectPaste. This will give you a
list of the public name, attribute level and attribute text for each attribute proving your chosen goal.

Spell-check all interview screens
A Screens Report lists the contents of all the screens (question and summary) defined in the project. This is a
useful tool for reviewing all of your screens in a single document. This file can also be used for spell checking
your screens.
To spell check your screens following these steps:

1. In Oracle Policy Modeling, selectReports | Screens.

2. Select all the text in the report, right-click and selectCopy.

3. OpenMicrosoft Word and select Edit | Paste (or press Ctrl+V).

4. Select Tools | Spelling and Grammar... and run the spell check, making note of any spelling errors identified.

5. Go back into Oracle Policy Modeling, open the relevant screens file/s and correct the errors.

Create, modify or delete a rulebase visualization
Rulebase visualizations are a handy way of displaying your rulebase, or a branch of your rulebase, in a tree
structure which shows how the attributes influence one another. Visualizations can be printed, and also expor-
ted to Windows Media Format. Visualizations are created in visual browser files.

What do you want to do?
Create a new visual browser file
Create a rulebase visualization

Modify a rulebase visualization
Print a rulebase visualization
Export a rulebase visualization
Delete a rulebase visualization

Create a new visual browser file
To add a new visual browser file to your project:

1. In Oracle Policy Modeling, right-click the Visualizations folder in the Project Explorer and selectAdd New Visual
Browser File from the pop-upmenu.

2. A new visual browser file will be added to your project. Type a name for your visual browser file, for example, "Visu-
alizations".

3. Save your project by selecting File | Save All from the mainmenu.

Create a rulebase visualization
To create a rulebase visualization:

1. In Oracle Policy Modeling, double click the visual browser file in the Project Explorer to open it for editing.

2. In the visual browser file pane, right-click and selectNew Item...

3. In the Attribute Selector, select the attribute to add to the diagram, then click OK.

The attribute will be added as a node to the left hand pane:

Note that the influenced/influencing rules and rule text for that attribute are displayed in the right hand boxes.

4. Right-click the node and selectGenerate Rule Structure...

5. In the Generate Rule Structure dialog, specify whether you want influenced and/or influencing rules, and how many
rule levels you want to limit the tree to.

Click OK and the rule structure is generated:

Modify a rulebase visualization
After you have created a rulebase visualization, there are many ways in which you can modify it.

Move the nodes
When a rule structure is generated, Oracle Policy Modeling makes a best guess at the nicest way to present the
tree. You may want to improve the appearance of the tree by moving the nodes around.
To do this, simply select a node and drag it to the desired location in the diagram. (The lines attached to the
node move with it.)

Change the formatting of nodes
You can change the display text, text font, text color and background color of any node in your rule structure.
This is useful if you want to highlight important nodes in your tree.
To format a node:

1. Select the node, right-click and select Properties...

2. In the Item Properties dialog box you can:

l Change the display text by typing directly into theDisplay field.

l Select the Text Color... button to open the Color dialog box and select a different color for the attribute text.

l Select the Font... button to open the Font dialog box and change the font.

l Select the Background Color... button to open the Color dialog box and select a different background color for the node.

Delete nodes
To delete a node in your rule structure, select the node, right-click and select Delete Object.

Hide relationships
You can hide relationships between nodes by selecting a node, right-clicking and selecting Hide Rela-
tionships... You can then specify which relationships you want to hide using the check boxes in the Hide Item
Relationships check box.

Regenerate the rule structure
You can select any node in your tree and regenerate (or generate for the first time) the rule structure for that
node. Select the node, right-click and select Generate Rule Structure...

Adding labels and boxes to the diagram
You can add labels to the rulebase visualization, and boxes that sit behind the diagram. This can be useful for
identifying a group of nodes.

To add a label:

1. Right-click in your diagram (not on a node) and selectNew Label. This will add the text "Label" to your diagram.

2. To change the text and format the label, click on the label, right-click and selectProperties... You can then change the
text of the label, and change the font and text color as required.

To add a box:

1. Right-click in your diagram (not on a node) and selectNew Box.

2. To format or add text to your box, select the box, right-click and selectProperties... You can then add text (specifying
the text color and font) and change the background color of the box as required.

Labels and boxes can be moved to new locations in the diagram by selecting them and dragging them to a new
position. Both labels and boxes can be deleted by selecting them and pressing the Delete key.

Print a rulebase visualization
To print a rulebase visualization:

1. In the visual browser file pane, click the Print button in the top left.

2. In the Print dialog box, click OK.

Export a rulebase visualization
To export a rulebase visualization:

1. In the visual browser file pane, click the Export button in the top left.

2. In the Save As dialog box, specify the location to save your rulebase visualization to and provide a name for the file.
Then click the Save button.

The rulebase visualization is saved in .wmf format (Windows Media Format).

When you save, the file automatically opens in Windows Picture and Fax Viewer. From here you can click the
save button and save the image in a different format (BMP, JPEG, GIF, TIFF, PNG).
TIP: PNG is probably the best format to use as the other formats save the image with a black background which
means the arrows in the diagrams are not visible.

Delete a rulebase visualization
To delete a rulebase visualization file:

1. In the Project Explorer in Oracle Policy Modeling, right-click the visual browser file and selectDelete.

2. Click OK to confirm the permanent deletion.

TIP: To only remove the file from your Oracle Policy Modeling project (but not delete it from your file system as
well), right-click it in Oracle Policy Modeling and select Remove from Project.

Analysis
Topics in "Analysis"

l Conduct what-if analysis using an Excel workbook

l Analyze the outcomes of a large number of test cases

l Use the Batch Processor

Conduct what-if analysis using an Excel workbook
Using Excel with an Oracle Policy Modeling rulebase model, you can easily analyze the results that different
policy model versions yield, in order to decide which policies are the best ones to use. This is done by creating
what-if analysis documents in the OPM project, providing the necessary inputs for the attributes, entities and
relationships in Excel and using the batch processor to analyze the results.
Note that what-if analysis is only available when using Microsoft Excel 2007 or later.

What do you want to do?
Create a what-if analysis document
Populate the what-if analysis document with input data
Analyze the results of the policy model
Export the what-if analysis to CSV files
Export the what-if analysis to a test script file

Create a what-if analysis document
A What-If Analysis document, based on the rulebase model of the project, can be created by following these
steps:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the file to be placed in.

2. Right-click and select Add New What-If Analysis Document.

3. Type a name for the new document, then press Enter.

The Excel what-if analysis file will now appear in the Project Explorer in Oracle Policy Modeling.

Populate the what-if analysis document with input data
In order to analyze the results of your policy model, you must first enter your input data.
In the Project Explorer in Oracle Policy Modeling, double-click the what-if analysis document to open it in Excel.
Initially, the document will just contain a worksheet for the global entity. From this starting point you can add
additional worksheets for entities and many-to-many relationships, and to each worksheet you can add new
columns for attributes and other relationships.

Add a worksheet (for entities and many-to-many relationships)
To add an entity or many-to-many relationship to a what-if analysis document, you need to add a new work-
sheet:

1. On the Oracle Policy Modeling toolbar, select the Add Worksheet button.

2. In the Add Worksheet dialog, select the checkbox for each entity or many-to-many relationship that you want to add.
(Note that only those entities andmany-to-many relationships that do not already exist as worksheets in the document
are listed. Also, for a many-to-many relationship to be added it must have relationship text defined in Oracle Policy Model-
ing.)

3. Click OK. Each worksheet is created containing any required columns. The entity name # column (eg the exam #) is
always required, as is the containing entity (eg Global #).

Note that in your what-if analysis document you can have additional worksheets not intended for analysis, as
long as there are no styled cells.

Add a column (for attributes and other relationships)
To add attributes or other (non many-to-many) relationships to an existing worksheet in a what-if analysis doc-
ument, you need to add a new column:

1. Select the tab for the entity that the attribute or relationship relates to. (For one-to-many andmany-to-one relationships,
the relationship column is added to the entity on the many side of the relationship.)

2. On the Oracle Policy Modeling toolbar, select the Add Column button.

3. In the Add Column dialog, select the checkbox for each attribute or relationship that you want to add. (Note that only
those attributes and other relationships that do not already exist as columns in the active worksheet are listed. Also, for
one-to-one andmany-to-one relationships to be added they must have relationship text defined in Oracle Policy Model-
ing. For a one-to-many relationship to be used in what-if analysis, the reverse text of the relationship must have been
defined.)

4. Click OK. The columns are added to the active worksheet.

Base attributes are colored green which indicates that these are input columns.
Inferred attributes are colored orange which indicates that these are output columns. The names of the output columns
are also enclosed in parentheses.

Notes on formatting:

i. Columns - you can interchange the columns (as long as the styles are intact) and have spaces between them (as long as
the blank columns are not styled).

ii. Rows - you can have blank rows.

iii. Cells - you can format the cells (eg 2 decimal places for numbers) and use Excel functions and formulas.

Enter data for global entities
On the Global worksheet you need to:

1. Enter your global instances in the Global # column. These act as the IDs for each instance and should therefore always
be a number and always be unique (eg 1, 2, 3 etc).

2. Enter values for the base-level attributes for each instance (ie in the green columns). These values need to be the correct
type for that attribute (eg 'true' or 'false' for booleans, numbers for number/currency attributes etc).

Enter data for non-global entities:
On a non-global entity worksheet you need to:

1. Enter your entity instances in the entity name # column. These act as the IDs for each entity instance and should
therefore always be a number and always be unique (eg 1, 2, 3 etc).

2. Enter ID references in the containing entity column (eg the Global # column). These should always be the numbers that
correspond to the associated instances of the containing entity (eg 1, 2, 3 etc).

3. Enter ID references for any other (many-to-one, one-to-many or one-to-one) relationships (ie in the other blue
columns). These should always be the numbers that correspond to the associated instances of the target entity.

4. Enter values for the base-level attributes for each entity instance (ie in the green columns). These values need to be the
correct type for that attribute (eg 'true' or 'false' for booleans, numbers for number/currency attributes etc).

In the examples above, Beth (Global ID #1) has taken three exams (Algebra, Calculus and Geometry), Anne
(Global ID #2) has taken two exams (Grammar and Poetry) and Fran (Global ID #3) has taken one exam (Medi-
eval History).

Enter data for many-to-many relationships
On a many-to-many relationship worksheet you need to:

1. Enter ID references for each source and target entity instance (ie in the blue columns). These should always be the num-
bers that correspond to the entities' instances.

For example, if you had a many-to-many relationship 'the child's parents' between 'the child' and 'the parent',
and you defined the following parents and children:

Then on the worksheet for the child's parents (the many-to-many relationship) you would specify how these
entity instances relate to one another:

This tells us that:

l Jamie Smith’s parents are John Smith and Lisa Smith.

l Sarah Smith’s parents are John Smith and Lisa Smith.

l Kim Campbell’s parents are Edward Campbell and Nancy Campbell.

l Jason Campbell’s parents are Edward Campbell and Nancy Campbell.

Analyze the results of the policymodel
To analyze the results of the policy model, click the Analyze button on the Oracle Policy Modeling toolbar. (If
your rulebase needs to be built, you will be prompted to do this now.) The document will be processed and, if
successful, the output columns (ie the orange ones) will be populated with values.

Note that if there are errors in your what-if analysis document, the analysis process will cease, and you will be
prompted to correct those errors.
Analysis is performed using the batch processor. For more information on this utility, see the Oracle Policy Auto-
mation Developer's Guide.

Export the what-if analysis to CSV files
The what-if analysis can be exported to a set of CSV files that can then be run through the batch processor with
zero configuration.
To export the what-if analysis to CSV files:

1. Click the Export button on the Oracle Policy Modeling toolbar. (If your rulebase needs to be built, you will be prompted
to do this now.)

2. In the Export What-If Analysis dialog box, select the CSV file folder option.

3. Specify the folder where you want to save the CSV files to, then click OK.

Note that if there are any errors, the export process will cease, and you will be prompted to correct those
errors.
The number of CSV files that are exported corresponds to the number of relevant worksheets in the what-if ana-
lysis document. The input fields in the CSV files are the same as those in the what-if analysis document.

To run the CSV files through the batch processor, follow the steps for using the batch processor with zero con-
figuration, making sure that you specify (i) the rulebase path, (ii) the location of the CSV files, and (iii) the out-
put path for the CSV files.
After batch processing is complete, the output CSV files will be in the specified output directory. These files will
show both the input and the determined output fields, with the same results as our what-if analysis document.

Export the what-if analysis to a test script file
The what-if analysis can be exported to a test script file that can then be added to the rulebase project.
To export the what-if analysis to a test script file:

1. Click the Export button on the Oracle Policy Modeling toolbar. (If your rulebase needs to be built, you will be prompted
to do this now.)

2. In the Export What-If Analysis dialog box, select the Test script file option.

3. In the Save As dialog, specify a location and name for the test script file, then click Save. Then click OK in the Export
What-If Analysis dialog.

Note that if there are any errors, the export process will cease, and you will be prompted to correct those
errors.
To add the generated tsc file to the rulebase project, go to File | Add |Add Existing File... and select the file.
When you open the test script file in the project you will notice that the number of test cases in the test script is
the same as the number of global records in the associated what-if analysis document. The data in the test
cases is the same as in the what-if analysis document.

Analyze the outcomes of a large number of test cases
After you have created a large number of test cases based on real-world data, you can perform some insightful
analysis on the outcomes of those test cases.

Identify the frequency of each outcome
To identify the frequency of each outcome, you can:

l use Oracle Policy Modeling's what-if analysis to bulk process the data, and then use Excel's native data analysis tools (eg
sorting, filtering, statistical analysis) to analyze the outcomes, or

l use the batch processor to bulk process the data, and then use another BI tool to analyze the outcomes.

This could be useful for seeing if any of the test cases result in unusual outcomes (eg outliers or negative res-
ults) which would point to errors in the rules. This process could also be used to identify each unique outcome.

Identify conflicting outcomes
To identify if two rules are ever true at the same time, you can:

1. Create a rule that tests if the offending combination of logic is true. For example,

there is an error in the rulebase if

the person is male and

the person is pregnant

2. Run the test cases, through the batch processor or as test scripts in Oracle Policy Modeling, to identify if the rule is ever
true.

This could be useful for identifying double payments or conflicting outcomes.

Identify used and unused rules and conditions
To identify which rules and conditions are used and which are unused you can use the Test Script Coverage
report. In this report:

l rules and conditions are shown to be unused if zero percent are covered by the test suite. This is shown in the report by a 0
out of X at the relevant level, and by greyed out rules/conditions in the bottom pane.

l rules and conditions are shown to be used if more than zero percent are covered by the test suite. This is shown in the
report by at least 1 out of X at the relevant level, and by bolded 'true/false' values against conditions or by 'used' against
conditionless rules.

Use the batch processor
The batch processor allows a large number of 'cases' to be processed in batch. This is useful for:

l conducting what-if analysis using Excel

l generating test scripts from existing Excel data

l analyzing the outcomes of a large number of test cases

The batch processor is installed with Oracle Policy Modeling and is invoked from the command line. It is avail-
able in both Java and .NET implementations to enable support for platform specific custom functions. For more
details on invoking the batch processor and on the XML schema used for configuration, see the Batch Processor
section of the Oracle Policy Automation Developer's Guide.

Test cases
Topics in "Test cases"

l Define, modify or remove test scripts

l Create a test case from within an interview

l Import test cases from another project

l Create test scripts from existing data

l Compare test case results with expected results

l Debug a failing test case

l Create test cases with temporal data or outcomes

l Measure the coverage of a test suite

l Improve test script coverage

l Use the regression tester from the command line

See also:

l Set the time period to use for calculations

l Exclude a rule file from the build

l Define data to use in a test case or a debug session

l View the attributes inferred in a test case or debug session

l Change a rule while debugging

Define, modify or remove test scripts
A test script is a file which contains test cases and the set of outcome attributes (both global and entity attrib-
utes, including defined tolerances) that will be used by the test cases. Oracle Policy Modeling has an integrated
regression tester which can be used to create test scripts so as to compare outcomes from a rulebase with
another set of outcomes.
Test scripts use the runtime model of the rulebase so if you make any changes to your rulebase while regres-
sion testing you will need to close and re-open your test script for those changes to be reflected in your test
script file.

What do you want to do?
Create a new test script file
Create new test cases
Copy an existing test case
Create input data
Specify expected results
Create an outcome set
Modify a test script

Validate a test script
View the details of a test script
Remove a test script
Change the platform that the regression tester runs on

Create a new test script file
To add a new test script file to your project:

1. In Oracle Policy Modeling, select the Test Scripts folder in the Project Explorer.

2. Right-click and selectAdd New Test Script File from the pop-upmenu.
A new test script file will be added to your project. The new file will be selected and highlighted in the list.

3. Type a name for your test script file, for example, "Test Scripts".

4. Save your project by selecting File | Save All.

TIP: Multiple test scripts can exist in a project. Using a single test script on a large project may present prob-
lems if the project is under source control since, generally speaking, only one person can edit a file at a time.
To ameliorate this problem multiple test scripts can be defined so that each can be edited separately. Multiple
test scripts may also be defined to enable different reports to be created for a given set of test cases and/or to
enable the use of different outcome sets for a test script.

Create new test cases
A test case is a combination of an input data set and expected results.

l The input data is the set of data from which the actual results (outcome values) of the test case are generated.

l The expected results is the data set which is matched against the actual results.

Test cases can be created, edited and deleted in Oracle Policy Modeling.

To add a new test case to your test script:

1. In Oracle Policy Modeling, open your test script file by double-clicking it in the Project Explorer.

2. Select the test script file in the Test Cases tab, right-click and selectNew Test Case from the pop-upmenu. A new test
case will be added to your test script. The new test case will be selected and highlighted in the list.

3. Type a name for your test case (see Tips below), then press Enter.

Tips for naming test cases
Each project should have a unique naming convention to be used when creating test cases. Some guidelines for
establishing a naming convention are given below. The names used for test cases should contain:

l A prefix indicating the origin of the test case, and

l A unique identifier for the test case.

Suggested prefixes are given in the table below:

Prefix Purpose

unit_ Unit test cases to be used by developers.

formal_
Test cases that are derived from the formal test case script set
up for the project.

client_ Test cases or use cases specifically requested by the client.

Other project specific prefixes may be used if required.
The unique identifier for each file will be dependent on the origin of the test case. The suggested approach to cre-
ating the unique identifier is:

Origin Unique identifier

Unit

The unique identifier is to include:

l The creating developer’s initials

l An abbreviation to identify the section of the rulebase being tested

l A sequential number.

For example, the tenth unit test case created by John Smith for Retirement Pensions Category C
would be called unit_JSRPC10.xml.

This format allows developers to readily identify their own test cases.

Formal Test Script

The formal test script is to be maintained by the testing team.

Use the unique identifier assigned to the test case in the formal test script.

If a test case that is identified as necessary for regression testing has not been previous recorded
in the test script, it should be recorded there and assigned an identifier before being added to the
regression testing script.

This will help to maintain a database of test case IDs and descriptions.

The unique identifier obtained from the formal test script will reflect the benefit type/general
area of the rulebase that it being tested. For example, RPA01 is the first test case for Retirements
Pension Category A.

Client
As for unit testing. These cases should have their own identifier, like the unit test cases. Instead
of initials, use a unique identifier for the client eg client_DWPRPC02.xml.

Business Devel-
opment/Partners

As for Client.

TIP: When you open your test case, you can add a description of the test case in the Notes field.

Test cases can also be imported and exported to allow for external creation and editing. See Import test cases
from another project and Create a test case from within an interview for more information.

Copy an existing test case
To create a copy of an existing test case in your test script:

1. In Oracle Policy Modeling, open your test script file by double-clicking it in the Project Explorer.

2. Select the test case you wish to copy in the Test Cases tab, right-click and selectCopy from the pop-upmenu. The test
case will be copied to a new test case called "Copy (1) of <original test case name>".

3. Rename the new test case as required.

Create input data
Once you have created your new test case, you need to set up the input data for your test case. The input data is
the set of data from which the actual results (outcome values) of the test case are generated. The input data
contains attribute instances and entity instances, along with the values that should be assigned to them.
The test case editor is used to investigate goals, infer relationships and set values for base level attributes in
Oracle Policy Modeling. The test case editor can be accessed by double-clicking a test case on the Test Cases
tab in the test script. (The test case editor is very similar to the debugger with a Data view and a Decision
view.)

Investigate a goal
To investigate a goal in the test case editor:

1. In the Data view select the goal you want to investigate.

2. Right-click and select Investigate. This will open the Decision view with the attribute you have selected in the Attrib-
ute field. All of the relevant paths to the goal are shown in the text box below. Entities for which no instances have been
created yet will be shown just by the relationship icon and the entity text.

3. Work your way through the list of questions, setting answers (see below). In order to investigate any attributes which
belong to an entity, you will need to add instances of that entity. (See Set up entities and containment relationships for
more information.) Add your entity instances and continue investigating attributes until a value for the goal is known.

Investigate an inferred relationship
After you have added any entity instances in the test case editor, you can investigate an inferred relationship.
To do this:

1. In the Data view select the inferred relationship that you want to investigate.

2. In the right hand pane, click the Investigate button. This will switch to the Decision view.

3. Set the values for any base level attributes (see below). The Decision view will be updated as you go to show which
entity instances have been inferred for this relationship, and the attributes contributing to this conclusion.

l In the case of existing entity instances that have been inferred as members of a relationship (ie using IsMem-
berOf rules), these will be shown as selected items in the right hand pane of the Data view. (These entity
instances will not be shown under the inferred relationship in the left hand pane as they have not inferred a con-
tainment relationship).

l In the case of entity instances that have been created as members of a relationship (ie using InferInstance
rules), these are also shown in the left hand pane of the Data view under the containment relationship that they
have inferred.

Set the value for an attribute
To set the value of an attribute in the test case editor:

1. Select the attribute in the Data view or in the Decision view.

2. Right-click and select from any of the following Set options from the menu:
Set Value - this opens the Set Attribute Value dialog box where you can enter a value or set the value to 'uncertain'
or 'unknown'. Variable values must be entered in the correct format: See Formatting of variable values. You can also spe-
cify change points for the attribute.
Set to True - this option is only available for boolean attributes
Set to False - this option is only available for boolean attributes
Set to <value> - this option is only available for non-boolean text attributes. The values that appear here will be the
values used in the rules or on screens.
Set to Unknown - this option is used to clear the value of the attribute
Set to Uncertain

Alternatively, you can double-click the selected attribute to open the Set Attribute Value dialog box and then
select the appropriate value, ensuring that it is entered in the correct format.
After setting a value, the list of attribute values in the Data and Decision views will be updated with the value
you specified, as well as the values for any other attributes which have been inferred as a result.

Create input data in an interview
Input data can also be created by setting values for attributes in the debugger or Web Determinations and then
saving/exporting this data as an XDS file which can then be imported into a test case in Oracle Policy Modeling.
See Create a test case from within an interview for more information.

Specify expected results
Once you have created the input data for your test case, you need to specify the expected results for the test
case. The expected results is the data set which is matched against the actual results when the input data is
loaded into the rulebase. The expected results contains instances of the attributes and entities found in the out-
come set. When attributes are added to or deleted from the outcome set, all the expected results of the test
cases in that test script will be updated accordingly.

To specify the expected result for an attribute:

1. In the Data view for the test case, select the inferred attribute that you want to add an expected result for. NOTE: The
attribute must already be in the outcome set. If it is not, add it to the outcome set (see below). Attributes of inferred
entity instances can be selected.

2. Right-click and select from the following options:

Option Behavior

Set Expected Value...
Opens the Edit Expected Result dialog box where you
can specify a particular value for the expected result, an
expected result of uncertain, or an expected result of

Option Behavior

unknown. You can also specify change points for the expec-
ted result.

Set Expected Value to Default (<default expec-
ted result value>)

Defaults the expected result to the value specified as the
default value in the Edit Outcome dialog box.

Set Expected Value to Current Value

Sets the expected value to the current value of the attrib-
ute instance. The current value of the attribute instance is
shown in angle brackets in the Value column in the
Inferred Attributes list.

Set Expected Value to true
Sets the expected value to 'true'. (This option is only avail-
able for boolean attributes.)

Set Expected Value to false
Sets the expected value to 'false'. (This option is only avail-
able for boolean attributes.)

Set Expected Value to Unknown Sets the expected value to 'unknown'.

Set Expected Value to Uncertain Sets the expected value to 'uncertain'.

3. The expected value is shown in square brackets after the current value of the attribute in the Value column in the
Inferred Attributes list.

To do a bulk import of expected results:

1. Right-click the test case on the Test Cases tab in your test script file and select Import Expected Results...

2. In the Import Expected Results dialog, select where you want to import the expected results from. The options are:

l Default outcomes values

l Current actual values

l Actual values generated using rulebase

3. (Optional) If you selectActual values generated using rulebase, you need to specify the location of the rulebase
you want to import expected results from ('your target rulebase'). Tip: the expected file format for your target rulebase
is a .zip file. You will find this file in the output folder of your target rulebase project. Alternatively, if you have saved a
copy of the file to another location, you can specify that location.

To specify the location of your target rulebase, in the Import Expected Results dialog, either:

l type the path to the target rulebase .zip file into the text entry field, or

l browse to the target rulebase .zip file using the ... button adjacent to the text entry field.

This will open the Select Rulebase dialog. Note: by default, the Select Rulebase dialog searches for an
.xml file rather than a .zip file. This means that the dialog will not actually display any .zip rulebase files, even if
they are present in the relevant folder. To fix this problem, click the drop-downmenu adjacent to the File
name: text entry field and selectAll files (*.*).

Locate and select your target rulebase .zip file and click Open. This will return you to the Import Expected
Results dialog, with the file path to your target rulebase displayed in the text entry field.

4. In the Import Expected Results dialog, click OK.

Create an outcome set
A test script will have an outcome set for its test cases and this should contain all the inferred attributes that will
be used for the comparisons to determine if the rulebase produces the correct results.
The following types of attributes would be appropriate outcome attributes:

l Inferred attributes that are displayed on the summary screen (eg goal attributes).

l Inferred attributes that are included in any generated documents.

l Any interim determinations or inferred attributes that may be useful for tracking the cause of failures.

TIP: Too many outcome attributes increases initial start-up time and maintenance overheads, and can make the
reports less manageable. The maximum number of outcome attributes should therefore be limited to 10-12 if
possible. For unit testing, the choice of outcome attributes may be slightly different as the very nature of unit
testing means that intermediate attributes are monitored, rather than the overall end result.

There are two ways to add outcomes to your test script:

l From within the outcome set editor

l From within the test case editor

Attributes from any entity can be added as outcomes.

Add outcomes in the outcome set editor
The outcome set editor can be accessed by clicking on the Outcomes tab in the test script file.
To add an outcome attribute in the outcome set editor:

1. Right-click anywhere in the outcome set editor and selectAdd New Outcome....
The Select Attribute to Add as Outcome dialog will be displayed.

(By default, only inferred attributes will be shown. If you want to see all attributes, uncheck theOnly show inferred
attributes check box.)

2. Select the attribute you want to add as an outcome, then click OK.
The Edit Outcome dialog is displayed.

3. Change theDisplay Text for the attribute if you want to. This is the name that will appear in the attribute list in the out-
come set editor, and in the regression tester report.

4. Change the Value from unknown if appropriate. This is the value that the attribute instance will be set to when the attrib-
ute is first created. By default this value is set to "unknown". You can also specify change points for the attribute.

5. Enter a Threshold Value if required (see below).

6. Click OK. The new outcome attribute will now appear in the list of attributes in the outcome set editor.

TIP: Outcomes can be reordered in the outcome set editor by right-clicking and selectingMove Up or Move
Down.

Add outcomes in the test case editor
To add an attribute as an outcome from the test case editor:

1. Right-click on any inferred attribute in the right hand pane of the Data view. SelectAdd as outcome....
The Edit Outcome dialog will be displayed.

2. Follow steps 3 to 5 above.

Outcome attributes are shown underlined in the Inferred Attributes list in the test case editor.

Specify threshold values
Threshold values tell the regression tester that a given test case should pass if an actual value falls within a spe-
cified range. To specify a threshold for an attribute, select the Threshold Value tab in the Edit Outcome

dialog.

The following table explains how to set a threshold:

Setting Applies to Description

Value
Date, currency
or number attrib-
utes

A date threshold is defined as a number of days, months or years.

A number threshold can be either an absolute value or a percentage.

Number and currency thresholds can either be integer or decimal values.

Apply threshold
value to

Date, currency
or number attrib-
utes

Specifies whether the threshold applies above and/or below the expected outcome, as
follows:

l Both upper and lower bounds – the threshold will be applied as Y – T ≤ X ≤ Y
+ T (default)

l Upper bounds only – the threshold will be applied as Y – T ≤ X < Y

l Lower bounds only – the threshold will be applied as Y ≤ X ≤ Y + T

where X = Actual Result, Y = Expected Result and T= threshold value.

Ignore

Specifies whether unknown and or/uncertain values should be ignored, as follows:

l Unknown values – this means that a test will pass if Expected Value = Actual
Value (to within whatever threshold is specified) OR Actual Value = unknown.

l Uncertain values – this means that a test will pass if Expected Value = Actual
Value (to within whatever threshold is specified) OR Actual Value = uncertain.

Ignore results
You can flag an outcome so that any actual value for the outcome will be ignored when the test case is run. This
will result in the expected outcome always passing. To do this, select the outcome attribute in the test case
editor, right-click and select Ignore Result.

Delete invalid outcomes
To bulk delete attributes that are no longer used in your rulebase, right-click anywhere in the outcome set
editor and select Delete Invalid Outcomes...

NOTE: If an entity no longer exists in the rulebase then all attributes belonging to that entity will be flagged as
invalid.

Modify a test script
Test cases often need to be reviewed or modified to allow for changes in the rulebase. Changes can be made to
individual test cases in the test case editor, or across multiple test scripts and test cases with the Update Test
Script Wizard.
To make changes across multiple test scripts and test cases:

1. In Oracle Policy Modeling, right-click on a test script, or on a folder that contains test scripts, and selectUpdate Test
Script Wizard.
TheMass Update Test Script dialog is shown.

2. Select from one of the following four options which are explained further below:

a. Insert Attribute

b. Update Attribute

c. Remove/replace missing attributes

d. Remove/replace invalid relationships

e. Set relationships to be known/unknown

Insert attribute
This option allows you to insert a value for an attribute which hasn't yet been added to your test cases. This is
usually where a new attribute has been added to the rulebase since the last time the test cases were updated.
To insert an attribute:

1. Select the Insert Attribute option on the first screen of the wizard and click Next.

2. Select the test cases to which the attribute should be added. Use the browse button to select the attribute to be added,
and enter the value which you wish to insert for the attribute, if any. Click Next.

3. Review your changes on the Summary of Changes screen. Click Back to amend your changes if necessary, then
click Next to apply the changes.

4. After the wizard has applied the changes, select the Yes option to make another change, otherwise select theNo option
and click Finish.

Update attribute
This option allows you to update the value for an attribute which already exists in your test cases.
To update the value for attribute:

1. Select the Update Attribute option on the first screen of the wizard and click Next.

2. Select the test cases to which the attribute should be added. Use the browse button to select the attribute to be added,
and enter the new value which you wish to set for the attribute. Click Next.

3. Review your changes on the Summary of Changes screen. Click Back to amend your changes if necessary, then
click Next to apply the changes.

4. After the wizard has applied the changes, select the Yes option to make another change, otherwise select theNo option
and click Finish.

Remove/replace missing attributes
This option allows you to remove an attribute which still exists in your test cases, but has been removed from
the rulebase. Alternatively, you can specify an attribute value which should replace it.
To remove or replace missing attributes:

1. Select the Remove/replace missing attributes option on the first screen of the wizard and click Next.

2. The wizard will detect whether any attributes exist in your test cases which are no longer present in the rulebase. Select
the attribute you wish to change from the Attributes With Errors list. Leave the Remove Only checkbox selected if
you just want to remove the attribute value from your test cases, or uncheck it and use the browse button to select an
attribute to replace it with, and enter the value for the new attribute.

3. Review your changes on the Summary of Changes screen. Click Back to amend your changes if necessary, then
click Next to apply the changes.

4. After the wizard has applied the changes, select the Yes option to make another change, otherwise select theNo option
and click Finish.

Remove/replace invalid relationships
This option allows you to remove or replace any relationships in your test cases which no longer exist in the rule-
base.
To remove or replace invalid relationships:

1. Select the Remove/replace invalid relationships option on the first screen of the wizard and click Next.

2. The wizard will detect whether any relationships exist in your test cases which are no longer present in the rulebase. For
each Invalid relationship it detects, you can either remove it from the test case by selecting theDelete checkbox, or
you can select a Valid relationship from the drop down list to replace it with. Once you have done this for each invalid
relationship, then click Next.

3. Review your changes on the Summary of Changes screen. Click Back to amend your changes if necessary, then
click Next to apply the changes.

4. After the wizard has applied the changes, select the Yes option to make another change, otherwise select theNo option
and click Finish.

Set relationships to be known/unknown
This option allows you to set relationships to known or unknown.
To set the new state of a relationship:

1. Select the Set relationships to be known/unknown option on the first screen of the wizard and click Next.

2. In the left hand pane, select the test cases that the change is to apply to (or tick the Check all items checkbox of you
want all test cases to be affected by the update).

3. In the right hand pane, select the Entity, Relationship andCurrent State. Then select theNew Relationship
State and the Affected Instances.

4. Click Next.

5. Review your changes on the Summary of Changes screen. Click Back to amend your changes if necessary, then
click Next to apply the changes.

6. After the wizard has applied the changes, select the Yes option to make another change, otherwise select theNo option
and click Finish.

Validate a test script
You have the option to validate a test script when it is opened and show a warning message if:

l A test case has no defined outcomes - this will show a warning for each test case that contains no outcomes. A test case
with no outcomes is usually caused when the existing outcomes in a test case are removed from the test script. Consider
either adding the relevant outcomes to the test script or moving the test case to a test script with the relevant outcomes
defined.

l A test case has no expected value for an outcome – this will show a warning if an outcome defined in the test script does not
have an expected value defined in a test case. This warning is useful when a new outcome has been added to the test script

to identify which test cases have not been updated. If you wish to define a lot of outcomes in your test script which are
mutually exclusive then it may be convenient to turn off this warning.

To change or view these settings, go to File | Project Properties | Regression Tester Properties | Gen-
eral.

View the details of a test script
The Test Specification report allows you to view the details of all of your test cases at once. To view the Test
Specification report for one or more test scripts:

1. In the Project Explorer, right-click on your test script or folder containing test scripts, and selectView Test Script Spe-
cification.

2. In the View Test Script Specification dialog, select the test scripts that you want included in the report. If you want the
selected test scripts included in the same report, select the Combine all test scripts into one report option.

3. Click View. The Test Specification/s will be displayed in the right hand pane. You can save a copy of the Test Spe-
cification by clicking the Save button.

Remove a test script
To remove a test script from a project:

1. In the Project Explorer in Oracle Policy Modeling, right-click the test script file that you want to remove and select
Remove from Project.

NOTE: The file remains in your file system but has been removed from your Oracle Policy Modeling project. To
permanently delete a file from both your file system and from your project, right-click it in Oracle Policy Model-
ing and select Delete.

Change the platform that the regression tester runs on
To change the runtime platform for the regression tester:

1. In Oracle Policy Modeling, go to File | Project Properties | Common Properties | Platform.

2. Select a different option from the Target Platform drop down list. (The options are .NET and Java, with .NET being
the default platform.)

3. Click OK.

Note that this setting also determines which platform the test script coverage analyzer and the what-if analyzer
run on.

Create a test case from within an interview
You can create a new test case from the data in an interview in the debugger or Oracle Web Determinations.
You can export the data directly into a new test case in the debugger, or you can export interview data to an
XDS file and then import it into a new test case.

What do you want to do?
Export interview data directly into a new test case from the debugger
Export interview data to an XDS file and import into a new test case

Export interview data directly into a new test case from the debugger
To create a new test case directly from within an interview in the debugger:

1. Open the debugger by selectingBuild | Build and Debug.

2. Start an investigation and enter the desired values. (For more information on using the debugger, see Debug a rulebase.)

3. Click on the arrow on the right side of the Export button (located in the top right of theDebug view), and select the
Export as Test Case option.

4. Select a test script to save the new test case to, or enter the name for a new test script.

5. Enter the name for the new test case and click OK.

6. The new test case is created in the test script.

Export interview data to an XDS file and import into a new test case
You can export the data from an interview in the debugger or Oracle Web Determinations, and then import this
as a test case into a test script.

Export the interview data from the debugger
To create and export the interview data from the debugger:

1. Open the debugger by selectingBuild | Build and Debug.

2. Start an investigation and enter the desired values. (For more information on using the debugger, see Debug a rulebase.)

3. Click the Export button (located in the top right of theDebug view).

4. In the Save As dialog box, enter a file name and destination folder for the XDS file.

Export the interview data from Oracle Web Determinations
To create and export the interview data from Oracle Web Determinations:

1. Start Oracle Web Determinations by selectingBuild | Build and Run.

2. In the Oracle Web Determinations interview, enter the desired values. (For more information on using Oracle Web
Determinations, see Test an interview or screen flow.)

3. On the summary screen, click Save As on the horizontal menu bar.

4. In the Save as case ID field enter a name for the test case. Click Save. The file will be saved as an XDS file in
\Release\web-determinations\data\<project name>.

Import the data into a new test case
To import data from a file created in the debugger or Oracle Web Determinations:

1. In Oracle Policy Modeling, open your test script file.

2. Select the test script file in the Test Cases tab in the right hand pane in Oracle Policy Modeling.

3. Right-click and select Import Test Cases from the pop-upmenu.

4. In theOpen dialog box, browse to select the XDS file/s you want to import. Click Open.

5. New test cases will be created for each of the imported XDS files.

Once you have imported your input data as test cases, you can add to it, edit it and delete it.

Import test cases from another project
You can import test cases from another Oracle Policy Modeling project using XDS files. To do so you firstly need
to export the input data from the other project.

To export input data to an XDS file:

1. In Oracle Policy Modeling, open the test script file.

2. Open the test case that you want to export and click the Export button.

3. Specify a name and destination for your XDS file. Click Save.

To import input data from an XDS file:

1. In the Test Case Editor, select the Import button.

2. Browse to select the XDS file/s you want to import. Click Open.

Once you have imported your input data into a test case, you can add to it, edit it and delete it.

Create test scripts from existing data
Using the batch processor it is possible to create test scripts. The batch processor can be configured to read
from a database connection, or a directory of CSV files, so that it can generate a large number of test cases
based on real-world data. The steps to create test scripts from existing data are:

1. Ensure data is in appropriate format for the batch processor

2. Run the batch processor to generate the test script

3. Add the test script file to OPM

Ensure data is in appropriate format for the batch processor

Format CSV files
Data can be read from a directory of files containing data formatted as comma-separated values (CSV). The
files containing the data to be read must end with the .csv extension.
The batch processor supports a configuration-free option for CSV files as long as they follow the conventions
below:

l the CSV files need to be using headers (ie the first row of the CSV contains column names)

l the name of a document needs to correspond to the public name of an entity (unless it is representing a many-to-many rela-
tionship)

l column names are either:

n '#' for the primary key column (values must be an integer)

n the public name of an attribute

n the public name of an attribute enclosed in parenthesis - this represents an output attribute

n the public name of the 'to-one' side of a relationship - the column value is the primary key of the target entity
instance

n the public name of the parent entity if the entity exists in a containment relationship

A special case is where a CSV file represents a many-to-many relationship. In that case the name of the doc-
ument needs to correspond to the public name of one of the directions of the relationship. The CSV document is
then required to have two columns with the first column having foreign key references to source entity
instances and the second column with foreign key references to target entity instances (source and target are
from the perspective of the side of the relationship used for the name of the document).

The expected format for attribute values is:

Value
Type

Format Description Blank Value

Number

Numeric values must adhere to the following conditions:

l The '.' character is the decimal separator

l Thousands separators are not supported

l Currency symbols are not supported

l For scientific notation, the '+' is not supported in the expo-
nent

Blank values are considered UNCERTAIN

String String values will be read as-is
Blank string values are considered to be a
blank value

Boolean

Boolean values must adhere to the following conditions:

l String values are case insensitive, so "YES" is the same as
"yes" and "Yes"

l Leading zeros are not truncated from numeric values

l "True", "Yes" and 1 will be parsed as TRUE

l "False", "No" and 0 will be parsed as FALSE

Blank values are considered UNCERTAIN

Date

Date values must adhere to the format "yyyy-MM-dd" where:

l yyyy is the four-digit year

l MM is the two-digit month, including leading zero for values
below 10

l dd is the two-digit day, including leading zero for values
below 10

Blank values are considered UNCERTAIN

Datetime

Datetime values must adhere to the format "yyyy-MM-dd HH:mm:ss"
where:

l yyyy is the four-digit year

l MM is the two-digit month, including leading zero for values
below 10

l dd is the two-digit day, including leading zero for values
below 10

l HH is the two-digit 24-hour hour value, including leading zero
for values below 10

l mm is the two-digit minute value, including leading zero for
values below 10

l ss is the two-digit seconds value, including leading zero for
values below 10

Blank values are considered UNCERTAIN

Time
Time values must adhere to the format "HH:mm:ss" where:

l HH is the two-digit 24-hour hour value, including leading zero
Blank values are considered UNCERTAIN

Value
Type

Format Description Blank Value

for values below 10

l mm is the two-digit minute value, including leading zero for
values below 10

l ss is the two-digit seconds value, including leading zero for
values below 10

If there is only a single CSV file in the folder, or one of the CSV files is "global.csv" then it is presumed to be the
'base' table, otherwise the base table needs to be specified. For example, a folder may contain "parent.csv" and
"child.csv" - without specifying which is the base table, the batch processor won't know whether it should be pro-
cessing cases for parents or children. Note that once a base table is established, other tables will be brought in
as required by containment or reference relationships.

Convert Excel data to CSV format
You can use Excel to perform batch generation of test scripts for Oracle Policy Modeling. You just need to con-
vert the data into CSV format first. To do this:

1. Set up the data in Excel.
For example, to set up 101 cases where the "income" attribute is stepped from 0 to 100,000.
On a blank worksheet you would enter the following and then use 'fill down' to replicate the last row down to row 1002.

income

1 0

=a2+1 =b2+1000

2. Make sure that the data is formatted according to the conventions defined earlier.

3. Create a directory inWindows Explorer and save the file in CSV format as "global.csv".

Run the batch processor to generate the test script
The batch processor is invoked from the command line. To generate a test script you will need to specify at
least the following parameters:

l the rulebase location (--rulebase <rulebase path>)

l the data source (--csv <folder> or --database <db-connection-string>)

l the test script location (--exporttsc <path>)

Note that the data source can be specified in the XML configuration file to be used by the batch processor
instead of as a command line parameter.
For more details, see the Batch Processor section of the Oracle Policy Automation Developer's Guide.

Add the test script file to OPM
In the Oracle Policy Modeling project, add the generated tsc file from the previous step (File | Add |Add Exist-
ing File...). You can then use the regression tester in OPM to customize the test script. See Define, modify or
remove test scripts for more information.

See also:

l Analyze the outcomes of a large number of test cases

Compare test case results with expected results
To compare the test case results with the expected results you need to run the test scripts for a rulebase. A
report will the be generated which shows the results.

What do you want to do?
Run a single test script
Run multiple test scripts
View the test results
Customize the test report
Save the test report

Run a single test script
To run a single test script:

1. Ensure that you have created your test case/s and outcome set.

2. Click the Execute button on your test script tab. NOTE: This will just run the currently active test script.
The test script will run and the Test Report will be displayed on a new tab.

Runmultiple test scripts
To run multiple scripts for a rulebase:

1. In Oracle Policy Modeling, selectReports | Run Multiple Test Scripts...
The Run Multiple Test Scripts dialog box will open.

2. Select the scripts in your rulebase that you would like to run. Click Run Test Scripts. The selected test scripts will run
and the Test Report will be displayed.

NOTE: You should re-run your test script/s whenever the rulebase changes to guarantee that the results are still
correct.

View the test results
After a test script has run a tab will open in the top right hand pane in Oracle Policy Modeling which shows the
Test Report.
An example of a Test Report for an individual test script is shown below. The report contains two sections: a
summary of the report and the test case comparison results. There will also be an additional section for Errors if
any are encountered during the running of the script.
Test cases that pass are highlighted in green and test cases that fail are highlighted in red.

If you have selected multiple test scripts to be run, the Test Report will open to a Test Script Result Summary.
This show the Total Statistics for all the test scripts at the top of the report, and individual reports can be viewed
by clicking on the links below this.

To navigate from individual reports back to the summary view, you click the Back button at the top left of the
Test Report tab.

Customize the test report
Reports can be customized by changing the report options in File | Project Properties | Regression Tester
Properties | Report Options.

The options in this dialog box are explained below:

Setting Options

Report type

The Test Report can be rendered in two distinct layouts – sequential or tabular.

l the sequential layout lists results for cases down the page

l the tabular layout presents results in a grid (cases rows and attribute columns)

Alternatively, you can specify a custom XSLT template for the regression tester to use when gen-
erating the Test Report.

Report heading styles

There are three options for report headings:

l Outcome ID only - this will cause reports to display with attribute IDs (either model ID or pub-
lic name) as headings.

l Outcome display text only - this will cause reports to display with the value of the Display Text
specified for the attribute in the outcome set.

l Both outcome ID and display text - will display both the attribute IDs and the Display Text.

Omit from report

You have the option to omit from the Test Report:

l Values that match - this excludes attributes with outcome values that match the test case,
and/or

l Test cases that pass - this excludes test cases that have passed.

Save the test report
You can save a test report by clicking the Save button at the top right of the Test Report tab.
If the Test Report is for an individual test script, the report will be saved as a HTML file.

If the Test Report contains multiple test script reports, you have the option to save the report in XML or HTML
format. You need to specify a folder where the summary and individual report files will be saved to.

Debug a failing test case
In the tester report which is generated when you run your test scripts, failed test cases are highlighted in red.
To debug a failed test case you should:

l check that the input data is correct (open the test case to view and/or update the base level attribute values)

l check that the expected results are correct (in the Test Report, click on the expected result to view and/or update the
expected results for that attribute)

l check whether outcomes are set correctly (in the Test Report, click on the outcome to view and/or update the outcome for
the test script)

l check the decision report (in the Test Report, click on the actual result to view the decision report for that attribute)

See also

l Find the cause of a logic error

Create test cases with temporal data or outcomes
To create test cases with temporal data or outcomes you need to specify change points for the attributes.

What do you want to do?
Create change points in input data
Create change points in expected results
Create change points in outcome data

Create change points in input data
To create change points in input data:

1. In Oracle Policy Modeling, open your test script file by double-clicking it in the Project Explorer.

2. Double-click the test case to open it for editing.

3. Double click the base-level attribute in the Data view to open the Set Attribute Value dialog box.

4. Click the Change Points button. This expands the dialog box so that you can add change points for the attribute.

5. Click the Add button to add a new change point. A change point will be added. (By default this will have today's date and
a value of unknown.)

6. From theDate field, select the desired date (or type a new date). Then select the check box for the Value that applies
from that date.

7. To add additional change points, repeat steps 5 and 6.

8. When you have created all the change points, click OK. In the Data view you can now see the values you set for the
attribute.

Create change points in expected results
To create change points in expected results:

1. In Oracle Policy Modeling, open your test script file by double-clicking it in the Project Explorer.

2. Double-click the test case to open it for editing.

3. Select the inferred attribute in the Data view, right-click and select Set Value.

4. In the Set Attribute Value dialog box, click the Change Points button. This expands the dialog box so that you can
add change points for the attribute.

5. Click the Add button to add a new change point. A change point will be added. (By default this will have today's date and
a value of unknown.)

6. From theDate field, select the desired date (or type a new date). Then select the check box for the Value that applies
from that date.

7. To add additional change points, repeat steps 5 and 6.

8. When you have created all the change points, click OK. In the Data view you can now see the values you set for the
attribute.

Create change points in outcome data
To create change points in outcome data:

1. In Oracle Policy Modeling, open your test script file by double-clicking it in the Project Explorer.

2. Select theOutcomes tab.

3. Double-click on the outcome attribute to open the Edit Outcome dialog box.

4. Click the Change Points button. This expands the dialog box so that you can add change points for the attribute.

5. Click the Add button to add a new change point. A change point will be added. (By default this will have today's date and
a value of unknown.)

6. From theDate field, select the desired date (or type a new date). Then select the check box for the Value that applies
from that date.

7. To add additional change points, repeat steps 5 and 6.

8. When you have created all the change points, click OK. In the outcome editor you can now see the values you set for the
attribute.

Measure the coverage of a test suite
It is important to ensure that a test suite has a high level of coverage of the rules in that rulebase. The Test
Script Coverage report is used to measure the amount of coverage that an existing test suite provides by chart-
ing all of the logical paths through the rulebase and ensuring that they are all taken at some point. With this
information you can then improve the quality of your test cases.

What do you want to do?
Generate a Test Script Coverage report
View the coverage for a rule
Change the coverage threshold
Change the goals used in the analysis
Save the coverage report as an XML file

Understand how coverage is measured
Analyze an existing coverage file
Change the platform used by the analyzer
Analyze test script coverage using the command line tools

Generate a Test Script Coverage report
To generate a Test Script Coverage report, go to Reports | Test Script Coverage. The test scripts in the pro-
ject will be analyzed and the report will be displayed in the right hand pane.
The percentage attached at each level of the report shows the percentage of conditions at that level which have
relevant values. See Understand how coverage is measured for more information on this.

View the report organized by document
By default, the report is organized by document. Colored icons give a visual indication of the coverage of each
rule:

l a green 'tick' icon indicates a rule that has adequate coverage at the specified threshold

l a red 'arrow' icon indicates a rule that has inadequate coverage at the specified threshold

l a yellow 'arrow' icon indicates a document/folder that contains a rule that does not meet the threshold

View the report organized by goal
Alternatively, you can view the report organized by goal. To do this, select Organize By Goal in the drop down
box at the top of the report.

The report is broken down by each goal mentioned in any test case. Selecting any attribute in the report will
show the rule that proves that attribute. Colored icons give a visual indication of the coverage of each rule:

l a green 'tick' icon indicates a rule that has adequate coverage

l a red 'arrow' icon indicates a rule that has inadequate coverage

l a yellow 'arrow' icon indicates a rule that is itself adequately covered but contains a rule that is not.

View the coverage for a rule
When you click on a rule in the report, the bottom pane shows the rule and how the coverage has been determ-
ined:

Next to each condition in the rule is 'true' and 'false' - these values are shown in bold when that value is covered
by the test suite (and are not bolded when that value is not covered).

For rules without any conditions, if the conclusion is relevant to anything, the rule is considered 100% covered
and is marked as 'used' in the rule coverage browser:

Change the coverage threshold
Adequate coverage is initially defined to be 80%, but this can be changed by altering the percentage in the
Coverage Threshold field at the top of the report (and then pressing Enter or clicking the Regenerate but-
ton).

Change the goals used in the analysis
By default, the analysis is based on all of the goals (outcomes) defined in the test script. You can remove goals
used in the analysis by clicking on the Analysis based on X goals link at the top of the report. In the Cover-
age Goals dialog, unselect any goals that you do not want included in the analysis and then click OK. You will
notice that all of the rules used by the goals that are no longer included in the analysis now have zero coverage.

Save the coverage report as an XML file
To save the coverage report as an XML file (so that it can be opened outside Oracle Policy Modeling), click on
the Save button at the top of the report.

Understand how coverage is measured
Coverage is measured by:

1. Taking every condition that appears in a rule (for example "the person's income < $100,000" is a condition), and

2. Running all test cases, and

3. Testing the relevancy of every condition in the rulebase with respect to all nominated outcomes of each test case:

i. If a condition was never relevant to any nominated outcome then it is not covered at all.

ii. If a condition was relevant on at least one occasion, but only ever with a true value then it has partial cov-
erage.

iii. If a condition was relevant on at least one occasion, but only ever with a false value then it has partial cov-
erage.

iv. If a condition is relevant with both true and false values in at least one occasion, then the condition has full cov-
erage.

NOTE: Relevancy means that it would have appeared in a decision report. For more information, see Definition
of 'relevant' in decision reports.
It is important to note that attributes are not the basis for this report, and are in fact not even recognized by the
test script analyzer. The analyzer only cares that at some point a condition was true and on another occasion it
was false.

Analyze an existing coverage file
Every time you analyze coverage of a project's test cases, Oracle Policy Modeling automatically produces a
*.coverage file for the master project (and any modules it uses) which you can reopen later. Coverage files that
have been generated using the batch processor can also be opened and analyzed in Oracle Policy Modeling.
To analyze an existing coverage file:

1. Go toReports | Analyze Coverage File...

2. Choose a .coverage file to analyze, then click Open.

The coverage report will be displayed in the right hand pane.

Coverage of projects that include modules
The coverage data includes the data about the rulebase plus any modules it uses, all in the same file. This
means you can analyze that same file in the main project, or you can open up one of the modules that was used
and analyze it there. You will still only see the rules that belong to that project, but effectively this lets you see
which rules in your module are being used in the master rulebase. Since the module doesn't recognize any of
the attributes from the master rulebase, the goals will be displayed with only their name, not their text, but the
analysis is basically the same.

Change the platform used by the analyzer
There is both a .NET and Java coverage analyzer, so it will work if you have .NET or Java custom functions. To
change the platform used by the analyzer (the default is .NET), see Change the platform that the regression
tester runs on.

Analyze test script coverage using the command line tools
To build a rulebase and analyze its test script coverage using the command line tools, follow these steps:

1. Use the command line build tool to build the project.

2. Use the command line regression tester tool to run tests and produce a *.coverage file.

3. Use the command line build tool a second time to transform the *.coverage file into a *.xml coverage report.

See also:

l Analyze the outcomes of a large number of test cases

l Improve test script coverage

Improve test script coverage
For a suite of test cases to provide any confidence in the correct workings of a rulebase, it is important that the
majority of the rules in the project are meaningfully exercised by test cases.
For example, if a rulebase calculates an income threshold, but there is no test case that fails to meet that
threshold, then a change to that threshold (for example, by inadvertently bypassing it) may not be detected
until the rulebase is put into production. Only by exercising the threshold in both the positive and negative situ-
ation (by having test cases that meet the threshold and test cases that do not meet the threshold) can there be
any confidence that a change to the rules has not had unintended side effects.
The Test Script Coverage report in Oracle Policy Modeling can be used to find areas of a rulebase that are not
well-exercised. The next step is to construct a plausible test case that does exercise those areas.

The following example walks through this process:

1. Open the Social Services Screening example project.

2. Generate a Test Script Coverage report by going toReports | Test Script Coverage.

By default, this report will organize the report by document, which allows you to see how well tested the rules are on a
per-document basis. The colored icons represent whether a document contains any rules that do not meet the default
coverage threshold of 80%.

n Green tick: Indicates the rules meet the threshold.

n Red arrow: Used for a rule that does not meet the threshold.

n Yellow arrow: Used when a document/folder contains a rule that does not meet the threshold.

Note that the System rules mostly have no coverage at all. This is because these rules are mostly only used during a
guided interactive interview, which is not verified by the test cases. The rules in those documents may, of course, be
triggered when the test cases run, but their results are never compared with expected values, so the rules have no cov-
erage.

3. ChangeOrganize By Document toOrganize By Goal. This shows all of the top-level goals that are tested in all the
test scripts of the project, and shows how well-tested the rules of each goal are. In general, it is most important that top
level rules are well covered, as these tend to indicate broad areas of functionality within the rulebase that should abso-
lutely be verified. Lower level rules need coverage also, but exercising all combinations may not be practical for large
tables whose only purpose is to reinterpret base-data provided by the user. An example of this can be seen by following
the yellow coverage icons from "the applicant may be eligible for child care assistance" down to the rule "the household’s
geographical area for the purpose of the Poverty Guidelines" which just maps 50 possible locations into one of three
broad categories. Testing all 102 possibilities of this rule would not be as useful as ensuring that all the high level eli-
gibility conditions are tested.

4. Select "the applicant may be eligible for EITC", which displays the high-level rule for this attribute.

The bold 'true' and 'false' values indicate that most conditions in the rule have been tested in both a true situation and a
false situation. The rule meets the coverage threshold by having 9/10 coverage, however the final condition "the house-
hold’s annual investment income <= 3150" has only been applied when it was 'true'.

5. To fix this, open the AllBenefits.tsc test script file andmake a copy of Case_50, call it Case_51 and then open it. Change
the value of the attribute "the household’s monthly investment income" from 0 to 300. This will change the yearly invest-
ment income to $3,600, and the household will no longer eligible for EITC. The expected results in this test case will need
to be updated for the test to pass, but this can be done later.

6. Return to the Test Script Coverage report and click the Regenerate button. The coverage for the rule "the applicant
may be eligible for EITC" is now complete.

This example was simple because the change to the test case was immediately significant to the conclusion,
therefore the change contributed immediately to the coverage score. Other changes may be more subtle.
For example:

1. In the Test Script Coverage report, expand "the applicant may be eligible for EITC", then "the monthly gross earned
income is below the EITC income limit for the household size" then "the annual EITC income limit for the household size".

This rule is mostly tested, however, there is no test case for an unmarried applicant with 2 EITC qualifying children. The
conditions for that situation are tested when they are false (in cases when a later row in the table is triggered instead) but

never when they are true. We can also deduce from this that the income limit for that situation is not being tested.

2. Return to the AllBenefits.tsc file and copy Case_51 to make another new case Case_52. Open this new case. This case
already has 2 EITC qualifying children, but the applicant Marge is considered to be married because her spouse Homer is
in the household. Remove Homer from the household.

3. Regenerate the Test Script Coverage report and review the coverage for the rule for "the annual EITC income limit for
the household size". Note that the coverage score has not improved, and the conditions for an unmarried applicant with 2
children is still not considered covered. To find out why, the test case must be examinedmore closely.

4. Return to Case_52 and locate the attribute "Youmay not be eligible for EITC" (note the use of second person). Right click
and choose Show Decision. Uncheck Relevant Only and expand the decision tree to find "the annual EITC income
limit for the household size".

The gray values are those that not relevant to the decision. This explains why the change has not contributed to the cov-
erage score: the change described in the previous example (whichmade the household not eligible for EITC) has made

the income limit irrelevant. Even though the income limit was calculated for an unmarried applicant in a 2 child house-
hold, the value was ultimately irrelevant and so those conditions are still considered to have no coverage.

5. Change the household’s monthly investment income back to 250. The income limit is now relevant again.

6. Regenerate the Test Script Coverage report and see that the rule for "the annual EITC income limit for the household
size" now has a higher coverage score.

The other conditions in this rule cannot be fully covered because they use a defensive style of rule authoring and test for
conditions that should never occur, or should always be true (such as testing that there are 0 children when all other num-
bers of children have been accounted for). For this reason, 100% coverage will rarely be possible in practice.

Use the regression tester from the command line
The Oracle Policy Modeling Command Line Regression Tester provides a means of executing a rulebase pro-
ject's text scripts using the command line.

Syntax
This tool can be used in two different modes. The syntax for these modes is given below.

1. Oracle.Policy.Modeling.RegressionTester.CmdLine rulebase-file testscript-file [options]
This is the default mode. The tool takes the supplied compiled rulebase file (.xml) and tests it using the supplied test
script file (.tsc).

2. Oracle.Policy.Modeling.RegressionTester.CmdLine -project rulebase-project-file [options]
Project mode. This mode takes the supplied rulebase project, and tests it using all test scripts that are associated with the
project.

Options
The following options can be used:

l --javaengine
Indicates that the java version of the rule engine should be used to run the regression test. By default the .NET version of
the rule engine is used.

l --outputfile
Specifies that output should be written to the supplied file. By default output is written to the console.

l --verbose
Provides verbose output. When this option is used, the result of every test case outcome is reported. By default, only those
outcomes that fail are reported on.

l --xml
Results are output in JUnit XML format.

l --coverage <coverage file>
Generates a .coverage file that can be imported into Oracle Policy Modeling using the Analyze Coverage File feature.

Formatting
For the tool's standard (non-XML) output, the region setting for the rulebase provided is used to determine the
formatting used for data types such as date, datetime and timeofday.

Debugging
Topics in "Debugging"

l Debug a rulebase

l Define data to use in a test case or a debug session

l Test a portion of a rulebase

l View the attributes inferred in a test case or debug session

l Debug temporal rules and data

l Find the cause of a logic error

l Change a rule while debugging

l Save or reload a debugger session

See also:

l Set the time period to use for calculations

l Test an interview or screen flow

l Check rule structure and dependencies

l Debug a failing test case

Debug a rulebase
When writing rules it is important that they are thoroughly tested to ensure they operate in the intended way.
The Oracle Policy Modeling debugger is a tool that can be used to perform this testing function.

What do you want to do?
Use the integrated debugger to test the rules
Use the standalone debugger to test the rules

Use the integrated debugger to test the rules
To start debugging your rules using the integrated debugger:

1. In Oracle Policy Modeling, selectBuild | Build and Debug.

2. In theDebug Options dialog box, select the option to debugWithout screens. (NOTE: This option will just test the
logic of your rules. Testing with screens is covered separately in Test an interview or screen flow.) Click OK.

The debugger will open with the Debug view in the top right hand pane in Oracle Policy Modeling.
On the left hand side of the Data view is a tree view of the entity instances and relationships in the build model.

The icons used in this pane, and what they represent, are given below:

Global entity

Containment relationship

Entity instance

Reference relationship

Inferred relationship

The right hand side of the Data view shows either an attribute list, or a relationship editor, depending on what
item you have selected in the left hand pane.

You can also start a debugger session from within the Build Model. To do this:

1. In Oracle Policy Modeling, selectView | Build Model.

2. Select the attribute that you would like to investigate, right-click and select Investigate in Debugger.

3. In theDebug Options dialog box, select the option to debugWithout screens. Click OK.

The Debugger will open to the Decision view which will show all the relevant paths for a goal simultaneously.

Using the standalone debugger to test the rules
To start debugging your rules using the standalone debugger:

1. Go to Start | All Programs | Oracle | Tools | Oracle Policy Modeling Debugger.
The standalone Debugger will open.

2. SelectFile | Debug Compiled Rulebase.

3. Browse to select your compiled rulebase (XML) file (this is typically located in the output folder of your rulebase project).
Click Open.

On the right hand side of the Data view in the Debugger you will see the attributes in your rulebase.

See also:

l Define data to use in a test case or a debug session

l Test a portion of a rulebase

l View the attributes inferred in a test case or debug session

Define data to use in a test case or a debug session
In order to run a test case or debug session, you need to firstly set up the data to use.

What do you want to do?
Set the value for a base level attribute
Set up entities and containment relationships
Set reference relationships

Set the value for a base level attribute
When you are investigating the inferences that are made by setting particular attribute values, you need to set
values for the base level attributes directly.
To set the value of a base level attribute directly:

1. Select the attribute in the Data view. It is handy to filter the attributes list by Base Level attributes to ensure you are
selecting a base level attribute.

2. Right-click and select from any of the following Set options from the menu:
Set Value - this opens the Set Attribute Value dialog box where you can enter a value or set the value to 'uncertain'
or 'unknown'. When setting variable values directly in the Data view, values must be entered in the correct format: see
Formatting of variable values. You can also specify change points for the attribute.
Set to True - this option is only available for boolean attributes
Set to False - this option is only available for boolean attributes
Set to <value> - this option is only available for non-boolean text attributes. The values that appear here will be the
values used in the rules or on screens.
Set to Unknown - this option is used to clear the value of the attribute
Set to Uncertain

Alternatively, you can double-click the selected attribute to open the Set Attribute Value dialog box and then select or
set the appropriate value, ensuring that it is entered in the correct format.

3. The Data view will be updated to show the new attribute value you have set, and any attribute values inferred as a res-
ult. TIP: You can sort the attributes in each grouping in the Data view by clicking on any of the column headings (Name,
Value or Text).

Set up entities and containment relationships
If you have entities in your rulebase, you will need to create entity and relationship instances in order to invest-
igate any rules which use those entities/relationships. For example, if you have a rulebase containing the entity
"the child" and you are assessing a family with 3 children then you will need to create 3 instances of "the child"
in the debugger. It is easiest to set these up before you start to investigate goals or to observe the effects of set-
ting values for attributes.

Add entity instances
Entity instances are added via their containment relationships. To create an entity instance for an entity in the
Data view:

1. Select the containment relationship for the entity in the left hand pane. TIP: Containment relationships are indicated by a
greenmulti-cube icon.

2. Right-click and selectAdd Instance:
An entity instance (eg child 1) will appear below the containment relationship. The containing relationship for that entity
has now also been set. Any containment or reference relationships that are associated with that entity are also shown
under the entity instance (eg the child's school).

TIP: At this point it can be useful to provide a value for the identifying attribute for each of the entity instances.
This will make it easier to distinguish between the entity instances when debugging. In the example above, the
child's name attribute is the identifying attribute for the child entity. Following the steps above for setting the
value for a base level attribute, you would set the value of the child's name attribute for each of the entity
instances you have added. This value (eg Frank) then replaces the generic entity label (eg child 1) in the Data
view:

You can also add a new entity instance by selecting the containment relationship and using the Add Instance
button in the relationship editor:

For entities contained within other entities, instances are created in the same way as above, using the con-
tainment relationships within the existing instances.

Delete entity instances
To delete an entity instance:

1. Select the entity instance in the Data view.

2. Right-click and selectDelete Instance:

The selected entity instance will be removed from the list of entity instances for that entity.
TIP: You can also delete an entity instance by selecting the containment relationship in the Data view, and then
selecting the entity instance to be deleted in the relationship editor and using the Delete Instance button:

Set reference relationships
Once entity instances have been created within their containment relationships, you may set up any reference
relationships between the entity instances.

Set reference relationships between entity instances
Reference relationships are shown underneath the entity instance in the Data view, and can be set once the rel-
evant entity instances have been created via their containment relationships. For example, having created
three children Samuel, Benjamin and William, and an instance of "the school" entity, Canberra High School, you
might set that one of the children attends the school. To do this:

1. Select the relationship in the left hand pane of the Data view (in this case, "the child’s school" under the child Samuel).
The relationship is currently unknown.

2. In the relationship editor, check the check box for the existing entity instance Canberra High School, to set the child's
school for Samuel. The relationship now becomes known.

NOTE: When you set targets for static relationships, the relationship will become known - it is not possible to
leave the relationship as unknown.

Remove the association between a target instance and the relationship
To remove the association between a target entity instance and the relationship:

1. Select the relationship in the left hand pane of the Data view.

2. In the relationship editor in the right hand pane, deselect the check box for any entity instances that you no longer want
associated with that relationship.

Navigate reverse relationships
Using the relationship editor in the right hand pane of the Data view, you can switch from viewing a relationship
(from the direction of the source entity) to viewing the reverse relationship (from the direction of the target
entity). Note here that the 'source' and 'target' entities of a relationship are relative, and the entities referred to
by these terms depend on which relationship direction is being considered.
For example, you may have a many-to-one relationship between child and school entities called 'the child's
school', with a reverse relationship 'the school's students'. If you have already set the school for one child, you
could easily navigate between these entity instances to view and set the reverse relationship, for other children
who attend the school. To do this:

1. Click on the child's school relationship to display it in the relationship editor, then click on the Flip to reverse rela-
tionship link to edit the reverse relationship.

2. The Data view now shows the reverse relationship 'the school's students', for the relevant instance of the school (Can-
berra High School). Additional child instances can now be set as targets for this relationship as appropriate.

See also:

l Investigate a goal

Test a portion of a rulebase
Unit testing the rulebase is the process of interactively testing a discrete section of rules to ensure that every
sub-section operates as it should. The debugger enables you to perform targeted testing of your rules by manu-
ally setting attributes and investigating custom goals.
A section of the rules can be unit tested using the goal specific to just those rules without assessing other
related or unrelated rules. This approach can be visualized in the following diagram:

In the diagram, the circles represent the attributes of the rulebase that are being tested. The top orange circle
is the "custom" goal - that is, the goal chosen to be investigated for the purpose of unit testing. The squares rep-
resent the higher-level attributes that don't get tested because the goal investigated is not proved by them. The
triangles represent attributes which have been "closed off" by setting them manually with the debugger.

What do you want to do?
Test a portion of a rulebase
Test data validations

Test a portion of a rulebase
To test a portion of the rulebase follow these steps:

1. Examine your rules and identify which branch of the rulebase you want to test. Identify the attribute which heads the
branch to be assessed (the goal attribute).

2. Determine which attributes you need to set to close off the other branches of the rules. Using the debugger, set values
for these attributes.

3. Investigate the goal attribute by answering the required questions until a conclusion is reached for the goal.

5. Check the validity of the conclusion. Change the rules if errors are identified.

6. Go back and change the answers until all of the sub-branches have been fully tested.

A similar process is used for unit testing smaller and larger branches of the rulebase. The smaller the branch
the more detailed the assessment of all the different possible combinations of sub-branches.

Set the value for a base level attribute
To set the value of a base level attribute in the Decision view either:

l Right-click and select from any of the following Set options in the menu:
Set Value - this opens the Set Attribute Value dialog box where you can enter a value or set the value to 'uncertain' or
'unknown'. When setting variable values directly in the Decision view, values must be entered in the correct format: see
Formatting of variable values for details.
Set to True - this option is only available for boolean attributes
Set to False - this option is only available for boolean attributes
Set to <value> - this option is only available for variables. The values that appear here will be the values used in the
rules or on screens.
Set to Unknown - this option is used to clear the value of the attribute
Set to Uncertain

l Double-click the selected attribute to open the Set Attribute Value dialog box. Select or set the appropriate value, ensur-
ing that it is entered in the correct format.

After setting a value, the list of attribute values in the Decision view (and the Data view) will be updated with
the value you have specified.

Investigate a goal
After you have set up any entities and relationships in the debugger, you can investigate a goal. To do this:

1. In the Data view select the goal you want to investigate. It is handy to filter the attributes list by Top Level attributes (or
by All to see the list of Inferrable attributes) to ensure you are selecting a non-base level attribute.

2. Right-click and select Investigate. This will open the Decision view with the attribute you have selected as the goal.
The value of this attribute is unknown and all of the relevant paths to the goal are shown in the text box below. Entities
for which no instances have been created yet will be shown just by the relationship text.

3. Work your way through the list of questions, setting answers (see above). In order to investigate any attributes which
belong to an entity, you will need to add instances of that entity. Add your entity instances and continue investigating
attributes until a value for the goal is known.

TIP: You can filter the list of relevant attributes using the checkboxes at the top of the Decision view. The Show
rule checkbox displays the rule proving the selected attribute in the lower part of the Decision view - this can
be useful to see which rule conditions are evaluating to what result to help understand how your rules are work-
ing.

Investigate an inferred relationship
After you have added any entity instances in the debugger, you can investigate an inferred relationship. To do
this:

1. In the Data view select the inferred relationship that you want to investigate.

2. In the right hand pane, click the Investigate button. This will switch to the Decision view.

3. Set the values for any base level attributes. The Decision view will be updated as you go to show which entity instances
have been inferred for this relationship, and the attributes contributing to this conclusion.

In the case of existing entity instances that have been inferred as members of a relationship (ie using IsMemberOf rules),
these will be shown as selected items in the right hand pane of the Data view. (These entity instances will not be shown
under the inferred relationship in the left hand pane as they have not inferred a containment relationship).

In the case of entity instances that have been created as members of a relationship (ie using InferInstance rules), these
are also shown in the left hand pane of the Data view under the containment relationship that they have inferred.

Test data validations
The validation of data input (minimum values, maximum values, regular expressions, warnings and errors) can
be tested using the debugger.

Test minimum and maximum values
In the example below the data input (the child's age) has a maximum value of 18 specified in the Attribute
Editor:

To check the functionality of this data validation:

1. Select Build | Build and Debug, and then select theWithout screens option.

2. Right-click the attribute in theData view and select Set Value:

3. Enter a value of 20 (ie outside the valid range of 0-18). Note that the configured error message will appear at the top of
the Debug view:

The invalid value is not set. A value will not be set until you enter a value within the specified range.

Test regular expressions
Similarly in the debugger, if you enter invalid data for a variable with a regular expression attached (ie data
which does not comply with the format specified by the regular expression) you will be presented with the con-
figured error message at the top of the Debug view:

As with validation by minimum value and maximum value, the invalid data is not set.

Test errors and warnings
Unlike validation with minimum value, maximum value and regular expressions (see above), the invalid data
which triggers errors and warnings will still be set in the debugger. The error message appears in the Output
window in Oracle Policy Modeling, not in the Debug view.
In the screenshot below, the rules included an error event which triggered if the date of application is in the
future.

TIP: If the Output window is not visible (eg because it has been closed or is being hidden by another window),
you can view it by selecting View | Output Window from the main menu.

View the attributes inferred in a test case or debug session
Debugging can be undertaken using a 'bottom up' approach. The bottom up approach is where you set the base
level attributes and then view what is inferred from those.

What do you want to do?
View the inferred attributes
View the decision for a known attribute

View the inferred attributes
After setting the value for a base level attribute, the list of attribute values in the Data view will be updated with
the value you specified, as well as the values for any other attributes which have been inferred as a result.
Inferred attributes will be highlighted in green in the Data view. The best way to view the attributes you have
set and those that have been inferred is to filter the attribute list to show Base and Known Inferred attrib-
utes:

You can sort the attributes in each grouping in the Data view by clicking on any of the column headings (Name,
Value or Text). Note that Values are grouped by their type, ie booleans are sorted together, text values are sor-
ted together, etc. Unknowns/uncertains, however, are sorted separately regardless of type.

View the decision for a known attribute
To view the decision for an attribute with a known value, you can right-click the attribute in the Data view and
select Show Decision. This will open the Decision view with the attribute you have selected in the Attribute
field. The decision view appears like a decision report showing all the relevant paths that contributed to the goal
attribute's value.

The following options are available to alter the behavior of the decision view:

l Relevant only - when selected this hides irrelevant paths through the rulebase to the selected goal. This is selected by
default. (When this option is not selected, irrelevant attributes are grayed out.)

l Base only - when selected this hides intermediate attributes and only shows base level attributes that require an answer
in a flat list.

l Show silent and invisible - when selected this shows attributes in the decision report that would normally be hidden as
a result of silent or invisible operators added to the rules.

l Show rule - when selected this displays a pane in the lower part of the Decision tab which shows the rule proving the
attribute selected in the decision report. The true/false value of each premise in the rule is shown, with premises irrelevant
to the decision grayed out.

If your goal attribute belongs to an entity of which there are multiple instances, you can switch to view the
decision tree for different entity instances using the drop-down list of entity instances at the top of the decision
view.

Debug temporal rules and data
You can use the debugger to test temporal rules and data.

What do you want to do?
Enter temporal data in the debugger
Visualize temporal data
Understand temporal outcomes

Enter temporal data in the debugger
You enter temporal data in the debugger by specifying change points for the base level attributes that you set-
ting values for. A change point represents a value for an attribute applying from a specified date until the next
change point (if there is one). To add a change point for an attribute in the debugger:

1. Select the attribute in the Data view or Decision view, right-click and select Set Value... (Alternatively, if the attribute is
a base level attribute, you can just double-click the attribute.)

2. In the Set Attribute Value dialog box, specify the initial value for the attribute. This is the value that the attribute
takes up until the first change point. (For the correct format to use when setting variable values, see Formatting of vari-
able values.)

3. Select the Change Points button. This expands the dialog box so that you can add Change Points for the attribute.

4. Click the Add button to add a new change point. A change point will be added. (By default this will have today's date and
a value of unknown.)

5. From theDate field, select the desired date (or type a new date). Then select the check box for the Value that applies
from that date.

6. To add additional change points, repeat steps 4 and 5.

7. When you have created all the change points, click OK. In the Data view you can now see the values you set for the
attribute.

To delete change points, select the desired row or rows in the Change points table (from the Set Attributes
Value dialog) and click the Remove button.

Visualize temporal data
In the debugger, you may want to visualize on a timeline how an attribute's value changes, relative to other
attribute's values. To do this:

1. Select the attributes you are interested in theData view or Decision view, right-clicking and selecting Show in Tem-
poral Visualization.

2. Select the Temporal Visualization tab.
The attributes and their values are displayed in a timeline.

There are three panes to this view:

l The left hand pane shows the attributes, organized by entity. The attributes are labeled either by their name (public name if
they have one, otherwise their model id) or by their text, as specified in the Temporal Options dialog box.

l The right hand pane shows a timeline for each attribute's values. Non-boolean attributes are indicated with a blue timeline.
Boolean attributes have a gray timeline where they have a False value and a green timeline where they have a True value.

l The top pane has a date for every change point represented in the timelines below.

To remove an attribute from the Temporal Visualization view, select the attribute in the Data view, the Decision
view or the Temporal Visualization view and deselect Show in Temporal Visualization.
The Temporal Visualization tab will remain visible, showing the attributes you have selected, even if you restart
the debugger or Oracle Policy Modeling. It will be hidden again once you remove any attributes you have been
viewing and restart the debugger.

Understand temporal outcomes
When an attribute takes multiple values over time it can be useful to view a list of the attribute's values and the
dates that each of the values apply from.
To view the values for an attribute in the debugger:

1. Select the attribute in the Data view or Decision view, right-click and selectView Value... (Alternatively, if the attribute
is an intermediate level attribute, you can just double-click the attribute.)

2. In the Attribute Value dialog box you can see all the values (change points) for the attribute.

Understand why an inferred attribute has a particular value on a particular date
You may want to understand why an inferred attribute has a particular value on a particular date. To investigate
this:

1. Select the date/value in the Attribute Value dialog box and then click the Show Decision button.

2. The Decision view opens to show everything relevant to that particular value. You can then review the reason why the
attribute has that value from that date.

NOTE: The Decision view will limit the relevance period for the decision tree to the period from the current change point
to the next change point for the attribute. In other words, only attributes relevant to proving the value of your chosen
goal within the relevance period, will be displayed in the Decision Report. Note, however, that any attribute which is dis-
played in the Decision Report, will display its whole timeline in {curly brackets} after the attribute text, and not just the
portion of the timeline which is relevant to proving the value of your chosen goal within the relevance period.

Limit the display range of attribute value
You may want to limit the display range of attribute values so that you can focus on a particular date range that
interests you. To do this:

1. Click on the Temporal Options button in the debugger.

2. In the Temporal Options dialog box, specify a Start Date and an End Date. Note that the Start Date is inclusive
and the End Date is exclusive.

3. Click OK. In the Data view, the values in the Value columnwill be limited to the dates specified in the Display Range.

Find the cause of a logic error
Sometimes when debugging, an inferred attribute may have a different value from what you expected based on
the input data. In this case you will want to see the decision that led to the value. To understand a decision:

1. Select the attribute in theData view, right-click and select Show Decision. (If there are multiple values for the attrib-
ute, you also have the option to show the decision for a particular value from that change point.)

2. The decision report for this attribute is shown in theDecision view, in which you can also show the relevant rule. (If you
have opted to show the decision for a particular value, the Decision view will limit the relevance period for the decision
tree to the period from the current change point to the next change point for the attribute. In other words, only attributes
relevant to proving the value of your chosen goal within the relevance period, will be displayed in the Decision Report.
Note, however, that any attribute which is displayed in the Decision Report, will display its whole timeline in {curly brack-
ets} after the attribute text, and not just the portion of the timeline which is relevant to proving the value of your chosen
goal within the relevance period.)

When you review the reasons for a decision, you might uncover a logic error in your rules. To update your rule:

1. Firstly, save your debugger session so that you will be able to retest any changes that youmake to the rulebase. (For
more information, see Change a rule while debugging.)

2. Find the rule in your rules document. (For more information, see Find rules that use an attribute or relationship.)

3. Make the necessary changes to the rule.

4. Compile your rules.

5. Start the debugger and import your saved session data.

6. Check that the rules now operate as expected and produce the right decisions based on the test data.

You can also use the Rule Editor in Oracle Policy Modeling to check the underlying logic of a rule. To view a rule
in the Rule Editor:

1. In the Project Explorer, right-click the rules document and selectOpen Generated Rules.

2. On the Rules tab, locate the rule that you want to investigate.

3. Double-click it to open the Rule Editor for that rule.

4. If you want to make a change to the rule, click the View in Word or View in Excel button.

Change a rule while debugging
While the debugger session is active, you can navigate through Oracle Policy Modeling and edit rules without
stopping the debugger session.
If you want to test your new rulebase against existing data you have entered in the debugger, then you can use
the "Retain existing session data" option to do this:

1. With the debugger still running, make the necessary changes to the rules inWord or Excel documents. (See also Find the
cause of a logic error.)

2. SelectBuild | Build and Restart Debugger.

3. In theDebug Options dialog box, select the Retain existing session data checkbox.

4. Click OK.

5. Check that the rules now operate as expected and produce the right decisions based on the test data.

NOTE: If you have deleted or renamed any attributes, entities or relationships, the data associated with those
items will be discarded when the debugger is restarted.

Save or reload a debugger session
When testing rules with data in common it can be useful to save a session containing the base data so that it can
be reused in future testing.

Save a debugger session
To save a debugger session:

1. After you have set up your baseline data in the debugger, click on the arrow on the right side of the Export button (loc-
ated in the top right of the Debug view), and select the Export as XML option.

2. In the Save As dialog box, enter a file name and select the destination folder. Click Save.

The entity instances and user-set values in the test will be saved in the Data Set (XDS) XML file.

Reload a debugger session
To reload a debugger session which you have previously saved:

1. Open the debugger and click the Import button.

2. In theOpen dialog box, browse to select the XDS file which contains your saved data. Click OK.

The data and settings from your saved session will be added to the existing session. If you already have entity
instances in your session, it will try to match up any entity instances in the data set with those that already
exist.

NOTE: Only entity instances and user-set values are saved in a Data Set (XDS) file. Inferred attributes are not
saved.

Deployment
Topics in "Deployment"

l Deploy an interview toWeb Determinations

l Deploy a rulebase or interview to Determinations Server

l Deploy a rulebase to a custom application or mobile device

l Polish a rulebase for deployment

See also:

l Create and deploy a rulebase

l Validate user input using errors and warnings

l Use rules to trigger external software applications

Deploy an interview to Web Determinations
Oracle Web Determinations is one way in which a rulebase generated using Oracle Policy Modeling can be used.
Web Determinations has the following features:

l Intelligent navigation of questions –Web Determinations makes use of the Oracle Determinations Engine’s inferencing cap-
ability, which provides intelligent rule interviews through its cyclical technique of querying rules and drawing inferences. By
ignoring irrelevant rules the application asks only necessary questions in order to reach a conclusion.

l Decision reports –Web Determinations produces automatic visual representations of decision trees generated during inter-
views. These decision trees demonstrate how and why decisions have been reached by reference to rules and their under-
lying propositions.

l Document generation –Web Determinations can generate documents based on interview data and reasons for decisions.

l Data review screen –Web Determinations maintains lists of screens visited during interview sessions. This provides rapid
access back into interviews to allow users to quickly access and change data.

l Built-in help/commentary –Web Determinations can include HTML pages which act as help or commentary for the applic-
ation.

l Interview saving –Web Determinations has built-in support for saving and reloading interview sessions. Users are warned
if they try to navigate away from a screen without submitting data, to prevent the lose of data.

l Customizable user interface – The web-based user interface inWeb Determinations is customizable by rule developers.

To deploy an interview to Oracle Web Determinations:

1. In Oracle Policy Modeling, selectBuild | Build and Run.

2. In the Build and Run dialog box, select the optionRun with Oracle Web Determinations.

3. If you want to completely replace the previously deployed version of the project (located in the Release folder), click the
checkbox toReplace deployed version for project. TIP: This is useful in situations such as either using a new ver-
sion of Oracle Policy Modeling or when using an updated customized version of Oracle Web Determinations (but note that
this will discard any customizations made to the previously deployed version).

4. Click Run.

See also:

l Test an interview or screen flow

Deploy a rulebase or interview to Determinations Server
You can deploy a rulebase or interview to Oracle Determinations Server. This is handy for demonstration pur-
poses, as well as a configuration-less testing platform for Determinations Server.
To deploy a rulebase or interview to Oracle Determinations Server:

1. In Oracle Policy Modeling, selectBuild | Build and Run.

2. In the Build and Run dialog box, select the optionRun with Oracle Determinations Server.

3. If you want to completely replace the previously deployed version of the project (located in the Release folder), click the
checkbox toReplace deployed version for project. TIP: This is useful in situations such as either using a new ver-
sion of Oracle Policy Modeling or when using an updated customized version of Oracle Determinations Server (but note
that this will discard any customizations made to the previously deployed version).

4. Click Run. (If the Check Determinations Server Compatibility option has not been selected in Tools/Op-
tions/Rulebase Development/Build Validation, then the Enable Determinations Server Compatibility
dialog will be shown. Click OK.)

To modify the settings that are used to run the embedded server:

1. In Oracle Policy Modeling, go to Tools/Options/Rulebase Development/Embedded Server.

2. (Optional) To specify a location for the Embedded Tomcat web server that is different to the default location, type the file
path to the new location (for example, C:\Program Files\apache-tomcat-5.5.28-embed) into the Tomcat Path field in
the Embedded Tomcat Location area of the tab

3. (Optional) To specify a different TCP port for the server from the default port, type the new port number into the TCP
Port field in the Server Settings area of the tab.

4. (Optional) To specify a different username and / or password for the server manager, type the new username into the
Manager Username field and the new password into theManager Password field in the Server Settings area of
the tab.

5. (Optional) To specify a different startup timeout, type the new timeout period (in seconds) into the Startup timeout
(seconds) field in the Server Settings area of the tab.

6. (Optional) To change the amount of memory available to the embedded server, edit the Xms andXmx settings in the
Properties field in the Server Runtime Properties area of the tab. For example, to increase the available memory,
replace -Xms64m -Xmx256mwith -Xms256m -Xmx512m. Increasing the available memory will improve server per-
formance for projects with a large number of inferred entity instances, relationships, or aliases, or with complex

document generation. Tip: Once you change this setting, the results are saved locally. This means you will not need to
change the memory size again when you install a later version of Policy Modeling. For a new user who has not previously
run Policy Modeling 10.4 on their machine, the default setting is -Xms64m -Xmx256m.

7. When you have finished editing the settings, click OK.

Deploy a rulebase to a custom application or mobile device
For details on how to deploy a rulebase to a custom application or mobile device, please refer to the Oracle
Policy Automation Help.

Polish a rulebase for deployment
There are several ways in which you can polish your rulebase for deployment. Here are some ideas and sug-
gestions with links to the relevant topics.

What do you want to do?
Personalize an interview
Configure the screens
Add default values and validate user input
Improve decision reports
Customize Oracle Web Determinations

Personalize an interview

Using name substitution
Name substitution personalizes the interview for a more user-friendly experience. You can collect a person's
name at the start of an interview, and then the name will be automatically substituted in later questions, in
decision reports and on the summary screen. For more information see:

l Substitute the actual value of a variable for its text

l Set up substitution

l Text substitution principles

Using gender pronoun substitution
Gender pronoun substitution can be used in combination with name substitution (or in isolation) to provide more
natural language text.
For example, "the student avoided handing in the student's assignment" becomes (in combination with name
substitution) "Matthew avoided handing in his assignment".
For more information see:

l Substitute a gender pronoun for a text variable

l Collect the gender of a person

Substituting names in headings and labels on screens
Variable values such as the person's name and/or age can be substituted into screen names and labels. For
example, you could have a screen name appear as "School Details – Bart, aged 10 years". For more information

see:

l Substitute an attribute value into the text on screens

Using second person sentence generation
Sentences and questions can be generated in second person rather than in third person in order to personalize
the interview. For example, instead of "Does the applicant have health insurance?" the question is asked as "Do
you have health insurance?". For more information see:

l Display interview questions in second person form

Configure the screens

Using screen labels
Labels can be added to question screens and the summary screen to provide context. They can also be used as
additional headings. Labels can include static text, as well as HTML. For more information see:

l Add labels to question screens

l Add a label to the summary screen

Hiding and displaying summary screen elements
Using visibility attributes, you can control whether screen elements are displayed or hidden at various stages of
the interview based on logic. For example, you might want to display a goal to investigate at the start of the
interview, but then hide it at the end. For more information see:

l Control the visibility of summary screen elements

l Tutorial: Hiding and displaying summary screen elements

Add default values and validate user input

Defaulting values on Oracle Web Determinations screens
You can set default values for any attribute on a question screen. Defaults can be a specific value, or can be
dynamically determined based on data collected on previous screens. Providing defaults reduces the amount of
typing/clicking required to complete an interview. For more information see:

l Specify a dynamic default for an input

l Specify a default value for an input

Validating user input on Oracle Web Determinations screens
You can validate the input that a user enters to warn or prevent them from entering values which do not meet
certain criteria when running the rulebase. Specific errors and warnings can be triggered by conditional logic in
rules. For example, you could display the message "Please check the dates of birth as you have indicated that
your date of birth is after your child's date of birth" if the applicant’s date of birth > the child’s date of birth.
Defining maximum and minimum values, or using regular expressions, for an attribute are other ways to fire
generic error messages when the input value falls outside the specified range or does not meet a specified
format (eg an email address). For more information see:

l Write an error event rule

l Write a warning event rule

l Specify minimum andmaximum values

l Use regular expressions

Improve decision reports

Automatically generating structural elements
Decision reports can be improved by ensuring that structural elements in legislation (eg section, paragraph, art-
icle, etc.) and policy (eg chapter, guideline, etc.) are included. Oracle Policy Modeling can automatically gen-
erate these structural attributes. The default form is "section x is satisfied", but this can be configured. For
more information see:

l Use structural elements to model legislative structure

l Use keywords to customize automatic structural attributes

Using grouping connectors and intermediate attributes
Adding intermediate attributes to your rules can make decision reports more meaningful. For example, adding
"the person satisfies the income test" as an intermediate attribute in between "the person is eligible for the
benefit" and "the person's income < 3000" in the following rule results in a more useful decision report.

the person is eligible for the benefit if

the person satisfies the income test

the person's income < 3000

For more information see:

l Improve the wording of a rule

Trimming the decision report
Decision reports automatically generated based on logic can be extremely verbose in terms of language and the
structure of the rules. You can 'trim' decision reports using the silent and invisible parameters making them
much easier to follow ("silent" hides all the logic nested below the attribute, "invisible" hides the attribute only
and can be applied locally or globally). For more information see:

l Hide information in a decision report

Customize Oracle Web Determinations

Defining a data review screen
The data review screen in Oracle Web Determinations displays the questions asked during the interview and the
answers provided. Question screens on the data review screen are listed in the order defined in the screen
order in the screens file. If no screen order is defined in the screens file, the screens will appear in a random
order in the default data review screen in Web Determinations, which is not very user-friendly. It is therefore
recommended that you define a screen order. For more information see:

l Define interview screen order

Showing the progress stages
Stages can be displayed at the top of interview screens (with the current stage/screen shown in bold) to show
the user their progress through the interview. Progress stages are turned on by default if a Screen Order has

been defined. For more information see:

l Progress stages

Configuring the Oracle Web Determinations labels
Standard out-of-the-box Web Determinations label text, such as Yes, No, Submit, Load etc, can be modified in
the messages.<locale>.properties file for the project. For more information see:

l Configure the Oracle Web Determinations labels

Changing the Oracle Web Determinations banner
The Oracle Web Determinations banner, which by default is the Oracle logo and the text "Web Determinations",
can be replaced with any other image and/or text (eg your application's logo and name). For more information
see:

l Change the Oracle Web Determinations banner

Providing commentary/help text
Commentary (context-sensitive help text) can be provided to help users understand the questions that they are
being asked and the screens they are being presented. For more information see:

l Create, update or delete interview help

Custom functions and programming
Topics in "Custom functions and programming"

l Install a custom function

l Debug with a custom function

l Write a rule that uses a custom function

See also:

l Oracle Policy Automation Developer's Guide

Install a custom function
A custom function is a function written by a programmer in Java or .NET, conforming to a particular interface
that makes them callable from a rulebase. Custom functions are a method of performing custom processing to
return a calculated value, and are used when the required calculations cannot readily be performed with exist-
ing rulebase functions.
For a custom function to be available while writing and running your rulebase, it must be installed in a project
folder at Development\Extensions\<extension name>. A file called extensions.xml contains the definition of the
available custom functions, and the custom function itself is located within a \lib subfolder.
For full details on the structure of the custom function files, see the Oracle Policy Automation Developer's
Guide.

Debug with a custom function
In order to debug rules using a custom function, the extension implementing the custom function must be
installed in the \Extensions\<extension name> project folder. In addition:

l If you are debugging with screens then youmust either have a Java implementation of the custom function available, or a
custom version of Web Determinations which includes the custom function implementation.

l If you are debugging without screens then youmust have a .NET implementation of the custom function available.

Further information on how to install a custom function is available in the Oracle Policy Automation Developer's
Guide.

Write a rule that uses a custom function

What is a Custom Function?
A function written in Java or .NET, conforming to a particular interface that makes it accessible from within a
rulebase. Inputs are defined by the custom function, and are most often attributes whose values are used by the
custom function.

What can a Custom Function do?
Possible uses of custom functions are:

l To create a function that will be used repeatedly in rules (eg a function that counts days since the last reporting period).

l To perform a specific, non-standard calculation (eg where two accidents causing damage to 5% and 10% of the vehicle are
considered to have damaged 12% of the vehicle in total).

Call a Custom Function
To call a custom function, use the following syntax:

l <conclusion attribute> = <custom function name>(<input 1>,...,<input n>)

The custom function inputs in brackets are defined by the custom function.
For example, a custom function "AccidentDamage" to calculate the total accident damage, where "the total acci-
dent damage", "the damage to car 1", and "the damage to car 2" are all number attributes (percentages), would
be called in a rule as follows:

the total accident damage = AccidentDamage(the damage to car 1, the damage to car 2)

Note that a custom function is called in the same way as any of the other built-in functions in Oracle Policy
Modeling, and similarly the custom function rule will take part in the question search and be included in decision
reports in the same way as any other built-in function. Any of the input attribute values can be temporal, as can
the custom function return value.
The custom function must be defined in the \Extensions\<extension name> project folder before any rules
using it can be compiled. See Install a custom function for details. TIP: Create and debug your custom function
in a small test project , and then copy it into your actual project.

For more information, refer to the Write a Custom Function Extension topic in the Oracle Policy Automation
Developer's Guide.

Collaborating
Topics in "Collaborating"

l Work collaboratively on rule projects

l Include rules defined in a separate project

l Share rule documents across projects

l Use multiple properties files on a multi-developer project

l Import data model from another rule project

l Track rulebase changes onmulti-developer projects

l Open a rulebase project from source control

l Connect or disconnect a project with source control

l Track versions of rule documents

l Get updates to rule documents from source control

l Retrieve a specific document version

l Create multiple rulebase versions

See also:

l Manage legislation and other source material

l Export or import a data model

l See the results of a recent build or deploy operation

l Import test cases from another project

Work collaboratively on rule projects
When different individuals or teams need to work collaboratively on rule projects there are a couple of ways to
approach this:

1. Separate Oracle Policy Modeling projects, each with the same data model but different rules documents, are developed
for each part of the overall project and these modules are later combined. This is useful where you are able to sub-divide
the work and work independently with no need to edit the same content. For more information on this method, see
Include rules defined in a separate project.

2. The rule and/or source documents themselves are shared between projects. This is suitable when the individuals or
teams need to make changes to the same files. For more information on how to do this, see Share rule documents across
projects.

Include rules defined in a separate project
You can share rules between rulebases with a common data model by building one rulebase as a module and
then linking to this module from another rulebase.
This may be useful where there are:

l Multiple teams working on one main rulebase readmore1

l Common rules that are used by several rulebases readmore2

l Core rules that are deployed in different ways for distinct audiences readmore3

l Different combinations of the same rules used by multiple rulebases readmore4

TIP: To see an example of a complete rulebase with a module, open and run the Income Support Benefit
example rulebase project provided in the Examples folder in the Oracle Policy Modeling installation folder.

What do you want to do?
Add a link to a module
Use entities, attributes and relationships imported from a module
Include the rules from an imported module
Use the translations provided in an imported module
Build and load a rulebase containing modules
Debug a rulebase containing modules

Add a link to a module
To create a link to a module from your rulebase:

1. In the Project Explorer in Oracle Policy Modeling, select the folder that you would like the module link to be placed in (eg
the Modules folder), right-click and selectAdd Module Link...

1

Modules allow teams to work independently on sub-components of a ruleset and combine their work into a single rulebase.

2

Modules allow rule developers to import a common set of rules and screens into other rulebases, avoiding the need to create and
maintain common questions in multiple places.

2. In theOpen dialog box, browse to the module file (.rmod) that you want to link to. (The .rmod file is created when you
build a module and is located in the output folder for the module's project.) Then click Open. The module's compatibility
with the project will be checked (see Validation of a module upon linking below) and then, assuming there are no errors
that need to be addressed, the module link will be added.

Once a module is imported, it will display in Oracle Policy Modeling as a read-only single source file, which will
show the data model that was imported, including the complete definition of the entity, attribute or relationship
as defined in the module. It will also show a set of rules that indicate the relationship between the base level
and inferred entities, attributes and relationships and the data model items that prove it, but not any details of
exactly how they are proved.

A key difference between adding modules, as opposed to other documents, is that adding a module doesn't copy
it into that folder, but rather creates a link to the location of the module. The link location will be relative to the
project's xprj file where possible, or absolute if necessary. This allows a module to be linked to without every
person who works on that project having to have exactly the same file structure.
TIP: If you want to remove a link to a module from your project, you should right-click the rmod file in the Pro-
ject Explorer and select Remove from Project. If you select Delete instead, the rmod file itself in the mod-
ule's project will be deleted.

Validation of a module upon linking
In the process of adding a link to a module, Oracle Policy Modeling validates that:

l The definition of any attributes/entities/relationships that already exist in the project match exactly, so that the cor-
responding attributes, entities and relationships can link together. If the data models match, it merges the rulebase and
module. Any conflicts will result in build model errors which will need to be rectified before the project can be built.

l The rule language of the module is the same as the rule language of the parent project. If they are different the module will
not be imported. (It is OK for the project region to be different in the module and the parent project.)

l A module with the same name does not already exist in the project.

Use entities, attributes and relationships imported from a module
When a module is imported into a project all the entities, attributes and relationships that are defined in the
module’s public interface appear as if they were defined in a properties file in that project itself and can be used
like any other item defined in a properties file. There is, however, one important restriction in that items impor-
ted from a module cannot be edited from within the parent project. To make changes to the module you need to
edit the module's project and rebuild it. Similarly, you cannot make changes in the parent project that override
the module's attribute, entity and relationship definitions. Consequently, if you additionally define an imported
entity, attribute or relationship in a parent project you cannot define anything other than the text of that item.

Text substitution
Since you cannot alter the definition of an attribute imported from a module, substitution attributes will only
apply up the chain and not down it. This means that any substitution attributes defined and exported from a mod-
ule will apply to any other project that imports it. However, the reverse is not true, ie defining a substitution
attribute in the parent project will not apply to any attributes defined in a module.
In order for second person substitution to work it has to be turned on in the main rulebase project and every
module it includes. For example, say your rulebase consists of the following:
Module 1 -- (imported by) --> Module 2 -- (imported by) --> MyRulebase
Now if the attribute 'the person' is defined and exported from Module 1, then it will also need to be defined as a
second person attribute in both Module 2 and MyRulebase.
NOTE: Defining attributes or relationships in multiple modules and then importing them into a project can lead
to inconsistent text substitution (or sentence forms) being displayed.

Define attributes, entities and relationships in multiple modules
If an attribute, entity or relationship is exported from multiple modules (or the module and its parent rulebase)
then their definitions, including any metadata must match exactly. This means that you would need to change
and redeploy multiple modules if you ever wanted to update the definition of the attribute/entity/relationship.
(Having an attribute or relationship defined and exported from multiple modules in a project can also result in
unexpected behavior in terms of text substitution and sentence forms.)
The recommended approach is therefore to define each entity/attribute/relationship only once and then import
them into every other project that needs it.
For example, say a rulebase imports modules A and B, both of which need to use an attribute called 'the per-
son'. Instead of defining that attribute in both modules A and B, it should be defined in another module which is
then imported into both A and B.

Include the rules from an importedmodule
Including a rule from an imported module in a project is simply a matter of using the publicly-named attribute
(from the module) in a rule (in the parent project). Note that you don't have access to anything inside a module
that has not been exported (eg intermediate attributes), either to prove or to use in rule premises. You can have
attributes with the same text in the parent rulebase and the imported module but unless the one in the module
has been exported, these will not be auto-aliased together and you will end up with two attributes with the same
text at runtime.

Use the translations provided in an importedmodule
Any translations provided in an imported module are exported. This means that a project using the module does
not have to recreate existing translations for the contents of the module. These translations cannot be edited,
however, from within the parent rulebase - any changes must be made in the module itself.
All modules imported into a project must also support all the languages the project does. (A module may sup-
port more languages than the project does but it cannot support less.)
TIP: The languages supported in a module can be viewed in the parent project by right-clicking the module link
in the Project Explorer and selecting Properties.

Build and load a rulebase containingmodules
You build a rulebase that contains modules in the same way you build a normal rulebase (ie Build | Build).
This process creates a build-time copy of the module's interface file in the rulebase, which is later validated
against the runtime version of the module's interface file. (At runtime you can update an individual module
without having to update all the rulebases (or modules) that rely on it provided that the changes do not alter the
interface definition of the module. See Deploy changes to a single module for more information.)
When you load the rulebase (ie in the debugger, regression tester, Web Determinations or Determinations
Server), all the rules from all the modules are combined to form the final rulebase that is then checked for con-
sistency, logical loops, multiple proven attributes etc. This means that:

l you cannot have rule fragments that cross over module boundaries, and

l your data models must align, and

l logical loops andmultiply proven attributes must be considered for the unified rulebase, not just for the individual modules.

Validation at runtime of a rulebase containing modules
In addition to the build time checks, a rulebase that contains modules is also validated by the engine when it is
loaded. The validation checks that are carried out mirror those done by Oracle Policy Modeling at build time,
with the following notes:

i. Maximum/minimum/regular expression validations get compiled out as custom properties so they will be reported as mis-
matches in custom properties if they are out of sync.

ii. None of the properties relating to text substitution or text overrides get validated at runtime. Consequently, it is inad-
visable to define attributes inmore than one module or rulebase (see above). The engine does additional validation to
ensure that the module's interface has not beenmodified since all the rulebases andmodules that rely on it were com-
piled.

Since the engine, like all runtime validation, only reports the first error it encounters it is advisable to re-com-
pile your head rulebase project after updating a module to detect any errors.

Data matching at runtime
Entities, attributes and relationships are defined by their ID and are compared according to the following cri-
teria:

l For an attribute to be considered the same it must have the same ID, base text (including parse) and data type.

l For an entity to be considered the same it must have the same ID and text.

l For a relationship to be considered the same it must have the same ID, reverse ID, text, reverse text, type, source entity
and target entity. Additionally, the concept of primary direction is important such that a relationship defined as:

ID Source Text Type Reverse text Target Reverse ID

children the child
the applicant's chil-
dren

One-to-
Many

the applicant of the
child

the applicant childsapplicant

will not be considered the same as a relationship defined as:

ID Source Text Type Reverse text Target Reverse ID

childsapplicant
the applic-
ant

the applicant of the
child

Many-to-
One

the child
the applicant's chil-
dren

children

l Additionally, attributes, entities and relationships cannot change its inferencing type from base to inferred or vice versa.

Redeployment
It is possible to make changes to a module and deploy it without having to redeploy everything that uses it, if
and only if the changes do not alter the external data model. In other words, the changes must be limited to
changing the internal logic of the module. If the change affects the external data model, then you will need to
rebuild and redeploy every rulebase/module that depends on it. (For more information see Deploy changes to a
single module.)

Debug a rulebase containingmodules
A rulebase containing modules is considered a single rulebase and you therefore debug it as you would any
other rulebase (see Debug a rulebase for more information).
When you run the rulebase in the debugger, any attributes, entities and relationships that were not exported
from your modules are shown with an ID of the form <module name>.<module document id>. For example,
SimpleBenefits.b7@Rules_BenefitRules_doc is the attribute 'b7@Rules_BenefitRules_doc' that was not exported
from the Simple Benefits module.

These attributes are shown in the debugger for completeness (eg so that you can see a proper decision report).

Share rule documents across projects
There are three ways to share Oracle Policy Modeling documents across projects:

l have multiple Oracle Policy Modeling projects in one folder structure;

l share the files in source control; or

l duplicate the files.

Multiple projects in folder structure
It is possible for more than one Oracle Policy Modeling project (and corresponding .xprj file) to co-exist in one
location. Each project keeps track of which documents are to be included when compiling the application. Both
.xprj files should sit side-by-side in the Development folder (which, in turn, contains the folders Rules, Test
Cases, etc.).

With this set-up, only the project file is duplicated, and so any change to any rules or xsrc files will take effect in
any project that incorporates them. Individual rules or xsrc files can be removed from the project. Altern-
atively, files can remain in the project but be excluded from the build.
To be in the compile set, a file must be in the project, and to be in the project, a file must be in the folder struc-
ture. Source control operates as usual for a single application.

This method of sharing files between projects is particularly suitable where two versions of an application are
required (ie a complete version and a "Lite" version). In these situations, the rules and xsrc files are organized
into the same structure. The projects differ only by the inclusion or exclusion of the various source files they
comprise.

Share files in source control
Another method of applying the rules and/or xsrc files in a Oracle Policy Modeling project is to duplicate the files
in the file system but synchronize them in source control.

This method of sharing files between projects is suitable where selected rules and/or xsrc files in one main
application can be isolated into particular file/s and introduced into another application which shares some of
the same subject matter. It is possible for files to become out-of-sync on individual computers under this
method, if the source control procedure is not strictly adhered to.

Duplicate files in source control
Finally, the entire project can be duplicated and maintained separately in both the file system and in source con-
trol.

This method does not so much share files between applications, but rather involves a "branch" in the evolution
of the project, and is suitable where the source files in one project are useful merely as a starting-point for the
other project, for example, where the projects are (at least partly) based on the same source material, but
require different analyses for their own purposes. All maintenance and source control occurs separately, since
these projects are effectively separate applications once the branching has occurred.

See also

l Add an existing file to a project

Use multiple properties files on a multi-developer project
To facilitate multi-developer authoring on a project, it can be helpful to create a more granular properties file
structure. By having a separate properties file for each entity type (eg for Person, Income etc) it makes it
easier for several developers to be working on the same project at once.
You can do this by using containment relationships. You just need to define the containment relationship in both
the 'master' properties file as well as the lower level one. For example:

File Containment Relationships Attributes

Master Properties file
Global --> one-to-many --> the person --> one-to-many --> the per-
son's income

Global attributes go in this file

Person Properties file Global --> one-to-many --> the person Person attributes go in this file

Income Properties file
Global --> one-to-many --> the person --> one-to-many --> the per-
son's income

Person's income attributes go in this
file

Note that while you can define the same attribute/entity/relationship in multiple properties files, only one of
them can have non-default metadata1.

1Metadata here refers to custom properties (ie those defined in the custom properties tab of an attribute, entity or relatiomship) and
intrinsic properties (ie non-custom properties that do not relate to the item's text, type or name)

See also:

l Include rules defined in a separate project

Import a data model from another rule project
You can import a data model from another rule project simply by adding the properties file from that project to
your project. After you have added the existing properties file to your project you should:

1. Build your project straight away. This is because if there are any attributes, entities or relationships that are duplicated,
these will be detected in the process and raised as build errors. You should rectify these errors before proceeding to
make any further changes to the rulebase.

2. Check to see if there are any attributes or relationships that you don't need. You can use the clean up tool to remove any
unused attributes and relationships. To access this tool, select Tools | Clean Up Unused Attributes and Rela-
tionships. (Unused attributes and relationships are those that have been defined in a properties file but that aren't used
in a rule or screen.)

See also:

l Include rules defined in a separate project

Track rulebase changes on multi-developer projects
The Oracle Policy Modeling project should be placed under source control whenever it is important to keep a his-
tory of changes to the rulebase. Source control should also be used on multi-developer projects so that only one
developer may work on a rulebase file at any one time.
To add an existing Oracle Policy Modeling project to source control:

1. In Oracle Policy Modeling, select File | Source Control | Add Project to <source control> from the main
menu, where <source control> is your installed source control system.

2. In the Add Project to <source control> dialog, browse to select the URL of the source control repository, and add
a new folder name to this URL. Click OK.

3. Log in to source control usingUsername and Password, then click OK.

The files in your Oracle Policy Modeling project will be checked into your new source control project, and the
source control features in Oracle Policy Modeling will now be automatically available for you to use with your
rulebase project files whenever you open the project.

Subversion and other source control programs
Oracle Policy Modeling integrates with the Subversion source control program, and with any source control pro-
gram that is accessible via the Source Code Control Application Program Interface (SCCAPI), such as Microsoft
SourceSafe, Rational ClearCase, or Microsoft Team Foundation Server. Oracle Policy Modeling will auto-
matically detect which programs you have installed. If you have both Subversion and a SCCAPI program
installed, menu options for both systems will be available in Oracle Policy Modeling.
NOTE: If you do not have either of these source control systems installed, the File | Source Control menu
options will not be available in Oracle Policy Modeling. If you wish to use source control for your project:

l select the Subversion component during the Oracle Policy Modeling installation, or

l install Subversion (note that a command line Subversion client package is required for direct integration with Oracle Policy
Modeling), or

l install one of the SCCAPI source control programs. If you have selected Microsoft Team Foundation Server as your SCCAPI
program, see Install Microsoft Team Foundation Server for more information.

See the Oracle Policy Modeling Installation Guide in your Oracle Policy Modeling installation folder for further
details.

Install Microsoft Team Foundation Server
To install Microsoft Team Foundation Server:

1. Download and install Team Explorer for Microsoft Visual Studio 2012 from the Microsoft web site (http://www.-
microsoft.com/en-au/download/details.aspx?id=30656)

2. Download and install either:

l for 32-bit systems:Microsoft Visual Studio Team Foundation Server 2012 MSSCCI Provider 32-
bit (available from http://visualstudiogallery.msdn.microsoft.com/b5b5053e-af34-4fa3-9098-aaa3f3f007cd) or

l for 64-bit systems:Microsoft Visual Studio Team Foundation Server 2012 MSSCCI Provider 64-
bit (available from http://visualstudiogallery.msdn.microsoft.com/3c7b6813-2617-4d5f-9a1d-5ad980cab5d2)

3. Once the install has completed, open your project in Oracle Policy Modeling, open the Filemenu and select Source Con-
trol. Options for Team Foundation Server (such asOpen Existing Project from Team Foundation... andBind
Project to Team Foundation...) should now be available on the Source Control sub-menu.

See also:

l Track versions of rulebase documents

l Connect or disconnect a project with source control

Open a rulebase project from source control
To open an Oracle Policy Modeling project that already exists in a source control repository:

1. In Oracle Policy Modeling, select File | Source Control | Open Existing Project from <source control>,
where <source control> is your installed source control system.

2. In theOpen Project from <source control> dialog box, browse to select the URL of the project folder in the
source control repository. Then browse to select the local Folder where you want to save the project. Click OK.

3. Log in to source control usingUsername and Password, then click OK.

4. In theOpen Project dialog box, select the project file (.xprj) for the rulebase in your local files for the project, then
click Open.

Once you have initially opened the project from source control, each time you open the project in Oracle Policy
Modeling in future it will be automatically connected to source control without you having to repeat the steps
above.

See also:

http://www.microsoft.com/en-au/download/details.aspx?id=30656
http://www.microsoft.com/en-au/download/details.aspx?id=30656
http://visualstudiogallery.msdn.microsoft.com/b5b5053e-af34-4fa3-9098-aaa3f3f007cd
http://visualstudiogallery.msdn.microsoft.com/3c7b6813-2617-4d5f-9a1d-5ad980cab5d2

l Track rulebase changes onmulti-developer projects

l Subversion and other source control programs

Connect or disconnect a project with source control
Where you have project files on your machine, and that project also exists in source control but is not asso-
ciated with your own project files, you can bind your Oracle Policy Modeling project to connect it to that existing
source control project.
You can disconnect a project from source control by unbinding it.
Note that this option is not available when you are using Subversion as your sole source control system, as bind-
ing is managed automatically by Subversion.

Connect a project
To bind your project to a source control project:

1. In Oracle Policy Modeling, select the project name in Project Explorer.

2. Select File | Source Control | Bind project to <source control>, where <source control> is your installed
source control system.

3. Log in to source control usingUsername and Password, then click OK.

4. Select the project to which you want to bind the current project.

Disconnect a project
To unbind your project from source control:

1. In Oracle Policy Modeling, select the project name in Project Explorer.

2. Select File | Source Control | Unbind project from <source control>, where <source control> is your
installed source control system.

The project will no longer be managed under source control.

See also:

l Track rulebase changes onmulti-developer projects

l Subversion and other source control programs

Track versions of rulebase documents
Placing a rulebase project under source control allows you to track versions of the project documents, by check-
ing files out before making changes, and then checking them back in again to commit those changes to the
source-controlled project.

What do you want to do?
Check out a document from source control
Check in a document to source control
See whether a document is checked in or out
View the version history of a document
Ensure all documents are checked in when the project is closed

See which documents have not been added to source control

Check out a document from source control
To check out a file:

1. In Oracle Policy Modeling, right-click on the file name in the Project Explorer and selectCheck Out.

2. Select the files to check out and, if required, add a comment.

3. Click the Check Out button to check the file out.

4. Log in to source control usingUsername and Password, then click OK.

You can undo the check out by right-clicking the file name in Project Explorer and clicking the Undo Check Out
menu option in the pop-up menu.
NOTE: Attempting to edit checked-in screen (*.xint) and properties files (*.xsrc) will automatically prompt you
to check out the file.
TIP: To check out a file for editing, select Check Out and Edit from the popup menu in step 1 above. This will
check out the file and open it ready for editing (eg in Word, Excel, Oracle Policy Modeling).

Check in a document to source control
To check in a file:

1. In Oracle Policy Modeling, right-click on the file name in the Project Explorer and selectCheck In.

2. Select the files to check in and, if required, add a comment.

3. If you want to update the master copy of the file while keeping the file checked out, select the Keep checked out
check box.

4. Click the Check In button to check the file in.

TIP: Files which cannot compile or build should be corrected before being checked into source control.

See whether a document is checked in or out
On shared projects, you may want to update the source control status of documents from time to time to see
whether or not another team member is working on a project document.

l You can refresh the status of all project documents by right-clicking the project name in the Project Explorer, and selecting
Refresh Source Control Status.

l You can refresh the status for individual project documents by right-clicking them individually in the Project Explorer, and
selectingRefresh Source Control Status.

A small blue padlock on a project file icon shows that a file is checked in.

A tick on a project file icon shows that a file is checked out.

View the version history of a document
Each time you check in a file under source control, a version of that file is kept along with details of the changes
made. If you are using Subversion for your project source control, you can view the history of all changes made
to a document from within Oracle Policy Modeling. To do this:

1. In Oracle Policy Modeling, right-click on the file name in the Project Explorer and selectVersion History.

2. All changes made to the document are shown, including the date the change was made and any comments entered when
the document was checked in.

You can also compare versions of Word rule documents and retrieve a specific version from the change history.
If you are not using Subversion for your project source control, you can access the version history for the doc-
ument directly from the source control program.

Ensure all documents are checked in when the project is closed
You can set a reminder for you to check in all of the files you have checked out whenever you close the project.
To do this:

1. In Oracle Policy Modeling, select Tools | Options | Environment | Source Control.

2. Select the optionWhen a project is closed remind me to check in all of the files I have checked out.

See which documents have not been added to source control
You can also set an option to see all of the files which have not been added to source control whenever you close
a source-controlled project. To do this:

1. In Oracle Policy Modeling, select Tools | Options | Environment | Source Control.

2. Select the optionWhen a project is closed show me all of the files that have not been added to source
control.

See also:

l Track rulebase changes onmulti-developer projects

Get updates to rule documents from source control
You can get updates from source control of single files, all files in a project, or the project file itself.

Get updates to a single file
To get the latest version of a single file from source control, right-click on the file name in Project Explorer and
select Get Latest Version.

Get updates to all files in a project
To get the latest version of the entire project from source control, right-click on the project name in Project
Explorer and select Get Latest Version (Recursive).
You can set a reminder to get the latest version of the project files from source control whenever the project is
opened. To do this:

1. In Oracle Policy Modeling, select Tools | Options | Environment | Source Control.

2. Select the optionWhen a project is opened ask me if I want to get the latest version of the project files
from source control.

Get updates to the project file
All Oracle Policy Modeling projects are maintained using a master project file (*.xprj), which records the file
and folder structure of the project. To get this specific file from source control, select the project name in Pro-
ject Explorer and select File | Source Control | Get Latest Version of '<project_name>.xprj'.
NOTE:Get Latest Version (Recursive) will get the master project file as well as all project files from source
control.

Get updates to a file already checked out to you
If you attempt to get the latest version of a document from source control which is checked out to you already,
you will be prompted to replace, merge, leave or cancel the operation.

l Replace: will replace your current document with the source controlled version.

l Merge: will merge differences between the source controlled version and the one on your machine, potentially resulting in
unexpected document content. This will not work withWord documents as they are a binary format.

l Leave: will not get the file from source control and your current check out file will remain untouched.

l Cancel: will cancel the get operation.

Retrieve a specific document version
Under source control, all historical versions of a document are held since it was first added to source control.
This means that you can look at previous versions of a file, and if necessary, replace your working copy of the
file with an older version. Oracle Policy Modeling allows you to directly access the document history if you are
using the Subversion source control program, otherwise you can use your source control program to access the
document history.

What do you want to do?
View historical versions of Word rule documents
Compare versions of Word rule documents

Retrieve versions of other rulebase documents

View historical versions of Word rule documents
If you are using Subversion for your project source control, you can compare and view historical versions of
Word rule documents in Oracle Policy Modeling:

1. In Oracle Policy Modeling, right-click on the file name in the Project Explorer and selectVersion History.

2. Select the version of the document you are interested in and click View to open that version.

3. If you wish to replace your working copy of the document with the older version, use Save As inWord to replace it.

Compare versions of Word rule documents
If you are using Subversion for your project source control, you can also compare any historical version of a
rule document with the current document, or compare two historical versions.

1. In Oracle Policy Modeling, right-click on the file name in the Project Explorer and selectVersion History.

2. Select the version of the document you are interested in and click Compare With Current to view the differences
between that version and the current version of the document. You can also select two versions of the document by hold-
ing down the Control key while clicking to select, then click Compare Changes to view the differences between the
two selected versions.

3. Word is opened showing the two document versions and highlighting the changes between the two.

Retrieve versions of other rulebase documents
To retrieve historical versions of project files other than Word rule documents, or if your project source control
does not use Subversion, use your source control program to view the log or history for the file. When you have
selected the particular version that you are interested in you can either:

l view that file, or

l roll back to that version of the file.

Refer to the Help material in your source control program for more information on these tasks.

Create multiple rulebase versions
Generally, where you need to maintain an existing rulebase version and also continue development on newer
versions (for example, adding new functionality), you need to share and branch the project to create new ver-
sions.
To do this, in your source control management tool share the project into a new project, and then branch the
project to disconnect all files from the current one. After this, changes made to either project will be inde-
pendent of one another.

Integrating
Topics in "Integrating"

l Set public identifiers for entities and attributes

l Augment the rulebase withmetadata

l Build the rulebase from the command line

l Write rules to use in Siebel

l Import a Data Mapping from Siebel

See also:

l Export or import a data model

Set public identifiers for entities and attributes
Important intermediate attributes need public names (user-defined attribute IDs) because this ensures that the
attribute IDs for important attributes are reliable and static and can therefore be used by external applications.
Important intermediate attributes are those that may be used in their own right inside Oracle Policy Modeling
(eg for regression testing purposes or as labels on screens) or called at runtime (eg called by the Determin-
ations Server, used for document generation, saved with the session data etc).

To manually create a public name for a non-base level attribute:

1. In Oracle Policy Modeling, selectView | Build Model. In the attributes list, select the attribute, right-click and choose
Create Public Name In and your properties file from the pop-upmenu.

The properties file should open to the selected attribute in the Attribute Editor dialog.

2. Define a public name for the attribute.

3. Click OK. The attribute will now be listed in the properties file with its public name.

NOTE: It is important that the text of any manually created attributes is identical to the original attribute so that
automatic linking of attributes can occur. This includes capitalization. In properties files the sentence cap-
italization remains as entered, whereas in Word and Excel, initial sentence capitals are decapitalized (unless the
first two letters both have capitals indicating an acronym). So it is important that all attributes created in prop-
erties files start in the lower case (unless starting with an acronym) so that they will match what is compiled out
of Word and Excel.

See also:

l Define attribute names for use by external applications

Augment the rulebase with metadata
Custom properties are user-defined properties which provide a means of extending or customizing a rulebase
by allowing metadata to be associated with any of the following elements: attributes, controls, entities, folders,
relationships, rules, screens and the project.
To set up a custom property you need to:

1. Specify the custom property definition in Oracle Policy Modeling. Each property can be a given a custom name, default
value, data type and can be customized in a number of ways.

2. Assign a value for the custom property for the element.

Custom properties also require application support in order to work.

What do you want to do?
Specify a custom property definition
Assign a custom property to an attribute
Assign a custom property to an entity
Assign a custom property to a relationship
Assign a custom property to a rule
Assign a custom property to a screen
Assign a custom property to a control
Assign a custom property to an interview document

Assign a custom property to a folder
Assign a custom property to the project
Implement a custom property using application support
Generate a report of custom properties in a project

Specify a custom property definition
The first step towards setting up a custom property in your rulebase is to specify a custom property definition in
Oracle Policy Modeling.
To specify a custom property definition:

1. Select File | Project Properties from the mainmenu.

2. From the list view, select the type of project element for which you wish to define a custom property definition:

3. You can define a new definition for the property by clicking theNew button. A template will be created for the new cus-
tom property.

4. Specify aName for the custom property.

5. Select theData Type from the drop-down list (Text, Boolean, Number or List).

6. If you don't want the custom property to be included at runtime, unselect theMake available in Oracle Determin-
ations Engine check box.

7. If you want to enforce properties to contain at least some value, unselect the Allow blank value check box.

8. Enter aDefault Value for the custom property if required.

9. Enter Help Text for the custom property if required.

10. Save your project to ensure that your custom property definitions are saved.

Assign a custom property to an attribute
To assign a custom property to an attribute:

1. Open the properties file for the project.

2. Right-click on the attribute and select Edit Attribute from the pop-upmenu.

3. In the Attribute Editor dialog, click the Custom Properties tab.

4. Your defined attribute custom properties will be displayed in the Custom properties list. Select the property for which
you wish to provide a value and enter that value in the right hand text box.

5. Click OK to apply the change and save the document.

NOTE: You cannot define a custom property directly on a generated attribute. In order to apply a custom prop-
erty to an attribute, you must have an equivalent publicly named attribute in your properties file and assign the
custom property to that attribute.

Some examples of how custom properties can be used on attributes are:

l to format an attribute or an attribute value. For example, to format an attribute value to be title case or an attribute to
appear in bold.

l to identify attributes that are used in generated documents (for example, attributes used in a claim letter)

l to link equivalent attributes in different rulebases

l to map each attribute to a data item in an external application

l to group particular attributes together

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Assign a custom property to an entity
To assign a custom property to an entity:

1. Open the properties file for the project.

2. Double-click the entity and in the Edit Entity dialog box, click the Custom Properties tab.

3. Select the property for which you wish to provide a value and enter that value in the right hand text box.

4. Click OK to apply the change.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work. Also, in order for a custom property to be compiled out for an entity, the entity
must have a public name.

Assign a custom property to a relationship
To assign a custom property to a relationship:

1. Open the properties file for the project.

2. In the Relationships tab for the entity, right-click on the relationship and select Edit Relationship... from the pop-up
menu.

3. In the Relationship Editor dialog box, click the Custom Properties tab.

4. Select the property for which you wish to provide a value and enter that value in the right hand text box.

5. Click OK to apply the change.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work. Also, in order for a custom property to be compiled out for a relationship, the
relationship must have a public name.

Assign a custom property to a rule
To assign a custom property to a rule:

1. In the Project Explorer in Oracle Policy Modeling, double-click on the rules file to open it in Microsoft Word.

2. Place your cursor at some point in the rule and select the Rule Properties Editor button on the Oracle Policy Modeling
toolbar.

3. Your defined rule custom properties will be displayed in the Custom Properties list in the Rule Properties dialog box.

4. Select the property for which you wish to provide a value and enter a value in the right-hand text box.

5. Click OK to apply the change. You will notice that the custom property now appears above your rule conclusion.

rule_property[RuleProperty:this is my property value]

the family is ready to go camping if

the camping equipment has been packed and

everyone is in the car

Some examples of how custom properties can be used on rules are:

l identifying the owner of rules (eg rule_property[Maintenance:Business Rule Team])

l identifying the date the rule was last amended (eg rule_property[Updated:2006-06-17])

Note that Oracle Policy Modeling also provides various predefined metadata items for rules.

Assign a custom property to a screen
To assign a custom property to a screen:

1. Open your screens file and right-click the name of the screen for which you wish to add a custom property value.

2. SelectCustom Properties from the pop-upmenu.

3. In the Custom Properties dialog box, select the appropriate custom property and enter a value into the right-hand
text box.

4. Click OK to apply the change and save your screen document.

An example of how custom properties can be used on screens is:

l to make a whole screen display differently. For example, to have a different watermark or size of font from other screens.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Assign a custom property to a control
To assign a custom property to a control (screen input):

1. Open the screen edit window for the screen on which your control is defined.

2. Switch to the Custom Properties tab.

3. Select the property for which you wish to provide a value and enter a value in the right-hand text box.

4. Click OK to apply the change and save your screen document.

Some examples of how custom properties can be used on controls are:

l to control the appearance of inferred attributes on screens

l to make radio buttons appear down the page (rather than the default position of across the page)

l to change commentary based on answers to earlier questions. For example, to substitute the claimant's name in the com-
mentary for a particular control.

l to enable a question based on the answer to another question on the same screen. For example, to only enable the ques-
tion 'What is the dog's name?' if the user has already answered on that screen that they have a dog.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Assign a custom property to an interview document
To assign a custom property to an interview document:

1. Open your screens file and right-click the name of the interview document for which you wish to add a custom property
value.

2. SelectCustom Properties from the pop-upmenu.

3. In the Custom Properties dialog box, select the appropriate custom property and enter a value into the right-hand
text box.

4. Click OK to apply the change and save your screen document.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Assign a custom property to a folder
To assign a custom property to a folder:

1. Open the Project Explorer in Oracle Policy Modeling.

2. Select the folder you want to assign a custom property to. Right-click and selectProperties...

3. Select the property for which you wish to provide a value and enter a value in the right-hand text box.

4. Click OK to apply the change.

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Assign a custom property to the project
To assign a custom property to a project:

1. Select File | Project Properties | Common Properties | Custom Project Properties.

2. Your defined project custom properties will be displayed in the Custom properties list.

3. Select the property for which you wish to provide a value and enter a value in the right-hand text box.

4. Click OK to apply the change and save your project.

Some examples of how custom properties can be used on the project are:

l to specify the product version. For example, 'build number 121'.

l to specify the project's release status

NOTE: Custom property names are case sensitive. If the case does not match the case in the definition then the
custom property will not work.

Implement a custom property using application support
The typical process for the implementation of custom properties is:

1. A requirement is identified that is not met by the standard properties andmethods provided by the API (eg information on
how to format an attribute value)

2. Rule developers and application developers agree on a design to meet that requirement that includes one or more cus-
tom properties.

3. Rule developers and application developers agree on the property names and value ranges.

4. Rule developers define the custom properties and set values for the properties, generally in Oracle Policy Modeling. (The
exception is rule custom properties which are set in Microsoft Word).

5. Application developers write code to query the custom properties at runtime. They need to know the exact names of the
properties to query for and the values to expect.

6. The code does something based on the property value (eg format an attribute value to be title case based on an attribute
custom property 'format' having the value 'title_case').

TIP: It does not make sense to use custom properties when rules alone can do the work or when they would
require replication of logic in the rulebase. Also, it is not advisable to use custom properties when a change is
required globally and there is no likelihood in the future of it being changed again.

Generate a report of custom properties in a project
There is a Custom Properties report in Oracle Policy Modeling that you can use to generate a report of some or
all of the custom properties used in the project.
To run a Custom Properties report:

1. In Oracle Policy Modeling, selectReports | Custom Properties. A Custom Property Report Options dialog will
be shown.

2. Select the property types to display. You also have the option to hide items that only have default values from the report.

3. Click OK to generate the report.

Build the rulebase from the command line
The Oracle Policy Modeling Command Line Compiler provides a means of building a rulebase from an Oracle
Policy Modeling project using the command line. This allows the rulebase build process to be automated by
including the command in a script.

The tool operates off an Oracle Policy Modeling project file. The project file settings and the documents included
in the project are used to build the rulebase. The tool loads the project file, compiles the documents included in
the project and builds the rulebase and other output files. The build process performed is the same as using the
Build | Buildmenu item in Oracle Policy Modeling.
The build tool may also be used to compile and deploy a rulebase to the Determinations Server. The build and
deploy process performed is the same as using the Oracle Determinations Server option under the Build |
Build and Run... menu item in Oracle Policy Modeling.
By default, the tool performs validation on the rulebase model for rule loops and multiply-proven attributes. If
the options detailed below are specified, additional validation can be performed. The build will fail if any val-
idation errors are detected.
Projects created in old versions of Oracle Policy Modeling can be upgraded using the tool. Note that the project
files will be copied to a backup location to ensure that you have the original version of the project to refer to if
necessary. Release folders are not included in the upgrade process. The treatment of entities and their con-
tainment relationships in particular must be brought up to date from older project versions. See Principles for
the upgrading of entities and their containment relationships for more information.

Syntax
The Oracle Policy Modeling Command Line Compiler is executed from the command line using the following
format:

buildtoolpath projectpath [build options] [validation options] [report options] [upgrade options] [help
options]

Parameters

Parameter Description

buildtoolpath The relative or absolute path of the Oracle.Policy.Modeling.CommandLineCompiler.exe file

projectpath The relative or absolute path of the Oracle Policy Modeling project file to be built

Build Options

-sb Recompiles source documents before building the rulebase

-m Builds the project as a module

-n <build num-
ber>

Sets the version number of the built rulebase/module

Validation Options

-vd Validates the rulebase model against the data model specified in the Oracle Policy Modeling project

-vds
Validates the rulebase for compatibility with Oracle Determinations Server, notably that all relevant attrib-
utes have public names

Report Options

-cd Analyzes a *.coverage file and produces a document-oriented report (.xml)

Parameter Description

-cg Analyzes a *.coverage file and produces a goal-oriented report(.xml)

Upgrade Options

-upgrade

Checks if the project is compatible with the current version.

If it is compatible, it proceeds to compilation.

If it needs upgrade, the project is upgraded before being compiled.

If it is not compatible (ie the project was created before v9.0), an error is displayed then it exits.

-remReadOnly

Removes write-protection for read-only files. This flag is only valid in the presence of the -upgrade flag.

When set, write-protection will be removed for read-only project files.

When not set, read-only project files will still be copied to the upgraded project directory but won't be pro-
cessed.

Help Options

-h Prints the help message

--diagnostics Generates diagnostic information. The project path and other parameters are ignored.

Example
For example, a command to build a project called Eligibility, recompile the source documents and then validate
the rulebase model against the data model might look like this:
C:\Oracle.Policy.Modeling.CommandLineCompiler.exe C:\Eligibility\Eligibility.xprj -sb -vd

Write rules to use in Siebel
The Oracle Policy Automation Connector for Siebel enables integration between Siebel Applications and the
Oracle Policy Automation Determination Server. Once a rulebase has been authored and tested, it can then eas-
ily be deployed to Siebel. Using Siebel Administration Screens, the mapping of data between Siebel business
components and fields, and rulebase entities and attributes, can then be defined.
For more information on the Oracle Policy Automation Connector for Siebel, see the Oracle Policy Automation
Developer's Guide.

Import a Data Mapping from Siebel
Before you can import the data mapping from Siebel to Oracle Policy Modeling, it must first be exported from
Siebel to an XML file so that it is compatible with Oracle Policy Modeling. Once you have the XML file, the data
mapping can be imported directly into an Oracle Policy Modeling project.
The following describe the steps you must follow to first Export the data mapping from Siebel to an XML file and
then to Import that file into an Oracle Policy Modeling project.

Export a Data Mapping from Siebel to an XML File
1. Launch Siebel and click on the Administration - Policy Automation tab. This is where the mappings can be found.

2. Highlight the mapping that you want to export and click on the Export button.

3. In the Policy Automation Configuration Export confirmation dialog, click on the Export button.

4. In the File Download dialog click on the Save button to complete the export of the data mapping file from Siebel (do
not click on theOpen button).

5. In the Save As dialog, select the location to which you wish to save the file, give the file an appropriate name (for
example, name of the Siebel mapping with an _Mapping appended) and then click on the Save button .

Import the Data Mapping into an Oracle Policy Modeling Project:
1. Launch theOracle Policy Modeling application and select File | New Project... .

2. In theNew Project dialog, give the project a name and click on the Create button. It is suggested that you use the
same name as the data mapping you are importing.

3. From the mainmenu, select Tools |Siebel | Import Data Model.

4. On the Import Data Model dialog, locate the <mapping name>_Mapping.XML file and click on theOpen button to
import the data mapping to your project.
You will notice that a new SiebelDataModel.xsrc properties file has been placed in your project; by default, the prop-
erties file will always be given that name.

5. Double click on the SiebelDataModel.xsrc properties file to view its contents:

Accessibility
Topics in "Accessibility"

l Keyboard shortcuts for Oracle Policy Modeling

l Modify the appearance or layout of Oracle Policy Modeling

l Modify the appearance of rules inWord

l Accessibility features in Oracle Web Determinations

Keyboard shortcuts for Oracle Policy Modeling
Shortcut keys are keys or key combinations that are provided as a quick and alternative way to access fre-
quently performed actions. The following shortcut keys can be used in Oracle Policy Modeling to insert styles or
perform functions:

l Shortcut keys for Oracle Policy Modeling

l Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word

l Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel

l Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

Shortcut keys for Oracle Policy Modeling

Shortcut Key Function/Navigation

Ctrl+N New Project

Ctrl+O Open Project

Ctrl+S Save Selected Item

Ctrl+Shift+S Save All

Ctrl+F Find Model Attribute

Ctrl+Shift+F Find Document Attribute

Ctrl+Shift+B Build

F5 Build and Debug

Ctrl+F5 Build and Run

Ctrl+Alt+B Build Module

Ctrl+F4 In the top right hand pane, closes the open tab

Ctrl+>
In the top right hand pane, cycles forwards between the open
tabs

Shortcut Key Function/Navigation

Ctrl+<
In the top right hand pane, cycles backwards between the open
tabs

Ctrl+Tab

In the Attribute Editor, toggles between Common, Custom Prop-
erties and Decision Reports tabs. In the Summary Screen Editor
and Question Screen Editor, toggles between Common and Cus-
tom Properties tabs.

Ctrl+F2
In the Project Explorer, toggles between the Project Explorer tab
and the Attribute Usage tab

Ctrl+F3
In the Project Explorer, toggles between displaying the active tab
(Project Explorer or Attribute Usage) and hiding the tab

Access menu items in Oracle Policy Modeling
Access keys are provided for all menu items in Oracle Policy Modeling. Access keys are alphanumeric keys that
are used with the Alt key to activate the menu controls. The access key is shown by the underlined character in
the text label of the menu item. If the access keys are hidden by default, pressing the Alt key will activate
them.

Access shortcut menus in Oracle Policy Modeling
The application key is used to display the shortcut menu for the selected object in Oracle Policy Modeling. The
application key is located between the Windows key and the Ctrl key on a standard keyboard. (If your keyboard
does not have an application key, you can use Shift+F10 instead.)

Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word

Shortcut key Style/Function

Alt+R Compiles the Oracle Policy Modeling document

Alt+1 Heading style

Alt+2 Heading 2 style

Alt+3 Heading 3 style

Alt+B Blank Line style

Alt+C Conclusion style

Alt+F Configuration style

Alt+L Legend style

Alt+N Rule Name style

Alt+F1 Level 1 style

Shortcut key Style/Function

F2 Level 2 style

F3 Level 3 style

F4 Level 4 style

F5 Level 5 style

F9 Ignore style

F10 Commentary style

F7 Inserts a shortcut rule

F11 Decreases indent

F12 Increases indent

Alt+D Opens the Data Model Browser

Alt+G Adds a variable attribute definition to the rulebase

Alt+I Inserts an invisible operator

Alt+J Opens the Attribute Editor

Alt+K Strips hidden text

Alt+P Opens the Rule Properties editor

Alt+S Inserts a silent operator

Alt+Y Show Oracle Policy Modeling styles in style area (Word 2003 and later)

Alt+Z Inserts a rule table

Alt+F12 Toggles comment

Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel

Shortcut key Style/Function

Ctrl+Shift+C Compiles the Oracle Policy Modeling document

Ctrl+Shift+W Attribute Type Heading style

Ctrl+Shift+E Attribute Text Heading style

Ctrl+Shift+T Legend Key Heading style

Ctrl+Shift+S Attribute Type style

Shortcut key Style/Function

Ctrl+Shift+D Attribute Text style

Ctrl+Shift+G Legend Key style

Ctrl+Shift+I Conclusion Heading style

Ctrl+Shift+K Conclusion style

Ctrl+Shift+Y Condition Heading style

Ctrl+Shift+H Condition style

Ctrl+Shift+L Else style

Ctrl+Shift+M Commentary style

Ctrl+Shift+V Opens the Attribute Editor

Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

Shortcut key Style/Function

Arrow keys
Moves the cursor, if there are no selected shapes;

Moves selected shapes

Shift+Arrow keys Jumps the cursor towards the next shape in that direction

Space

Selects the shape/connection under the cursor;

Clears the selection of shapes;

In the Screens/Decisions/Flows tab, adds the selected screen/-
decision/flow to the screen flow

Ctrl+Arrow keys Moves the cursor without moving any selected shapes

Alt+Arrow keys Resizes the selected shape

Ctrl-Space Toggles the selection of the shape/connection under the cursor

C
Starts or finishes drawing a connector from/to the shape under the
cursor

Enter
Finishes drawing a connector to the shape under the cursor;

In the Screens/Decisions/Flows tab, adds the selected screen/-
decision/flow to the screen flow

/
Cycles the selection through the outgoing connectors of the shape
under the cursor

F2 Edits the condition text of the selected connector

Shortcut key Style/Function

Alt+R Errors list

Modify the appearance or layout of Oracle Policy Modeling
You can customize the appearance and layout of Oracle Policy Modeling to suit your own preferences.

What do you want to do?
Dock/undock the panes
Pin/unpin the panes
Resize the panes
Move the tabs around
Change the color scheme
Change the number of items in the recent projects list

Dock/undock the panes
Any pane in Oracle Policy Modeling can be undocked and then docked in a new location. To undock and redock a
pane:

1. Click anywhere on the top of the pane.

2. Drag the pane towards the center of the screen. You will see docking icons appear (at the top, bottom, left and right of
the screen).

3. Select the docking icon where you want to dock the pane. The pane will now appear in that location.

NOTE: To be able to undock the panes, the Lock Windows option under Tools | Options | Environment |
General must be unchecked.

Pin/unpin the panes
Many of the panes can be pinned to the side or bottom of the interface to make more room for your workspace.
To pin and unpin a pane:

1. Click on the button in the top right corner of the pane. The pane will collapse to the side or bottom of the window. To
view the pane you can hover over the tab on the side/bottom of the window.

2. To unpin the pane, click on the tab for the pane and then click on the button. The pane will return to its previous loc-
ation in the interface.

Resize the panes
To resize a pane:

1. Move your cursor over the join between panes until you see a double headed arrow.

2. Use your mouse to drag the join until the pane is the desired size.

Move the tabs around
In any of the panes in Oracle Policy Modeling, you can move the tabs around. To do this:

1. Click on the tab you want to move.

2. Drag it to the new location on the same pane.

Change the color scheme
To change the color scheme you can change the visual style of Oracle Policy Modeling. To do this:

1. In Oracle Policy Modeling, select Tools | Options | Environment | General.

2. Select a different option from the Visual style drop-down list.

3. Click Apply to see what the new visual style looks like.

4. Click OK.

Change the number of items in the recent projects list
To change the number of items in the recent projects list in the File menu:

1. In Oracle Policy Modeling, select Tools | Options | Environment | General.

2. Change the number in theDisplay field to the number of items you want displayed.

Modify the appearance of rules in Word
High-contrast mode is a Windows feature that chooses colors and fonts to maximize the clarity of text and
images. When using one of the "dark" high-contrast themes, Policy Modeling rule documents in Microsoft Word
become very hard to read.
You can modify the Word template file (*.dotm), however, so that the background colors used for rules are
more readable when used with a Windows high-contrast theme. When you open a rule document, Word will use
your chosen colors, but when another user opens the same document, they will see the default Policy Modeling
colors.
To make this change:

1. Enable "Automatically update document styles" inWord
This is a per-document setting inWord. It is enabled by default for new rule documents in OPM 10.4 Update 6 (or later)
but may have to be changed for files created in a previous version. To change or check the setting for a rule document:

l Word 2007/2010/2013:

o Click the Office Button (or the File tab), selectWord Options, thenAdd-Ins.
o In theManage drop-down, select Templates and then click Go.
o On the Templates tab, select the optionAutomatically update document styles.

l Word 2003:

o In the Toolsmenu, select Templates and Add-Ins.
o On the Templates tab, select the optionAutomatically update document styles.

2. Locate the Word templates used by Oracle Policy Automation
The Microsoft Word templates used by Oracle Policy Automation are located in one of two places:

l C:\Program Files\Oracle\Policy Modeling\Templates, or

l C:\Program Files (x86)\Oracle\Policy Modeling\Templates

Depending on the version of Microsoft Word you have installed, you will have to modify a different template:

l Word 2013 or Word 2010, use the Policy ModelingWord 2010 Template.dotm

l Word 2007, use the Policy ModelingWord 2007 Template.dotm

l Word 2003, use the Policy ModelingWord Template.dot

3. Change the background colors in the Word templates
To do this:

a. Right click the Word template and selectOpen.

b. Open the Styles window:

l For Word 2007/2010/2013, on theHome tab, click the arrow button in the bottom right hand corner
of the Styles group.

l For Word 2003, in the Format menu, select Styles and Formatting.

c. Select theOPM - Level 1 style, click the down-arrow next to the style and selectModify.

d. In theModify Style window, select Format, thenBorder.

e. In the Borders and Shading dialog, select the Shading tab. The Fill color can be changed as follows:

l SelectNo color to make the background color black in a dark high-contrast theme, or white oth-
erwise.

l SelectMore colors, then in the Colors dialog, select the Custom tab to select a darker version of
the same background color (something suitable for the light text color used by most high-contrast
themes).

f. Repeat the above process for the following additional styles:

l OPM – configuration

l OPM – level 2

l OPM – level 3

l OPM – level 4

l OPM – level 5

l OPM – level 6

Accessibility features in Oracle Web Determinations
The default Oracle Web Determinations (OWD) user interface contains a number of accessibility features. (For
more information on OWD, see Deploy an interview to Web Determinations).

Keyboard-only navigation
One of the key aspects of accessibility in OWD is keyboard-only navigation for interviews, without the need to
use a mouse. The primary method of navigation is the Tab key.
Note: if you have made your own modifications to the style sheets used for an OWD interview (see Customize
Oracle Web Determinations), some of the keyboard-only navigation techniques described in this topic may not
work. You will need to perform your own checks to ensure that your style sheet modifications do not com-
promise the accessibility of your application.

General principles
When you first launch an OWD interview, the focus will be on the URL pane of your web browser. Hit the Tab
key to navigate one at a time through the controls and links on the screen. The focus of the cursor will follow a
top-down, left to right order. To navigate in reverse order, use Shift +Tab.
When the cursor focus is on a control you wish to activate or a link you wish to follow, hit the Enter key.

Interview screens with input controls
On interview screens with input controls, after hitting the Tab key once the cursor focus will be on the top-most
input control.

l For text boxes, simply type text into the box once the cursor focus is on it.

l For input controls with pre-defined sets of valid inputs, such as radio buttons and drop-down lists, you can use the right and
left arrows to navigate between the different pre-defined options.

When you are ready to move to the next input contol, hit the Tab key.
When you have completed entering data on an interview screen, move the cursor focus to the Submit button,
then hit the Enter key.

Decision Report screens
On a Decision Report screen (reached by clicking the word 'Why' on the summary screen at the conclusion of an
interview):

l use the Tab key to navigate to tree nodes within the decision report;

l expand a node using the right arrow key; and

l collapse a node using the left arrow key.

Data Review screens
On the Data Review screen (reached by clicking the Data Review link from any OWD screen):

l use the Tab key to navigate to different screens on the list;

l expand a screen (or a group of screens if they are grouped into folders) using the right arrow key;

l collapse screens and screen groups using the left arrow key; and

l to revisit a particular screen, move the cursor focus (using the Tab key) to the screen's name, then hit the Enter key.

Reference
Topics in "Reference"

l Rule syntax reference

l Rule function examples

l File extensions

l Truth tables

l Basic English grammar

l Rule principles for Oracle Policy Modeling

l Text substitution principles

l Value conditions for screen flow connections

l BI Publisher code for Oracle Policy Modeling

l Troubleshooting guide for using BI Publisher with Oracle Policy Modeling

l Seeded data in imported projects

l Keyboard shortcuts for Oracle Policy Modeling

l Formatting of attribute values

l Command line tools

Rule syntax reference
Topics in "Rule syntax reference"

l Function reference (US English)

l Function reference (all languages)

l Structural configuration settings

Logical connectors

Syntax Description

if Optional term that can appear at the end of a conclusion line that has a following proof

and Logical conjunction between two attributes

or Logical disjunction between two attributes

either
one of
any
at least one of the following is
true

Grouping element used with disjunctions where two or more attributes need to be
grouped

Syntax Description

any of the following are satisfied

both
all
all of the following are true
all of the following are satisfied

Grouping element used with conjunctions where two or more attributes need to be
grouped

otherwise Term that appears at the end of a table rule to indicate the otherwise clause

is
Term that is used in a legend entry between the abbreviated phrase and the full attrib-
ute text

Logical functions

Syntax Description

it is not true that <expr> Operator used to return true if attribute has a value which is false

<var> is certain
it is certain whether [or not]<expr>

Operator used to return true if attribute has a value which is not uncer-
tain

<var> is uncertain
<var> is not certain
it is uncertain that <expr>
it is uncertain whether [or not]<expr>
it is not certain that <expr>

Operator used to return true if attribute value is uncertain

<var> is known
<var> is currently known
it is known whether [or not]<expr>
it is currently known whether [or not]<expr>

Operator used to return true if attribute has any value

<var> is [currently] unknown
it is [currently] unknown whether [or
not]<expr>

Operator used to return true if attribute has no value

Logical constants

Syntax Description

true Constant true value used for table rules.

false Constant false value used for table rules.

uncertain Constant uncertain value used for table rules.

Comparison operators

Syntax Description

<x><<y>
<x> is earlier than <y>

Less than
Note: there is no natural language form when this operator is used with numerical and
currency values.

<x> > <y>
<x> is later than <y>

Greater than
Note: there is no natural language form when this operator is used with numerical and
currency values.

<x><=<y>
<x> is less than or equal to
<y>
<x> is on or earlier than <y>
<x> is at or earlier than <y>

Less than or equal to

<x> >= <y>
<x> is greater than or equal
to <y>
<x> is on or later than <y>
<x> is at or later than <y>

Greater than or equal to

<x>=<y>
<x> is equal to <y>
<x> equals <y>

Equals

<x> is not equal to <y>
<x> <> <y>

Not equal

Numerical functions

Syntax Description

Number(<numText>) Convert the specified string into a number value

<x> + <y> Mathematical addition

<x> - <y> Mathematical subtraction

<x> * <y> Mathematical multiplication

<x> / <y> Mathematical division

<x> \ <y> Integer division

<x> modulo <y> Remainder after integer division

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
the greater of <x> and <y>
the latest of <x> and <y>

Returns the greater of two values

Syntax Description

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
the lesser of <x> and <y>
the earliest of <x> and <y>

Returns the lesser of two values

Xy(<x>, <y>)
<x> raised to the power of <y>

x to the power of y

Ex(<x>)
e to the power of <x>

Constant e to the power of x

Abs(<x>)
the absolute value of <x>
|<x>|

Absolute value of x

Ln(<x>)
the natural logarithm of <x>

Natural logarithm of x

Log(<x>)
the logarithm base 10 of <x>

Logarithm base 10 of x

Sqrt(<x>)
the square root of <x>

Square root of x

Round(<x>, <n>)
<x> rounded to <n> decimal place
<x> rounded to <n> decimal places

Rounds x to n decimal places

Trunc(<x>, <n>)
<x> truncated to <n> decimal place
<x> truncated to <n> decimal places

x truncated to n decimal places

Sin(<x>) Sine of x

Cos(<x>) Cosine of x

Tan(<x>) Tangent of x

Asin(<x>) Arcsine of x

Acos(<x>) Arccosine of x

Atan(<x>) Arctangent of x

Date functions

Syntax Description

CurrentDate() Returns the current date at the start of the session.

Syntax Description

the current date

Date(<text>) Converts the specified string into a date value

MakeDate(<year>, <month>,
<day>)

Returns a date formed from the specified year, month, and day.

ExtractDay(<date/datetime>) Returns the day component of a date/datetime attribute.

ExtractMonth(<date/datetime>)
Returns the month component of a date/datetime attribute.

ExtractYear(<date/datetime>) Returns the year component of a date/datetime attribute.

NextDayOfTheWeek(<date/d-
atetime>, <day>)
the next Monday on or after
<from-date>
the Monday on or before
<from-date>
the next Tuesday on or after
<from-date>
the Tuesday on or before
<from-date>
the next Wednesday on or
after <from-date>
the Wednesday on or before
<from-date>
the next Thursday on or after
<from-date>
the Thursday on or before
<from-date>
the next Friday on or after
<from-date>
the Friday on or before <from-
date>
the next Saturday on or after
<from-date>
the Saturday on or before
<from-date>
the next Sunday on or after
<from-date>
the Sunday on or before
<from-date>

Returns the date of the next weekday on or before/after a date (depending on the syntax
used).

NextDate(<date>, <day>, Returns the next instance of the given day andmonth after a date.

Syntax Description

<month>)
the previous UK tax year
start date on or before <from-
date>
the next UK tax year end
date on or after <from-date>

Returns the start date for the previous UK tax year (6 April), relative to date.

Returns the end date for the next UK tax year (5 April), relative to date.

AddDays(<date/datetime>,
<num_days>)
the date <num_days> days
after <datetime>
the date <num_days> days
before <datetime>
the date <num_days> day
after <datetime>
the date <num_days> day
before <datetime>
the time <num_days> days
after <datetime>
the time <num_days> days
before <datetime>
the time <num_days> day
after <datetime>
the time <num_days> day
before <datetime>

Adds/subtracts a number of days to a date. When using the terse syntactic form, the num-
ber must be a positive integer in order to add days to the input date, or a negative number
in order to subtract days from the input date.

AddWeeks(<date/datetime>,
<num_weeks>)
the date <num_weeks> weeks
after <datetime>
the date <num_weeks> weeks
before <datetime>
the date <num_weeks> week
after <datetime>
the date <num_weeks> week
before <datetime>
the time <num_weeks> weeks
after <datetime>
the time <num_weeks> weeks
before <datetime>
the time <num_weeks> week
after <datetime>
the time <num_weeks> week
before <datetime>

Adds a number of weeks to a date. When using the terse syntactic form, the number must
be a positive integer in order to add weeks to the input date.

Syntax Description

AddMonths(<date/datetime>,
<num_months>)
the date <num_months>
months after <datetime>
the date <num_months>
months before <datetime>
the date <num_months>
month after <datetime>
the date <num_months>
month before <datetime>
the time <num_months>
months after <datetime>
the time <num_months>
months before <datetime>
the time <num_months>
month after <datetime>
the time <num_months>
month before <datetime>

Adds a number of months to a date. When using the terse syntactic form, the number must
be a positive integer in order to addmonths to the input date.

AddYears(<date/datetime>,
<num_years>)
the date <num_years> years
after <datetime>
the date <num_years> years
before <datetime>
the date <num_years> year
after <datetime>
the date <num_years> year
before <datetime>
the time <num_years> years
after <datetime>
the time <num_years> years
before <datetime>
the time <num_years> year
after <datetime>
the time <num_years> year
before <datetime>

Adds a number of years to a date. When using the terse syntactic form, the number must
be a positive integer in order to add years to the input date.

WeekdayCount(<date1>,
<date2>)
the number of weekdays
(inclusive) between <date1>
and <date2>

Counts the number of weekdays between date1 and date2. That is, the number of days fall-
ing betweenMonday and Friday.
Note: The earlier date is inclusive and the later date is exclusive.

YearStart(<date/datetime>) Returns the first date in the year in which a date falls.

Syntax Description

the first day of the year in
which <from-date> falls

YearEnd(<date/datetime>)
the last day of the year in
which <from-date> falls

Returns the last date in the year in which a date falls.

DayDifference(<date/d-
atetime1>, <date/datetime2>)
the number of days from
<date/datetime1> to <date/d-
atetime2>

Returns the number of whole days between date/datetime1 and date/datetime2. The order
of the two dates does not affect the result.

DayDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of days (inclus-
ive) from <date/datetime1> to
<date/datetime2>

Returns the number of whole days (inclusive) between date/datetime1 and date/d-
atetime2. This calculation includes both endpoints. Where the dates are the same, the res-
ult is 1. The order of the two dates does not affect the result.

DayDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of days (exclus-
ive) from <date/datetime1> to
<date/datetime2>

Returns the number of whole days (exclusive) between date/datetime1 and date/d-
atetime2. This calculation excludes both endpoints. Where the dates are the same, the res-
ult is 0. The order of the two dates does not affect the result.

WeekDifference(<date/d-
atetime1>, <date/datetime2>)
the number of weeks from
<date/datetime1> to <date/d-
atetime2>

Returns the number of whole elapsed weeks between date/datetime1 and date/datetime2.
The order of the two dates does not affect the result.

WeekDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of weeks (inclus-
ive) from <date/datetime1> to
<date/datetime2>

Returns the inclusive number of whole elapsed weeks between date/datetime1 and date/d-
atetime2. The order of the two dates does not affect the result.

WeekDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of weeks (exclus-
ive) from <date/datetime1> to
<date/datetime2>

Returns the exclusive number of whole elapsed weeks between date/datetime1 and date/d-
atetime2. The order of the two dates does not affect the result.

Syntax Description

MonthDifference(<date/d-
atetime1>, <date/datetime2>)
the number of months from
<date/datetime1> to <date/d-
atetime2>

Returns the number of whole elapsedmonths between date/datetime1 and date/d-
atetime2. The order of the two dates does not affect the result.

MonthDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of months (inclus-
ive) from <date/datetime1> to
<date/datetime2>

Returns the number of whole inclusive elapsedmonths between date/datetime1 and
date/datetime2. The order of the two dates does not affect the result.

MonthDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of months
(exclusive) from <date/d-
atetime1> to <date/datetime2>

Returns the number of whole exclusive elapsedmonths between date/datetime1 and
date/datetime2. The order of the two dates does not affect the result.

YearDifference(<date/d-
atetime1>, <date/datetime2>)
the number of whole years
which <date/datetime2> is
after <date/datetime1>
the number of years between
<date/datetime1> and <date/d-
atetime2>

Returns the number of years between date/datetime1 and date/datetime2. The order of
the two dates does not affect the result.

YearDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of years (inclus-
ive) between <date/datetime1>
and <date/datetime2>

Returns the inclusive number of years between date/datetime1 and date/datetime2. The
order of the two dates does not affect the result.

YearDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of years (exclus-
ive) between <date/datetime1>
and <date/datetime2>

Returns the exclusive number of years between date/datetime1 and date/datetime2. The
order of the two dates does not affect the result.

Time of day functions

Syntax Description

TimeOfDay(<text>) Converts the given string into a time of day

ExtractSecond(<time/datetime>) Returns the second component of a timeofday/datetime attribute.

ExtractMinute(<time/datetime>) Returns the minute component of a timeofday/datetime attribute.

ExtractHour(<time/datetime>) Returns the hour component of a timeofday/datetime attribute.

Date and time functions

Syntax Description

CurrentDateTime()
the current date time

Returns the current date and time at the start of the session.

DateTime(<text>) Converts the specified string into a datetime value

ConcatenateDateTime(<date>,
<time>)
<date> at <time-of-day>
<time-of-day> on <date>

Sets the date time by joining the date and time of day together.

SecondDifference(<datetime1>,
<datetime2>)
SecondDifference
(<timeOfDay1>, <timeOfDay2>)
the number of seconds from
<datetime1> to <datetime2>

Returns the number of seconds between datetime1 and datetime2.

SecondDifferenceInclusive
(<datetime1>, <datetime2>)
SecondDifferenceInclusive
(<timeOfDay1>, <timeOfDay2>)
the number of seconds (inclus-
ive) from <datetime1> to <dat-
etime2>

Returns the inclusive number of seconds between datetime1 and datetime2.

SecondDifferenceExclusive
(<datetime1>, <datetime2>)
SecondDifferenceExclusive
(<timeOfDay1>, <timeOfDay2>)
the number of seconds (exclus-
ive) from <datetime1> to <dat-
etime2>

Returns the exclusive number of seconds between datetime1 and datetime2.

MinuteDifference(<datetime1>,
<datetime2>) Returns the number of minutes between datetime1 and datetime2.

Syntax Description

MinuteDifference
(<timeOfDay1>, <timeOfDay2>)
the number of minutes from
<datetime1> to <datetime2>

MinuteDifferenceInclusive
(<datetime1>, <datetime2>)
MinuteDifferenceInclusive
(<timeOfDay1>, <timeOfDay2>)
the number of minutes (inclus-
ive) from <datetime1> to <dat-
etime2>

Returns the inclusive number of minutes between datetime1 and datetime2.

MinuteDifferenceExclusive
(<datetime1>, <datetime2>)
MinuteDifferenceExclusive
(<timeOfDay1>, <timeOfDay2>)
the number of minutes (exclus-
ive) from <datetime1> to <dat-
etime2>

Returns the exclusive number of minutes between datetime1 and datetime2.

HourDifference(<datetime1>,
<datetime2>)
HourDifference(<timeOfDay1>,
<timeOfDay2>)
the number of hours from <dat-
etime1> to <datetime2>

Returns the number of hours between datetime1 and datetime2.

HourDifferenceInclusive(<dat-
etime1>, <datetime2>)
HourDifferenceInclusive
(<timeOfDay1>, <timeOfDay2>)
the number of hours (inclus-
ive) from <datetime1> to <dat-
etime2>

Returns the inclusive number of hours between datetime1 and datetime2.

HourDifferenceExclusive(<dat-
etime1>, <datetime2>)
HourDifferenceExclusive
(<timeOfDay1>, <timeOfDay2>)
the number of hours (exclus-
ive) from <datetime1> to <dat-
etime2>

Returns the exclusive number of hours between datetime1 and datetime2.

ExtractDate(<datetime>) Extracts the date from a datetime attribute.

ExtractTimeOfDay(<datetime>) Extracts the time of day from a datetime attribute. Can be used to set the value of a

Syntax Description

timeofday attribute to the time the rule is executed by extracting the time from the cur-
rent date and time.

AddHours(<datetime>, <num_
hours>)
AddHours(<timeOfDay>, <num_
hours>)
the time <num_hours> hours
after <datetime>
the time <num_hours> hours
before <datetime>
the time <num_hours> hour
after <datetime>
the time <num_hours> hour
before <datetime>

Adds a number of hours to a date time.

AddMinutes(<datetime>, <num_
minutes>)
AddMinutes(<timeOfDay>,
<num_minutes>)
the time <num_minutes>
minutes after <datetime>
the time <num_minutes>
minutes before <datetime>
the time <num_minutes>
minute after <datetime>
the time <num_minutes>
minute before <datetime>

Adds a number of minutes to a date time.

AddSeconds(<datetime>, <num_
seconds>)
AddSeconds(<timeOfDay>,
<num_seconds>)
the time <num_seconds>
seconds after <datetime>
the time <num_seconds>
seconds before <datetime>
the time <num_seconds>
second after <datetime>
the time <num_seconds>
second before <datetime>

Adds a number of seconds to a date time.

Text functions

Syntax Description

<text1> & <text2>
Combines text1 with text2 and so on to form a single text value.
Note: that you can use variables of any type. Values are formatted using the formatter that is
installed in the rule session.

the concatenation of
<text1> & <text2>

Combines text1 with text2 and so on to form a single text value.
Note: that you can use variables of any type. Values are formatted using the formatter that is
installed in the rule session.

Contains(<text>, <sub-
string>)
<text> contains <sub-
string>

Returns a boolean value indicating whether the given text value contains the given text sub-string.
The text comparison is case-insensitive.

EndsWith(<text>, <sub-
string>)
<text> ends with <sub-
string>

Returns a boolean value indicating whether the given text value ends with the given text sub-string.
The text comparison is case-insensitive.

IsNumber(<text>)
<text> is a number

Returns a boolean value indicating whether the given text value represents a valid number.

Length(<text>)
the length of <text>

Returns the character length of the given text value.

StartsWith(<text>,
<substring>)
<text> starts with
<sub-string>

Returns a boolean value indicating whether the given text value starts with the given text sub-
string. The text comparison is case-insensitive.

Substring(<text>, <off-
set>, <length>)

Returns the substring of text that starts at the given offset, that is the specified length in characters.
Fewer characters are returned if the end of the string is reached.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Convert the specified number or date attribute into a text value.

Entity and relationship functions

Syntax Description

For(<relationship>, <Exp>)
in the case of <relationship>, <attr>
<val>, in the case of <relationship>

Used to refer from one entity to another entity in a "One To One", "Many To One"
or "Many To Many" relationship where there is only one condition.

ForScope(<relationship>, <alias>)
ForScope(<relationship>)

Used to refer from one entity to another entity in a "One To One", "Many To One"
or "Many To Many" relationship where there are one or more conditions.

Syntax Description

in the case of <relationship>
in the case of <relationship> (<alias>)

ForAll(<relationship>, <Exp>)
each of <relationship-attr>
for each of <relationship>, <attr>
for all of <relationship>, <attr>

Used to refer from one entity to another entity in a "One To Many" or "Many To
Many" relationship, when you need to determine whether all members of the tar-
get entity group need to satisfy the rule.
This form is used when there is only one condition in the rule.

ForAllScope(<relationship>)
ForAllScope(<relationship>, <alias>)
for all of <relationship>
each of <relationship>
for each of <relationship>
for all of <relationship> (<alias>)
each of <relationship> (<alias>)
for each of <relationship> (<alias>)

Used to refer from one entity to another entity in a "One To Many" or "Many To
Many" relationship, when you need to determine whether all members of the tar-
get entity group need to satisfy the rule.
This form is used when there are one or more conditions in the rule.

Exists(<relationship>, <Exp>)
at least one of <relationship-attr>
for at least one of <relationship>,
<attr>

Used to refer from one entity to another entity in a "One To Many" or "Many To
Many" relationship, when you need to determine whether any members of the tar-
get entity group need to satisfy the rule.
This form is used when there is only one condition in the rule.

ExistsScope(<relationship>)
ExistsScope(<relationship>, <alias>)
at least one of <relationship>
for at least one of <relationship>
at least one of <relationship> (<alias>)
for at least one of <relationship>
(<alias>)

Used to refer from one entity to another entity in a "One To Many" or "Many To
Many" relationship, when you need to determine whether any members of the tar-
get entity group need to satisfy the rule.
This form is used when there are one or more conditions in the rule.

IsMemberOf(<target>, <relationship>)
IsMemberOf(<target>, <alias>, <rela-
tionship>)
<ent-target> is a member of <rela-
tionship>
<ent-target> (<alias>) is a member of
<relationship>

Used as a conclusion to infer that an entity instance is a member of a relationship.
Used as a condition to test that an entity instance is a target of a relationship for
which a second entity instance is the source.

IsNotMemberOf(<target>, <rela-
tionship>)
<ent-target> is not a member of <rela-
tionship>

Used as a condition to test that an entity instance is not a target of a relationship
for which a second entity instance is the source.

InstanceCount(<relationship>)
the number of <relationship>

Counts the number of instances that exist for an entity.

InstanceCountIf(<relationship>, Counts the number of instances there are of an entity for which a particular entity-

Syntax Description

<Exp>)
the number of <relationship> for
which it is the case that <condition>

level attribute has a particular value.

InstanceMaximum(<relationship>,
<number-attr>)
InstanceMaximum(<relationship>,
<date-attr>)
InstanceMaximum(<relationship>,
<datetime-attr>)
InstanceMaximum(<relationship>,
<time-attr>)
<date-attr> which is the latest for all
[of]<relationship>
<max-attr> which is the greatest for
all [of]<relationship>
the latest of all <relationship-attr>
the latest of all <attr> for <rela-
tionship>
the greatest of [all]<relationship-attr>
the greatest of [all]<attr> for [all]
[of]<relationship>

Obtains the highest/most recent value of an entity-level variable for all instances
of the entity.

InstanceMaximumIf(<relationship>,
<number-attr>, <condition>)
InstanceMaximumIf(<relationship>,
<date-attr>, <condition>)
InstanceMaximumIf(<relationship>,
<datetime-attr>, <condition>)
InstanceMaximumIf(<relationship>,
<time-attr>, <condition>)
<date-attr> which is the latest for all
[of]<relationship> for which it is the
case that <ent-test>
<max-attr> which is the greatest for
all [of]<relationship> for which it is
the case that <ent-test>
the latest of all <relationship-attr> for
which it is the case that <ent-test>
the greatest of all <relationship-attr>
for which it is the case that <ent-
test>
the greatest of <attr> for all [of]<rela-
tionship> for which it is the case that
<ent-test>

Obtains the highest/most recent value of an entity-level variable for all instances
of the entity for which a particular entity-level attribute has a particular value.

Syntax Description

InstanceMinimum(<relationship>,
<number-attr>)
InstanceMinimum(<relationship>,
<date-attr>)
InstanceMinimum(<relationship>, <dat-
etime-attr>)
InstanceMinimum(<relationship>,
<time-attr>)
<date-attr> which is the earliest for
all [of]<relationship>
<attr> which is the least for all
[of]<relationship>
the earliest of all <relationship-attr>
the earliest of all <attr> for <rela-
tionship>
the least of [all]<relationship-attr>
the least of [all]<attr> for [all]
[of]<relationship>

Obtains the lowest/least recent value of an entity-level variable for all instances of
the entity.

InstanceMinimumIf(<relationship>,
<number-attr>, <condition>)
InstanceMinimumIf(<relationship>,
<date-attr>, <condition>)
InstanceMinimumIf(<relationship>,
<datetime-attr>, <condition>)
InstanceMinimumIf(<relationship>,
<time-attr>, <condition>)
<date-attr> which is the earliest for
all [of]<relationship> for which it is
the case that <ent-test>
<num-attr> which is the least for all
[of]<relationship> for which it is the
case that <ent-test>
the least of all <relationship-attr> for
which it is the case that <ent-test>
the least of all <attr> for <rela-
tionship> for which it is the case that
<ent-test>
the earliest of all <attr> for <rela-
tionship> for which it is the case that
<ent-test>

Obtains the lowest/least recent value of an entity-level variable for all instances of
the entity for which a particular entity-level attribute has a particular value.

InstanceSum(<relationship>, <number-
attr>)
<num-attr>(totaled | totalled) for all

Obtains the sum of all instances of an entity-level variable.

Syntax Description

[of]<relationship>
the total amount of [all]<relationship-
attr>
the total for all <relationship-attr>
total for all <relationship>, <attr>

InstanceSumIf(<relationship>, <num-
ber-attr>, <condition>)
<num-attr> totalled for all [of]<rela-
tionship> for which it is the case that
<ent-test>
<num-attr> totaled for all [of]<rela-
tionship> for which it is the case that
<ent-test>
the total amount of all <relationship-
attr> only where <condition>
the total amount of [all]<relationship-
attr> for which it is the case that
<condition>
total for all <relationship>, <attr> only
where <condition>

Obtains the sum of all instances of an entity-level variable for which it is true of the
entity that a specific entity-level Boolean attribute is true.

InstanceValueIf(<relationship>, <num-
ber-attr>, <condition>)
InstanceValueIf(<relationship>, <text-
attr>, <condition>)
InstanceValueIf(<relationship>, <date-
attr>, <condition>)
InstanceValueIf(<relationship>, <dat-
etime-attr>, <condition>)
InstanceValueIf(<relationship>, <time-
attr>, <condition>)

Obtains a value from a unique entity instance, identified from the target entity
instances of a relationship by a condition.

l If the condition identifies a single target entity instance, then the value is
the value calculated against that entity instance.

l If more than one target instance meets the condition, then Uncertain is
returned.

l If no target instances meet the condition and the relationship is known the
value is Uncertain.

InstanceEquals(<instance1>,
<instance2>)
<ent-target> is <ent-target>

Determines if two instances of an entity are the same instance.

InstanceNotEquals(<instance1>,
<instance2>)
<ent-target> is not <ent-target>

Determines if two instances of an entity are not the same instance.

InferInstance(<relationship>, <iden-
tity>)
<rel>(<identity>) exists

Used as a conclusion to infer that an entity instance exists and is a member of a
relationship.

Temporal reasoning functions

Syntax Description

IntervalCountDistinct
(<start-date>, <end-date>,
<variable>)
IntervalCountDistinct
(<start-date>, <end-date>,
<condition>)

Counts the number of known distinct values for the variable, in the interval from the start date
(inclusive) to the end date (exclusive).

IntervalCountDistinctIf
(<start-date>, <end-date>,
<variable>, <condition>)

Counts the number of known distinct values for the variable, in the interval from the start date
(inclusive) to the end date (exclusive), only including times when a boolean filter is true.

IntervalDailySum(<start-
date>, <end-date>, <number-
attr>)

Calculates the sum of a currency or number variable, in the interval from the start date (inclus-
ive) to end date (exclusive). The attribute is assumed to be a daily quantity.

IntervalDailySumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)

Calculates the sum of all the daily values for a currency or number variable, in the interval
from a start date (inclusive) to an end date (exclusive), only including times when a condition
is true.

IntervalMaximum(<start-
date>, <end-date>, <number-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <date-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <time-
attr>)

Selects the maximum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive).

IntervalMaximumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Selects the maximum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive), only including times when a condition is true.

IntervalMinimum(<start- Selects the minimum value of a variable in the interval from a start date (inclusive) to an end

Syntax Description

date>, <end-date>, <number-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <date-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <time-
attr>)

date (exclusive).

IntervalMinimumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Selects the minimum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive), only including times when a condition is true.

IntervalWeightedAverage
(<start-date>, <end-date>,
<number-attribute>)

Calculates the average value of a currency or number variable in the interval from a start date
(inclusive) to an end date (exclusive) weighted by the time span to which each value applies.

IntervalWeightedAverageIf
(<start-date>, <end-date>,
<number-attribute>, <con-
dition>)

Calculates the average value of a currency or number variable in the interval from a start date
(inclusive) to an end date (exclusive), only including times when a boolean condition is true
(weighted by the time span to which each value applies and where the filter is true).

IntervalAlways(<start-
date>, <end-date>, <con-
dition>)

Returns true if and only if a boolean condition is true at all times in the interval from the start
date (inclusive) to the end date (exclusive).

IntervalAtLeastDays(<start-
date>, <end-date>,
<NumDays>, <condition>)

Returns true if and only if a boolean condition is true for at least the specified number of days
(not necessarily consecutive) in the interval from the start date (inclusive) to the end date
(exclusive).

IntervalConsecutiveDays
(<start-date>, <end-date>,
<NumDays>, <condition>)

Returns true if and only if a boolean condition is true for at least a given number of consecutive
days in the interval from the start date (inclusive) to the end date (exclusive).

IntervalSometimes(<start- Returns true if and only if a boolean condition is ever true in the interval from the start date

Syntax Description

date>, <end-date>, <con-
dition>)

(inclusive) to the end date (exclusive).

ValueAt(<date>, <value>) Returns the value of the given attribute at the specified date.

WhenLast(<date>, <con-
dition>)

Returns the date on which a boolean condition was last true, looking backwards from (and
including) a specified date.

WhenNext(<date>, <con-
dition>)

Returns the date on which a boolean condition will next be true, looking forwards from (and
including) a specified date.

Latest()
Returns a date value equivalent to the latest possible date - namely a date guaranteed to be
later than any other date that a date attribute may take or an expressionmay evaluate to.

Earliest()
Returns a date value equivalent to the earliest possible date - namely a date guaranteed to be
earlier than any other date that a date attribute may take or an expressionmay evaluate to.

TemporalDaysSince(<date>,
<end-date>)

Returns a number variable that varies every day and is the number of full days since the date.

TemporalWeeksSince
(<date>, <end-date>)

Returns a number variable that varies every week and is the number of full weeks since the
date.

TemporalMonthsSince
(<date>, <end-date>)

Returns a number variable that varies every month and is the number of full months since the
date. Note: Where the supplied date is after the 28th day of the month, and a subsequent
month has fewer days than the supplied month, the change point for the anniversary month
will be created on the last day of that month. For example, if the supplied date is 28, 29, 30 or
31 January 2007, the first change point will be 28 February 2007.

TemporalYearsSince
(<date>, <end-date>)

Returns a number variable that varies every year and is the number of full years since the
date.

TemporalAlwaysDays
(<days>, <condition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean condition
is true for all of a given number of preceding days, not including the current day.

TemporalConsecutiveDays
(<minDays>, <days>, <con-
dition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean condition
is true for at least a minimum number of consecutive days at any time within the preceding set
number of days, not including the current day.

TemporalSometimesDays
(<days>, <condition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean condition
is ever true within a specified number of preceding days, not including the current day.

TemporalAfter(<date>)
Returns a boolean attribute that varies over time and is true after a date and false on and
before.

TemporalBefore(<date>)
Returns a boolean attribute that varies over time and is true before a date and false on and
afterwards.

TemporalOn(<date>)
Returns a boolean attribute that varies over time and is true on a date and false before and
afterwards.

Syntax Description

TemporalOnOrAfter
(<date>)

Returns a boolean attribute that varies over time and is true on or after a date and false
before.

TemporalOnOrBefore
(<date>)

Returns a boolean attribute that varies over time and is true on and before a date and false
afterwards.

TemporalFromStartDate
(<relationship>, <date>,
<value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a value
attribute on the entities, with values that take effect from a start date attribute.

TemporalFromEndDate
(<relationship>, <date>,
<value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a value
attribute on the entities, with values that take effect up until an end date attribute.

TemporalFromRange(<rela-
tionship>, <start-date>, <end-
date>, <Value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a value
attribute on the entities, with values that takes effect from a start date attribute (inclusive)
until and end date attribute (exclusive). The value is uncertain if it expires before the next
start date.

TemporalIsWeekday
(<startdate>, <enddate>)

Returns true on dates that are weekdays and false on dates that are weekends from the spe-
cified start date (inclusive) to the end date (exclusive). Returns uncertain outside of the date
range.

TemporalOncePerMonth
(<startdate>, <enddate>,
<dayofmonth>)

Returns true if the day is equal to the day-of-month parameter and false on all other days of
the month from the specified start date (inclusive) to the end date (exclusive). Returns uncer-
tain outside of the date range. When the day-of-month exceeds the number of days in the cur-
rent month, the value is true on the last day of that month, so that the function returns a value
that is true exactly one day per month.

Validation event functions

Syntax Description

Error
(<text>)

An error event is used to pass a message to the user, and prevent them from continuing an investigation until the
condition which triggered that error no longer applies.

Warning
(<text>)

A warning event is used to pass a message to the user, but permits them to continue despite the condition which
triggered that warning.

Deprecated functions

Syntax Description

CallCustomFunction
(<A>,)

Returns the result of an external call to a code library. The code library must be provided to the determ-
inations engine for the custom function call to succeed.

Localized function references (all languages)
The Oracle Policy Modeling Function Reference has been localized for the languages listed below. Click on the
appropriate link to proceed to a copy of the Function Reference for that language:

Language Locale Code Parser Type

Arabic (Saudi Arabia) ar-SA Syntactic

Brazilian pt-BR Syntactic

Chinese (Simplified) zh-CN Syntactic

Chinese (Traditional) zh-HK Syntactic

Czech cs-CZ Non-syntactic

Danish da-DK Syntactic

Dutch nl-NL Syntactic

English (Great Britain) en-GB Syntactic

English (United States) en-US Syntactic

Finnish fi-FI Syntactic

French (France) fr-FR Syntactic

German (Germany) de-DE Syntactic

Hebrew he-IL Syntactic

Italian it-IT Syntactic

Japanese ja-JP Syntactic

Korean ko-KR Syntactic

Norwegian (Bokmål) nb-NO Non-syntactic

Polish pl-PL Non-syntactic

Portuguese (Portugal) pt-PT Syntactic

Russian ru-RU Syntactic

Spanish (Modern) es-ES Syntactic

Swedish sv-SE Syntactic

Thai th-TH Non-syntactic

Turkish tr-TR Syntactic

روابط المنطقيةال (English)

الصياغة الوصف

إذا
اذا

تالٍبرهانلهاستنتاجسطرنهايةفييظهرقداختياريشرط

و منقيمتينبينالمنطقيالربط attributes

أو
او

مناثنتينبينمنطقيربطإلغاءأداة attributes

الصياغة الوصف

الامريناحد
إما

منواحد
أي

صحيحيليمماالأقلعلىواحد
راضٍيليمماأيٍ

قيمتيتجميعيلزمعندماالربط،إلغاءأدواتمعمسُتخدمتجميععنصر attributes أكثرأو

معاالاثنان
كل

منكلٌ
الكل

صحيحيليماجميع
راضٍيليماجميع

قيمتيتجميعيلزمعندماالربط،أدواتمعمسُتخدمتجميععنصر attributes أكثرأو

ذلكغير ذلك'غيرعبارةإلىللإشارةجدولقاعدةنهايةفييظهرشرط '

عنعبارة والمختصرةالعبارةبينإيضاحوسيلةإدخالفييسُتخدمشرط attribute text الكامل

ل المنطقيةالدوا (English)

الصياغة الوصف

أنالصحيحغيرمن <expr> قيمةكانتإذاصحيحالقيمةلإرجاعيسُتخدممعامل attribute خطأهي

<var> مؤكد
إذاماالمؤكدمن <expr>

قيمةكانتإذاصحيحالقيمةلإرجاعيسُتخدممعامل attribute تساويلا uncertain

<var> مؤكدغير
أنالمؤكدغيرمن <expr>
إذاماالمؤكدغيرمن <expr>

أنالمؤكدغيرمن <expr>
مؤكدغير

قيمةكانتإذاصحيحالقيمةلإرجاعيسُتخدممعامل attributeتساوي uncertain

<var> معروف
إذاماالمعروفمن <expr>

للسمةقيمةأيةهناككانإذاصحيحالقيمةلإرجاعيسُتخدممعامل attribute

<var> معروفغير
إذاماالمعروفغيرمن <expr>

معروفغير
كانتإذاصحيحالقيمةلإرجاعيسُتخدممعامل attribute قيمةأيةبدون .

ت المنطقيةالثواب (English)

الصياغة الوصف

صحيح الجدوللقواعدالمستخدمةصحيحالثابتقيمة .

خطأ الجدوللقواعدالمستخدمةخطأالثابتقيمة .

الصياغة الوصف

مؤكدغير الثابتقيمة uncertain الجدوللقواعدالمستخدمة .

ت لا رنةمعام المقا (English)

الصياغة الوصف

<x><<y>
منأقل

العملاتوقيمالرقميةالقيممعالمعاملهذااستخداميتمعندماطبيعيةلغةنموذجيوجدلاملحوظة: .

<x> > <y>
منأكبر

العملاتوقيمالرقميةالقيممعالمعاملهذااستخداميتمعندماطبيعيةلغةنموذجيوجدلاملحوظة: .

<x><=<y> يساويأومنأقل

<x> >= <y> يساويأومنأكبر

<x>=<y> يساوي

<x> <> <y> يساويلا

ل رقميةالدوا ال (English)

الصياغة الوصف

(<numText>)عدد رقميةقيمةإلىالمحددةالسلسلةتحويل

<x> + <y> الرياضياتفيالجمعوظيفة

<x> - <y> الرياضياتفيالطرحوظيفة

<x> * <y> الرياضياتفيالضربوظيفة

<x> / <y> الرياضياتفيالقسمةوظيفة

<x> \ <y> صحيحعددقسمة

<x> modulo <y> الصحيحالعددقسمةبعدالمتبقي

الأقصىالحد (<x>, <y>)
الأقصىالحد (<date/time/datetime1>, <date/time/datetime2>)

قيمتينمنالأكبرالقيمةإرجاع

الأدنىالحد (<x>, <y>)
الأدنىالحد (<date/time/datetime1>, <date/time/datetime2>)

قيمتينمنالأقلالقيمةإرجاع

Xy(<x>, <y>) x قوةإلىمرفوعة y

Ex(<x>) الثابتقيمة e قوةإلىمرفوعة X

المطلقةالقيمة (<x>)
|<val>|

لـالمطلقةالقيمة x

الصياغة الوصف

طبيعيلوغاريتم (<x>) لـالطبيعياللوغاريتم x

(<x>)لوغاريتم لـ10اللوغاريتميةالقاعدة x

تربيعيجذر (<x>) لـالتربيعيالجذر x

,<x>)تقريب <n>) تقريب x إلى n العشريةالخاناتمن

,<x>)اقتطاع <n>) قيمة x إلىمقتطعة n العشريةالخاناتمن

الزاويةجيب (<x>) لـالزاويةجيب x

التمامجيب (<x>) تمامجيب x

الزاويةظل (<x>) لـزاويةظل x

الجيبلدالةالعكسيةالدالة (<x>) جيبلدالةالعكسيةالدالة x

التماملجيبالعكسيةالدالة (<x>) تماملجيبالعكسيةالدالة x

الظللدالةالعكسيةالدالة (<x>) ظللدالةالعكسيةالدالة x

ل ريخدوا التا (English)

الصياغة الوصف

الحاليالتاريخ () إرجاع date الجلسةبدءعندالحالي .

(<text>)التاريخ قيمةإلىالمحددةالسلسلةتحويل date

تاريختكوين (<year>,
<month>, <day>)

إرجاع date المحددينواليوموالشهرالسنةمنمكون .

اليوماستخراج (<date/d-
atetime>)

مناليوممكونإرجاع date/datetime attribute.

الشهراستخراج (<date/d-
atetime>)

منالشهرمكونإرجاع date/datetime attribute.

السنةاستخراج (<date/d-
atetime>)

منالسنةمكونإرجاع date/datetime attribute.

الأسبوعمنالتالياليوم
(<date/datetime>, <day>)

إرجاع date فيالتاليالأسبوعيوم date المستخدمةالصياغةأساس(علىقبله/بعدهأو).

التاليالتاريخ (<date>,
<day>, <month>)

بعدالمدخلوالشهرلليومالتاليالمثيلإرجاع date.

أيامإضافة (<date/d-
atetime>, <num_days>)

إلى/منالأياممنعددإضافة/طرح date. العدديكونأنيجبمختصر،لغوينموذجاستخدامحالةفي
قيمةإلىالأيامإضافةتتمحتىموجبصحيحعددعنعبارة date طرحيتملكيسالبعددأوالمدخلة

قيمةمنالأيام date .المدخلة

الصياغة الوصف

أسابيعإضافة (<date/d-
atetime>, <num_weeks>)

إلىالأسابيعمنعددإضافة date. عنعبارةالرقميكونأنيجبمختصر،لغوينموذجاستخدامحالةفي
قيمةإلىالأسابيعإضافةتتمحتىموجبصحيحعدد date .المدخلة

شهورإضافة (<date/d-
atetime>, <num_months>)

إلىالشهورمنعددإضافة date. عنعبارةالرقميكونأنيجبمختصر،لغوينموذجاستخدامحالةفي
قيمةإلىالشهورإضافةتتمحتىموجبصحيحعدد date .المدخلة

سنواتإضافة (<date/d-
atetime>, <num_years>)

إلىالسنواتمنعددإضافة date. عنعبارةالرقميكونأنيجبمختصر،لغوينموذجاستخدامحالةفي
قيمةإلىالسنواتإضافةتتمحتىموجبصحيحعدد date .المدخلة

الأسبوعأيامعدد
(<date1>, <date2>)

بينالأسبوعأيامعددحساب date1 date2و والجمعة.الاثنينيوميبينالواقعالأيامعددأي؛
السابقالتاريخملاحظة: date اللاحقوالتاريخمضُمن date .مستبعد

العامبداية (<date/d-
atetime>)

قيمةأولإرجاع date قيمةفيهاتقعالسنةمن date.

العامنهاية (<date/d-
atetime>)

قيمةآخرإرجاع date قيمةفيهاتقعالسنةمن date.

بالأيامالفرق (<date/d-
atetime1>, <date/d-
atetime2>)

بينالكاملةالأيامعددإرجاع date/datetime1 .date/datetime2و علىالتاريخينترتيبيؤثرلا
.النتيجة

تضمينبالأيام-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالكاملةالأيامعددإرجاع date/datetime1 date/datetime2و (التاريخين).هذينذلكفيبما
ترتيبيؤثرلا.1النتيجةتكونمتماثلتين،التاريخقيمتاكانتإذاالاحتساب.فيالنهايةنقطتيتضمينيتم

النتيجةعلىالتاريخين .

استثناءبالأيام-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالكاملةالأيامعددإرجاع date/datetime1 date/datetime2و (التاريخين).هذيناستبعادمع
لاصفر.هيالنتيجةتكونمتماثلتين،التاريخقيمتاكانتإذاالاحتساب.منالنهايةنقطتياستبعاديتم

النتيجةعلىالتواريخترتيبيؤثر .

بالأسابيعالفرق (<date/d-
atetime1>, <date/d-
atetime2>)

بينالمنقضيةالأسابيعكلعددإرجاع date/datetime1 .date/datetime2و التاريخينترتيبيؤثرلا
النتيجةعلى .

تضمينبالأسابيع-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالمنقضيةالأسابيعكلعددإرجاع date/datetime1 date/datetime2و (هذينذلكفيبما
النتيجةعلىالتاريخينترتيبيؤثرلاالتاريخين). .

استثناءبالأسابيع-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالمنقضيةالأسابيعكلعددإرجاع date/datetime1 date/datetime2و (هذيناستبعادمع
النتيجةعلىالتاريخينترتيبيؤثرلاالتاريخين). .

بالشهورالفرق (<date/d-
atetime1>, <date/d-
atetime2>)

بينالمنقضيةالشهوركلعددإرجاع date/datetime1 .date/datetime2و التاريخينترتيبيؤثرلا
الناتجعلى .

تضمينبالشهور-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالمنقضيةالشهوركلعددإرجاع date/datetime1 date/datetime2و (هذينذلكفيبما
النتيجةعلىالتاريخينترتيبيؤثرلاالتاريخين). .

الصياغة الوصف

استثناءبالشهور-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالمنقضيةالشهوركلعددإرجاع date/datetime1 date/datetime2و (هذيناستبعادمع
الناتجعلىالتاريخينترتيبيؤثرلاالتاريخين). .

بالسنواتالفرق (<date/d-
atetime1>, <date/d-
atetime2>)

بينالسنواتعددإرجاع date/datetime1 .date/datetime2و علىالتاريخقيمتيترتيبيؤثرلا
.النتيجة

تضمينبالسنوات-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالسنواتعددإرجاع date/datetime1 date/datetime2و (يؤثرلاالتاريخين).هذينذلكفيبما
النتيجةعلىالتاريخقيمتيترتيب .

استثناءبالسنوات-الفرق
(<date/datetime1>,
<date/datetime2>)

بينالسنواتعددإرجاع date/datetime1 date/datetime2و (يؤثرلاالتاريخين).هذيناستبعادمع
النتيجةعلىالتاريخقيمتيترتيب .

ل تدوا اليوممنالوق (English)

الصياغة الوصف

اليوممنالوقت (<text>) اليوممنوقتإلىالمحددةالسلسلةتحويل

الثانيةاستخراج (<time/datetime>) منالثانيةمكونإرجاع timeofday/datetime attribute.

الدقيقةاستخراج (<time/datetime>) منالدقيقةمكونإرجاع timeofday/datetime attribute.

الساعةاستخراج (<time/datetime>) منالساعةمكونإرجاع timeofday/datetime attribute.

ل ريخدوا تالتا والوق (English)

الصياغة الوصف

الحاليالتاريخ/الوقت () إرجاع date الجلسةبدءعندالحاليينوالوقت .

(<text>)التاريخ/الوقت قيمةإلىالمحددةالسلسلةتحويل datetime

والوقتالتاريخربط
(<date>, <time>)

وقتإعداد date بربط date معًااليوممنوالوقت .

بالثوانيالفرق (<dat-
etime1>, <datetime2>)

بالثوانيالفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالثوانيعددإرجاع datetime1 .datetime2و

تضمينبالثواني-الفرق
(<datetime1>, بينالدقائقعددإرجاع datetime1 datetime2و القيمتينعلىيشتملبما .

الصياغة الوصف

<datetime2>)
تضمينبالثواني-الفرق

(<timeOfDay1>,
<timeOfDay2>)

استثناءبالثواني-الفرق
(<datetime1>,
<datetime2>)

استثناءبالثواني-الفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالثوانيعددإرجاع datetime1 datetime2و القيمتيناستبعادمع .

بالدقائقالفرق (<dat-
etime1>, <datetime2>)

بالدقائقالفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالدقائقعددإرجاع datetime1 .datetime2و

تضمينبالدقائق-الفرق
(<datetime1>,
<datetime2>)

تضمينبالدقائق-الفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالدقائقعددإرجاع datetime1 datetime2و القيمتينعلىيشتملبما .

استثناءبالدقائق-الفرق
(<datetime1>,
<datetime2>)

استثناءبالدقائق-الفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالدقائقعددإرجاع datetime1 datetime2و القيمتيناستبعادمع .

بالساعاتالفرق (<dat-
etime1>, <datetime2>)

بالساعاتالفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالساعاتعددإرجاع datetime1 .datetime2و

تضمينبالساعات-الفرق
(<datetime1>,
<datetime2>)

تضمينبالساعات-الفرق
(<timeOfDay1>,
<timeOfDay2>)

بينالساعاتعددإرجاع datetime1 datetime2و القيمتينعلىيشتملبما .

استثناءبالساعات-الفرق
(<datetime1>, بينالساعاتعددإرجاع datetime1 datetime2و القيمتيناستبعادمع .

الصياغة الوصف

<datetime2>)
استثناءبالساعات-الفرق

(<timeOfDay1>,
<timeOfDay2>)

التاريخاستخراج (<dat-
etime>)

استخراج date من datetime attribute.

اليوممنالوقتاستخراج
(<datetime>)

مناليوممنالوقتاستخراج datetime attribute. قيمةلإعدادالدالةهذهاستخداميمكن timeof-
day attribute والوقتمنالوقتاستخراجطريقعنالقاعدة،تنفيذفيهيتمالذيالوقتعلى date
.الحاليين

ساعاتإضافة (<datetime>,
<num_hours>)

ساعاتإضافة
(<timeOfDay>, <num_
hours>)

وقتإلىالساعاتمنعددإضافة date.

دقائقإضافة (<datetime>,
<num_minutes>)

دقائقإضافة
(<timeOfDay>, <num_
minutes>)

وقتإلىالدقائقمنعددإضافة date.

ثوانٍإضافة (<datetime>,
<num_seconds>)

ثوانٍإضافة (<timeOfDay>,
<num_seconds>)

وقتإلىالثوانيمنعددإضافة date.

ل النصدوا (English)

الصياغة الوصف

<text1> & <text2>
القيمةجمع text1 والقيمة text2 قيمةلتكوين text مفردة.

فيالمثبتةالصياغةأداةباستخدامالقيمصياغةتتمالمتغيرات.مننوعأياستخداميمكنملاحظة:
القاعدةجلسة .

القيمةجمع text1 والقيمة text2 قيمةلتكوين text مفردة.
فيالمثبتةالصياغةأداةباستخدامالقيمصياغةتتمالمتغيرات.مننوعأياستخداميمكنملاحظة:

القاعدةجلسة .

علىتحتوي (<text>, <sub-
string>)

قيمةكانتإذاماإلىتشيرمنطقيةقيمةإرجاع text سلسلةعلىتحتويالمحددة text الفرعية
مقارنةلا.أمالمحددة text الأحرفلحالةحساسةغير .

بـتنتهي (<text>, <sub-
string>)

قيمةكانتإذاماإلىتشيرمنطقيةقيمةإرجاع text بسلسلةتنتهيالمحددة text المحددةالفرعية
مقارنةلا.أم text الأحرفلحالةحساسةغير .

الصياغة الوصف

(<text>)عدد قيمةكانتإذاماإلىتشيرمنطقيةقيمةإرجاع text صالحًاعدداًتمثلالمحددة .

(<text>)الطول لقيمةالأحرفطولإرجاع text .المحددة

بـتبدأ (<text>, <substring>)
قيمةكانتإذاماإلىتشيرمنطقيةقيمةإرجاع text بسلسلةتبدأالمحددة text أمالمحددةالفرعية

مقارنةلا. text الأحرفلحالةحساسةغير .

فرعيةسلسلة (<text>, <off-
set>, <length>)

سلسلةإرجاع text يتمبالحروف.المحددالطولتمثلوالتيالمحددة،الإزاحةعندتبدأالتيالفرعية
السلسلةنهايةإلىالوصولتمإذاأقلحروفإرجاع .

(<number>)نص
(<date>)نص
(<datetime>)نص
(<timeOfDay>)نص

أوالمحددالعددتحويل date attribute قيمةإلى text.

ل لاقةالكياندوا والع (English)

الصياغة الوصف

,<relationship>)لـ <Exp>)
منللإشارةيسُتخدم entityإلى entity فيآخر relationship أوواحد"إلى"واحدبالنوع

فقطواحدشرطوجودحالةفيمتعدد"،إلى"متعددأوواحد"إلى"متعدد .

,<relationship>)للمجال <alias>)
(<relationship>)للمجال

منللإشارةيسُتخدم entityإلى entity فيآخر relationship أوواحد"إلى"واحدبالنوع
أكثرأوواحدشرطوجودحالةفيمتعدد"،إلى"متعددأوواحد"إلى"متعدد .

,<relationship>)للكل <Exp>)

منللإشارةيسُتخدم entityإلى entity فيآخر relationship أومتعدد"إلى"واحدبالنوع
مجموعةفيالأعضاءكلاستيفاءيجبكانإذامالتحديدالحاجةعندمتعدد"،إلى"متعدد entity

للقاعدة.الهدف
القاعدةفيفقطواحدشرطوجودحالةفيالنموذجهذايسُتخدم .

ككلللمجال (<relationship>)
ككلللمجال (<relationship>,

<alias>)

منللإشارةيسُتخدم entityإلى entity فيآخر relationship أومتعدد"إلى"واحدبالنوع
مجموعةفيالأعضاءكلاستيفاءيجبكانإذامالتحديدالحاجةعندمتعدد"،إلى"متعدد entity

للقاعدة.الهدف
القاعدةفيأكثرأوواحدشرطوجودحالةفيالنموذجهذايسُتخدم .

,<relationship>)موجود <Exp>)

منللإشارةيسُتخدم entityإلى entity فيآخر relationship أومتعدد"إلى"واحدبالنوع
مجموعةفيأعضاءأياستيفاءيجبكانإذامالتحديدالحاجةعندمتعدد"،إلى"متعدد entity

للقاعدة.الهدف
القاعدةفيفقطواحدشرطوجودحالةفيالنموذجهذايسُتخدم .

الموجودالمجال (<relationship>)
الموجودالمجال (<relationship>,

<alias>)

منللإشارةيسُتخدم entityإلى entity فيآخر relationship أومتعدد"إلى"واحدبالنوع
مجموعةفيأعضاءأياستيفاءيجبكانإذامالتحديدالحاجةعندمتعدد"،إلى"متعدد entity

للقاعدة.الهدف
القاعدةفيأكثرأوواحدشرطوجودحالةفيالنموذجهذايسُتخدم .

فيعضو (<target>, <rela-
tionship>)

فيعضو (<target>, <alias>,

مثيلأنإلىللإشارةكاستنتاجتسُتخدم entity أعضاءأحدهو relationship. كشرطتسُتخدم
مثيلأنمنللتأكد entity للعلاقةهدفهو relationship مثيلحيث entity المصدرهوالثاني .

الصياغة الوصف

<relationship>)

فيعضواًليس (<target>, <rela-
tionship>)

مثيلكانإذامالاختباركشرطتسُتخدم entity للعلاقةهدفًاليس relationship مثيلحيث
entity المصدرهوالثاني .

المثيلاتعدد (<relationship>) للكيانالموجودةالمثيلاتعددحساب entity.

إذاالمثيلاتعدد (<relationship>,
<Exp>)

لكيانالموجودةالمثيلاتعددحساب entity سمةلهالمخصص entity-level attribute معينة
محددةبقيمة .

للمثيلالأقصىالحد (<rela-
tionship>, <number-attr>)

للمثيلالأقصىالحد (<rela-
tionship>, <date-attr>)

للمثيلالأقصىالحد (<rela-
tionship>, <datetime-attr>)

للمثيلالأقصىالحد (<rela-
tionship>, <time-attr>)

لمتغيرقيمةأعلى/أحدثعلىالحصول entity-level مثيلاتلكل entity.

إذاللمثيلالأقصىالحد (<rela-
tionship>, <number-attr>, <con-
dition>)

إذاللمثيلالأقصىالحد (<rela-
tionship>, <date-attr>, <con-
dition>)

إذاللمثيلالأقصىالحد (<rela-
tionship>, <datetime-attr>, <con-
dition>)

إذاللمثيلالأقصىالحد (<rela-
tionship>, <time-attr>, <con-
dition>)

لمتغيرقيمةأعلى/أحدثعلىالحصول entity-level الكيانمثيلاتلكل entity لهالمخصص
سمة entity-level attribute محددةبقيمةمعينة .

للمثيلالأدنىالحد (<rela-
tionship>, <number-attr>)

للمثيلالأدنىالحد (<rela-
tionship>, <date-attr>)

للمثيلالأدنىالحد (<rela-
tionship>, <datetime-attr>)

للمثيلالأدنىالحد (<rela-
tionship>, <time-attr>)

لمتغيرقيمةأقل/أقدمعلىالحصول entity-level مثيلاتلكل entity.

إذاللمثيلالأدنىالحد (<rela-
tionship>, <number-attr>, <con-
dition>)

إذاللمثيلالأدنىالحد (<rela-
tionship>, <date-attr>, <con-

لمتغيرقيمةأقل/أقدمعلىالحصول entity-level الكيانمثيلاتلكل entity سمةلهالمخصص
entity-level attribute محددةبقيمةمعينة .

الصياغة الوصف

dition>)
إذاللمثيلالأدنىالحد (<rela-

tionship>, <datetime-attr>, <con-
dition>)

إذاللمثيلالأدنىالحد (<rela-
tionship>, <time-attr>, <con-
dition>)

المثيلاتمجموع (<relationship>,
<number-attr>)

لمتغيرالمثيلاتكلمجموععلىالحصول entity-level.

إذاالمثيلاتمجموع (<rela-
tionship>, <number-attr>, <con-
dition>)

متغيرمثيلاتكلمجموععلىالحصول entity-level، قيمةفيهاتكونالتي attribute المنطقية
لـ entity-level فيالمحدد entity صحيحبالقيمة .

إذاالمثيلقيمة (<relationship>,
<number-attr>, <condition>)

إذاالمثيلقيمة (<relationship>,
<text-attr>, <condition>)

إذاالمثيلقيمة (<relationship>,
<date-attr>, <condition>)

إذاالمثيلقيمة (<relationship>,
<datetime-attr>, <condition>)

إذاالمثيلقيمة (<relationship>,
<time-attr>, <condition>)

مثيلمنقيمةعلىالحصول entity مثيلاتمنتحديدهايتمفريد، entity لـالهدف rela-
tionship شرطبواسطة .

l مثيليحددالشرطكانإذا entity حسابهايتمالتيالقيمةهيالقيمةتكونواحد،هدف
مثيلمقابل entity.

l إرجاعيتمالشرط،يستوفيواحدهدفمثيلمنأكثرهناككانإذا uncertain.

l قيمةوكانتالشرطتستوفيهدفمثيلاتأيةهناكتكنلمإذا relationship معروفة،
هيالقيمةتكون uncertain.

متساويةمثيلات (<instance1>,
<instance2>)

للكيانمتماثلانمثيلانهناككانإذاماتحديد entity.

متساويةغيرمثيلات
(<instance1>, <instance2>)

للكيانمتماثلتينغيرمثيلانهناككانإذاماتحديد entity.

مثيلاستنتاج (<relationship>,
<identity>)
<rel>(<identity>) موجود

كيانمثيلوجودلإثباتكاستنتاجيسٌتخدم entity أعضاءأحدوأنه relationship.

ل حليليةالدوا المؤقتةالت (English)

الصياغة الوصف

المختلفةالقيمعدد
الزمنيبالفاصل

(<start-date>, <end-
date>, <variable>)

المختلفةالقيمعدد
الزمنيبالفاصل

البدايةتاريخمنالزمنيالفاصلفيللمتغير،المعروفةالمختلفةالقيمعددحساب date (هذاذلكفيبما
النهايةتاريخإلىالتاريخ) date (التاريخهذااستبعادمع).

الصياغة الوصف

(<start-date>, <end-
date>, <condition>)

المختلفةالقيمعدد
إذاالزمنيبالفاصل

(<start-date>, <end-
date>, <variable>,
<condition>)

البدايةتاريخمنالزمنيالفاصلفيللمتغيرالمعروفةالمختلفةالقيمعددحساب date (هذاذلكفيبما
النهايةتاريخإلىالتاريخ) date (عاملفيهايكونالتيالأوقاتتضمينفقطويتمالتاريخ)،هذااستبعادمع

صحيحبالقيمةالمنطقيالتصفية .

اليوميالمجموع
الزمنيللفاصل (<start-

date>, <end-date>,
<number-attr>)

البدايةبينماالزمنيالفاصلفيعملةأورقممتغيرمجموعحساب date (تاريخإلىالتاريخ)هذاذلكفيبما
النهاية date (السمةتكونأنيفترضالتاريخ).هذااستبعادمع attribute يوميةكمية .

اليوميالمجموع
إذاالزمنيللفاصل

(<start-date>, <end-
date>, <number-attr>,
<condition>)

البدايةتاريخمنالزمنيالفاصلفيعملةأورقملمتغيراليوميةالقيمكلمجموعحساب date (ذلكفيبما
النهايةتاريخإلىالتاريخ)هذا date (الشرطفيهايكونالتيالأوقاتتضمينفقطويتمالتاريخ)،هذااستبعادمع

صحيحبالقيمة .

للفاصلالأقصىالحد
,<start-date>)الزمني
<end-date>, <number-
attr>)

للفاصلالأقصىالحد
,<start-date>)الزمني
<end-date>, <date-
attr>)

للفاصلالأقصىالحد
,<start-date>)الزمني
<end-date>, <dat-
etime-attr>)

للفاصلالأقصىالحد
,<start-date>)الزمني
<end-date>, <time-
attr>)

البدايةتاريخمنالزمنيالفاصلفيلمتغيرالأقصىالحدقيمةتحديد date (تاريخإلىالتاريخ)هذاذلكفيبما
النهاية date (التاريخهذااستبعادمع).

للفاصلالأقصىالحد
إذاالزمني (<start-

date>, <end-date>,
<number-attr>, <con-
dition>)

للفاصلالأقصىالحد
إذاالزمني (<start-

date>, <end-date>,

البدايةتاريخمنالزمنيالفاصلفيلمتغيرالأقصىالحدقيمةتحديد date (تاريخإلىالتاريخ)هذاذلكفيبما
النهاية date (صحيحبالقيمةالشرطفيهايكونالتيالأوقاتتضمينفقطويتمالتاريخ)،هذااستبعادمع .

الصياغة الوصف

<date-attr>, <con-
dition>)

للفاصلالأقصىالحد
إذاالزمني (<start-

date>, <end-date>,
<datetime-attr>, <con-
dition>)

للفاصلالأقصىالحد
إذاالزمني (<start-

date>, <end-date>,
<time-attr>, <con-
dition>)

للفاصلالأدنىالحد
,<start-date>)الزمني
<end-date>, <number-
attr>)

للفاصلالأدنىالحد
,<start-date>)الزمني
<end-date>, <date-
attr>)

للفاصلالأدنىالحد
,<start-date>)الزمني
<end-date>, <dat-
etime-attr>)

للفاصلالأدنىالحد
,<start-date>)الزمني
<end-date>, <time-
attr>)

البدايةتاريخمنالزمنيالفاصلفيلمتغيرالأدنىالحدقيمةتحديد date (تاريخإلىالتاريخ)هذاذلكفيبما
النهاية date (التاريخهذااستبعادمع).

للفاصلالأدنىالحد
إذاالزمني (<start-

date>, <end-date>,
<number-attr>, <con-
dition>)

للفاصلالأدنىالحد
إذاالزمني (<start-

date>, <end-date>,
<date-attr>, <con-
dition>)

للفاصلالأدنىالحد
إذاالزمني (<start-

date>, <end-date>,
<datetime-attr>, <con-
dition>)

البدايةتاريخمنالزمنيالفاصلفيلمتغيرالأدنىالحدقيمةتحديد date (تاريخإلىالتاريخ)هذاذلكفيبما
النهاية date (صحيحبالقيمةالشرطفيهايكونالتيالأوقاتتضمينفقطويتمالتاريخ)،هذااستبعادمع .

الصياغة الوصف

للفاصلالأدنىالحد
إذاالزمني (<start-

date>, <end-date>,
<time-attr>, <con-
dition>)

فيالمرجحالمتوسط
الزمنيالفاصل (<start-

date>, <end-date>,
<number-attribute>)

البدايةتاريخمنالزمنيالفاصلفيعملةأورقممتغيرقيمةمتوسطحساب date (التاريخ)هذاذلكفيبما
النهايةتاريخإلى date (القيمتانهاتانعليهاتنطبقالتيالزمنيةبالفترةمقدراًالتاريخ)،هذااستبعادمع .

فيالمرجحالمتوسط
إذاالزمنيالفاصل

(<start-date>, <end-
date>, <number-attrib-
ute>, <condition>)

البدايةتاريخمنالزمنيالفاصلفيعملةأورقممتغيرقيمةمتوسطحساب date (التاريخ)هذاذلكفيبما
النهايةتاريخإلى date (القيمةشرطفيهايكونالتيالأوقاتتضمينفقطويتمالتاريخ)،هذااستبعادمع

وعندماالقيمتينمنقيمةأيةتطبيقيتمالتيالزمنيةالفترةخلالمنتقديره(ويتمصحيحبالقيمةالمنطقية
صحيحبالقيمةالتصفيةعامليكون).

الزمنيبالفاصلدائمًا
(<start-date>, <end-
date>, <condition>)

بينماالزمنيالفاصلفيالأوقاتكلفي'صحيح'المنطقيةالقيمةشرطكانإذافقطصحيحالقيمةإرجاع
البداية date (والنهايةالتاريخ)هذاذلكفيبما date (التاريخهذااستبعادمع).

علىالمحددةالأيام
الزمنيبالفاصلالأقل

(<start-date>, <end-
date>, <NumDays>,
<condition>)

بالضرورة(ليسالمحددالأياملعددالأقلعلى'صحيح'المنطقيةالقيمةشرطكانإذافقطصحيحالقيمةإرجاع
البدايةتاريخمنالزمنيالفاصلفيمتتالية)تكونأن date (النهايةتاريخإلىالتاريخ)هذاذلكفيبما date

(التاريخهذااستبعادمع).

المتعاقبةالأيام
الزمنيبالفاصل

(<start-date>, <end-
date>, <NumDays>,
<condition>)

فيالمتتاليةالأياممنمحددلعددالأقلعلى'صحيح'المنطقيةالقيمةشرطكانإذافقطصحيحالقيمةإرجاع
البدايةتاريخمنالزمنيالفاصل date (النهايةتاريخإلىالتاريخ)هذاذلكفيبما date (هذااستبعادمع

.(التاريخ

الفاصلفيأحيانًا
,<start-date>)الزمني
<end-date>, <con-
dition>)

البدايةتاريخمنالزمنيالفاصلفيدائمًا''صحيحهوالمنطقيةالقيمةشرطكانإذافقطصحيحالقيمةإرجاع
date (النهايةتاريخإلىالتاريخ)هذاذلكفيبما date (التاريخهذااستبعادمع).

فيقيمة (<date>,
<value>)

سمةقيمةإرجاع attribute المحددالتاريخفيالمحددة date.

صحيحشرطآخرتاريخ
(<date>, <condition>)

تاريخآخرإرجاع date التاريخمناعتباراًللخلفبالرجوع'صحيح'،بالقيمةالمنطقيةالقيمةشرطفيهكان
المحدد date (التاريخهذاذلكفيبما).

الصحيحالشرطتاريخ
,<date>)التالي <con-
dition>)

التاريخإرجاع date للأمامبالتقدمالقادمة،المرةفي'صحيح'بالقيمةالمنطقيةالقيمةشرطعندهيكونالذي
المحددالتاريخمناعتباراً date (التاريخهذاذلكفيبما).

الصياغة الوصف

()الأحدث
قيمةإرجاع date محتملتاريخأحدثلقيمةمساوية date - قيمةأنمضمونأنهأي date قيمةلأيةلاحقة

date خلالمناستخدامهايمكنأخرى date attribute إليهاالتعبيراتأحدتقييميمكنأو .

()الأقدم
قيمةإرجاع date محتملتاريخأقدملقيمةمساوية date - قيمةأنمضمونأنهأي date قيمةلأيةسابقة

date خلالمناستخدامهايمكنأخرى date attribute إليهاالتعبيراتأحدتقييميمكنأو .

منذبالأياممؤقت
(<date>, <end-date>)

منذالكاملةالأيامعددوهويومكليتغيررقميمتغيرإرجاع date.

منذبالأسابيعمؤقت
(<date>, <end-date>)

منذالكاملةالأسابيععددوهوأسبوعكليتغيررقميمتغيرإرجاع date.

منذبالشهورمؤقت
(<date>, <end-date>)

منذالكاملةالشهورعددويمثلشهركليتغيررقميمتغيرإرجاع date. المتوفرةالقيمةكانتإذاملاحظة:
date نقطةتكوينسيتمالحالي،الشهرمنأقلأيامعلىيحتويالتاليوالشهرالشهرمن28لليوملاحقة

المتوفرةالقيمةكانتإذاالمثال،سبيلعلىالشهر.هذامنالأخيراليومفيالسنويللشهرالتغيير date
2007فبراير28هيالأولىالتغييرنقطةستكون،2007يناير31أو30أو29أو28هي .

منذبالسنواتمؤقت
(<date>, <end-date>)

منذالكاملةالسنواتعددوهوسنةكليتغيررقميمتغيرإرجاع date.

بالأيامدائمًامؤقت
(<days>, <condition>)

قيمةإرجاع attribute المنطقيةالقيمةشرطكانإذافقطصحيحةوتكونالوقتمدارعلىتتغيرمنطقية
الحالياليومباستثناءالسابقةالأياممنالمحددالعددلكلصحيحبالقيمة .

المتعاقبةللأياممؤقت
(<minDays>, <days>,
<condition>)

قيمةإرجاع attribute المنطقيةالقيمةشرطكانإذافقطصحيحةوتكونالوقتمدارعلىتتغيرمنطقية
السابقةالمجموعةأيامعددخلالوقتأيفيالمتتاليةالأيامعددمنالأدنىللحدالأقلعلىصحيحبالقيمة

الحالياليومباستثناء .

بالأيامأحيانًامؤقت
(<days>, <condition>)

قيمةإرجاع attribute المنطقيةالقيمةشرطكانإذافقطصحيحةفتكونالوقتمدارعلىتختلفمنطقية
الحالياليومباستثناءالسابقة،الأياممنالمحددالعددخلالوقتأيفيصحيحبالقيمة .

بعدمؤقت (<date>)
قيمةإرجاع attribute التاريخبعدصحيحةفتكونالوقتمدارعلىتختلفمنطقية date فيكانتإذاوخطأ

قبلهأوالتاريخهذا .

قبلمؤقت (<date>)
قيمةإرجاع attribute التاريخقبلصحيحةفتكونالوقتمدارعلىتختلفمنطقية date فيكانتإذاوخطأ

بعدهأوالتاريخهذا .

بتاريخمؤقت (<date>)
قيمةإرجاع attribute التاريخفيصحيحةفتكونالوقتمدارعلىتختلفمنطقية date أوقبلهكانتإذاوخطأ

.بعده

بعدأوفيمؤقت
(<date>)التاريخ

قيمةإرجاع attribute للتاريخمماثلةكانتإذاصحيحةفتكونالوقتمدارعلىتختلفمنطقية date بعدهأو
قبلهوخطأ .

قبلأوفيمؤقت
(<date>)التاريخ

قيمةإرجاع attribute للتاريخمماثلةكانتإذاصحيحةفتكونالوقتمدارعلىتختلفمنطقية date واقعةأو
بعدهوخطأقبله .

البدايةتاريخمنمؤقت
(<relationship>,
<date>, <value>)

إرجاع attribute الكيانمستوى(علىواحدةمؤقتة entity علاقةمنالمصدر) relationship attributeو
البدايةتاريخمنفعاليتهاتبدأالتيالقيممعالكيانات،فيقيمة date attribute.

تاريخحتىمؤقت إرجاع attribute الكيانمستوى(علىواحدةمؤقتة entity منالمصدر) relationship attributeو قيمة

الصياغة الوصف

,<relationship>)النهاية
<date>, <value>)

النهايةتاريخحتىفعاليةلهاالتيالقيممعالكيانات،في date attribute.

النطاقمنمؤقت
(<relationship>, <start-
date>, <end-date>,
<Value>)

إرجاع attribute الكيانمستوى(علىواحدةمؤقتة entity علاقةمنالمصدر) relationship attributeو
البدايةتاريخمنفعاليتهاتبدأالتيالقيممعالكيانات،فيقيمة date attribute (التاريخ)هذاذلكفيبما

النهايةتاريخحتى date attribute (هيالقيمةوتكونالتاريخ).هذااستبعادمع uncertain حالةفي
البدايةتاريخقبلالصلاحيةانتهاء dateالتالي.

مناليومفيمؤقت
,<startdate>)الأسبوع
<enddate>)

منبدءاًالأسبوعنهاياتتمثلالتيللتواريخخطأوالقيمةالأسبوعأيامتمثلالتيللتواريخصحيحالقيمةإرجاع
البدايةتاريخ date النهايةتاريخحتىالتاريخ)هذاذلكفي(بماالمحدد date (يتمالتاريخ).هذااستبعادمع
القيمةإرجاع uncertain نطاقخارجالأسبوعيومكانإذا date.

بكلواحدةمرةمؤقت
,<startdate>)شهر
<enddate>, <day-
ofmonth>)

منالأخرىالأياملكلخطأالقيمةوإرجاعالشهرمناليوممعامليساوياليومكانإذاصحيحالقيمةإرجاع
المحددالبدايةتاريخمنالشهر date (المحددالنهايةتاريخإلىالتاريخ)هذاذلكفيبما date (استبعادمع
القيمةإرجاعويتمالتاريخ).هذا uncertain نطاقخارجاليومكانإذا date. الشهرمناليومتجاوزحالةفي

القيمةبإرجاعالدالةتقوموبهذاالشهر،هذامنالأخيرلليومصحيحالقيمةتكونالحالي،الشهرأيامعدد
الشهرمنفقطواحدليومصحيح .

ل ثدوا جعةحد را الم (English)

الصياغة الوصف

خطأ
(<text>)

الذيالشرطتطبيقيتوقفحتىالاستقصاءفيالاستمرارمنومنعهالمستخدمإلىرسالةلتمريريسُتخدمخطأحدث
الخطأهذاحدوثإلىأدى .

تحذير
(<text>)

هذاإلىأدىالذيالشرطمنالرغمعلىبالاستمرارلهيسمحولكنالمستخدم،إلىرسالةلتمريريسُتخدمتحذيرحدث
.التحذير

ل المهملةالدوا (English)

الصياغة الوصف

مخصصةدالةاستدعاء (<A>,
)

لمحركرموزمكتبةتوفيريجبرموز.لمكتبةخارجياستدعاءنتيجةإظهار Determinations لنجاح
المخصصةالدالةاستدعاء .

Conectores lógicos(English)

Sintaxe Descrição

se
Termo opcional que pode aparecer no final de uma linha de conclusão que tem a seguinte
prova

e Conjunção lógica entre dois attributes

ou Disjunção lógica entre dois attributes

Sintaxe Descrição

qualquer um
qualquer
um de
algum
ao menos um destes é ver-
dadeiro
qualquer um destes está sat-
isfeito

O elemento de agrupamento usado com disjunções em que dois oumais attributes pre-
cisam ser agrupados

ambos
todos
tudo
todos estes são verdadeiros
todos estes estão satisfeitos

O elemento de agrupamento usado com conjunções em que dois oumais attributes pre-
cisam ser agrupados

caso contrário Termo que aparece no final de uma regra de tabela para indicar a cláusula caso contrário

é
Termo usado em uma entrada de legenda entre a frase abreviada e o attribute text com-
pleto

Funções lógicas(English)

Sintaxe Descrição

não é verdade que <expr> Operador usado para retornar verdadeiro se attribute tiver um valor que seja falso

<var> é certo
<var> é certa
<var> é certos
<var> é certas
é certo que [ou não]<expr>

Operador usado para retornar verdadeiro se attribute tiver um valor que não seja uncer-
tain

<var> é incerto
<var> é incerta
<var> é incertos
<var> é incertas
é incerto se <expr>
é incerto que [ou não]<expr>
não é certo se <expr>
incerto

Operador usado para retornar verdadeiro se o valor de attribute for uncertain

<var> é conhecido
<var> é conhecida
<var> é conhecidos
<var> é conhecidas
sabe-se que [ou não]<expr>

Operador usado para retornar verdadeiro se attribute tiver qualquer valor

Sintaxe Descrição

<var> é desconhecido
<var> é desconhecida
<var> é desconhecidos
<var> é desconhecidas
não se sabe se [ou
não]<expr>
desconhecido

Operador usado para retornar verdadeiro se attribute não tiver nenhum valor

Constantes lógicas(English)

Sintaxe Descrição

verdadeiro Valor verdadeiro constante usado para regras de tabela.

falso Valor falso constante usado para regras de tabela.

incerto Valor uncertain constante usado para regras de tabela.

Operadores de comparação(English)

Sintaxe Descrição

<x><<y>
Menor que
Observação: não há forma de linguagem natural quando esse operador é usado com valores numéricos e mon-
etários.

<x> > <y>
Maior que
Observação: não há forma de linguagem natural quando esse operador é usado com valores numéricos e mon-
etários.

<x><=<y> Menor que ou igual a

<x> >=
<y>

Maior que ou igual a

<x>=<y> É Igual

<x> <>
<y>

Diferente

Funções numéricas(English)

Sintaxe Descrição

Número(<numText>) Converta a string especificada em um valor numérico

<x> + <y> Adição matemática

Sintaxe Descrição

<x> - <y> Subtração matemática

<x> * <y> Multiplicação matemática

<x> / <y> Divisão matemática

<x> \ <y> Divisão do integer

<x> modulo <y> Resto da divisão inteira

Máximo(<x>, <y>)
Máximo(<date/time/datetime1>, <date/time/datetime2>)

Retorna o maior de dois valores

Mínimo(<x>, <y>)
Mínimo(<date/time/datetime1>, <date/time/datetime2>)

Retorna o menor de dois valores

Xy(<x>, <y>) x elevado a y

Ex(<x>) Constante e elevada a x

Abs(<x>)
|<val>|

Valor absoluto de x

Ln(<x>) Logaritmo natural de x

Log(<x>) Logaritmo base 10 de x

Raiz quadrada(<x>) Raiz quadrada de x

Arredond(<x>, <n>) Arredonda x para n casas decimais

Trunc(<x>, <n>) x truncado para n casas decimais

Sen(<x>) Seno de x

Cos(<x>) Cosseno de x

Tan(<x>) Tangente de x

Asen(<x>) Arco seno de x

Acos(<x>) Arco seno de x

Atan(<x>) Arco tangente de x

Funções de data(English)

Sintaxe Descrição

DataAtual()
a data atual

Retorna a date atual ao início da sessão.

Sintaxe Descrição

Data(<text>) Converte a string especificada em um valor date

DataDeCriação(<year>,
<month>, <day>)

Retorna uma date formada pelo ano, mês e dia especificados.

ExtrairDia(<date/datetime>) Retorna o componente dia de um atributo date/datetime attribute.

ExtrairMês(<date/datetime>) Retorna o componente mês de um atributo date/datetime attribute.

ExtrairAno(<date/datetime>) Retorna o componente ano de um atributo date/datetime attribute.

PróximoDiaDaSemana
(<date/datetime>, <day>)

Retorna a date do próximo dia da semana em ou depois de date (dependendo da sintaxe
usada).

PróximaData(<date>, <day>,
<month>)

Retorna a próxima instância do dia e do mês especificados depois de uma date.

AdicionarDias
(<date/datetime>, <num_days>)

Adiciona/subtrai um número de dias a/de uma date. Quando se usa a forma sintática con-
cisa, o número deve ser um inteiro positivo para adicionar dias à entrada date, ou um
número negativo para subtrair dias da entrada date.

AdicionarSemanas(<date/d-
atetime>, <num_weeks>)

Adiciona um número de semanas a uma date. Ao usar a forma sintática concisa, o número
deve ser um inteiro positivo para adicionar semanas à entrada date.

AdicionarMeses(<date/d-
atetime>, <num_months>)

Adiciona um número de meses a uma date. Ao usar a forma sintática concisa, o número
deve ser um inteiro positivo para adicionar meses à entrada date.

AdicionarAnos(<date/d-
atetime>, <num_years>)

Adiciona um número de anos a uma date. Ao usar a forma sintática concisa, o número
deve ser um inteiro positivo para adicionar anos à entrada date.

ContagemDosDiasDaSemana
(<date1>, <date2>)

Conta o número de dias da semana entre date1 e date2. Ou seja, o número de dias entre
segunda e sexta-feira.
Observação: A date anterior é incluída e a date posterior é excluída.

InícioDoAno(<date/datetime>) Retorna a primeira date do ano na qual a date cai.

FimDoAno(<date/datetime>) Retorna a última date do ano na qual a date cai.

DiferençaDeDia(<date/d-
atetime1>, <date/datetime2>)

Retorna o número de dias completos entre date/datetime1 e date/datetime2. A
ordem das duas datas não afeta o resultado.

DiferençaDeDiaInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número de dias completos (inclusive) entre date/datetime1 e date/d-
atetime2. Esse cálculo inclui ambas as extremidades. Onde as datas são as mesmas, o
resultado é 1. A ordem das duas datas não afeta o resultado.

DiferençaDeDiaExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número de dias completos (exclusivos) entre date/datetime1 e date/d-
atetime2. Esse cálculo exclui ambas as extremidades. Onde as datas são as mesmas, o
resultado é 0. A ordem das duas datas não afeta o resultado.

DiferençaDeSemana(<date/d-
atetime1>, <date/datetime2>)

Retorna o número de semanas transcorridas completas entre date/datetime1 e date/d-
atetime2. A ordem das duas datas não afeta o resultado.

Sintaxe Descrição

DiferençaDeSemanaInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número inclusivo de semanas transcorridas completas entre date/datetime1
e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeSemanaExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número exclusivo de semanas transcorridas completas entre date/datetime1
e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMês(<date/d-
atetime1>, <date/datetime2>)

Retorna o número de meses transcorridos completos entre date/datetime1 e date/d-
atetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMêsInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número de meses transcorridos completos inclusivos entre date/datetime1 e
date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMêsExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número de meses transcorridos completos exclusivos entre date/datetime1 e
date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeAno(<date/d-
atetime1>, <date/datetime2>)

Retorna o número de anos entre date/datetime1 e date/datetime2. A ordem das
duas datas não afeta o resultado.

DiferençaDeAnoInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número inclusivo de anos entre date/datetime1 e date/datetime2. A
ordem das duas datas não afeta o resultado.

DiferençaDeAnoExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Retorna o número exclusivo de anos entre date/datetime1 e date/datetime2. A
ordem das duas datas não afeta o resultado.

Funções de hora do dia(English)

Sintaxe Descrição

HoraDoDia(<text>) Converte a string dada em uma hora do dia

ExtrairSegundo(<time/datetime>) Retorna o componente segundo de um atributo timeofday/datetime attribute.

ExtrairMinuto(<time/datetime>) Retorna o componente minuto de um atributo timeofday/datetime attribute.

ExtrairHora(<time/datetime>) Retorna o componente hora de um atributo timeofday/datetime attribute.

Funções de data e hora(English)

Sintaxe Descrição

DataHoraAtual() Retorna a date e a hora atuais ao início da sessão.

Sintaxe Descrição

DataHora(<text>) Converte a string especificada em um valor datetime

ConcatenarDataHora(<date>,
<time>)

Define a hora date unindo a date e a hora do dia.

DiferençaDeSegundo(<dat-
etime1>, <datetime2>)
DiferençaDeSegundo
(<timeOfDay1>, <timeOfDay2>)

Retorna o número de segundos entre datetime1 e datetime2.

DiferençaDeSegundoInclusiva
(<datetime1>, <datetime2>)
DiferençaDeSegundoInclusiva
(<timeOfDay1>, <timeOfDay2>)

Retorna o número inclusivo de segundos entre datetime1 e datetime2.

DiferençaDeSegundoExclusiva
(<datetime1>, <datetime2>)
DiferençaDeSegundoExclusiva
(<timeOfDay1>, <timeOfDay2>)

Retorna o número exclusivo de segundos entre datetime1 e datetime2.

DiferençaDeMinuto(<dat-
etime1>, <datetime2>)
DiferençaDeMinuto
(<timeOfDay1>, <timeOfDay2>)

Retorna o número de minutos entre datetime1 e datetime2.

DiferençaDeMinutoInclusiva
(<datetime1>, <datetime2>)
DiferençaDeMinutoInclusiva
(<timeOfDay1>, <timeOfDay2>)

Retorna o número inclusivo de minutos entre datetime1 e datetime2.

DiferençaDeMinutoExclusiva
(<datetime1>, <datetime2>)
DiferençaDeMinutoExclusiva
(<timeOfDay1>, <timeOfDay2>)

Retorna o número exclusivo de minutos entre datetime1 e datetime2.

DiferençaDeHora(<datetime1>,
<datetime2>)
DiferençaDeHora
(<timeOfDay1>, <timeOfDay2>)

Retorna o número de horas entre datetime1 e datetime2.

DiferençaDeHoraInclusiva
(<datetime1>, <datetime2>)
DiferençaDeHoraInclusiva
(<timeOfDay1>, <timeOfDay2>)

Retorna o número inclusivo de horas entre datetime1 e datetime2.

DiferençaDeHoraExclusiva
(<datetime1>, <datetime2>)
DiferençaDeHoraExclusiva

Retorna o número exclusivo de horas entre datetime1 e datetime2.

Sintaxe Descrição

(<timeOfDay1>, <timeOfDay2>)

ExtrairData(<datetime>) Extrai a date de um datetime attribute.

ExtrairHoraDoDia(<datetime>)
Extrai a hora do dia de um atributo datetime attribute. Pode ser usado para definir o
valor de um atributo timeofday attribute como a hora em que a regra é executada
extraindo a hora da date e da hora atuais.

AdicionarHoras(<datetime>,
<num_hours>)
AdicionarHoras(<timeOfDay>,
<num_hours>)

Adiciona um número de horas a uma hora date.

AdicionarMinutos(<datetime>,
<num_minutes>)
AdicionarMinutos
(<timeOfDay>, <num_minutes>)

Adiciona um número de minutos a uma hora date.

AdicionarSegundos
(<datetime>, <num_seconds>)
AdicionarSegundos
(<timeOfDay>, <num_seconds>)

Adiciona um número de segundos a uma hora date.

Funções de texto(English)

Sintaxe Descrição

<text1> & <text2>
Combina text1 com text2, e assim por diante, para formar um único valor de text.
Observação: você pode usar variáveis de qualquer tipo. Os valores são formatados com o form-
atador instalado na sessão de regras.

Combina text1 com text2, e assim por diante, para formar um único valor de text.
Observação: você pode usar variáveis de qualquer tipo. Os valores são formatados com o form-
atador instalado na sessão de regras.

Contém(<text>, <sub-
string>)

Retorna um valor booliano que indica se o valor de text fornecido contém a substring text dada. A
comparação text é sensível a maiúsculas e minúsculas.

TerminaCom(<text>,
<substring>)

Retorna um valor booliano que indica se o valor de text fornecido termina com a substring text
dada. A comparação text é sensível a maiúsculas e minúsculas.

ÉNúmero(<text>) Retorna um valor booliano que indica se o valor de text dado representa um número válido.

Comprimento(<text>) Retorna o comprimento do caractere do valor text dado.

ComeçaCom(<text>,
<substring>)

Retorna um valor booliano que indica se o valor de text fornecido inicia com a substring text dada.
A comparação text é sensível a maiúsculas e minúsculas.

Sintaxe Descrição

Subsequência(<text>,
<offset>, <length>)

Retorna a substring de text que começa no recuo dado, que é o comprimento especificado em cara-
cteres. Menos caracteres são retornados se o final da string é alcançado.

Texto(<number>)
Texto(<date>)
Texto(<datetime>)
Texto(<timeOfDay>)

Converta o número especificado ou date attribute em um valor text.

Funções de entidade e relação(English)

Sintaxe Descrição

Para(<relationship>, <Exp>)
no caso (da | das | do |
dos)<relationship>, <attr>
<val>, no caso (da | das | do
| dos)<relationship>

Usado para fazer referência de um entity a outro entity em uma relação "Um para Um",
"Muitos para Um" ou "Muitos para Muitos" relationship, em que há somente uma condição.

ParaEscopo(<relationship>,
<alias>)
ParaEscopo(<relationship>)
no caso (da | das | do |
dos)<relationship>
no caso (da | das | do |
dos)<relationship> (<alias>)

Usado para fazer referência de um entity a outro entity em uma relação "Um para Um",
"Muitos para Um" ou "Muitos para Muitos" relationship, em que há uma oumais condições.

ParaTudo(<relationship>,
<Exp>)

Usado para fazer referência de um entity a outro entity em uma relação "Um para Muitos"
ou "Muitos para Muitos" relationship, quando é necessário determinar se todos os membros
do grupo entity de destino precisam satisfazer a regra.
Esse formulário é usado quando há somente uma condição na regra.

ParaTodosEscopos(<rela-
tionship>)
ParaTodosEscopos(<rela-
tionship>, <alias>)

Usado para fazer referência de um entity a outro entity em uma relação "Um para Muitos"
ou "Muitos para Muitos" relationship, quando é necessário determinar se todos os membros
do grupo entity de destino precisam satisfazer a regra.
Esse formulário é usado quando há uma oumais condições na regra.

Existe(<relationship>, <Exp>)
Usado para fazer referência de um entity a outro entity em uma relação "Um para Muitos"
ou "Muitos para Muitos" relationship, quando é necessário determinar se os membros do
grupo entity de destino precisam satisfazer a regra.
Esse formulário é usado quando há somente uma condição na regra.

ExisteEscopo(<relationship>)
ExisteEscopo(<relationship>,
<alias>)

Usado para fazer referência de um entity a outro entity em uma relação "Um para Muitos"
ou "Muitos para Muitos" relationship, quando é necessário determinar se os membros do
grupo entity de destino precisam satisfazer a regra.
Esse formulário é usado quando há uma oumais condições na regra.

Sintaxe Descrição

ÉMembroDe(<target>, <rela-
tionship>)
ÉMembroDe(<target>,
<alias>, <relationship>)
<ent-target> é membro (dos
| de)<relationship>
<ent-target> (<alias>) é
membro (dos | de)<rela-
tionship>

Usado como conclusão para deduzir que uma instância de entity é membro de uma rela-
tionship. Usado como uma condição para testar se uma instância de entity é o destino de
uma relationship para a qual uma segunda instância de entity é a origem.

NãoÉMembroDe(<target>,
<relationship>)

Usado como uma condição para testar se uma instância de entity não é um destino de uma
relationship para a qual uma segunda instância de entity é a origem.

ContagemDeInstâncias
(<relationship>)

Conta o número de instâncias que existem para uma entity.

ContagemDeInstânciasSe
(<relationship>, <Exp>)

Conta o número de instâncias existentes de uma entity para a qual um entity-level attrib-
ute específico tem um valor específico.

MáximoDeInstâncias(<rela-
tionship>, <number-attr>)
MáximoDeInstâncias(<rela-
tionship>, <date-attr>)
MáximoDeInstâncias(<rela-
tionship>, <datetime-attr>)
MáximoDeInstâncias(<rela-
tionship>, <time-attr>)

Obtém o valor mais alto/recente de uma variável entity-level para todas as instâncias da
entity.

MáximoDeInstânciasSe
(<relationship>, <number-
attr>, <condition>)
MáximoDeInstânciasSe
(<relationship>, <date-attr>,
<condition>)
MáximoDeInstânciasSe
(<relationship>, <datetime-
attr>, <condition>)
MáximoDeInstânciasSe
(<relationship>, <time-attr>,
<condition>)

Obtém o valor mais alto/recente de uma variável entity-level para todas as instâncias da
entity para as quais um entity-level attribute específico tem um valor específico.

MínimoDeInstâncias(<rela-
tionship>, <number-attr>)
MínimoDeInstâncias(<rela-
tionship>, <date-attr>)
MínimoDeInstâncias(<rela-

Obtém o valor mais baixo/menos recente de uma variável entity-level para todas as instân-
cias da entity.

Sintaxe Descrição

tionship>, <datetime-attr>)
MínimoDeInstâncias(<rela-
tionship>, <time-attr>)

MínimoDeInstânciasSe
(<relationship>, <number-
attr>, <condition>)
MínimoDeInstânciasSe
(<relationship>, <date-attr>,
<condition>)
MínimoDeInstânciasSe
(<relationship>, <datetime-
attr>, <condition>)
MínimoDeInstânciasSe
(<relationship>, <time-attr>,
<condition>)

Obtém o valor mais baixo/menos recente de uma variável entity-level para todas as instân-
cias da entity para as quais um entity-level attribute específico tem um valor específico.

SomaDeInstâncias(<rela-
tionship>, <number-attr>)

Obtém a soma de todas as instâncias de uma variável entity-level.

SomaDeInstânciasSe(<rela-
tionship>, <number-attr>,
<condition>)

Obtém a soma de todas as instâncias de uma variável entity-level para a qual é verdadeiro
de entity que um attribute Booliano entity-level é verdadeiro.

ValorIfInstância(<rela-
tionship>, <number-attr>,
<condition>)
ValorIfInstância(<rela-
tionship>, <text-attr>, <con-
dition>)
ValorIfInstância(<rela-
tionship>, <date-attr>, <con-
dition>)
ValorIfInstância(<rela-
tionship>, <datetime-attr>,
<condition>)
ValorIfInstância(<rela-
tionship>, <time-attr>, <con-
dition>)

Obtém um valor de uma instância entity exclusiva, identificada das instâncias entity de des-
tino de um relationship por uma condição.

l Se a condição identifica uma única instância entity de destino, o valor é o calculado
em relação a essa instância entity.

l Se mais de uma instância de destino satisfaz a condição, uncertain é retornado.

l Se nenhuma instância de destino satisfaz a condição e relationship é conhecido, o
valor é uncertain.

IgualdadesDeInstância
(<instance1>, <instance2>)

Determina se duas instâncias de uma entity são iguais.

SemIgualdadesDeInstância
(<instance1>, <instance2>)

Determina se duas instâncias de uma entity não são iguais.

InferirInstância(<rela- Usado como conclusão para inferir que uma instância de entity existe e é membro de uma

Sintaxe Descrição

tionship>, <identity>)
<rel>(<identity>) existe

relationship.

Funções de argumentos temporais(English)

Sintaxe Descrição

ContagemDeIntervalosDistintos
(<start-date>, <end-date>,
<variable>)
ContagemDeIntervalosDistintos
(<start-date>, <end-date>, <con-
dition>)

Conta o número de valores distintos conhecidos da variável no intervalo date inicial
(inclusive) até date final (exclusive).

ContagemDeIntervalosDistintosSe
(<start-date>, <end-date>,
<variable>, <condition>)

Conta o número de valores distintos conhecidos da variável no intervalo date inicial
(inclusive) até date final (exclusive), e inclui hora somente quando um filtro booliano
é verdadeiro.

SomaDiáriaDeIntervalos(<start-
date>, <end-date>, <number-attr>)

Calcula a soma de uma variável monetária ou numérica no intervalo date inicial
(inclusive) até date final (exclusive). Presume-se que attribute seja uma quan-
tidade diária.

SomaDiáriaDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)

Calcula a soma de todos os valores diários de uma variável monetária ou numérica
no intervalo date inicial (inclusive) até date final (exclusive), e inclui hora somente
quando uma condição é verdadeira.

MáximoDeIntervalos(<start-date>,
<end-date>, <number-attr>)
MáximoDeIntervalos(<start-date>,
<end-date>, <date-attr>)
MáximoDeIntervalos(<start-date>,
<end-date>, <datetime-attr>)
MáximoDeIntervalos(<start-date>,
<end-date>, <time-attr>)

Seleciona o valor máximo de uma variável no intervalo date inicial (inclusive) até
date inicial (exclusive).

MáximoDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <time-attr>, <con-

Seleciona o valor máximo de uma variável no intervalo date inicial (inclusive) até
date final (exclusive), e inclui hora somente quando uma condição é verdadeira.

Sintaxe Descrição

dition>)

MínimoDeIntervalos(<start-date>,
<end-date>, <number-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <date-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <datetime-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <time-attr>)

Seleciona o valor mínimo de uma variável no intervalo date inicial (inclusive) até
date final (exclusive).

MínimoDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Seleciona o valor mínimo de uma variável no intervalo date inicial (inclusive) até
date final (exclusive), e inclui hora somente quando uma condição é verdadeira.

MédiaPonderadaDeIntervalos
(<start-date>, <end-date>, <number-
attribute>)

Calcula o valor médio de uma variável monetária ou numérica no intervalo date ini-
cial (inclusive) até date final (exclusive), ponderado pelo tempo ao qual cada valor
se aplica.

MédiaPonderadaDeIntervalosSe
(<start-date>, <end-date>, <number-
attribute>, <condition>)

Calcula o valor médio de uma variável monetária ou numérica no intervalo date ini-
cial (inclusive) até date final (exclusive), e inclui hora somente quando uma condição
booliana é verdadeira (ponderado pelo tempo ao qual cada valor se aplica e onde o fil-
tro é verdadeiro).

IntervaloSempre(<start-date>,
<end-date>, <condition>)

Retorna verdadeiro somente se uma condição booliana é verdadeira sempre no inter-
valo date inicial (inclusive) até date final (exclusive).

IntervalNoMínimo(<start-date>,
<end-date>, <NumDays>,
<condition>)

Retorna verdadeiro somente se uma condição booliana é verdadeira para pelo
menos o número de dias especificado (não necessariamente consecutivos) no inter-
valo date inicial (inclusive) até date final (exclusive).

IntervaloDiasConsecutivos(<start-
date>, <end-date>, <NumDays>, <con-
dition>)

Retorna verdadeiro somente se uma condição booliana é verdadeira para pelo
menos um número de dias consecutivos especificado no intervalo date inicial (inclus-
ive) até date final (exclusive).

IntervaloAlgumasVezes(<start-
date>, <end-date>, <condition>)

Retorna verdadeiro somente se uma condição booliana é verdadeira no intervalo
date inicial (inclusive) até date final (exclusive).

ValorEm(<date>, <value>) Retorna o valor do attribute dado na date especificada.

Sintaxe Descrição

QuandoÚltimo(<date>, <condition>)
Retorna a date na qual uma condição booliana foi verdadeira pela última vez, desde
(inclusive) uma date especificada.

QuandoPróximo(<date>, <con-
dition>)

Retorna a próxima date na qual uma condição booliana será verdadeira a partir de
(inclusive) uma date especificada.

Último()
Retorna um valor date equivalente à datemais recente possível, isto é, uma date
que seja seguramente posterior a qualquer outra date que uma date attribute
possa usar ou para a qual uma expressão possa ser avaliada.

Primeiro()
Retorna um valor date equivalente à datemais antiga possível, isto é, uma date
que seja seguramente anterior a qualquer outra date que uma date attribute
possa usar ou para a qual uma expressão possa ser avaliada.

TemporalDiasDesde(<date>, <end-
date>)

Retorna uma variável numérica que varia a cada dia e é o número de dias completos
desde date.

TemporalSemanasDesde(<date>,
<end-date>)

Retorna uma variável numérica que varia a cada semana e é o número de semanas
completas desde date.

TemporalMesesDesde(<date>,
<end-date>)

Retorna uma variável numérica que varia a cada mês e é o número de meses com-
pletos desde date. Observação: onde a date fornecida for depois do 28º dia do mês
e ummês subsequente tiver menos dias do que o mês fornecido, o ponto de alter-
ação do mês de aniversário será criado no último dia desse mês. Por exemplo, se a
date fornecida for 28, 29, 30 ou 31 de janeiro de 2007, o primeiro ponto de alteração
será 28 de fevereiro de 2007.

TemporalAnosDesde(<date>, <end-
date>)

Retorna uma variável numérica que varia a cada ano e é o número de anos com-
pletos desde date.

TemporalSempreDias(<days>, <con-
dition>)

Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro somente
se uma condição booliana for verdadeira para todos os dias anteriores, e não inclui o
dia atual.

TemporalDiasConsecutivos
(<minDays>, <days>, <condition>)

Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro somente
se uma condição booliana é verdadeira para pelo menos um número mínimo de dias
consecutivos a qualquer momento no número de dias anteriores definidos, e não
inclui o dia atual.

TemporalAlgunsDias(<days>, <con-
dition>)

Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro somente
se uma condição booliana é sempre verdadeira em um número especificado de dias
anteriores, e não inclui o dia atual.

TemporalApós(<date>)
Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro depois
de uma date e falso nessa data e antes dela.

TemporalAntes(<date>)
Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro antes de
uma date e falso nessa data e depois dela.

Sintaxe Descrição

TemporalEm(<date>)
Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro em uma
date e falso antes e depois dela.

TemporalEmOuApós(<date>)
Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro em
date e depois dela e falso antes dessa data.

TemporalEmOuAntes(<date>)
Retorna um attribute booliano que varia ao longo do tempo e é verdadeiro em
date e antes dela e falso depois dessa data.

TemporalDaDataDeInício(<rela-
tionship>, <date>, <value>)

Retorna um único attribute temporal (no nível entity de origem) de uma rela-
tionship e um valor attribute nas entidades, com valores em vigor desde a date
attribute inicial.

TemporalDaDataDeTérmino(<rela-
tionship>, <date>, <value>)

Retorna um único attribute temporal (no nível entity de origem) de uma rela-
tionship e um valor attribute nas entidades, com valores em vigor até uma date
attribute final.

TemporalDoIntervalo(<rela-
tionship>, <start-date>, <end-date>,
<Value>)

Retorna um único attribute temporal (no nível entity de origem) de uma rela-
tionship e um valor attribute nas entidades, com valores em vigor desde o date
attribute inicial (inclusive) até date attribute final (exclusive). O valor é uncer-
tain se expira antes do próximo date inicial.

TemporalDiaDaSemana
(<startdate>, <enddate>)

Retorna verdadeiro em datas que são dias de semana e falso em datas que são finais
de semana, desde o date inicial especificado (inclusive) até date final (exclusive).
Retorna uncertain fora do intervalo date.

TemporalUmaVezPorMês
(<startdate>, <enddate>, <day-
ofmonth>)

Retorna verdadeiro se o dia é igual ao parâmetro dia-do-mês e falso em todos os
demais dias do mês date inicial especificado (inclusive) até date final (exclusive).
Retorna uncertain fora do intervalo date. Quando o parâmetro dia-do-mês excede
o número de dias do mês atual, o valor é verdadeiro no último dia desse mês para
que a função retorne um valor que seja verdadeiro exatamente um dia por mês.

Funções de evento de validação(English)

Sintaxe Descrição

Erro
(<text>)

Um evento de erro é usado para encaminhar uma mensagem ao usuário e evitar que ele continue uma investigação
até que a condição que ativou o erro não seja mais aplicável.

Aviso
(<text>)

Um evento de aviso é usado para encaminhar uma mensagem ao usuário, mas permite que ele continue apesar da
condição que ativou o aviso.

Funções em remoção gradual(English)

Sintaxe Descrição

ChamarFunçãoPersonalizada Retorna o resultado de uma chamada externa para uma biblioteca de códigos. A biblioteca

Sintaxe Descrição

(<A>,)
de códigos deve ser fornecida para o mecanismo de determinações para que a chamada per-
sonalizada seja bem-sucedida.

逻辑连接词 (English)

语法 说明

如果 可选术语可出现在具有以下证明的结论行的末尾

并且

以及
两个 attributes之间的逻辑与运算

或者 两个 attributes之间的逻辑或运算

任一

一个

任何

满足一个条件

满足任意条件

需要对两个或两个以上 attributes分组时，请对逻辑或运算中使用的要素进行分组。

两者

所有

所有条件均成立

满足以下所有条件

需要对两个或两个以上 attributes分组时，请对逻辑与运算中使用的要素进行分组

其他 出现在表格规则末尾表示 otherwise子句的术语

是 在简短语句与完整 attribute text之间的图例项中使用的术语

逻辑函数 (English)

语法 说明

这不是真的：<expr> attribute具有假值时用来返回真值的运算符

<var> 是确定的

这是确定的：<expr>
当 attribute的值不是 uncertain时，用来返回真值的运算符

<var> 是未确定的

<var> 是不确定的

这是不确定的：<expr>
这是没确定的：<expr>
这是未确定的：<expr>

attribute值 uncertain时用来返回真值的运算符

<var> 是已知的

这是已知的：<expr>
attribute具有任意值时用来返回真值的运算符

语法 说明

<var> 是未知的

这是未知的：<expr>
attribute没有值时用来返回真值的运算符

逻辑常数 (English)

语法 说明

真的 用于表规则的常数真值。

假的 用于表规则的常数假值。

不确定的 用于表规则的常数 uncertain值。

比较运算符 (English)

语法 说明

<lhs><<rhs>
<lhs> 小于 <rhs>
<lhs> 小于或者等于 <rhs>
<lhs> 早于 <rhs>

小于

注：此运算符与数字值和货币值一起使用时没有任何自然语言形式。

<lhs> > <rhs>
<lhs>大于<rhs>
<lhs> 大于或者等于 <rhs>
<lhs> 晚于 <rhs>

大于

注：此运算符与数字值和货币值一起使用时没有任何自然语言形式。

<lhs><=<rhs> 小于或等于

<lhs> >= <rhs> 大于或等于

<lhs>=<rhs>
<lhs>等于<rhs>
<lhs> 等同 <rhs>

等于

<lhs> 不等于 <rhs>
<lhs> <> <rhs>

不等于

数值函数 (English)

语法 说明

数字 (<numText>) 将指定字符串转换为数字值

<x> + <y> 数学加法

<x> - <y> 数学减法

语法 说明

<lhs> * <rhs> 数学乘法

<lhs> / <rhs> 数学除法

<lhs> \ <rhs> 整除

<lhs> modulo <rhs> 整除后的余数

最大值 (<x>, <y>)
最大值 (<date/time/datetime1>, <date/time/datetime2>)

返回两个值中的较大者

最小值 (<x>, <y>)
最小值 (<date/time/datetime1>, <date/time/datetime2>)

返回两个值中的较小者

取指数 (<x>, <y>) x的 y次幂

e指数 (<x>) 常量 e的 x次幂

绝对值 (<x>)
|<val>|

x的绝对值

自然对数 (<x>) x的自然对数值

常用对数 (<x>) 以 10为底数的 x的对数值

平方根 (<x>) x的平方根

四舍五入 (<x>, <n>) 将 x精确到 n位小数

截取值 (<x>, <n>) 截取 x到 n位小数

取正弦函数值 (<x>) x的正弦值

取余弦函数值 (<x>) x的余弦值

取正切函数值 (<x>) x的正切值

取反正弦函数值 (<x>) x的反正弦值

取反余弦函数值 (<x>) x的反余弦值

取反正切函数值 (<x>) x的反正切值

日期函数 (English)

语法 说明

当前日期 () 在会话的开头返回当前日期 date。

日期 (<text>) 将指定字符串转换为 date值

构建日期 (<year>, <month>, 从指定年、月、日中返回 date。

语法 说明

<day>)

取具体日子

(<date/datetime>)
返回 date/datetime attribute的日组成部分。

取月份 (<date/datetime>) 返回 date/datetime attribute的月组成部分。

取年份 (<date/datetime>) 返回 date/datetime attribute的年组成部分。

特定星期的另一天 (<date/d-
atetime>, <day>)
下个星期一(<from-date>)
上个星期一(<from-date>)
下个星期二(<from-date>)
上个星期二(<from-date>)
下个星期三(<from-date>)
上个星期三(<from-date>)
下个星期四(<from-date>)
上个星期四(<from-date>)
下个星期五(<from-date>)
上个星期五(<from-date>)
下个星期六(<from-date>)
上个星期六(<from-date>)
下个星期日(<from-date>)
上个星期日(<from-date>)

返回某一 date或之前 /之后下一工作日的 date(取决于所使用的语法)。

另一天 (<date>, <day>,
<month>)
上个UK税收年(<from-date>
)
下个UK税收年(<from-date>
)

返回某一 date之后给定日和月的下一实例。

增加天数 (<date/datetime>,
<num_days>)
减少天数(<date> , <num_
days>)

向 date中添加或从中减去天数。使用简洁句法形式时，数字必须为正整数，以便向

输入 date中添加天数，或者必须为负数，以便从输入 date中减去天数。

增加星期数

(<date/datetime>, <num_
weeks>)
减少星期数(<date> , <num_
weeks>)

向 date中添加周数。使用简洁句法形式时，数字必须为正整数，以便向输入 date
中添加周数。

增加月份数

(<date/datetime>, <num_
months>)

向 date中添加月数。使用简洁句法形式时，数字必须为正整数，以便向输入 date
中添加月数。

语法 说明

减少月份数(<date> , <num_
months>)

增加年数 (<date/datetime>,
<num_years>)
减少年数(<date> , <num_
years>)

向 date中添加年数。使用简洁句法形式时，数字必须为正整数，以便向输入 date
中添加年数。

相隔工作日 (<date1>,
<date2>)

计算 date1与 date2之间的工作日数。即星期一到星期五之间的天数。

注：包含较早的 date，但是不包含较晚的 date。

年初 (<date/datetime>) 返回某一 date所在年中的第一个 date。

年末 (<date/datetime>) 返回某一 date所在年中的最后一个 date。

相隔天数 (<date/datetime1>,
<date/datetime2>)

返回 date/datetime1与 date/datetime2之间的完整天数。两个日期的顺序不会

影响结果。

含两边的相隔天数 (<date/d-
atetime1>, <date/datetime2>)

返回 date/datetime1与 date/datetime2之间的完整天数 (包含首尾时间)。计算

结果包含首尾时间。首尾日期相同时，返回结果为 1。两个日期的顺序不会影响结

果。

不含两边的相隔天数

(<date/datetime1>, <date/d-
atetime2>)

返回 date/datetime1与 date/datetime2之间的完整天数 (不包含首尾时间)。计

算结果不包含首尾时间。首尾日期相同时，返回结果为 0。两个日期的顺序不会影

响结果。

相隔星期数 (<date/d-
atetime1>, <date/datetime2>)

返回 date/datetime1与 date/datetime2之间的已用整周数。两个日期的顺序不

会影响结果。

含两边的相隔星期数

(<date/datetime1>, <date/d-
atetime2>)

返回 date/datetime1与 date/datetime2之间的已用整周数 (包含首尾时间)。两

个日期的顺序不会影响结果。

不含两边的相隔星期数

(<date/datetime1>, <date/d-
atetime2>)

返回 date/datetime1与 date/datetime2之间的已用整周数 (不包含首尾时间)。
两个日期的顺序不会影响结果。

相隔月数 (<date/datetime1>,
<date/datetime2>)

返回 date/datetime1与 date/datetime2之间的已用整月数。两个日期的顺序不

会影响结果。

含两边的相隔月数 (<date/d-
atetime1>, <date/datetime2>)

返回 date/datetime1与 date/datetime2之间的已用整月数 (包含首尾时间)。两

个日期的顺序不会影响结果。

不含两边的相隔月数

(<date/datetime1>, <date/d-
atetime2>)

返回 date/datetime1与 date/datetime2之间的已用整月数 (不包含首尾时间)。
两个日期的顺序不会影响结果。

相隔整年数 (<date/d-
atetime1>, <date/datetime2>)

返回 date/datetime1与 date/datetime2之间的年数。两个日期的顺序不会影响

结果。

语法 说明

晚的整年数(<date2> ,
<date1>)

含两边的相隔年数 (<date/d-
atetime1>, <date/datetime2>)

返回 date/datetime1与 date/datetime2之间的年数 (包含首尾时间)。两个日期

的顺序不会影响结果。

不含两边的相隔年数

(<date/datetime1>, <date/d-
atetime2>)

返回 date/datetime1与 date/datetime2之间的年数 (不包含首尾时间)。两个日

期的顺序不会影响结果。

当天的时间函数 (English)

语法 说明

当前的实际时间 (<text>) 将给定字符串转换为当天的时间

取秒 (<time/datetime>) 返回 timeofday/datetime attribute的秒钟组成部分。

取分钟 (<time/datetime>) 返回 timeofday/datetime attribute的分钟组成部分。

取小时 (<time/datetime>) 返回 timeofday/datetime attribute的小时组成部分。

日期和时间函数 (English)

语法 说明

当前日期时间 () 在会话的开头返回当前日期 date和时间。

日期时间 (<text>) 将指定字符串转换为 datetime值

连接日期时间 (<date>, <time>) 通过连接 date与当天的时间，设置 date时间。

相隔秒数 (<datetime1>, <dat-
etime2>)
相隔秒数 (<timeOfDay1>,
<timeOfDay2>)

返回 datetime1与 datetime2之间的秒钟数。

含两边的相隔秒数

(<datetime1>, <datetime2>)
含两边的相隔秒数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的秒钟数 (包含首尾时间)。

不含两边的相隔秒数 (<dat-
etime1>, <datetime2>)
不含两边的相隔秒数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的秒钟数 (不包含首尾时间)。

相隔分钟数 (<datetime1>, <dat- 返回 datetime1与 datetime2之间的分钟数。

语法 说明

etime2>)
相隔分钟数 (<timeOfDay1>,
<timeOfDay2>)

含两边的相隔分钟数 (<dat-
etime1>, <datetime2>)
含两边的相隔分钟数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的分钟数 (包含首尾时间)。

不含两边的相隔分钟数 (<dat-
etime1>, <datetime2>)
不含两边的相隔分钟数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的分钟数 (不包含首尾时间)。

相隔小时数 (<datetime1>, <dat-
etime2>)
相隔小时数 (<timeOfDay1>,
<timeOfDay2>)

返回 datetime1与 datetime2之间的小时数。

含两边的相隔小时数 (<dat-
etime1>, <datetime2>)
含两边的相隔小时数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的小时数 (包含首尾时间)。

不含两边的相隔小时数 (<dat-
etime1>, <datetime2>)
不含两边的相隔小时数

(<timeOfDay1>, <timeOfDay2>)

返回 datetime1与 datetime2之间的小时数 (不包含首尾时间)。

取日期 (<datetime>) 从 datetime attribute中取 date。

取当前的实际时间 (<datetime>)
从 datetime attribute中取当天的时间。可用于将 timeofday attribute的值设

置为从当前 date和时间中取时间时执行规则的时间。

增加小时数 (<datetime>, <num_
hours>)
增加小时数 (<timeOfDay>,
<num_hours>)

向 date时间中添加小时数。

增加分钟数 (<datetime>, <num_
minutes>)
增加分钟数 (<timeOfDay>,
<num_minutes>)

向 date时间中添加分钟数。

增加秒数 (<datetime>, <num_
seconds>)
增加秒数 (<timeOfDay>, <num_
seconds>)

向 date时间中添加秒数。

文本函数 (English)

语法 说明

<text1> & <text2>
结合使用 text1与 text2等以形成单个 text值。

注：您可以使用任意类型的变量。这些值将使用规则会话中安装的格式化程序进

行格式化。

结合使用 text1与 text2等以形成单个 text值。

注：您可以使用任意类型的变量。这些值将使用规则会话中安装的格式化程序进

行格式化。

包含 (<text>, <substring>)
返回布尔值，表示给定的 text值是否包含给定的 text子字符串。text比较不区分

大小写。

结束日期 (<text>,
<substring>)

返回布尔值，表示给定的 text值是否以给定的 text子字符串结尾。text比较不区

分大小写。

是数字 (<text>) 返回布尔值，表示给定 text值是否代表有效数字。

长度 (<text>) 返回给定 text值的字符长度。

开头 (<text>, <substring>)
返回布尔值，表示给定的 text值是否以给定的 text子字符串开始。text比较不区

分大小写。

子字符串 (<text>, <offset>,
<length>)

返回以给定偏移量 (指定字符长度)开始的 text的子字符串。如果到达字符串末

尾，则返回较少字符。

文本 (<number>)
文本 (<date>)
文本 (<datetime>)
文本 (<timeOfDay>)

将指定数字或 date attribute转换为 text值。

实体和关系函数 (English)

语法 说明

满足条件 (<relationship>, <Exp>)
只有一个条件时，用来在 “一对一 ”、“多对一 ”或 “多对多 ”relationship中从一

个 entity指向另一个 entity。

范围满足条件 (<relationship>,
<alias>)
范围满足条件 (<relationship>)

有一个或多个条件时，用来在 “一对一 ”、“多对一 ”或 “多对多 ”relationship中
从一个 entity指向另一个 entity。

所有都满足条件 (<relationship>,
<Exp>)

当需要确定目标 entity组中的所有成员是否需要满足规则时，用于在 “一对

多 ”或 “多对多 ”relationship中从一个 entity指向另一个 entity。
当规则中只有一个条件时使用这种形式。

范围内所有都满足条件 (<rela-
tionship>)

当需要确定目标 entity组中的所有成员是否需要满足规则时，用于在 “一对

多 ”或 “多对多 ”relationship中从一个 entity指向另一个 entity。

语法 说明

范围内所有都满足条件 (<rela-
tionship>, <alias>)

当规则中有一个或多个条件时使用这种形式。

存在一个满足条件 (<relationship>,
<Exp>)

当需要确定目标 entity组中的任何成员是否需要满足规则时，用于在 “一对

多 ”或 “多对多 ”relationship中从一个 entity指向另一个 entity。
当规则中只有一个条件时使用这种形式。

范围内存在一个满足条件 (<rela-
tionship>)
范围内存在一个满足条件 (<rela-
tionship>, <alias>)

当需要确定目标 entity组中的任何成员是否需要满足规则时，用于在 “一对

多 ”或 “多对多 ”relationship中从一个 entity指向另一个 entity。
当规则中有一个或多个条件时使用这种形式。

是集合的成员 (<target>, <rela-
tionship>)
是集合的成员 (<target>, <alias>,
<relationship>)

用作结论来推断一个 entity实例是 relationship的成员。用作条件来测试

entity实例是 relationship(其中另一个 entity实例是源实例)的目标。

不是集合的成员 (<target>, <rela-
tionship>)

用作条件来测试一个 entity实例不是 relationship(其中另一个 entity实例

是源实例)的目标。

实例总数 (<relationship>) 计算 entity的实例数量。

满足条件的实例总数 (<rela-
tionship>, <Exp>)

计算特定 entity-level attribute具有特定值的 entity的实例数量。

实例最大值 (<relationship>, <num-
ber-attr>)
实例最大值 (<relationship>, <date-
attr>)
实例最大值 (<relationship>, <dat-
etime-attr>)
实例最大值 (<relationship>, <time-
attr>)

获取该 entity的所有实例中 entity-level变量的最高 /最新值。

满足条件的实例最大值 (<rela-
tionship>, <number-attr>, <con-
dition>)
满足条件的实例最大值 (<rela-
tionship>, <date-attr>, <condition>)
满足条件的实例最大值 (<rela-
tionship>, <datetime-attr>, <con-
dition>)
满足条件的实例最大值 (<rela-
tionship>, <time-attr>, <condition>)

获取特定 entity-level attribute具有特定值的 entity的所有实例中 entity-
level变量的最高 /最新值。

实例最小值 (<relationship>, <num-
ber-attr>) 获取该 entity的所有实例中 entity-level变量的最低 /最旧值。

语法 说明

实例最小值 (<relationship>, <date-
attr>)
实例最小值 (<relationship>, <dat-
etime-attr>)
实例最小值 (<relationship>, <time-
attr>)

满足条件的实例最小值 (<rela-
tionship>, <number-attr>, <con-
dition>)
满足条件的实例最小值 (<rela-
tionship>, <date-attr>, <condition>)
满足条件的实例最小值 (<rela-
tionship>, <datetime-attr>, <con-
dition>)
满足条件的实例最小值 (<rela-
tionship>, <time-attr>, <condition>)

获取特定 entity-level attribute具有特定值的 entity的所有实例中 entity-
level变量的最低 /最旧值。

实例总和 (<relationship>, <number-
attr>)

获取 entity-level变量的所有实例总数。

满足条件的实例总和 (<rela-
tionship>, <number-attr>, <con-
dition>)

获取 entity-level变量 (特定 entity-level布尔 attribute为真的 entity为真)
的所有实例总数。

满足条件的实例值 (<relationship>,
<number-attr>, <condition>)
满足条件的实例值 (<relationship>,
<text-attr>, <condition>)
满足条件的实例值 (<relationship>,
<date-attr>, <condition>)
满足条件的实例值 (<relationship>,
<datetime-attr>, <condition>)
满足条件的实例值 (<relationship>,
<time-attr>, <condition>)

按照条件在 relationship的目标 entity实例中查找，获取唯一 entity实例的

值。

l 如果按条件找到单个目标 entity实例，则值根据该 entity实例进行

计算。

l 如果多个目标实例均符合条件，则返回 uncertain。

l 如果没有目标实例符合条件，则 relationship已知，且值是 uncer-
tain。

实例等于 (<instance1>,
<instance2>)

确定 entity的两个实例是否为同一实例。

实例不等于 (<instance1>,
<instance2>)

确定 entity的两个实例是否是同一实例。

推断实例 (<relationship>,
<identity>)
<rel>(<identity>)存在

用作结论来推断一个 entity实例存在且是 relationship的成员。

时间推理函数 (English)

语法 说明

时间间隔内变量的唯一值总

数 (<start-date>, <end-date>,
<variable>)
时间间隔内变量的唯一值总

数 (<start-date>, <end-date>,
<condition>)

计算在开始 date(包含)与结束 date(不包含)之间变量的已知不同值的数量。

满足条件的时间间隔内变量

的唯一值总数 (<start-date>,
<end-date>, <variable>, <con-
dition>)

计算在开始 date(包含)与结束 date(不包含)之间且布尔筛选条件为真时变量的已

知不同值的数量。

时间间隔内变量值的每日总

和 (<start-date>, <end-date>,
<number-attr>)

计算在开始 date(包含)与结束 date(不包含)之间货币或数值变量的总和。attrib-
ute假定为每日数量。

满足条件的时间间隔内变量

值的每日总和 (<start-date>,
<end-date>, <number-attr>,
<condition>)

计算在开始 date(包含)与结束 date(不包含)之间且仅在条件为真时，货币或数值

变量的所有每日值的总和。

时间间隔内变量的最大值

(<start-date>, <end-date>,
<number-attr>)
时间间隔内变量的最大值

(<start-date>, <end-date>,
<date-attr>)
时间间隔内变量的最大值

(<start-date>, <end-date>,
<datetime-attr>)
时间间隔内变量的最大值

(<start-date>, <end-date>,
<time-attr>)

选择在开始 date(包含)与结束 date(不包含)之间变量的最大值。

满足条件的时间间隔内变量

的最大值 (<start-date>,
<end-date>, <number-attr>,
<condition>)
满足条件的时间间隔内变量

的最大值 (<start-date>,
<end-date>, <date-attr>,
<condition>)
满足条件的时间间隔内变量

的最大值 (<start-date>,
<end-date>, <datetime-attr>,
<condition>)

选择在开始 date(包含)与结束 date(不包含)之间且条件为真时变量的最大值。

语法 说明

满足条件的时间间隔内变量

的最大值 (<start-date>,
<end-date>, <time-attr>,
<condition>)

时间间隔内变量的最小值

(<start-date>, <end-date>,
<number-attr>)
时间间隔内变量的最小值

(<start-date>, <end-date>,
<date-attr>)
时间间隔内变量的最小值

(<start-date>, <end-date>,
<datetime-attr>)
时间间隔内变量的最小值

(<start-date>, <end-date>,
<time-attr>)

选择在开始 date(包含)与结束 date(不包含)之间变量的最小值。

满足条件的时间间隔内变量

的最小值 (<start-date>,
<end-date>, <number-attr>,
<condition>)
满足条件的时间间隔内变量

的最小值 (<start-date>,
<end-date>, <date-attr>,
<condition>)
满足条件的时间间隔内变量

的最小值 (<start-date>,
<end-date>, <datetime-attr>,
<condition>)
满足条件的时间间隔内变量

的最小值 (<start-date>,
<end-date>, <time-attr>,
<condition>)

选择在开始 date(包含)与结束 date(不包含)之间且条件为真时变量的最小值。

时间间隔内变量值的加权平

均数 (<start-date>, <end-
date>, <number-attribute>)

计算在开始 date(包含)与结束 date(不包含)之间，按照各个值所对应的时间范围

进行加权的货币或数值变量的平均值。

满足条件的时间间隔内变量

值的加权平均数 (<start-
date>, <end-date>, <number-
attribute>, <condition>)

计算在开始 date(包含)与结束 date(不包含)之间且布尔条件为真 (按照各个值所

对应的时间范围进行加权并且筛选条件为真)时，货币或数值变量的平均值。

时间间隔内始终满足条件

(<start-date>, <end-date>,
当且仅当布尔条件在开始 date(包含)与结束 date(不包含)之间始终为真时，返回

真值。

语法 说明

<condition>)

时间间隔内至少数天满足条

件 (<start-date>, <end-date>,
<NumDays>, <condition>)

当且仅当布尔条件在开始 date(包含)与结束 date(不包含)之间至少指定的天数

(不必连续)内为真时，返回真值。

时间间隔内连续数天满足条

件 (<start-date>, <end-date>,
<NumDays>, <condition>)

当且仅当布尔条件在开始 date(包含)与结束 date(不包含)之间至少给定的连续天

数内为真时，返回真值。

时间间隔内有时满足条件

(<start-date>, <end-date>,
<condition>)

当且仅当布尔条件在开始 date(包含)与结束 date(不包含)之间始终为真时，返回

真值。

取特定日期的值 (<date>,
<value>)

返回给定 attribute在指定 date的值。

在此之前满足条件的日期

(<date>, <condition>)
返回从指定 date(包含该日期)起倒推，布尔条件为真的最后一个 date。

在此之后满足条件的日期

(<date>, <condition>)
返回从指定 date(包含该日期)起前推，布尔条件将会为真的下一个 date。

最晚日期 ()
返回最晚可能 date对应的 date值 -即保证晚于 date attribute可能具有或表达式

求值结果中可能包含的其它任何 date的一个 date。

最早日期 ()
返回最早可能 date对应的 date值 -即保证早于 date attribute可能具有或表达式

求值结果中可能包含的其它任何 date的一个 date。

间隔累计天数 (<date>, <end-
date>)

返回每天各异的数值变量，该变量代表自该 date起的完整天数。

间隔累计星期数 (<date>,
<end-date>)

返回每周各异的数值变量，该变量代表自该 date起的完整周数。

间隔累计月数 (<date>, <end-
date>)

返回每月各异的数值变量，该变量代表自该 date起的完整月数。注：如果提供的

date在当月 28日之后，并且下个月的天数比该月天数少，则将会在下个月的最后

一天创建周年月份变更点。例如，如果提供的 date为 2007年 1月 28、29、30或 31
日，则第一个变更点即为 2007年 2月 28日。

间隔累计年数 (<date>, <end-
date>)

返回每年各异的数值变量，该变量代表自该 date起的完整年数。

连续数天始终满足条件

(<days>, <condition>)
返回随时间变化，当且仅当布尔条件在之前指定的天数 (不包括当天)内始终为真

时才为真的布尔 attribute。

至少连续数天满足条件

(<minDays>, <days>, <con-
dition>)

返回随时间变化，当且仅当布尔条件在之前设定天数 (不包括当前天)中任意时间

段内连续为真的天数至少达到最少天数时才为真的布尔 attribute。

语法 说明

累计数天满足条件 (<days>,
<condition>)

返回随时间变化，当且仅当布尔条件在之前指定的天数 (不包含当天)内始终为真

时才为真的布尔 attribute。

本日期以后 (<date>) 返回随时间变化且在某一 date之后为真，当天及之前为假的布尔 attribute。

本日期以前 (<date>) 返回随时间变化且在某一 date之前为真，当天及之后为假的布尔 attribute。

本日期当天 (<date>) 返回随时间变化且在某一 date为真，之前和之后均为假的布尔 attribute。

本日期当天或者以后

(<date>)
返回随时间变化且在某一 date或之后为真，之前为假的布尔 attribute。

本日期当天或者以前

(<date>)
返回随时间变化且在某一 date或之前为真，之后为假的布尔 attribute。

依据开始日期取值 (<rela-
tionship>, <date>, <value>)

从其值从开始 date attribute起有效的实体的 relationship和值 attribute中返回

单一临时 attribute(在源 entity层中)。

依据结束日期取值 (<rela-
tionship>, <date>, <value>)

从其值在结束 date attribute之前均有效的实体的 relationship和值 attribute中
返回单一临时 attribute(在源 entity层中)。

依据日期区间取值 (<rela-
tionship>, <start-date>, <end-
date>, <Value>)

从其值在开始 date attribute(包含)和结束 date attribute(不包含)之间均有效的

实体的 relationship和值 attribute中返回单一临时 attribute(在源 entity层中)。
如果值在下一开始 date前过期，则该值是 uncertain。

临时工作日 (<startdate>,
<enddate>)

日期是指定开始 date(包含)与结束 date(不包含)之间的工作日时返回真值，日期

是周末时返回假值。返回 date范围外的 uncertain。

临时每月一次 (<startdate>,
<enddate>, <dayofmonth>)

日等于月份日期参数时返回真值，为从指定开始 date(包含)与结束 date(不包含)
之间的月份所有其它日时返回假值。返回 date范围外的 uncertain。月份日期超出

当月天数时，该值在该月的最后一天为真值，因此函数返回的值恰好是每月有一天

为真。

验证事件功能 (English)

语法 说明

错误 (<text>) 使用错误事件将消息传递给用户，防止继续调查到触发该错误的条件不再适用为止。

警告 (<text>) 使用警告事件将消息传递给用户，但允许继续进行，而不管触发该警告的条件。

已过时的函数 (English)

语法 说明

调用客户化函数 (<A>,
)

返回代码库的外部调用结果。必须向 Determinations引擎提供代码库，自定义函数调用

才会成功。

邏輯連接器 (English)

語法 描述

如果 可在結論行結尾 (具有下列證明)顯示的選擇性詞彙

和 兩個 attributes之間的邏輯連接詞

或 兩個 attributes之間的邏輯反意連接詞

二者之一

其中之一

任何

以下至少一項為真

符合以下任何一項

使用反意連接詞的群組要素，其中兩個或更多的 attributes需要加以群組

二者皆是

所有皆是

以下所有項目皆真

已符合以下所有項目

使用連接詞的群組要素，其中兩個或更多的 attributes需要加以群組

否則 在表格規則結尾顯示的詞彙，表示「否則」子句

是 圖例項目中使用的詞彙，介於縮短的片語與完整 attribute text之間

邏輯函數 (English)

語法 描述

非真 <expr> 如果 attribute的值為 false，用來傳回 true的運算子

<var> 確定

已確定是否 <expr>
如果 attribute的值不是 uncertain，用來傳回 true的運算子

<var> 不確定

不確定 <expr>
不確定是否 <expr>
不確定 <expr>
不確定

如果 attribute值為 uncertain，用來傳回 true的運算子

<var> 已知

已知是否 <expr>
如果 attribute有任何值，用來傳回 true的運算子

<var> 不明

不知道是否 <expr>
不知道

如果 attribute沒有值，用來傳回 true的運算子

邏輯常數 (English)

語法 描述

真 用於表格規則的常數 true值。

假 用於表格規則的常數 false值。

不確定 用於表格規則的常數 uncertain值。

比較運算子 (English)

語法 描述

<x><<y>
小於

備註：此運算子與數值及幣別值一起使用時，則不具有自然語言形式。

<x> > <y>
大於

備註：此運算子與數值及幣別值一起使用時，則不具有自然語言形式。

<x><=<y> 小於或等於

<x> >= <y> 大於或等於

<x>=<y> 等於

<x> <> <y> 不等於

數值函數 (English)

語法 描述

數字 (<numText>) 將指定的字串轉換成數值

<x> + <y> 數學加法

<x> - <y> 數學減法

<x> * <y> 數學乘法

<x> / <y> 數學除法

<x> \ <y> 整數除法

<x> modulo <y> 整數除法之後餘數

最大 (<x>, <y>)
最大 (<date/time/datetime1>, <date/time/datetime2>)

傳回兩個數值的較大值

最小 (<x>, <y>)
最小 (<date/time/datetime1>, <date/time/datetime2>)

傳回兩個數值的較小值

X的 Y 次方 (<x>, <y>) x至 y的次方

語法 描述

指數 (<x>) 常數 e對 x的次方

絕對值 (<x>)
|<val>|

x的絕對值

自然對數 (<x>) x的自然對數

對數 (<x>) x的對數底 10

平方根 (<x>) x的平方根

四捨五入 (<x>, <n>) 將 x四捨五入至 n個小數位

截取值 (<x>, <n>) 將 x縮短至 n個小數位

正弦 (<x>) x的正弦

餘弦 (<x>) x的餘弦

正切 (<x>) x的正切

反正弦 (<x>) x的反正弦

反餘弦 (<x>) x的反餘弦

反正切 (<x>) x的反正切

日期函數 (English)

語法 描述

目前日期 () 在階段作業開始傳回目前的 date。

日期 (<text>) 將指定的字串轉換成 date值

建立日期 (<year>,
<month>, <day>)

傳回從指定年度、月份及該日所構成的 date。

擷取日 (<date/datetime>) 傳回 date/datetime attribute的日元件。

擷取月 (<date/datetime>) 傳回 date/datetime attribute的月份元件。

擷取年 (<date/datetime>) 傳回 date/datetime attribute的年份元件。

當週隔日 (<date/datetime>,
<day>)

傳回 date當日或之前 /之後下一個平日的 date(視使用的語法而定)。

隔日 (<date>, <day>,
<month>)

傳回 date之後下一個指定日期與月份的實例。

新增日 (<date/datetime>,
<num_days>)

增加 /減去 date的天數。當使用簡潔的語法形式時，數字必須為正整數才能將天數

加到輸入值 date中，或為負數才能從輸入值 date中減去天數。

語法 描述

新增週 (<date/datetime>,
<num_weeks>)

將週數加到 date中。當使用簡潔的語法形式時，數字必須為正整數才能將週數加到

輸入值 date中。

新增月 (<date/datetime>,
<num_months>)

將月份數加到 date中。當使用簡潔的語法形式時，數字必須為正整數才能將月份數

加到輸入值 date中。

新增年 (<date/datetime>,
<num_years>)

將年數加到 date中。當使用簡潔的語法形式時，數字必須為正整數才能將年數加到

輸入值 date中。

平日計次 (<date1>,
<date2>)

計算介於 date1與 date2之間的平日天數。亦即，介於星期一與星期五之間的天數。

備註：較早的 date包含在內，而較晚的 date則不含在內。

年初 (<date/datetime>) 傳回一年中 date所在的第一個 date。

年終 (<date/datetime>) 傳回一年中 date所在的最後一個 date。

日差異 (<date/datetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間的整日天數。兩個日期的順序不

會影響結果。

日差異包含在內 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間的整日 (含)天數。此計算法會包

含兩個端點。當日期相同時，結果為 1。兩個日期的順序不會影響結果。

日差異排除在外 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間的整日 (不含)天數。此計算法會

排除兩個端點。當日期相同時，結果為 0。兩個日期的順序不會影響結果。

週差異 (<date/datetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整週數目。兩個日期的順

序不會影響結果。

週差異包含在內 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整週數目 (含)。兩個日期

的順序不會影響結果。

週差異排除在外 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整週數目 (不含)。兩個日

期的順序不會影響結果。

月差異 (<date/datetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整月數目。兩個日期的順

序不會影響結果。

月差異包含在內 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整月 (含)數目。兩個日期

的順序不會影響結果。

月差異排除在外 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間經過的整月 (不含)數目。兩個日

期的順序不會影響結果。

年差異 (<date/datetime1>, 傳回介於 date/datetime1與 date/datetime2之間的年數。兩個日期的順序不會影

語法 描述

<date/datetime2>) 響結果。

年差異包含在內 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間的年數 (含)。兩個日期的順序不

會影響結果。

年差異排除在外 (<date/d-
atetime1>,
<date/datetime2>)

傳回介於 date/datetime1與 date/datetime2之間的年數 (不含)。兩個日期的順序

不會影響結果。

當日時間函數 (English)

語法 描述

當日時間 (<text>) 將指定字串轉換成一天的時間

擷取秒 (<time/datetime>) 傳回 timeofday/datetime attribute的秒鐘元件。

擷取分鐘 (<time/datetime>) 傳回 timeofday/datetime attribute的分鐘元件。

擷取小時 (<time/datetime>) 傳回 timeofday/datetime attribute的小時元件。

日期與時間函數 (English)

語法 描述

目前日期時間 () 在階段作業開始傳回目前的 date與時間。

日期時間 (<text>) 將指定的字串轉換成 datetime值

連結日期時間 (<date>,
<time>)

透過結合 date與當日時間來設定 date時間。

秒差異 (<datetime1>, <dat-
etime2>)
秒差異 (<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的秒數。

秒差異包含在內 (<dat-
etime1>, <datetime2>)
秒差異包含在內

(<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的秒數 (含)。

秒差異排除在外 (<dat-
etime1>, <datetime2>)
秒差異排除在外

傳回介於 datetime1與 datetime2之間的秒數 (不含)。

語法 描述

(<timeOfDay1>,
<timeOfDay2>)

分鐘差異 (<datetime1>, <dat-
etime2>)
分鐘差異 (<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的分鐘數。

分鐘差異包含在內 (<dat-
etime1>, <datetime2>)
分鐘差異包含在內

(<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的分鐘數 (含)。

分鐘差異排除在外 (<dat-
etime1>, <datetime2>)
分鐘差異排除在外

(<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的分鐘數 (不含)。

小時差異 (<datetime1>, <dat-
etime2>)
小時差異 (<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的小時數。

小時差異包含在內 (<dat-
etime1>, <datetime2>)
小時差異包含在內

(<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的小時數 (含)。

小時差異排除在外 (<dat-
etime1>, <datetime2>)
小時差異排除在外

(<timeOfDay1>,
<timeOfDay2>)

傳回介於 datetime1與 datetime2之間的小時數 (不含)。

擷取日期 (<datetime>) 從 datetime attribute摘錄 date。

擷取當日時間 (<datetime>)
從 datetime attribute摘錄當日時間。可用來將 timeofday attribute的值設為規

則執行的時間 (透過從目前的 date與時間摘錄時間資訊)。

新增小時 (<datetime>,
<num_hours>)
新增小時 (<timeOfDay>,
<num_hours>)

將小時數加到 date時間中。

新增分鐘 (<datetime>, 將分鐘數加到 date時間中。

語法 描述

<num_minutes>)
新增分鐘 (<timeOfDay>,
<num_minutes>)

新增秒 (<datetime>, <num_
seconds>)
新增秒 (<timeOfDay>, <num_
seconds>)

將秒數加到 date時間中。

文字函數 (English)

語法 描述

<text1> & <text2>
將 text1與 text2等各個值合併，以組成單一的 text值。

備註 :您可以使用任何類型的變數。使用在規則階段作業中安裝的格式化程式，可進

行值的格式化。

將 text1與 text2等各個值合併，以組成單一的 text值。

備註 :您可以使用任何類型的變數。使用在規則階段作業中安裝的格式化程式，可進

行值的格式化。

包含 (<text>, <substring>)
傳回表示指定 text值是否包含指定 text子字串的布林值。text比較區分大小寫。

結尾為 (<text>, <sub-
string>)

傳回表示指定 text值是否以指定 text子字串結束的布林值。text比較區分大小寫。

是數字 (<text>) 傳回表示指定 text值是否代表有效數字的布林值。

長度 (<text>) 傳回指定 text值的字元長度。

開頭為 (<text>, <sub-
string>)

傳回表示指定 text值是否以指定 text子字串開始的布林值。text比較區分大小寫。

子字串 (<text>, <offset>,
<length>)

傳回以指定位移 (其為以字元數計的指定長度)開始的 text子字串。如果達到字串的結

尾，便會傳回較少的字元數。

文字 (<number>)
文字 (<date>)
文字 (<datetime>)
文字 (<timeOfDay>)

將指定的數字或 date attribute轉換成 text值。

實體與關係函數 (English)

語法 描述

針對 (<relationship>, <Exp>) 用來從一個 entity參考至「一對一」、「多對一」或「多對多」relationship中 (其中

語法 描述

只有一個條件)的另一個 entity。

針對範圍 (<relationship>,
<alias>)
針對範圍 (<relationship>)

用來從一個 entity參考至「一對一」、「多對一」或「多對多」relationship中 (其中

有一或多個條件)的另一個 entity。

針對所有 (<relationship>,
<Exp>)

用來從一個 entity參考至「一對多」或「多對多」relationship中的另一個 entity
(當您需要決定目標 entity群組的所有成員是否需要滿足規則時)。
此形式是在規則中只有一個條件時使用。

針對全部範圍 (<relationship>)
針對全部範圍 (<relationship>,
<alias>)

用來從一個 entity參考至「一對多」或「多對多」relationship中的另一個 entity
(當您需要決定目標 entity群組的所有成員是否需要滿足規則時)。
此形式是在規則中有一或多個條件時使用。

存在 (<relationship>, <Exp>)
用來從一個 entity參考至「一對多」或「多對多」relationship中的另一個 entity
(當您需要決定目標 entity群組的成員是否需要滿足規則時)。
此形式是在規則中只有一個條件時使用。

存在範圍 (<relationship>)
存在範圍 (<relationship>,
<alias>)

用來從一個 entity參考至「一對多」或「多對多」relationship中的另一個 entity
(當您需要決定目標 entity群組的成員是否需要滿足規則時)。
此形式是在規則中有一或多個條件時使用。

是以下單位的成員 (<target>,
<relationship>)
是以下單位的成員 (<target>,
<alias>, <relationship>)

用作結論以推論 entity實例為 relationship的成員。用作條件以測試 entity實
例是否為 relationship的目標，而第二個 entity實例為其來源。

不是以下單位的成員 (<target>,
<relationship>)

用作條件以測試 entity實例是否不是 relationship的目標，而第二個 entity實
例為其來源。

實例計次 (<relationship>) 計算 entity已存在的實例數。

實例計次如果 (<relationship>,
<Exp>)

計算 entity已有的實例數，其特定 entity-level attribute已有特定值。

實例最大 (<relationship>, <num-
ber-attr>)
實例最大 (<relationship>, <date-
attr>)
實例最大 (<relationship>, <dat-
etime-attr>)
實例最大 (<relationship>, <time-
attr>)

針對 entity的所有實例，取得 entity-level變數的最高 /最近值。

實例最大如果 (<relationship>,
<number-attr>, <condition>)
實例最大如果 (<relationship>,
<date-attr>, <condition>)

針對 entity的所有實例 (其特定 entity-level attribute具有特定值)，取得

entity-level變數的最高 /最近值。

語法 描述

實例最大如果 (<relationship>,
<datetime-attr>, <condition>)
實例最大如果 (<relationship>,
<time-attr>, <condition>)

實例最小 (<relationship>, <num-
ber-attr>)
實例最小 (<relationship>, <date-
attr>)
實例最小 (<relationship>, <dat-
etime-attr>)
實例最小 (<relationship>, <time-
attr>)

針對 entity的所有實例，取得 entity-level變數的最低 /最早值。

實例最小如果 (<relationship>,
<number-attr>, <condition>)
實例最小如果 (<relationship>,
<date-attr>, <condition>)
實例最小如果 (<relationship>,
<datetime-attr>, <condition>)
實例最小如果 (<relationship>,
<time-attr>, <condition>)

針對 entity的所有實例 (其特定 entity-level attribute具有特定值)，取得

entity-level變數的最低 /最早值。

實例總和 (<relationship>, <num-
ber-attr>)

取得 entity-level變數的所有實例總和。

實例總和如果 (<relationship>,
<number-attr>, <condition>)

取得 entity-level變數的所有實例總和 (其中 entity所述，特定 entity-level布
林 attribute為 true)。

實例值如果 (<relationship>,
<number-attr>, <condition>)
實例值如果 (<relationship>,
<text-attr>, <condition>)
實例值如果 (<relationship>,
<date-attr>, <condition>)
實例值如果 (<relationship>,
<datetime-attr>, <condition>)
實例值如果 (<relationship>,
<time-attr>, <condition>)

從唯一 entity實例取得數值，該實例已透過條件從 relationship的目標 entity
實例加以識別。

l 如果條件會識別單一目標 entity實例，則數值為依據該 entity實例計算

的數值。

l 如果超過一個目標實例符合條件，則會傳回 uncertain。

l 如果沒有目標實例符合條件，且 relationship已知，則數值為

uncertain。

實例等於 (<instance1>,
<instance2>)

決定 entity的兩個實例是否為相同實例。

實例不等於 (<instance1>,
<instance2>)

決定 entity的兩個實例是否不為相同實例。

推論實例 (<relationship>, <iden- 用作結論以推論 entity實例存在且為 relationship的成員。

語法 描述

tity>)
<rel>(<identity>)存在

暫時推斷函數 (English)

語法 描述

區間計次差別 (<start-
date>, <end-date>,
<variable>)
區間計次差別 (<start-
date>, <end-date>,
<condition>)

計算變數於開始 date(含)到結束 date(不含)的間隔期間，其已知特定值的數目。

區間計次差別如果

(<start-date>, <end-
date>, <variable>,
<condition>)

計算變數於開始 date(含)到結束 date(不含)的間隔期間，僅包含布林篩選為 true時，其

已知特定值的數目。

區間日總和 (<start-
date>, <end-date>,
<number-attr>)

計算幣別或數字變數於開始 date(含)到結束 date(不含)之間隔期間的總和。attribute會
假定為每日數量。

區間日總和如果

(<start-date>, <end-
date>, <number-attr>,
<condition>)

計算幣別或數字變數於開始 date(含)到結束 date(不含)的間隔期間，僅包含條件為 true
時，所有每日數值的總和。

區間最大 (<start-
date>, <end-date>,
<number-attr>)
區間最大 (<start-
date>, <end-date>,
<date-attr>)
區間最大 (<start-
date>, <end-date>,
<datetime-attr>)
區間最大 (<start-
date>, <end-date>,
<time-attr>)

選取變數於開始 date(含)到結束 date(不含)之間隔期間的最大值。

區間最大如果 (<start-
date>, <end-date>,
<number-attr>, <con-
dition>)

選取變數於開始 date(含)到結束 date(不含)之間隔期間的最大值 (僅包含條件為 true
時)。

語法 描述

區間最大如果 (<start-
date>, <end-date>,
<date-attr>, <con-
dition>)
區間最大如果 (<start-
date>, <end-date>,
<datetime-attr>, <con-
dition>)
區間最大如果 (<start-
date>, <end-date>,
<time-attr>, <con-
dition>)

區間最小 (<start-
date>, <end-date>,
<number-attr>)
區間最小 (<start-
date>, <end-date>,
<date-attr>)
區間最小 (<start-
date>, <end-date>,
<datetime-attr>)
區間最小 (<start-
date>, <end-date>,
<time-attr>)

選取變數於開始 date(含)到結束 date(不含)之間隔期間的最小值。

區間最小如果 (<start-
date>, <end-date>,
<number-attr>, <con-
dition>)
區間最小如果 (<start-
date>, <end-date>,
<date-attr>, <con-
dition>)
區間最小如果 (<start-
date>, <end-date>,
<datetime-attr>, <con-
dition>)
區間最小如果 (<start-
date>, <end-date>,
<time-attr>, <con-
dition>)

選取變數於開始 date(含)到結束 date(不含)之間隔期間的最小值 (僅包含條件為 true
時)。

區間加權平均 (<start-
date>, <end-date>,

計算幣別或數字變數於開始 date(含)到結束 date(不含)之間隔期間的平均值 (依每個值

套用的時間範圍加權)。

語法 描述

<number-attribute>)

區間加權平均如果

(<start-date>, <end-
date>, <number-attrib-
ute>, <condition>)

計算幣別或數字變數於開始 date(含)到結束 date(不含)的間隔期間、僅包含布林條件為

true時的平均值 (依每個值套用的時間範圍加權且在篩選為 true時)。

區間內一律 (<start-
date>, <end-date>,
<condition>)

傳回 true，如果且只有在布林條件於開始 date(含)到結束 date(不含)的間隔期間皆為

true時。

區間內至少日數日

(<start-date>, <end-
date>, <NumDays>,
<condition>)

傳回 true，如果且只有在布林條件於開始 date(含)到結束 date(不含)的間隔期間，至少

於指定的天數 (未必為連續)為 true時。

區間內連續數日

(<start-date>, <end-
date>, <NumDays>,
<condition>)

傳回 true，如果且只有在布林條件於開始 date(含)到結束 date(不含)的間隔期間，至少

於指定的連續天數為 true時。

區間內有時候 (<start-
date>, <end-date>,
<condition>)

如果且只有在布林條件於開始 date(含)到結束 date(不含)之間隔期間為 true時，傳回

true。

價值於 (<date>,
<value>)

於指定的 date傳回指定 attribute的值。

當上一個 (<date>,
<condition>)

傳回布林條件上次為 true的 date，自指定的 date起 (含)往後推。

當下一個 (<date>,
<condition>)

傳回布林條件下次為 true的 date，自指定的 date起 (含)往前推。

最晚 ()
將傳回與最晚之可能 date相等的 date值，亦即 date保證比 date attribute採用的或運

算式可能評估的任何 date晚。

最早 ()
傳回與最早之可能 date相等的 date值，亦即 date保證比 date attribute採用的或運算

式可能評估的任何 date早。

暫存日數自 (<date>,
<end-date>)

傳回每天變化且自 date起完整天數的數字變數。

暫存週數自 (<date>,
<end-date>)

傳回每週變化的數字變數，且其為自 date起的完整週數。

暫存月數自 (<date>,
<end-date>)

傳回每個月變化的數字變數，且其為自 date起的完整月數。備註：如果提供的 date在該

月的第 28日之後，且後續月份的天數較提供的月份少，則週年月份的變更點將會建立在

該月的最後一天。例如，如果提供的 date為 2007年 1月 28、29、30或 31日，則第一個變

語法 描述

更點將會是 2007年 2月 28日。

暫存年數自 (<date>,
<end-date>)

傳回每年變化的數字變數，且其為自 date起的完整年份數。

暫存一律數日

(<days>, <condition>)
傳回在一段期間中變化的布林 attribute，如果且只有在布林條件針對所有指定前置天數

(不含當日)為 true時，其為 true。

暫存連續數日

(<minDays>, <days>,
<condition>)

傳回在一段期間中變化的布林 attribute，如果且只有在布林條件至少針對前置設定天數

中任何時間的最短連續天數 (不含當日)為 true時，其為 true。

暫存有時候數日

(<days>, <condition>)
傳回在一段期間中變化的布林 attribute，其只有在布林條件於指定的前置天數內 (不包

含當日)才為 true。

暫存之後 (<date>)
傳回在一段期間中變化的布林 attribute，其在 date之後為 true，且在當時或之前為

false。

暫存當日前 (<date>)
傳回在一段期間中變化的布林 attribute，其在 date之前為 true，且在當時或之後為

false。

暫存當日 (<date>) 傳回在一段期間中變化的布林 attribute，其在 date時為 true，且在之前或之後為 false。

暫存當日或當日後

(<date>)
傳回在一段期間中變化的布林 attribute，其在 date當時或之後為 true，且在之前為

false。

暫存當日或當日前

(<date>)
傳回在一段期間中變化的布林 attribute，其在 date當時和之前為 true，且在之後為

false。

暫存自開始日期起

(<relationship>,
<date>, <value>)

以自開始 date attribute起有效的值，來從 relationship傳回單一暫存 attribute(位於來

源 entity層次)與實體上的值 attribute。

暫存自結束日期起

(<relationship>,
<date>, <value>)

以直到結束 date attribute前皆有效的值，來從 relationship傳回單一暫存 attribute(位
於來源 entity層次)與實體上的值 attribute。

暫存自範圍起 (<rela-
tionship>, <start-date>,
<end-date>, <Value>)

以自開始 date attribute(含)直到結束 date attribute(不含)止有效的值，來從 rela-
tionship傳回單一暫存 attribute(位於來源 entity層次)與實體上的值 attribute。如果值

在下一個開始 date到期，則值為 uncertain。

暫存為平日

(<startdate>, <end-
date>)

如果日期為平日，則傳回 true，如果日期為自指定開始 date(含)至結束 date(不含)的週

末，則傳回 false。如果不在 date範圍內，則傳回 uncertain。

暫存每月一次

(<startdate>, <end-
date>, <dayofmonth>)

如果日期等於該月某日的參數，則傳回 true，如果落在從指定開始 date(含)至結束 date
(不含)的該月所有其他日，則傳回 false。如果不在 date範圍內，則傳回 uncertain。當該

月某日超過目前月份中的天數時，值會在該月的最後一天為 true，因此函數會傳回確實在

每月一天為 true的值。

驗證事件函數 (English)

語法 描述

錯誤 (<text>)
錯誤事件是用來傳遞訊息給使用者，且讓其等到觸發該錯誤的條件不再作用後，再繼續進行調查。

警告 (<text>) 警告事件是用來傳遞訊息給使用者，但讓其在觸發該錯誤的條件作用時仍可繼續作業。

已過時函數 (English)

語法 描述

呼叫自訂函式 (<A>,
)

傳回對代碼程式庫的外部呼叫結果。必須對決定引擎提供代碼程式庫，自訂函數呼叫才

能順利執行。

Logické spojky(English)

Syntaxe Popis

pokud
Volitelný termín, který se může vyskytovat na konci řádku závěru, který
obsahuje následující důkaz.

a Logická konjunkce mezi dvěma atributy attributes

nebo Logická disjunkce mezi dvěma atributy attributes

buď
jeden z
libovolný
nejméně jedna z následujících pod-
mínek je pravda
je splněna kterákoli z následujících pod-
mínek

Prvek seskupení použitý při disjunkcích, kde je nutné seskupit dva nebo více
atributů attributes.

obojí
vše
všechny následující podmínky jsou
pravda
jsou splněny všechny následující pod-
mínky

Prvek seskupení použitý při konjunkcích, kde je nutné seskupit dva nebo více
atributů attributes.

jinak
Termín, který se vyskytuje na konci pravidla tabulky a označuje klauzuli
„jinak“.

je
Termín používaný v zadání legendy mezi stručnou frází a celým atributem
attribute (text)

Logické funkce(English)

Syntaxe Popis

není pravda, že <attr> Použitý operátor vrací hodnotu pravda, pokudmá atribut attribute hodnotu nepravda.

<var> je jisté
je jisté, zda <attr>

Použitý operátor vrací hodnotu pravda, pokudmá prvek attribute hodnotu, která není
uncertain.

<var> není jisté
není jisté, že <attr>
není jisté, zda <attr>
není jisté, že <attr>
není jisté

Použitý operátor vrací hodnotu pravda, pokudmá atribut attribute hodnotu uncertain.

<var> je známo
je známo, zda <attr>

Použitý operátor vrací hodnotu pravda, pokud atribut attributemá nějakou hodnotu.

<var> není známo
není známo, zda
<attr>
neznámý

Použitý operátor vrací hodnotu pravda, pokud atribut attribute nemá žádnou hodnotu.

Logické konstanty(English)

Syntaxe Popis

pravda Konstanta s hodnotou pravda používaná pro pravidla tabulky.

nepravda Konstanta s hodnotou nepravda používaná pro pravidla tabulky.

není jisté Konstanta uncertain používaná pro pravidla tabulky.

Porovnávací operátory(English)

Syntaxe Popis

<x><<y>
Menší než
Poznámka: Neexistuje přirozená jazyková forma, pokud je tento operátor použit spolu s číselnými hodnotami a
hodnotami měn.

<x> > <y>
Větší než
Poznámka: Neexistuje přirozená jazyková forma, pokud je tento operátor použit spolu s číselnými hodnotami a
hodnotami měn.

<x>
<=<y>

Menší nebo rovno

<x> >=
<y>

Větší nebo rovno

<x>=<y> Rovná se

Syntaxe Popis

<x> <>
<y>

Nerovná se

Číselné funkce(English)

Syntaxe Popis

Číslo(<numText>) Převede zadaný řetězec na číselnou hodnotu.

<x> + <y> Matematické sčítání

<x> - <y> Matematické odčítání

<x> * <y> Matematické násobení

<x> / <y> Matematické dělení

<x> \ <y> Celočíselné dělení

<x> modulo <y> Zbytek po celočíselném dělení

Maximální(<x>, <y>)
Maximální(<date/time/datetime1>, <date/time/datetime2>)

Vrátí větší ze dvou hodnot.

Minimální(<x>, <y>)
Minimální(<date/time/datetime1>, <date/time/datetime2>)

Vrátí menší ze dvou hodnot.

Xy(<x>, <y>) y-tá mocnina x

Ex(<x>) Obsahuje e na x

Abs(<x>)
|<val>|

Absolutní hodnota x

Ln(<x>) Přirozený logaritmus x

Log(<x>) Logaritmus x (o základu 10)

DruháOdmocnina(<x>) Druhá odmocnina x

Zaokrouhlit(<x>, <n>) Zaokrouhlí x na n desetinnýchmíst.

CeločíselnáHodnota(<x>, <n>) hodnota x oříznutá na n desetinnýchmíst

Sin(<x>) Sinus x

Cos(<x>) Kosinus x

Tg(<x>) Tangens x

Arcsin(<x>) Arkussinus x

Syntaxe Popis

Arccos(<x>) Arkussinus x

Arctg(<x>) Arkustangens x

Funkce data(English)

Syntaxe Popis

AktuálníDatum() Vrátí aktuální date na začátku relace.

Datum(<text>) Převede zadaný řetězec na hodnotu date.

DatumProvedení(<year>,
<month>, <day>)

Vrátí hodnotu date vytvořenou ze zadaného roku, měsíce a dne.

VybratDen(<date/d-
atetime>)

Vrátí komponentu dnů z hodnoty date/datetime attribute.

VybratMěsíc(<date/d-
atetime>)

Vrátí komponentuměsíců z hodnoty date/datetime attribute.

VybratRok(<date/d-
atetime>)

Vrátí komponentu roků z hodnoty date/datetime attribute.

DalšíDenVTýdnu(<date/d-
atetime>, <day>)

Vrátí hodnotu date dalšího všedního dne k datu date, před tímto datem nebo po něm (v závis-
losti na použité syntaxi).

DalšíDen(<date>, <day>,
<month>)

Vrátí další instanci daného dne a měsíce po datu date.

PřidatDny
(<date/datetime>, <num_
days>)

Přičte nebo odečte počet dnů k date. Při použití stručné syntaktické formy tento počet musí být
kladné celé číslo, aby se počet dnů přičetl ke vstupu date, nebo záporné číslo, aby se počet dnů
odečetl od vstupu date.

PřidatTýdny(<date/d-
atetime>, <num_weeks>)

Přičte počet týdnů k datu date. Při použití stručné syntaktické formy tento počet musí být kladné
celé číslo, aby se počet týdnů přičetl ke vstupu date.

PřidatMěsíce(<date/d-
atetime>, <num_months>)

Přičte počet měsíců k date. Při použití stručné syntaktické formy tento počet musí být kladné
celé číslo, aby se počet měsíců přičetl ke vstupu date.

PřidatRoky(<date/d-
atetime>, <num_years>)

Přičte počet roků k datu date. Při použití stručné syntaktické formy tento počet musí být kladné
celé číslo, aby se počet roků přičetl ke vstupu date.

PočetDníVTýdnu(<date1>,
<date2>)

Spočítá počet všedních dní mezi hodnotami data a času date1 a date2, to znamená počet dní
spadajícíchmezi pondělí a pátek.
Poznámka: První datum date je zahrnuto, druhé datum date zahrnuto není.

ZačátekRoku(<date/d-
atetime>)

Vrátí první komponentu date v roce, do kterého hodnota date spadá.

Syntaxe Popis

KonecRoku(<date/d-
atetime>)

Vrátí poslední komponentu date v roce, do kterého hodnota date spadá.

DenníRozdíl(<date/d-
atetime1>, <date/d-
atetime2>)

Vrátí počet dní mezi hodnotami date/datetime1 a date/datetime2. Pořadí obou dat nemá
na výsledek vliv.

VčetněDenníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet dní (včetně hraničních dat) mezi hodnotami date/datetime1 a date/datetime2.
Tento výpočet zahrnuje obě hraniční data. Pokud jsou data stejná, je výsledek 1. Pořadí obou
dat nemá na výsledek vliv.

MimoDenníRozdíl(<date/d-
atetime1>, <date/d-
atetime2>)

Vrátí počet dní (bez hraničních dat) mezi hodnotami date/datetime1 a date/datetime2.
Tento výpočet nezahrnuje obě hraniční data. Pokud jsou data stejná, je výsledek 0. Pořadí obou
dat nemá na výsledek vliv.

TýdenníRozdíl(<date/d-
atetime1>, <date/d-
atetime2>)

Vrátí počet uplynulých týdnůmezi hodnotami data a času date/datetime1 a date/d-
atetime2. Pořadí obou dat nemá na výsledek vliv.

VčetněTýdenníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet uplynulých týdnů (včetně krajních hodnot) mezi hodnotami data a času date/d-
atetime1 a date/datetime2. Pořadí obou dat nemá na výsledek vliv.

BezTýdenníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet uplynulých týdnů (bez krajních hodnot) mezi hodnotami data a času date/d-
atetime1 a date/datetime2. Pořadí obou dat nemá na výsledek vliv.

MěsíčníRozdíl(<date/d-
atetime1>, <date/d-
atetime2>)

Vrátí počet celých uplynulýchměsícůmezi hodnotami data a času date/datetime1 a date/d-
atetime2. Pořadí obou dat nemá na výsledek vliv.

VčetněMěsíčníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet celých uplynulýchměsíců (včetně krajních hodnot) mezi hodnotami data a času
date/datetime1 a date/datetime2. Pořadí obou dat nemá na výsledek vliv.

BezMěsíčníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet celých uplynulýchměsíců (bez krajních hodnot) mezi hodnotami data a času date/d-
atetime1 a date/datetime2. Pořadí obou dat nemá na výsledek vliv.

RočníRozdíl(<date/d-
atetime1>, <date/d-
atetime2>)

Vrátí počet let mezi hodnotami data a času date/datetime1 a date/datetime2. Pořadí obou
dat nemá na výsledek vliv.

VčetněRočníhoRozdílu
(<date/datetime1>, <date/d-
atetime2>)

Vrátí počet let (včetně krajních hodnot) mezi hodnotami data a času date/datetime1 a
date/datetime2. Pořadí obou dat nemá na výsledek vliv.

BezRočníhoRozdílu
(<date/datetime1>, <date/d-

Vrátí počet let (bez krajních hodnot) mezi hodnotami data a času date/datetime1 a date/d-
atetime2. Pořadí obou dat nemá na výsledek vliv.

Syntaxe Popis

atetime2>)

Funkce času(English)

Syntaxe Popis

Čas(<text>) Převede zadaný řetězec na čas.

VybratSekundu(<time/datetime>) Vrátí komponentu sekund z hodnoty timeofday/datetime attribute.

VybratMinutu(<time/datetime>) Vrátí komponentuminut z hodnoty timeofday/datetime attribute.

VybratHodinu(<time/datetime>) Vrátí komponentu hodin z hodnoty timeofday/datetime attribute.

Funkce data a času(English)

Syntaxe Popis

AktuálníDatumAČas() Vrátí aktuální date a čas na začátku relace.

DatumAČas(<text>) Převede zadaný řetězec na hodnotu datetime.

ZřetězenýDenAČas(<date>,
<time>)

Nastaví čas date spojením hodnoty date a denní doby dohromady.

SekundovýRozdíl(<dat-
etime1>, <datetime2>)
SekundovýRozdíl
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet sekundmezi hodnotami data a času datetime1 a datetime2.

VčetněSekundovéhoRozdílu
(<datetime1>, <datetime2>)
VčetněSekundovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet sekund (včetně krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

BezSekundovéhoRozdílu
(<datetime1>, <datetime2>)
BezSekundovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet sekund (bez krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

MinutovýRozdíl
(<datetime1>, <datetime2>)
MinutovýRozdíl
(<timeOfDay1>,

Vrátí počet minut mezi hodnotami data a času datetime1 a datetime2.

Syntaxe Popis

<timeOfDay2>)

VčetněMinutovéhoRozdílu
(<datetime1>, <datetime2>)
VčetněMinutovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet minut (včetně krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

BezMinutovéhoRozdílu(<dat-
etime1>, <datetime2>)
BezMinutovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet minut (bez krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

HodinovýRozdíl
(<datetime1>, <datetime2>)
HodinovýRozdíl
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet hodinmezi hodnotami data a času datetime1 a datetime2.

VčetněHodinovéhoRozdílu
(<datetime1>, <datetime2>)
VčetněHodinovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet hodin (včetně krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

BezHodinovéhoRozdílu(<dat-
etime1>, <datetime2>)
BezHodinovéhoRozdílu
(<timeOfDay1>,
<timeOfDay2>)

Vrátí počet hodin (bez krajních hodnot) mezi hodnotami data a času datetime1 a dat-
etime2.

VybratDatum(<datetime>) Odečte date od datetime attribute.

VybratČas(<datetime>)
Vybere čas a den z hodnoty data a času datetime attribute. Lze použít k nastavení hod-
noty timeofday attribute na čas provedení pravidla výběrem času z aktuální hodnoty
date a čas.

PřidatHodiny(<datetime>,
<num_hours>)
PřidatHodiny(<timeOfDay>,
<num_hours>)

Přičte počet hodin k hodnotě času date.

PřidatMinuty(<datetime>,
<num_minutes>)
PřidatMinuty(<timeOfDay>,
<num_minutes>)

Přičte počet minut k hodnotě času date.

Syntaxe Popis

PřidatSekundy(<datetime>,
<num_seconds>)
PřidatSekundy
(<timeOfDay>, <num_
seconds>)

Přičte počet sekund k hodnotě času date.

Textové funkce(English)

Syntaxe Popis

<text1> & <text2>
Zkombinuje text1 s text2 atd. a vytvoří jedinou hodnotu text.
Poznámka: můžete použít proměnnou libovolného typu. Hodnoty jsou formátovány pomocí
nástroje pro formátování, který je instalován v relaci pravidla.

Zkombinuje text1 s text2 atd. a vytvoří jedinou hodnotu text.
Poznámka: můžete použít proměnnou libovolného typu. Hodnoty jsou formátovány pomocí
nástroje pro formátování, který je instalován v relaci pravidla.

Obsahuje(<text>, <sub-
string>)

Vrátí booleovskou hodnotu, která udává, zda daná hodnota text obsahuje daný dílčí řetězec text.
Porovnání text nerozlišuje malá a velká písmena.

KončíČím(<text>, <sub-
string>)

Vrátí booleovskou hodnotu, která udává, zda daná hodnota text končí daným dílčím řetězcem
text. Porovnání text nerozlišuje malá a velká písmena.

JeČíslo(<text>) Vrátí booleovskou hodnotu, která udává, zda daná hodnota text představuje platné číslo.

Délka(<text>) Vrátí délku zadané hodnoty text ve znacích.

ZačínáČím(<text>, <sub-
string>)

Vrátí booleovskou hodnotu, která udává, zda daná hodnota text začíná daným dílčím řetězcem
text. Porovnání text nerozlišuje malá a velká písmena.

Podřetězec(<text>, <off-
set>, <length>)

Vrátí dílčí řetězec z textu text začínající na daném odsazení, který má zadaný počet znaků. Pokud
funkce dosáhne konec řetězce, vrátí méně znaků.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Převede zadané číslo nebo datum date attribute na hodnotu text.

Funkce entity a vztahu(English)

Syntaxe Popis

Pro(<relationship>, <Exp>)
Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:1, N:1 nebo
N:N relationship, existuje-li pouze jedna podmínka.

ProRozsah(<relationship>, Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:1, N:1 nebo

Syntaxe Popis

<alias>)
ProRozsah(<relationship>)

N:N relationship, existuje-li jedna nebo více podmínek.

ProVšechny(<relationship>,
<Exp>)

Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:N nebo N:N
relationship, když potřebujete určit, zda všechny členy cílové skupiny entit entitymusí
vyhovovat pravidlu.
Tento tvar se používá, pokud pravidlo obsahuje jen jednu podmínku.

ProCelýRozsah(<relationship>)
ProCelýRozsah(<relationship>,
<alias>)

Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:N nebo N:N
relationship, když potřebujete určit, zda všechny členy cílové skupiny entit entitymusí
vyhovovat pravidlu.
Tento tvar se používá, pokud pravidlo obsahuje jednu nebo více podmínek.

Existuje(<relationship>, <Exp>)

Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:N nebo N:N
relationship, když potřebujete určit, zda některé členy cílové skupiny entit entitymusí
vyhovovat pravidlu.
Tento tvar se používá, pokud pravidlo obsahuje jen jednu podmínku.

ExistujícíRozsah
(<relationship>)
ExistujícíRozsah(<relationship>,
<alias>)

Slouží k odkazování z jedné entity entity do jiné entity entity ve vztahu 1:N nebo N:N
relationship, když potřebujete určit, zda některé členy cílové skupiny entit entitymusí
vyhovovat pravidlu.
Tento tvar se používá, pokud pravidlo obsahuje jednu nebo více podmínek.

JeČlenem(<target>, <rela-
tionship>)
JeČlenem(<target>, <alias>,
<relationship>)

Slouží jako závěr k odvození, že instance entity je členem vztahu relationship. Slouží
jako podmínka k otestování, že instance entity je cílem vztahu relationship, jehož zdro-
jem je druhá instance entity.

NeníČlenem(<target>, <rela-
tionship>)

Slouží jako podmínka k testování, zda instance entity entity není cílem vztahu rela-
tionship, pro který je druhá instance entity entity zdrojem.

PočetInstancí(<relationship>) Spočítá počet instancí existujících pro entitu entity.

PočetInstancíPokud(<rela-
tionship>, <Exp>)

Spočítá počet instancí entity entity, pro které má určitý atribut entity-level attribute
konkrétní hodnotu.

MaximálníPočetInstancí(<rela-
tionship>, <number-attr>)
MaximálníPočetInstancí(<rela-
tionship>, <date-attr>)
MaximálníPočetInstancí(<rela-
tionship>, <datetime-attr>)
MaximálníPočetInstancí(<rela-
tionship>, <time-attr>)

Získá nejvyšší/nejaktuálnější hodnotu proměnné entity-level pro všechny instance
entity entity.

MaximálníPočetInstancíPokud
(<relationship>, <number-attr>,

Získá nejvyšší/nejaktuálnější hodnotu proměnné entity-level pro všechny instance
entity entity, u které má určitý atribut entity-level attribute určitou hodnotu.

Syntaxe Popis

<condition>)
MaximálníPočetInstancíPokud
(<relationship>, <date-attr>, <con-
dition>)
MaximálníPočetInstancíPokud
(<relationship>, <datetime-attr>,
<condition>)
MaximálníPočetInstancíPokud
(<relationship>, <time-attr>, <con-
dition>)

MinimálníPočetInstancí(<rela-
tionship>, <number-attr>)
MinimálníPočetInstancí(<rela-
tionship>, <date-attr>)
MinimálníPočetInstancí(<rela-
tionship>, <datetime-attr>)
MinimálníPočetInstancí(<rela-
tionship>, <time-attr>)

Získá nejnižší/nejméně aktuální hodnotu proměnné entity-level pro všechny instance
entity entity.

MinimálníPočetInstancíPokud
(<relationship>, <number-attr>,
<condition>)
MinimálníPočetInstancíPokud
(<relationship>, <date-attr>, <con-
dition>)
MinimálníPočetInstancíPokud
(<relationship>, <datetime-attr>,
<condition>)
MinimálníPočetInstancíPokud
(<relationship>, <time-attr>, <con-
dition>)

Získá nejnižší/nejméně aktuální hodnotu proměnné entity-level pro všechny instance
entity entity, u které má určitý atribut entity-level attribute určitou hodnotu.

SoučetInstancí(<relationship>,
<number-attr>)

Získá součet všech instancí proměnné entity-level.

SoučetInstancíPokud(<rela-
tionship>, <number-attr>, <con-
dition>)

Získá součet všech instancí proměnné entity-level, u které pro entitu entity platí, že
specifická booleovská entita entity-levelmá hodnotu attribute pravda.

HodnotaInstancePokud(<rela-
tionship>, <number-attr>, <con-
dition>)
HodnotaInstancePokud(<rela-
tionship>, <text-attr>,

Získá hodnotu z jedinečné instance entity, určené z entity cílových instancí rela-
tionship na základě podmínky.

l Pokud podmínka označí jedinou cílovou instanci entity, pak jde o hodnotu vypo-
čtenou oproti instanci entity.

l Pokud podmínku splňuje více než jedna cílová instance, pak je vráceno uncer-

Syntaxe Popis

<condition>)
HodnotaInstancePokud(<rela-
tionship>, <date-attr>, <con-
dition>)
HodnotaInstancePokud(<rela-
tionship>, <datetime-attr>, <con-
dition>)
HodnotaInstancePokud(<rela-
tionship>, <time-attr>, <con-
dition>)

tain.

l Pokud podmínku nesplňuje žádná cílová instance a je známo relationship, je
hodnota uncertain.

InstanceRovna(<instance1>,
<instance2>)

Určí, zda jsou dvě instance entity entity totožné.

InstanceNeníRovna
(<instance1>, <instance2>)

Určí, zda dvě instance entity entity nejsou totožné.

InferInstance(<relationship>,
<identity>)

Slouží jako závěr k odvození, že instance entity existuje a je členem vztahu rela-
tionship.

Funkce časové logiky(English)

Syntaxe Popis

PřesnýPočetIntervalů(<start-date>,
<end-date>, <variable>)
PřesnýPočetIntervalů(<start-date>,
<end-date>, <condition>)

Spočítá počet známých odlišných hodnot proměnné v intervalu od počátečního data
date (včetně) do koncového data date (není zahrnuto).

PřesnýPočetIntervalůPokud
(<start-date>, <end-date>,
<variable>, <condition>)

Spočítá počet známých odlišných hodnot proměnné v intervalu od počátečního data
date (včetně) do koncového data date (není zahrnuto). Zahrne pouze případy, kdy
má booleovský filtr hodnotu pravda.

DenníSoučetIntervalů(<start-date>,
<end-date>, <number-attr>)

Spočítá součet číselné nebo měnové proměnné v intervalu od počátečního data date
(včetně) do koncového data date (není zahrnuto). Předpokládá se, že atribut attrib-
ute je denní množství.

DenníSoučetIntervalůPokud
(<start-date>, <end-date>, <number-
attr>, <condition>)

Vypočítá součet všech denních hodnotměny nebo číselné proměnné v intervalu od
počátečního data date (včetně) po koncové datum date (není zahrnuto). Zahrne
pouze případy, kdy má podmínka hodnotu pravda.

MaximálníInterval(<start-date>,
<end-date>, <number-attr>)
MaximálníInterval(<start-date>,
<end-date>, <date-attr>)
MaximálníInterval(<start-date>,

Vybere maximální hodnotu proměnné v intervalu od počátečního data date (včetně)
po koncové datum date (není zahrnuto).

Syntaxe Popis

<end-date>, <datetime-attr>)
MaximálníInterval(<start-date>,
<end-date>, <time-attr>)

MaximálníIntervalPokud(<start-
date>, <end-date>, <number-attr>,
<condition>)
MaximálníIntervalPokud(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MaximálníIntervalPokud(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MaximálníIntervalPokud(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Vybere maximální hodnotu proměnné v intervalu od počátečního data date (včetně)
po koncové datum date (není zahrnuto). Zahrne pouze případy, kdy má podmínka
hodnotu pravda.

MinimálníInterval(<start-date>,
<end-date>, <number-attr>)
MinimálníInterval(<start-date>,
<end-date>, <date-attr>)
MinimálníInterval(<start-date>,
<end-date>, <datetime-attr>)
MinimálníInterval(<start-date>,
<end-date>, <time-attr>)

Vybere minimální hodnotu proměnné v intervalu od počátečního data date (včetně)
po koncové datum date (není zahrnuto).

MinimálníIntervalPokud(<start-
date>, <end-date>, <number-attr>,
<condition>)
MinimálníIntervalPokud(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MinimálníIntervalPokud(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MinimálníIntervalPokud(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Vybere minimální hodnotu proměnné v intervalu od počátečního data date (včetně)
po koncové datum date (není zahrnuto). Zahrne pouze případy, kdy má podmínka
hodnotu pravda.

VáženýPrůměrIntervalu(<start-
date>, <end-date>, <number-attrib-
ute>)

Vypočte průměrnou hodnotuměnové nebo číselné proměnné v intervalu od
počátečního data date (včetně) po koncové datum date (není zahrnuto) váženou
podle časového rozmezí, kterého se jednotlivé hodnoty týkají.

VáženýPrůměrIntervaluPokud
(<start-date>, <end-date>, <number-
attribute>, <condition>)

Vypočte průměrnou hodnotuměnové nebo číselné proměnné v intervalu od
počátečního data date (včetně) po koncové datum date (není zahrnuto), přičemž
zahrne pouze případy, kdy má booleovská podmínka hodnotu pravda (váženo podle

Syntaxe Popis

časového rozmezí, kterého se jednotlivé hodnoty týkají a filtr má hodnotu pravda).

IntervalVždy(<start-date>, <end-
date>, <condition>)

Vrátí hodnotu pravda, pokud a pouze pokudmá booleovská podmínka hodnotu
pravda vždy v intervalu od počátečního data date (včetně) do koncového data date
(není zahrnuto).

IntervalNejmenšíhoPočtuDnů
(<start-date>, <end-date>,
<NumDays>, <condition>)

Vrátí hodnotu pravda, pokud a pouze pokudmá booleovská podmínka hodnotu
pravda alespoň pro zadaný počet dní (ne nezbytně jdoucích po sobě) v intervalu od
počátečního data date (včetně) do koncového data date (není zahrnuto).

IntervalPoSoběJdoucíchDnů
(<start-date>, <end-date>,
<NumDays>, <condition>)

Vrátí hodnotu pravda, pokud a pouze pokudmá booleovská podmínka hodnotu
pravda alespoň pro zadaný počet po sobě jdoucích dní v intervalu od počátečního
data date (včetně) do koncového data date (není zahrnuto).

IntervalNěkdy(<start-date>, <end-
date>, <condition>)

Vrátí hodnotu pravda tehdy a pouze tehdy, pokudmá booleovská podmínka někdy
hodnotu pravda v intervalu od počátečního data date (včetně) do koncového data
date (není zahrnuto).

PřiHodnotě(<date>, <value>) Vrací hodnotu daného atributu attribute k zadanému datu date.

PřiPosledním(<date>, <condition>)
Vrátí datum date, u kterého má booleovská podmínka hodnotu pravda, bráno
zpětně (a včetně) od zadaného data date.

PřiNásledujícím(<date>,
<condition>)

Vrátí datum date, u kterého bude mít booleovská podmínka příště hodnotu pravda,
bráno dopředu (a včetně) od zadaného data date.

Nejpozději()
Vrátí hodnotu date odpovídající nejpozdější možné hodnotě date - jmenovitě hod-
notu date, která určitě následuje po kterékoli jiné hodnotě date, kteroumůže pře-
bírat atribut date attribute nebo kteroumůže vyhodnotit výraz.

Nejdříve()
Vrátí hodnotu date odpovídající nejnižší možné hodnotě date - jmenovitě hodnotu
date, která určitě předchází kterékoli jiné hodnotě date, kteroumůže přebírat
atribut date attribute nebo kteroumůže vyhodnotit výraz.

DočasněOdeDne(<date>, <end-
date>)

Vrátí číselnou proměnnou, která se mění každý den a představuje počet celých dní od
data date.

DočasněOdTýdne(<date>, <end-
date>)

Vrátí číselnou proměnnou, která se mění každý týden a představuje počet celých
týdnů od data date.

DočasněOdMěsíce(<date>, <end-
date>)

Vrátí číselnou proměnnou, která se mění každý měsíc, a představuje počet celých
měsíců od data date. Poznámka: Pokud zadané datum date následuje po 28. dni
měsíce a následující měsíc má méně dní než zadaný měsíc, bude bod změny pro
výroční měsíc vytvořen k poslednímu dni daného měsíce. Příklad: Pokud zadáte hod-
notu date jako 28., 29., 30. nebo 31. ledna 2007, bude prvním bodem změny 28.
únor 2007.

DočasněOdRoku(<date>, <end-
date>)

Vrátí číselnou proměnnou, která se mění každý rok a představuje počet celých let od
data date.

Syntaxe Popis

DočasněVždyDny(<days>, <con-
dition>)

Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
tehdy a pouze tehdy, pokudmá booleovská podmínka hodnotu pravda u všech
zadaných předchozích dní, mimo aktuálního dne.

DočasněPoSoběJdoucíDny
(<minDays>, <days>, <condition>)

Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
tehdy a pouze tehdy, pokudmá booleovská podmínka hodnotu pravda uminimálního
počtu po sobě jdoucích dní kdykoli v zadaném intervalu předchozích dní, mimo aktuál-
ního dne.

DočasněNěkdyDny(<days>, <con-
dition>)

Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
tehdy a pouze tehdy, pokudmá booleovská podmínka někdy hodnotu pravda u
zadaného rozsahu předchozích dní, mimo aktuálního dne.

DočasnéPoDatu(<date>)
Vrátí booleovskou hodnou attribute, která se s časemmění a má hodnotu pravda
po datu date a hodnotu nepravda k danému datu a před ním.

DočasnéDoData(<date>)
Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
před datem date a hodnotu nepravda k danému datu a po něm.

DočasnéKDatu(<date>)
Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
k datu date a hodnotu nepravda před a po něm.

DočasnéKDatuNeboPoTomtoDatu
(<date>)

Vrátí booleovskou hodnotu attribute, která se s časemmění a má hodnotu pravda
k datu a po datu date a hodnotu nepravda před ním.

DočasnéDoDataNeboKTomutoDatu
(<date>)

Vrátí booleovskou hodnou attribute, která se s časemmění a má hodnotu pravda k
datu a před datem date a hodnotu nepravda po něm.

DočasněOdPočátečníhoData(<rela-
tionship>, <date>, <value>)

Vrátí jediný časový atribut attribute (na úrovni zdrojové entity entity) ze vztahu
relationship a hodnoty attribute u entit, s hodnotami, které jsou platné od
počátečního atributu date attribute.

DočasněDoData(<relationship>,
<date>, <value>)

Vrátí jediný časový atribut attribute (na úrovni zdrojové entity entity) ze vztahu
relationship a hodnoty attribute u entit, s hodnotami, které jsou platné do kon-
cového atributu date attribute.

DočasněVRozsahuOd
(<relationship>, <start-date>, <end-
date>, <Value>)

Vrátí jediný časový atribut attribute (na úrovni zdrojové entity entity) ze vztahu
relationship a hodnoty attribute u entit, s hodnotami, které jsou platné od
počátečního atributu date attribute (včetně) do koncového atributu date attrib-
ute. Hodnota je uncertain, pokud vyprší před příštím počátečním atributem date.

DočasněVšedníDen(<startdate>,
<enddate>)

Vrátí hodnotu pravda u dat, která představují všední dny, a hodnotu nepravda u dat,
která představují víkendy, od počátečního data date (včetně) do koncového data
date (není zahrnuto). Vrátí hodnotu uncertain mimo rozsah hodnot date.

DočasnéJednouMěšíčně
(<startdate>, <enddate>, <day-
ofmonth>)

Vrátí hodnotu pravda, pokud se den rovná parametru dne měsíce, a hodnotu
nepravda u všech ostatních dní v měsíci od zadaného počátečního data date
(včetně) po koncové datum date (není zahrnuto). Vrátí hodnotu uncertain u hod-
not mimo rozsah hodnot date. Když parametr dne v měsíci překročí počet dní v

Syntaxe Popis

aktuálnímměsíci, bude vrácena hodnota pravda u posledního dne v měsíci, aby
funkce vrátila hodnotu, která má hodnotu pravda přesně jeden den v měsíci.

Funkce události ověření(English)

Syntaxe Popis

Chyba
(<text>)

Chybová událost slouží k předání zprávy uživateli a zabránění v dalším šetření, dokud přestane platit pod-
mínka, která vyvolala chybu.

Varování
(<text>)

Událost varování slouží k předání zprávy uživateli, ale umožňuje jim pokračovat i přes podmínku, která dané
varování vyvolala.

Odmítnuté funkce(English)

Syntaxe Popis

VolatVlastníFunkci
(<A>,)

Vrátí výsledek externího volání knihovny kódů. Knihovna kódůmusí být uvedena, aby bylo volání uživ-
atelské funkce z modulu Determinations Engine úspěšné.

Logiske connectors(English)

Syntaks Beskrivelse

hvis
Valgfri term, der kan forekomme i slutningen af en konklusionslinje, der har et efterfølgende
bevis

og Logisk konjunktionmellem to attributes

eller Logisk disjunktionmellem to attributes

enten
en af
nogen
mindst en af de følgende er
sand
nogen af de følgende er
opfyldt

Grupperingselement, der bruges med disjunktioner, hvor to eller flere attributes skal
grupperes

begge
alle
alle af de følgende er rigtige
alle af de følgende er opfyldt

Grupperingselement, der bruges med konjunktioner, hvor to eller flere attributes skal
grupperes

ellers Term, der forekommer i slutningen af en tabelregel for at angive ellers-klausulen

Syntaks Beskrivelse

er
Term, der bruges i en forklaringsangivelse mellem den forkortede sætning og den fulde
attribute text

Logiske funktioner(English)

Syntaks Beskrivelse

det er ikke sandt at <expr> Operator, der bruges til at returnere sand, hvis attribute har en værdi, der er falsk

<var> er sikkert
det er usikkert at <expr>

Operator, der bruges til at returnere sand, hvis attribute har en værdi, der ikke er
uncertain

<var> er usikkert
<var> er ikke sikkert
det er usikkert om [eller
ikke]<expr>
det er ikke sikkert at <expr>

Operator, der bruges til at returnere sand, hvis attribute-værdi er uncertain

<var> er kendt
det er kendt at [eller ikke]<expr>

Operator, der bruges til at returnere sand, hvis attribute har en værdi

<var> er ikke kendt
det er ikke kendt at [eller
ikke]<expr>

Operator, der bruges til at returnere sand, hvis attribute ikke har nogen værdi

Logiske konstanter(English)

Syntaks Beskrivelse

sand Konstant sand værdi, der bruges til tabelregler.

falsk Konstant falsk værdi, der bruges til tabelregler.

ved ikke
usikker
usikkert

Konstantuncertain-værdi, der bruges til tabelregler.

Sammenligningsoperatorer(English)

Syntaks Beskrivelse

<lhs><<rhs>
<lhs> er mindre end
<rhs>
<lhs> er før end <rhs>

Mindre end
Bemærk: Der er intet naturligt sprog, når denne operator bruges med numeriske værdier og
valutaværdier.

Syntaks Beskrivelse

<lhs> > <rhs>
<lhs> er større end
<rhs>
<lhs> er senere end
<rhs>

Større end
Bemærk: Der er inget naturligt sprog, når denne operator bruges med numeriske værdier og
valutaværdier.

<lhs><=<rhs> Mindre end eller lig med

<lhs> >= <rhs> Større end eller lig med

<lhs>=<rhs> Lig med

<lhs> <> <rhs> Ikke lig med

Numeriske funktioner(English)

Syntaks Beskrivelse

Tal(<numText>) Konverterer den angivne streng til en talværdi

<x> + <y> Matematisk addition

<x> - <y> Matematisk subtraktion

<lhs> * <rhs> Matematisk multiplikation

<lhs> / <rhs> Matematisk division

<lhs> \ <rhs> Heltalsdivision

<lhs> modulo <rhs> Rest efter heltalsdivision

Maksimum(<x>, <y>)
Maksimum(<date/time/datetime1>, <date/time/datetime2>)
den større af <val1> og <val2>
den seneste af <val1> og <val2>

Returnerer den største af to værdier

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
den mindre af <val1> og <val2>
den tidligste af <val1> og <val2>

Returnerer denmindste af to værdier

Xy(<x>, <y>)
<val> hævet til potensen af <power>

x opløftet til potensen af y

Ex(<x>)
e hævet til potensen af <log-val>

Konstant e opløftet til potensen af x

Abs(<x>)
den absolutte værdi af <val> Absolut værdi af x

Syntaks Beskrivelse

|<val>|

Ln(<x>)
den naturlige logaritme af <log-val>

Naturlig logaritme til x

Log(<x>)
logaritme grundtal 10 af <log-val>

Titalslogaritmen til x

Kvadr(<x>)
Kvadratroden af <val>

Kvadratroden af x

Afrundet(<x>, <n>)
<val> afrundet til <num_places> decimale pladser

Afrunder x til n decimaler

Afkortet(<x>, <n>)
<val> truncated til <num_places> decimale pladser

x afkortet til n decimaler

Sin(<x>) x's sinusværdi

Cos(<x>) x's cosinus

Tan(<x>) x's tangens

Asin(<x>) x's arcus sinus

Acos(<x>) Arcus cosinus for x

Atan(<x>) x's arcus tangens

Datofunktioner(English)

Syntaks Beskrivelse

DagsDato()
den aktuelle dato

Returnerer aktuelle date i starten af sessionen.

Dato(<text>) Konverterer den angivne streng til en date-værdi

LavDato(<year>,
<month>, <day>)

Returnerer en date dannet fra angivet år, måned og dag.

UdtrækDag(<date/d-
atetime>)

Returnerer dagskomponenten for date/datetime attribute.

UdtrækMåned(<date/d-
atetime>)

Returnerer månedskomponenten for date/datetime attribute.

UdtrækÅr
(<date/datetime>)

Returnerer årskomponenten for date/datetime attribute.

Syntaks Beskrivelse

NæsteUgedag(<date/d-
atetime>, <day>)
den næste mandag på
eller efter <from-date>
NæsteUgeDag(<from-
date>, "Mandag")
mandagen på eller før
<from-date>
NæsteUgeDag(SumDage
(<from-date>, -6),
"Mandag")
den næste tirsdag på
eller efter <from-date>
NæsteUgeDag(<from-
date>, "Tirsdag")
tirsdagen på eller før
<from-date>
NæsteUgeDag(SumDage
(<from-date>, -6),
"Tirsdag")
NæsteUgeDag(<from-
date>, "Onsdag")
den næste onsdag på
eller efter <from-date>
onsdagen på eller før
<from-date>
NæsteUgeDag(SumDage
(<from-date>, -6), "Ons-
dag")
den næste torsdag på
eller efter <from-date>
NæsteUgeDag(<from-
date>, "Torsdag")
torsdagen på eller før
<from-date>
NæsteUgeDag(SumDage
(<from-date>, -6),
"Torsdag")
den næste fredag på
eller efter <from-date>
NæsteUgeDag(<from-
date>, "Fredag")
fredagen på eller før

Returnerer date for den næste ugedag, der ligger samtidig med eller før/efter en date
(afhængig af den anvendte synktaks).

Syntaks Beskrivelse

<from-date>
NæsteUgeDag(SumDage
(<from-date>, -6),
"Fredag")
den næste lørdag på eller
efter <from-date>
NæsteUgeDag(<from-
date>, "Lørdag")
NæsteUgeDag(SumDage
(<from-date>, -6),
"Lørdag")
lørdagen på eller før
<from-date>
den næste søndag på
eller efter <from-date>
NæsteUgeDag(<from-
date>, "Søndag")
NæsteUgeDag(SumDage
(<from-date>, -6),
"Søndag")
søndagen på eller før
<from-date>

NæsteDato(<date>,
<day>, <month>)
den forrige danske skat-
teårs start dato på eller
før <from-date>
den næste danske skat-
teårs slut dato på eller
efter <from-date>

Returnerer den næste instans af den givne dag ogmåned efter en date.

SumDage
(<date/datetime>, <num_
days>)
datoen <num_days> dage
efter <date>
datoen <num_days> dage
før <date>

Lægger/trækker et antal dage til/fra en date. Når Terse syntaktisk form bruges, skal tallet
være et positivt heltal, for at dage kan lægges til input-date eller et negativt tal, for at dage kan
trækkes fra input-date.

SumUger(<date/datetime>,
<num_weeks>)
datoen <num_weeks>
uger efter <date>
datoen <num_weeks>

Lægger et antal uger til en date. Når Terse syntaktisk form bruges, skal tallet være et positivt
heltal, for at uger kan lægges til input-date.

Syntaks Beskrivelse

uger før <date>

SumMåneder(<date/d-
atetime>, <num_months>)
datoen <num_months>
måneder efter <date>
datoen <num_months>
måneder før <date>

Lægger et antal måneder til en date. Når Terse syntaktisk form bruges, skal tallet være et pos-
itivt heltal, for at måneder kan lægges til input-date.

SumÅr(<date/datetime>,
<num_years>)
datoen <num_years> år
efter <date>
datoen <num_years> år
før <date>

Lægger et antal år til en date. Når Terse syntaktisk form bruges, skal tallet være et positivt
heltal, for at år kan lægges til input-date.

UgedagOptælling
(<date1>, <date2>)
antallet af ugedage
(inklusiv) mellem
<date1> og <date2>

Tæller antallet af ugedage mellem date1 og date2. Dvs. antallet af dage, der ligger mellem
mandag og fredag.
Bemærk: Den tidlige date er inklusiv og den senere date er eksklusiv.

ÅrStart(<date/datetime>)
den første dag i året
hvor <from-date> falder

Returnerer første date i det år, hvor en date ligger.

ÅrSlut(<date/datetime>)
den sidste dag i året
hvor <from-date> falder

Returnerer sidste date i det år, hvor en date ligger.

DagForskel(<date/d-
atetime1>, <date/d-
atetime2>)
antallet af dage fra
<date1> til <date2>
antallet af dage
(inklusiv) fra <date1> til
<date2>
antallet af dage
(eksklusiv) fra <date1>
til <date2>

Returnerer antallet af hele dage mellem date/datetime1 og date/datetime2. Rækkefølgen
af de to datoer påvirker ikke resultatet.

DagForskelInklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer antallet af hele dage (inklusive) mellem date/datetime1 og date/datetime2.
Denne beregning omfatter begge slutpunkter. Resultatet er 1, når datoerne er ens. Rækkefølgen
af de to datoer påvirker ikke resultatet.

DagForskelEksklusiv Returnerer antallet af hele dage (eksklusive) mellem date/datetime1 og date/datetime2.

Syntaks Beskrivelse

(<date/datetime1>, <date/d-
atetime2>)

Denne beregning udelader begge slutpunkter. Resultatet er 0, når datoerne er ens. Række-
følgen af de to datoer påvirker ikke resultatet.

UgeForskel(<date/d-
atetime1>, <date/d-
atetime2>)
antallet af uge fra
<date1> til <date2>

Returnerer antallet af hele forløbne uger mellem date/datetime1 og date/datetime2.
Rækkefølgen af de to datoer påvirker ikke resultatet.

UgeForskelInklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer det inklusive antal af hele forløbne uger mellem date/datetime1 og date/d-
atetime2. Rækkefølgen af de to datoer påvirker ikke resultatet.

UgeForskelEksklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer det eksklusive antal af hele forløbne uger mellem date/datetime1 og date/d-
atetime2. Rækkefølgen af de to datoer påvirker ikke resultatet.

MånedForskel(<date/d-
atetime1>, <date/d-
atetime2>)
antallet af måneder fra
<date1> til <date2>

Returnerer antallet af hele forløbne måneder mellem date/datetime1 og date/datetime2.
Rækkefølgen af de to datoer påvirker ikke resultatet.

MånedForskelInklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer antallet af hele inklusive forløbne måneder mellem date/datetime1 og date/d-
atetime2. Rækkefølgen af de to datoer påvirker ikke resultatet.

MånedForskelEksklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer antallet af hele eksklusive forløbne måneder mellem date/datetime1 og date/d-
atetime2. Rækkefølgen af de to datoer påvirker ikke resultatet.

ÅrForskel(<date/d-
atetime1>, <date/d-
atetime2>)
antallet af år (inklusiv)
mellem <date1> og
<date2>
antallet af hele år hvilke
<date2> er efter <date1>

Returnerer antallet af år mellem date/datetime1 og date/datetime2. Rækkefølgen af de
to datoer påvirker ikke resultatet.

ÅrForskelInklusiv(<date/d-
atetime1>, <date/d-
atetime2>)

Returnerer det inklusive antal år mellem date/datetime1 og date/datetime2. Række-
følgen af de to datoer påvirker ikke resultatet.

ÅrForskelEksklusiv
(<date/datetime1>, <date/d-
atetime2>)

Returnerer det eksklusive antal år mellem date/datetime1 og date/datetime2. Række-
følgen af de to datoer påvirker ikke resultatet.

Klokkeslætsfunktioner(English)

Syntaks Beskrivelse

Klokkeslæt(<text>) Konverterer den givne streng til et tidspunkt på dagen

UdtrækSekund(<time/datetime>) Returnerer sekundkomponenten for timeofday/datetime attribute.

UdtrækMinut(<time/datetime>) Returnerer minutkomponenten for timeofday/datetime attribute.

UdtrækTime(<time/datetime>) Returnerer timekomponenten for timeofday/datetime attribute.

Dato- og klokkeslætsfunktioner(English)

Syntaks Beskrivelse

AktuelDatoKlokkeslæt() Returnerer aktuelle date og klokkeslæt i starten af sessionen.

DatoKlokkeslæt(<text>) Konverterer den angivne streng til en datetime-værdi

SammenkædDatoKlokkeslæt
(<date>, <time>)

Sætter date/klokkeslæt ved at sammenføje date og tidspunkt på dagen.

SekundForskel(<datetime1>,
<datetime2>)
SekundForskel
(<timeOfDay1>, <timeOfDay2>)

Returnerer antallet af sekunder mellem datetime1 og datetime2.

SekundForskelInklusiv(<dat-
etime1>, <datetime2>)
SekundForskelInklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det inklusive antal sekunder mellem datetime1 og datetime2.

SekundForskelEksklusiv
(<datetime1>, <datetime2>)
SekundForskelEksklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det eksklusive antal sekunder mellem datetime1 og datetime2.

MinutForskel(<datetime1>,
<datetime2>)
MinutForskel(<timeOfDay1>,
<timeOfDay2>)

Returnerer antallet af minutter mellem datetime1 og datetime2.

MinutForskelInklusiv(<dat-
etime1>, <datetime2>)
MinutForskelInklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det inklusive antal minutter mellem datetime1 og datetime2.

Syntaks Beskrivelse

MinutForskelEksklusiv(<dat-
etime1>, <datetime2>)
MinutForskelEksklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det eksklusive antal minutter mellem datetime1 og datetime2.

TimeForskel(<datetime1>,
<datetime2>)
TimeForskel(<timeOfDay1>,
<timeOfDay2>)

Returnerer antallet af timer mellem datetime1 og datetime2.

TimeForskelInklusiv(<dat-
etime1>, <datetime2>)
TimeForskelInklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det inklusive antal timer mellem datetime1 og datetime2.

TimeForskelEksklusiv(<dat-
etime1>, <datetime2>)
TimeForskelEksklusiv
(<timeOfDay1>, <timeOfDay2>)

Returnerer det eksklusive antal timer mellem datetime1 og datetime2.

UdtrækDato(<datetime>) Udtrækker date fra datetime attribute.

UdtrækKlokkeslæt(<dat-
etime>)

Udtrækker tidspunktet på dagen fra en datetime attribute. Kan bruges til at sætte
værdien af timeofday attribute til det klokkeslæt, hvor reglen udføres, ved at udtrække
klokkeslættet fra aktuel date og aktuelt klokkeslæt.

SumTimer(<datetime>, <num_
hours>)
SumTimer(<timeOfDay>,
<num_hours>)

Lægger et antal timer til date/klokkeslæt.

SumMinutter(<datetime>,
<num_minutes>)
SumMinutter(<timeOfDay>,
<num_minutes>)

Lægger et antal minutter til date/klokkeslæt.

SumSekunder(<datetime>,
<num_seconds>)
SumSekunder(<timeOfDay>,
<num_seconds>)

Lægger et antal sekunder til date/klokkeslæt.

Tekstfunktioner(English)

Syntaks Beskrivelse

<text1> & <text2>
Kombinerer text1med text2 osv. for at danne en enkelt text-værdi.
Bemærk: Variabler af en hvilken som helst type kan anvendes. Værdier formateres vha. det forma-
teringsprogram, der er installeret i regelsessionen.

sammenkædningen
af <text1> & <text2>

Kombinerer text1med text2 osv. for at danne en enkelt text-værdi.
Bemærk: Variabler af en hvilken som helst type kan anvendes. Værdier formateres vha. det forma-
teringsprogram, der er installeret i regelsessionen.

Indeholder(<text>,
<substring>)
<text> indeholder
<substring>

Returnerer en boolesk værdi, der angiver, om den givne text-værdi indeholder den givne text-
understreng. Der skelnes ikke mellem store og små bogstaver i text-sammenligningen.

SlutterMed(<text>,
<substring>)
<text> slutter med
<substring>

Returnerer en boolesk værdi, der angiver, om den givne text-værdi slutter med den givne text-
understreng. Der skelnes ikke mellem store og små bogstaver i text-sammenligningen.

ErTal(<text>)
<text> er et tal

Returnerer en boolesk værdi, der angiver, om den givne text-værdi repræsenterer et gyldigt tal.

Længde(<text>) Returnerer tegnlængden for den givne text-værdi.

StarterMed(<text>,
<substring>)
<text> begynder med
<substring>

Returnerer en boolesk værdi, der angiver, om den givne text-værdi starter med den givne text-
understreng. Der skelnes ikke mellem store og små bogstaver i text-sammenligningen.

Understreng(<text>,
<offset>, <length>)

Returnerer understrengen af text, der starter ved den givne forskydning, der er den angivne længde
i tegn. Færre tegn returneres, hvis slutninggen af strengen er nået.

Tekst(<number>)
Tekst(<date>)
Tekst(<datetime>)
Tekst(<timeOfDay>)

Konverterer angivet tal eller date attribute til en text-værdi.

Entitets- og relationsfunktioner(English)

Syntaks Beskrivelse

Til(<relationship>, <Exp>)
Bruges til at referere fra en entity til en anden entity i en "En til en", "Mange til en"
eller "Mange til mange" relationship, hvor der kun er én betingelse.

TilOmfang(<relationship>, <alias>)
TilOmfang(<relationship>)

Bruges til at referere fra en entity til en anden entity i en "En til en", "Mange til en"
eller "Mange til mange" relationship, hvor der er en eller flere betingelser.

TilAlle(<relationship>, <Exp>)
Bruges til at referere fra en entity til en anden entity i en "En til mange" eller "Mange
til mange" relationship, når du har brug for at fastlægge, om alle medlemmer af mål-

Syntaks Beskrivelse

entity-gruppen skal opfylde reglen.
Denne form bruges, når der kun er én betingelse i reglen.

TilAltOmfang(<relationship>)
TilAltOmfang(<relationship>,
<alias>)

Bruges til at referere fra en entity til en anden entity i en "En til mange" eller "Mange
til mange" relationship, når du har brug for at fastlægge, om alle medlemmer af mål-
entity-gruppen skal opfylde reglen.
Denne form bruges, når der er en eller flere betingelser i reglen.

Findes(<relationship>, <Exp>)

Bruges til at referere fra en entity til en anden entity i en "En til mange" eller "Mange
til mange" relationship, når du har brug for at fastlægge, om nogenmedlemmer af
mål-entity-gruppen skal opfylde reglen.
Denne form bruges, når der kun er én betingelse i reglen.

FindesOmfang(<relationship>)
FindesOmfang(<relationship>,
<alias>)

Bruges til at referere fra en entity til en anden entity i en "En til mange" eller "Mange
til mange" relationship, når du har brug for at fastlægge, om nogenmedlemmer af
mål-entity-gruppen skal opfylde reglen.
Denne form bruges, når der er en eller flere betingelser i reglen.

ErMedlemAf(<target>, <rela-
tionship>)
ErMedlemAf(<target>, <alias>,
<relationship>)

Bruges som en konklusion til at udlede, at en entity-instans er medlem af en rela-
tionship. Bruges som en betingelse til at teste, at en entity-instans er et mål for en
relationship, hvortil en anden entity-instans er kilden.

ErIkkeMedlemAf(<target>, <rela-
tionship>)

Bruges som en betingelse til at teste, at en entity-instans ikke er et mål for en rela-
tionship, hvortil en anden entity-instans er kilden.

InstansOptælling(<relationship>)
antallet af <ent>

Tæller antallet af instanser, der findes til en entity.

InstansOptællingHvis(<rela-
tionship>, <Exp>)
antallet af <ent> for hvilke det
betyder at <condition>

Tæller antallet af instanser, der findes af en entity, hvortil en bestemt entity-level
attribute har en bestemt værdi.

InstansMaksimum
(<relationship>, <number-attr>)
InstansMaksimum
(<relationship>, <date-attr>)
InstansMaksimum
(<relationship>, <datetime-attr>)
InstansMaksimum
(<relationship>, <time-attr>)
<date-attr> hvilke er den seneste
for alle [af]<ent>
<max-attr> hvilke er den største
for alle [af]<ent>
den seneste af alle <ent-attr>

Henter højeste/nyeste værdi af en entity-level-variabel til alle instanser af entity.

Syntaks Beskrivelse

den største af <ent-attr>
den største af alle <ent-attr>
den største af <attr> for alle
[af]<ent>
den største af alle <attr> for
[alle]<ent>
den seneste af alle <attr> for
<ent>

InstansMaksimumHvis(<rela-
tionship>, <number-attr>, <con-
dition>)
InstansMaksimumHvis(<rela-
tionship>, <date-attr>, <condition>)
InstansMaksimumHvis(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstansMaksimumHvis(<rela-
tionship>, <time-attr>, <condition>)
<date-attr> hvilke er den seneste
for alle [af]<ent> for hvilke det
betyder at <ent-test>
<max-attr> hvilke er den største
for alle [af]<ent> for hvilke det
betyder at <ent-test>
den seneste af alle <ent-attr> for
hvilke det betyder at <ent-test>
den største af alle <ent-attr> for
hvilke det betyder at <ent-test>
den største af <attr> for alle
[af]<ent> for hvilke det betyder
at <ent-test>

Henter højeste/nyeste værdi af en entity-level-variabel til alle instanser af entity,
hvortil en bestemt entity-level attribute har en bestemt værdi.

InstansMinimum(<relationship>,
<number-attr>)
InstansMinimum(<relationship>,
<date-attr>)
InstansMinimum(<relationship>,
<datetime-attr>)
InstansMinimum(<relationship>,
<time-attr>)
<date-attr> hvilke er den tid-
ligste for alle [af]<ent>
<attr> hvilke er den mindste for
alle [af]<ent>

Henter laveste/mindste værdi af en entity-level-variabel til alle instanser af entity.

Syntaks Beskrivelse

den mindste af alle <ent-attr>
den mindste af alle <attr> for
[alle]<ent>
den mindste af alle <attr> for
<ent>

InstansMinimumHvis(<rela-
tionship>, <number-attr>, <con-
dition>)
InstansMinimumHvis(<rela-
tionship>, <date-attr>, <condition>)
InstansMinimumHvis(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstansMinimumHvis(<rela-
tionship>, <time-attr>, <condition>)
<date-attr> hvilke er den tid-
ligste for alle [af]<ent> for
hvilke det betyder at <ent-test>
den mindste af alle <ent-attr> for
hvilke det betyder at <ent-test>
den mindste af alle <attr> for
<ent> for hvilke det betyder at
<ent-test>
den tidligste af alle <attr> for
<ent> for hvilke det betyder at
<ent-test>

Henter laveste/mindste værdi af en entity-level-variabel til alle instanser af entity,
hvortil en bestemt entity-level attribute har en bestemt værdi.

InstansSum(<relationship>, <num-
ber-attr>)
<num-attr> totalt for alle
[af]<ent> for hvilke det betyder
at <ent-test>
<num-attr> totalt for alle
[af]<ent>
den totale sum af [alle]<ent-
attr>
total sum for alle<ent-attr>
total for alle <ent>, <attr>

Henter summen af alle instanser af en entity-level-variabel.

InstansSumHvis(<relationship>,
<number-attr>, <condition>)
den totale sum af alle<ent-attr>
kun hvor <condition>
den totale sum af [alle]<ent-

Henter summen af alle instanser af en entity-level-variabel, hvor det er sandt for
entity, at en bestemt boolesk attribute på entity-level er sand.

Syntaks Beskrivelse

attr> for hvilke det betyder at
<condition>
total for alle <ent>, <attr> kun
hvor <condition>

InstansVærdiHvis(<relationship>,
<number-attr>, <condition>)
InstansVærdiHvis(<relationship>,
<text-attr>, <condition>)
InstansVærdiHvis(<relationship>,
<date-attr>, <condition>)
InstansVærdiHvis(<relationship>,
<datetime-attr>, <condition>)
InstansVærdiHvis(<relationship>,
<time-attr>, <condition>)

Henter en værdi fra en entydig entity-instans, der identificeres fra entity-målin-
stanserne for relationship af en betingelse.

l Hvis betingelsen identificerer en enkelt entity-målinstans, er værdien den
værdi, der beregnes mod den entity-instans.

l Hvis mere end énmålinstans opfylder betingelsen, returneres uncertain.

l Hvis ingenmålinstanser opfylder betingelsen og relationship kendes, er
værdien uncertain.

InstansLig(<instance1>,
<instance2>)

Fastlægger, om to instanser af en entity er den samme instans.

InstansIkkeLig(<instance1>,
<instance2>)

Fastlægger, om to instanser af en entity ikke er den samme instans.

UdledInstans(<relationship>,
<identity>)
<rel>(<identity>) eksisterer

Bruges som en konklusion til at udlede, at en entity-instans findes og er medlem af en
relationship.

Tidsmæssige ræsonneringsfunktioner(English)

Syntaks Beskrivelse

IntervalOptællingEnsartede
(<start-date>, <end-date>, <vari-
able>)
IntervalOptællingEnsartede
(<start-date>, <end-date>, <con-
dition>)

Tæller antallet af kendte distinkte værdier til en variabel i intervallet fra startdate
(inklusiv) til slutdate (eksklusiv).

IntervalOptællingEnsartedeHvis
(<start-date>, <end-date>, <vari-
able>, <condition>)

Tæller antallet af kendte distinkte værdier til variablen i intervallet fra startdate
(inklusiv) til slutdate (eksklusiv), og inkluderer kun tidspunkter, hvor et boolesk filter er
sandt.

IntervalDagligSum(<start-date>,
<end-date>, <number-attr>)

Beregner summen af en valuta- eller talvariabel i intervallet fra startdate (inklusiv) til
slutdate (eksklusiv). attribute antages at være en daglig mængde.

IntervalDagligSumHvis(<start-
date>, <end-date>, <number-attr>,
<condition>)

Beregner summen af alle daglige værdier til en valuta- eller talvariabel i intervallet fra
en startdate (inklusiv) til en slutdate (eksklusiv) og inkluderer kun tidspunkter, hvor en
betingelse er sand.

Syntaks Beskrivelse

IntervalMaksimum(<start-date>,
<end-date>, <number-attr>)
IntervalMaksimum(<start-date>,
<end-date>, <date-attr>)
IntervalMaksimum(<start-date>,
<end-date>, <datetime-attr>)
IntervalMaksimum(<start-date>,
<end-date>, <time-attr>)

Vælger maks. værdien af en variabel i intervallet fra en startdate (inklusiv) til en
slutdate (eksklusiv).

IntervalMaksimumHvis(<start-
date>, <end-date>, <number-attr>,
<condition>)
IntervalMaksimumHvis(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalMaksimumHvis(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMaksimumHvis(<start-
date>, <end-date>, <time-attr>,
<condition>)

Vælger maks. værdien af en variabel i intervallet fra en startdate (inklusiv) til en
slutdate (eksklusiv) og inkluderer kun tidspunkter, hvor en betingelse er sand.

IntervalMinimum(<start-date>,
<end-date>, <number-attr>)
IntervalMinimum(<start-date>,
<end-date>, <date-attr>)
IntervalMinimum(<start-date>,
<end-date>, <datetime-attr>)
IntervalMinimum(<start-date>,
<end-date>, <time-attr>)

Vælger min. værdien af en variabel i intervallet fra en startdate (inklusiv) til en
slutdate (eksklusiv).

IntervalMinimumHvis(<start-
date>, <end-date>, <number-attr>,
<condition>)
IntervalMinimumHvis(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalMinimumHvis(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMinimumHvis(<start-
date>, <end-date>, <time-attr>,
<condition>)

Vælger min. værdien af en variabel i intervallet fra en startdate (inklusiv) til en
slutdate (eksklusiv) og inkluderer kun tidspunkter, hvor en betingelse er sand.

IntervalVægtetGennemsnit
(<start-date>, <end-date>, <num-

Beregner den gennemsnitlige værdi af en valuta- eller talvariabel i intervallet fra en
startdate (inklusiv) til en slutdate (eksklusiv) vægtet efter tidsrum, som hver værdi

Syntaks Beskrivelse

ber-attribute>) gælder for.

IntervalVægtetGennemsnitHvis
(<start-date>, <end-date>, <num-
ber-attribute>, <condition>)

Beregner den gennemsnitlige værdi af en valuta- eller talvariabel i intervallet fra en
startdate (inklusiv) til en slutdate (eksklusiv) og inkluderer kun tidspunkter, hvor en
boolesk betingelse er sand (vægtet efter det tidsrum, som hver værdi gælder for, og
hvor filteret er sandt).

IntervalAltid(<start-date>, <end-
date>, <condition>)

Returnerer sand, hvis og kun hvis en boolesk betingelse er sand på alle tidspunkter i
intervallet fra startdate (inklusiv) til slutdate (eksklusiv).

IntervalMindstDage(<start-
date>, <end-date>, <NumDays>,
<condition>)

Returnerer sand, hvis og kun hvis en boolesk betingelse er sand for mindst det angivne
antal dage (ikke nødvendigvis fortløbende) i intervallet fra startdate (inklusiv) til
slutdate (eksklusiv).

IntervalEfterfølgendeDage
(<start-date>, <end-date>,
<NumDays>, <condition>)

Returnerer sand, hvis og kun hvis en boolesk betingelse er sand for mindst det givne
antal fortløbende dage i intervallet fra startdate (inklusiv) til slutdate (eksklusiv).

IntervalSommetider(<start-
date>, <end-date>, <condition>)

Returnerer sand, hvis og kun hvis en boolesk betingelse nogensinde er sand i intervallet
fra startdate (inklusiv) til slutdate (eksklusiv).

VærdiVed(<date>, <value>) Returnerer værdien af given attribute på den angivne date.

NårSidste(<date>, <condition>)
Returnerer date, hvor en boolesk betingelse sidst var sand, idet der ses bagud fra (og
inklusiv) en angivet date.

NårNæste(<date>, <condition>)
Returnerer date, hvor en boolesk betingelse næste gang vil være sand, idet der ses
fremad fra (og inklusiv) en angivet date.

Senest()
Returnerer en date-værdi svarende til den senest mulige date - nemlig en date, der
garanteres at ligge efter nogen anden date, som en date attribute kan have, eller
som et udtryk kan evalueres til.

Tidligst()
Returnerer en date-værdi svarende til den tidligst mulige date - nemlig en date, der
garanteres at ligge før nogen anden date, som en date attribute kan have, eller som
et udtryk kan evalueres til.

TidsmæssigDageSiden(<date>,
<end-date>)

Returnerer en talvariabel, der varierer hver dag og er antallet af hele dage siden date.

TidsmæssigUgerSiden(<date>,
<end-date>)

Returnerer en talvariabel, der varierer hver uge og er antallet af fulde uger siden date.

TidsmæssigMånederSiden
(<date>, <end-date>)

Returnerer en talværdi, der varierer hver måned og er antallet af fulde måneder siden
date. Bemærk: Hvor den angivne date ligger efter den 28. dag i måneden og en efter-
følgende måned har færre dage end den angivne måned, oprettes ændringspunktet for
jubilæumsmåneden på den sidste dag i denmåned. Hvis f.eks. den angivne date er 28.,
29., 30. or 31. januar 2007, vil det første ændringspunkt være den 28. februar 2007.

Syntaks Beskrivelse

TidsmæssigÅrSiden(<date>,
<end-date>)

Returnerer en talvariabel, der varierer hvert år og er antallet af fulde år siden date.

TidsmæssigAltidDage(<days>,
<condition>)

Returnerer en boolesk attribute, der varierer over tiden og er sand, hvis og kun hvis
en boolesk betingelse er sand til alle af et givet antal foregående dage, der ikke
inkluderer den aktuelle dag.

TidsmæssigEfterfølgendeDage
(<minDays>, <days>, <condition>)

Returnerer en boolesk attribute, der varierer over tiden og er sand, hvis og kun hvis
en boolesk betingelse er sand til mindst et minimum antal fortløbende dage på et hvilket
som helst tidspunkt inden for det angivne antal foregående dage, der ikke inkluderer
den aktuelle dag.

TidsmæssigSommetiderDage
(<days>, <condition>)

Returnerer en boolesk attribute, der varierer over tiden og er sand, hvis og kun hvis
en boolesk betingelse nogensinde er sand inden for et angivet antal foregående dage,
der ikke inkluderer den aktuelle dag.

TidsmæssigEfter(<date>)
Returnerer en boolesk attribute, der varierer over tiden og er sand efter en date og
falsk på og før.

TidsmæssigFør(<date>)
Returnerer en boolesk attribute, der varierer over tiden og er sand før en date og
falsk på og efter.

TidsmæssigDen(<date>)
Returnerer en boolesk attribute, der varierer over tiden og er sand på en date og
falsk før og efter.

TidsmæssigDenEllerEfter
(<date>)

Returnerer en boolesk attribute, der varierer over tiden og er sand på eller efter en
date og falsk før.

TidsmæssigDenEllerFør(<date>)
Returnerer en boolesk attribute, der varierer over tiden og er sand på og før en date
og falsk efter.

TidsmæssigFraStartDato(<rela-
tionship>, <date>, <value>)

Returnerer en enkelt tidsmæssig attribute (på entity-kildeniveau) fra en rela-
tionship og en værdi-attribute på entiteterne med værdier, der får virkning fra en
startdate attribute.

TidsmæssigFraSlutDato(<rela-
tionship>, <date>, <value>)

Returnerer en enkelt tidsmæssig attribute (på entity-kildeniveau) fra en rela-
tionship og en værdi-attribute på entiteterne med værdier, der får virkning indtil en
slutdate attribute.

TidsmæssigFraInterval(<rela-
tionship>, <start-date>, <end-
date>, <Value>)

Returnerer en enkelt tidsmæssig attribute (på entity-kildeniveau) fra en rela-
tionship og en værdi-attribute på entiteterne med værdier, der får virkning fra en
startdate attribute (inklusiv) indtil en slutdate attribute (eksklusiv). Værdien er
uncertain, hvis den udløber før den næste startdate.

TidsmæssigErUgedag
(<startdate>, <enddate>)

Returnerer sand på datoer, der er ugedage, og falsk på datoer, der er weekender, fra
den angivne startdate (inklusiv) til slutdate (eksklusiv). Returnerer uncertain uden
for date-intervallet.

TidsmæssigEnGangPrMåned Returnerer sand, hvis dagen er lig med dag-i-måned-parameteren og falsk på alle andre

Syntaks Beskrivelse

(<startdate>, <enddate>, <day-
ofmonth>)

dage i måneden fra den angivne startdate (inklusiv) til slutdate (eksklusiv). Returnerer
uncertain uden for date-intervallet. Når dag-i-måned overskrider antallet af dage i
den aktuelle måned, er værdien sand på den sidste dag i denmåned, så funktionen
returnerer en værdi, der er sand nøjagtig én dag pr. måned.

Funktioner til valideringsbegivenhed(English)

Syntaks Beskrivelse

Fejl
(<text>)

En fejlhændelse bruges til at overføre enmeddelelse til brugeren og forhindrer brugeren i at fortsætte med en
undersøgelse, indtil den betingelse, der udløste fejlen, ikke længere gælder.

Advarsel
(<text>)

En advarselshændelse bruges til at overføre enmeddelelse til brugeren, men tillader, at brugeren fortsætter på
trods af den betingelse, der udløste advarslen.

Forældede funktioner(English)

Syntaks Beskrivelse

KaldTilpassetFunktion
(<A>,)

Returnerer resultatet af et eksternt kald til et kodebibliotek. Kodebiblioteket skal angives til
Determinations-programmet, for at det tilpassede funktionskald kan gennemføres.

Logische connectors(English)

Syntaxis Omschrijving

als
Optionele term die aan het einde van een conclusieregel kan staan waarop een bewijs
volgt

en Logische conjunctie tussen twee attributes

of Logische disjunctie tussen twee attributes

ofwel
een van
welke ook
ten minste een van het vol-
gende is waar
aan elk van de volgende is
voldaan
minstens een van volgende is
waar
aan minstens een van vol-
gende is voldaan
een van volgende

Groepeerelement dat wordt gebruikt met disjuncties waarbij twee of meer attributes
moeten worden gegroepeerd

Syntaxis Omschrijving

beide
alle
alle van de volgende zijn waar
aan alle van de volgende is
voldaan
alle volgenden zijn waar
aan alle volgenden is voldaan
alle volgenden
allen
beiden

Groepeerelement dat wordt gebruikt met conjuncties waarbij twee of meer attributes
moeten worden gegroepeerd

anders Term die aan het einde van een tabel staat om de Anders-clausule aan te geven

is
Term die wordt gebruikt in een legenda-ingang tussen de afgekorte woordgroep en de
volledige attribute text

Logische functies(English)

Syntaxis Omschrijving

het is niet waar dat<expr>
Operator waarmee 'waar' wordt geretourneerd als attribute een waarde heeft die
onwaar is

<var> is zeker
zeker <var>
het is zeker [of niet]<expr>

Operator waarmee 'waar' wordt geretourneerd als attribute een waarde anders dan
uncertain heeft

<var> is onzeker
<var> is niet zeker
onzeker <var>
het is onzeker dat <expr>
het is onzeker [of niet]<expr>
het is niet zeker dat <expr>
onzeker

Operator waarmee 'waar' wordt geretourneerd als de waarde van attribute uncertain
is

<var> is bekend
<var> is nu bekend
bekend <var>
het is bekend [of niet]<expr>
het is nu bekend [of
niet]<expr>

Operator waarmee 'waar' wordt geretourneerd als attribute een waarde heeft

<var> is [nu] onbekend
onbekend <var>
het is [nu] onbekend [of
niet]<expr>

Operator waarmee 'waar' wordt geretourneerd als attribute geen waarde heeft

Syntaxis Omschrijving

onbekend

Logische constanten(English)

Syntaxis Omschrijving

waar Constante waar-waarde die wordt gebruikt voor tabelregels

onwaar Constante onwaar-waarde die wordt gebruikt voor tabelregels

onzeker Constante uncertain-waarde die wordt gebruikt voor tabelregels

Vergelijkingsoperatoren(English)

Syntaxis Omschrijving

<lhs><<rhs>
<lhs> is kleiner dan <rhs>
<lhs> is kleiner of gelijk
aan <rhs>
<lhs> is eerder dan <rhs>

Kleiner dan
Opmerking: er is geen natuurlijke taalvorm wanneer deze operator wordt gebruikt met
numerieke waarden en valutawaarden.

<lhs> > <rhs>
<lhs> is groter dan <rhs>
<lhs> is groter dan of gelijk
aan <rhs>
<lhs> is later dan <rhs>

Groter dan
Opmerking: er is geen natuurlijke taalvorm wanneer deze operator wordt gebruikt met
numerieke waarden en valutawaarden.

<lhs><=<rhs> Kleiner dan of gelijk aan

<lhs> >= <rhs> Groter dan of gelijk aan

<lhs>=<rhs>
<lhs> is gelijk aan <rhs>
<lhs> is gelijk aan <rhs>

Is gelijk aan

<lhs> is niet gelijk aan
<rhs>
<lhs> <> <rhs>

Niet gelijk aan

Numerieke functies(English)

Syntaxis Omschrijving

Nummer(<numText>) Zet de opgegeven string om in een getalwaarde.

<x> + <y> Wiskundige optelling

Syntaxis Omschrijving

<x> - <y> Wiskundige aftrekking

<lhs> * <rhs> Wiskundige vermenigvuldiging

<lhs> / <rhs> Wiskundige deling

<lhs> \ <rhs> Deling gehele getallen

<lhs> modulo <rhs> Rest na delingmet gehele getallen

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
het grootste van <val1> en <val2>
de laatste van <val1> en <val2>

Retourneert de grootste van twee waarden.

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
de kleinste van <val1> en <val2>
de vroegste van <val1> en <val2>

Retourneert de kleinste van twee waarden.

Xy(<x>, <y>)
<val> vermeerderd tot de macht van<power>

x tot de macht y

Ex(<x>)
e tot de macht van<log-val>

Constante e tot de macht x

Abs(<x>)
de absolute waarde van <val>
|<val>|

Absolute waarde van x

Ln(<x>)
de natuurlijke logaritme van <log-val>

Natuurlijke logaritme van x

Log(<x>)
de logaritme met grondtal 10 <log-val>

Logaritme met grondtal 10 van x

VierkantsWortel(<x>)
de vierkante wortel van <val>

Vierkantswortel van x

Afronden(<x>, <n>)
<val> afgerond op <num_places> decimalen na de komma

Rondt x af op n decimalen.

Afkappen(<x>, <n>)
<val> getrunceerd op <num_places> decimalen na de komma

x afgekapt af op n decimalen

Sin(<x>) Sinus van x

Cos(<x>) Cosinus van x

Tan(<x>) Tangens van x

Syntaxis Omschrijving

Asin(<x>) Boogsinus van x

Acos(<x>) Boogcosinus van x

Atan(<x>) Boogtangens van x

Datumfuncties(English)

Syntaxis Omschrijving

HuidigeDatum()
de huidige datum

Retourneert de huidige date aan het begin van de sessie.

Datum(<text>) Zet de opgegeven string om in een date-waarde.

MakenDatum(<year>,
<month>, <day>)

Retourneert een date die bestaat uit het jaar, de maand en de dag die zijn opgegeven.

ExtraherenDag(<date/d-
atetime>)

Retourneert de dagcomponent van een date/datetime attribute.

ExtraherenMaand(<date/d-
atetime>)

Retourneert de maandcomponent van een date/datetime attribute.

ExtraherenJaar(<date/d-
atetime>)

Retourneert de jaarcomponent van een date/datetime attribute.

VolgendeDagVanWeek
(<date/datetime>, <day>)
de volgende maandag op of
na <from-date>
de maandag op of
voor<from-date>
de volgende dinsdag op of
na <from-date>
de dinsdag op of voor
<from-date>
de volgende woensdag op
of na <from-date>
de woensdag op of voor
<from-date>
de volgende donderdag op
of na <from-date>
de donderdag op of
voor<from-date>
de volgende vrijdag op of

Retourneert de date van de volgende dag van de week op of na een date (afhankelijk van
de gebruikte syntaxis).

Syntaxis Omschrijving

na <from-date>
de vrijdag op of voor <from-
date>
de volgende zaterdag op of
na <from-date>
de zaterdag op of voor
<from-date>
de volgende zondag op of
na <from-date>
de zondag op of voor <from-
date>

VolgendeDatum(<date>,
<day>, <month>)
de startdatum van het voor-
gaande belastingjaar van
de UK op of voor <from-
date>
de einddatum van het vol-
gende belastingjaar van de
UK op of na <from-date>

Retourneert de volgende instantie van de gegeven dag enmaand na date.

ToevoegenDagen(<date/d-
atetime>, <num_days>)
de datum <num_days>
dagen na <date>
de datum <num_days>
dagen voor <date>

Telt een aantal dagen op bij een date of trekt het ervan af. Bij gebruik van de beknopte syn-
tactische vormmoet het getal een positief geheel getal zijn om dagen bij de ingevoerde date
op te tellen, of een negatief getal om dagen van de ingevoerde date af te trekken.

ToevoegenWeken(<date/d-
atetime>, <num_weeks>)
de datum<num_weeks>
weken na <date>
de datum<num_weeks>
weken voor <date>

Telt een aantal weken op bij een date. Bij gebruik van de beknopte syntactische vormmoet
het getal een positief geheel getal zijn om weken bij de ingevoerde date op te tellen.

ToevoegenMaanden(<date/d-
atetime>, <num_months>)
de datum <num_months>
maanden na <date>
de datum<num_months>
maanden voor <date>

Telt een aantal maanden op bij een date. Bij gebruik van de beknopte syntactische vorm
moet het getal een positief geheel getal zijn ommaanden bij de ingevoerde date op te tellen.

ToevoegenJaren(<date/d-
atetime>, <num_years>)
de datum <num_years>

Telt een aantal jaren op bij een date. Bij gebruik van de beknopte syntactische vormmoet
het getal een positief geheel getal zijn om jaren bij de ingevoerde date op te tellen.

Syntaxis Omschrijving

jaren na <date>
de datum<num_years> jaren
voor <date>

WeekdagTelling(<date1>,
<date2>)
het aantal weekdagen
(inclusief) tussen <date1>
en <date2>

Telt het aantal weekdagen tussen date1 en date2, met andere woorden, het aantal dagen
tussenmaandag en vrijdag.
Opmerking: de eerste date is inclusief, de laatste date exclusief.

JaarBegin(<date/datetime>)
de eerste dag van het jaar
waarin <from-date> valt

Retourneert de eerste date in het jaar waarin een date valt.

JaarEinde(<date/datetime>)
de laatste dag van het jaar
waarin <from-date> valt

Retourneert de laatste date in het jaar waarin een date valt.

DagVerschil(<date/d-
atetime1>, <date/datetime2>)
het aantal dagen vanaf
<date1> tot <date2>

Retourneert het aantal hele dagen tussen date/datetime1 en date/datetime2. De vol-
gorde van de twee datums heeft geen invloed op het resultaat.

DagVerschilInclusief
(<date/datetime1>, <date/d-
atetime2>)
het aantal dagen (inclusief)
vanaf <date1> tot <date2>

Retourneert het aantal hele dagen (inclusief) tussen date/datetime1 en date/d-
atetime2. Bij deze berekening worden beide eindpunten opgenomen. Als de datums gelijk
zijn, is het resultaat 1. De volgorde van de twee datums heeft geen invloed op het resultaat.

DagVerschilExclusief
(<date/datetime1>, <date/d-
atetime2>)
het aantal dagen
(exclusief) vanaf<date1>
tot <date2>

Retourneert het aantal hele dagen (exclusief) tussen date/datetime1 en date/d-
atetime2. Bij deze berekening worden beide eindpunten uitgesloten. Als de datums gelijk
zijn, is het resultaat 0. De volgorde van de twee datums heeft geen invloed op het resultaat.

WeekVerschil(<date/d-
atetime1>, <date/datetime2>)
het aantal weken vanaf
<date1> tot <date2>

Retourneert het aantal hele verstreken weken tussen date/datetime1 en date/d-
atetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

WeekVerschilInclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het inclusieve aantal hele verstreken weken tussen date/datetime1 en
date/datetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

WeekVerschilExclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het exclusieve aantal hele verstreken weken tussen date/datetime1 en
date/datetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

Syntaxis Omschrijving

MaandVerschil(<date/d-
atetime1>, <date/datetime2>)
het aantal maanden vanaf
<date1> tot <date2>

Retourneert het aantal hele verstrekenmaanden tussen date/datetime1 en date/d-
atetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

MaandVerschilInclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het aantal hele inclusieve verstrekenmaanden tussen date/datetime1 en
date/datetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

MaandVerschilExclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het aantal hele exclusieve verstrekenmaanden tussen date/datetime1 en
date/datetime2. De volgorde van de twee datums heeft geen invloed op het resultaat.

JaarVerschil(<date/d-
atetime1>, <date/datetime2>)
het aantal jaren (inclusief)
tussen <date1> en <date2>
het aantal hele jaren dat
<date2> is na <date1>

Retourneert het aantal jaren tussen date/datetime1 en date/datetime2. De volgorde
van de twee datums heeft geen invloed op het resultaat.

JaarVerschilInclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het inclusieve aantal jaren tussen date/datetime1 en date/datetime2. De
volgorde van de twee datums heeft geen invloed op het resultaat.

JaarVerschilExclusief
(<date/datetime1>, <date/d-
atetime2>)

Retourneert het exclusieve aantal jaren tussen date/datetime1 en date/datetime2. De
volgorde van de twee datums heeft geen invloed op het resultaat.

Tijd-van-de-dagfuncties(English)

Syntaxis Omschrijving

TijdVanDag(<text>) Zet de gegeven string om in een tijdstip.

ExtraherenSeconde(<time/datetime>) Retourneert de secondecomponent van een timeofday/datetime attribute.

ExtraherenMinuut(<time/datetime>) Retourneert de minuutcomponent van een timeofday/datetime attribute.

ExtraherenUur(<time/datetime>) Retourneert de uurcomponent van een timeofday/datetime attribute.

Datum- en tijdfuncties(English)

Syntaxis Omschrijving

HuidigeDatumTijd() Retourneert de huidige date en tijd aan het begin van de sessie.

DatumTijd(<text>) Zet de opgegeven string om in een datetime-waarde.

Syntaxis Omschrijving

SamenvoegenDatumTijd
(<date>, <time>)

Stelt de tijd van date door de date en het tijdstip samen te voegen.

SecondeVerschil(<dat-
etime1>, <datetime2>)
SecondeVerschil
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het aantal seconden tussen datetime1 en datetime2.

SecondeVerschilInclusief
(<datetime1>,
<datetime2>)
SecondeVerschilInclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het inclusieve aantal seconden tussen datetime1 en datetime2.

SecondeVerschilExclusief
(<datetime1>,
<datetime2>)
SecondeVerschilExclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het exclusieve aantal seconden tussen datetime1 en datetime2.

MinuutVerschil(<dat-
etime1>, <datetime2>)
MinuutVerschil
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het aantal minuten tussen datetime1 en datetime2.

MinuutVerschilInclusief
(<datetime1>,
<datetime2>)
MinuutVerschilInclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het inclusieve aantal minuten tussen datetime1 en datetime2.

MinuutVerschilExclusief
(<datetime1>,
<datetime2>)
MinuutVerschilExclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het exclusieve aantal minuten tussen datetime1 en datetime2.

UurVerschil(<datetime1>,
<datetime2>)
UurVerschil
(<timeOfDay1>,

Retourneert het aantal uren tussen datetime1 en datetime2.

Syntaxis Omschrijving

<timeOfDay2>)

UurVerschilInclusief
(<datetime1>,
<datetime2>)
UurVerschilInclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het inclusieve aantal uren tussen datetime1 en datetime2.

UurVerschilExclusief
(<datetime1>,
<datetime2>)
UurVerschilExclusief
(<timeOfDay1>,
<timeOfDay2>)

Retourneert het exclusieve aantal uren tussen datetime1 en datetime2.

ExtraherenDatum(<dat-
etime>)

Extraheert de date uit een datetime attribute.

ExtraherenTijdstipDag
(<datetime>)

Extraheert het tijdstip uit een datetime attribute. Hiermee kan de waarde van een timeof-
day attribute worden ingesteld op de tijd waarop de regel wordt uitgevoerd door de tijd te
extraheren uit de huidige date en tijd.

ToevoegenUren(<dat-
etime>, <num_hours>)
ToevoegenUren
(<timeOfDay>, <num_
hours>)

Telt een aantal uren op bij een date-tijd.

ToevoegenMinuten(<dat-
etime>, <num_minutes>)
ToevoegenMinuten
(<timeOfDay>, <num_
minutes>)

Telt een aantal minuten op bij een date-tijd.

ToevoegenSeconden
(<datetime>, <num_
seconds>)
ToevoegenSeconden
(<timeOfDay>, <num_
seconds>)

Telt een aantal seconden op bij een date-tijd.

Tekstfuncties(English)

Syntaxis Omschrijving

<text1> & <text2>
Combineert text1met text2 enzovoort en vormt hiermee een enkele text-waarde.
Opmerking: u kunt variabelen van elk willekeurig type gebruiken. Waarden worden ingedeeld met
het indelingsprogramma dat is geïnstalleerd in de regelsessie.

de reeks van
<text1> & <text2>

Combineert text1met text2 enzovoort en vormt hiermee een enkele text-waarde.
Opmerking: u kunt variabelen van elk willekeurig type gebruiken. Waarden worden ingedeeld met
het indelingsprogramma dat is geïnstalleerd in de regelsessie.

Bevat(<text>, <sub-
string>)
<text> bevat <sub-
string>

Retourneert een booleaanse waarde die aangeeft of de gegeven text-waarde de gegeven text-sub-
string bevat. De text-vergelijking is niet hoofdlettergevoelig.

EindigtMet(<text>,
<substring>)
<text> eindigt met
<substring>

Retourneert een booleaanse waarde die aangeeft of de gegeven text-waarde eindigt met de gegeven
text-substring. De text-vergelijking is niet hoofdlettergevoelig.

IsGetal(<text>)
<text> is een getal

Retourneert een booleaanse waarde die aangeeft of de gegeven text-waarde een geldig getal ver-
tegenwoordigt.

Lengte(<text>) Retourneert de tekenlengte van de gegeven text-waarde.

BegintMet(<text>,
<substring>)
<text> begint met
<substring>

Retourneert een booleaanse waarde die aangeeft of de gegeven text-waarde begint met de gegeven
text-substring. De text-vergelijking is niet hoofdlettergevoelig.

Subtekenreeks
(<text>, <offset>,
<length>)

Retourneert de substring van text die begint bij de gegeven verschuiving en de de opgegeven lengte
in tekens heeft. Als het einde van de string wordt bereikt, wordenminder tekens geretourneerd.

Tekst(<number>)
Tekst(<date>)
Tekst(<datetime>)
Tekst(<timeOfDay>)

Zet het opgegeven getal of date attribute om in een text-waarde.

Entiteits- en relatiefuncties(English)

Syntaxis Omschrijving

Voor(<relationship>, <Exp>)
in het geval van<ent>, <attr>
<val>, als geldt dat <ent>

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-een'-,
'veel-op-een'- of 'veel-op-veel'-relationshipwaarbij slechts één conditie is.

VoorBereik(<relationship>,
<alias>)

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-een'-,
'veel-op-een'- of 'veel-op-veel'-relationshipwaarbij er een of meer condities zijn.

Syntaxis Omschrijving

VoorBereik(<relationship>)

VoorAlle(<relationship>,
<Exp>)
elk van <ent-attr>
voor elk van <ent>, <attr>
voor alle van <ent>, <attr>

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-veel'-
of 'veel-op-veel'-relationshipwanneer umoet vaststellen of alle leden van de doel-
entity-groep aan de regel moeten voldoen.
Deze vorm wordt gebruikt wanneer de regel slechts één voorwaarde bevat.

VoorAlleBereiken(<rela-
tionship>)
VoorAlleBereiken(<rela-
tionship>, <alias>)

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-veel'-
of 'veel-op-veel'-relationshipwanneer umoet vaststellen of alle leden van de doel-
entity-groep aan de regel moeten voldoen.
Deze vorm wordt gebruikt wanneer de regel een of meer voorwaarden bevat.

Bestaat(<relationship>, <Exp>)
ten minste één van <ent-attr>
voor ten minste één van
<ent>, <attr>

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-veel'-
of 'veel-op-veel'-relationshipwanneer umoet vaststellen of leden van de doel-entity-
groep aan de regel moeten voldoen.
Deze vorm wordt gebruikt wanneer de regel slechts één voorwaarde bevat.

BestaatBereik(<relationship>)
BestaatBereik(<relationship>,
<alias>)

Hiermee wordt van de ene entity naar de andere entity verwezen in een 'een-op-veel'-
of 'veel-op-veel'-relationshipwanneer umoet vaststellen of leden van de doel-entity-
groep aan de regel moeten voldoen.
Deze vorm wordt gebruikt wanneer de regel een of meer voorwaarden bevat.

IsLidVan(<target>, <rela-
tionship>)
IsLidVan(<target>, <alias>,
<relationship>)

Hiermee kan worden vastgesteld of een entity-instantie lid is van een relationship.
Wordt gebruikt als een conditie om te testen of een entity-instantie een doel is van een
relationshipwaarvoor een tweede entity-instantie de bron is.

IsGeenLidVan(<target>, <rela-
tionship>)

Wordt gebruikt als een conditie om te testen of een entity-instantie geen doel is van een
relationshipwaarvoor een tweede entity-instantie de bron is.

InstantieAantal
(<relationship>)
het aantal van<ent>

Telt het aantal instanties dat bestaat voor een entity.

InstantieAantalAls(<rela-
tionship>, <Exp>)
het aantal van<ent> waar-
voor geldt dat <condition>

Telt het aantal instanties van een entity waarvoor een bepaalde entity-level attribute
een bepaalde waarde heeft.

InstantieMaximum(<rela-
tionship>, <number-attr>)
InstantieMaximum(<rela-
tionship>, <date-attr>)
InstantieMaximum(<rela-
tionship>, <datetime-attr>)
InstantieMaximum(<rela-

Haalt de hoogste/meest recente waarde op van een entity-level-variabele voor alle
instanties van de entity.

Syntaxis Omschrijving

tionship>, <time-attr>)
<date-attr> die de laatste is
voor alle [van]<ent>
<max-attr> die de grootste is
voor alle [van]<ent>
de laatste van alle <ent-attr>
de grootste van alle <ent-
attr>
de grootste van <attr> voor
alle [of]<ent>
de grootste van alle <attr>
voor [alle]<ent>
de laatste van alle <attr>
voor <ent>

InstantieMaximumAls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstantieMaximumAls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstantieMaximumAls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstantieMaximumAls(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> die de laatste is
voor alle [van]<ent> waar-
voor geldt dat <ent-test>
<max-attr> die de grootste is
voor alle [van]<ent> waar-
voor geldt dat <ent-test>
de laatste van alle <ent-attr>
waarvoor geldt dat <ent-test>
de grootste van alle <ent-
attr> waarvoor geldt dat <ent-
test>
de grootste van <attr> voor
alle [of]<ent> waarvoor geldt
dat <ent-test>

Haalt de hoogste/meest recente waarde op van een entity-level-variabele voor alle
instanties van de entity waarvoor een bepaalde entity-level attribute een bepaalde
waarde heeft.

InstantieMinimum(<rela-
tionship>, <number-attr>)

Haalt de laagste/minst recente waarde op van een entity-level-variabele voor alle
instanties van de entity.

Syntaxis Omschrijving

InstantieMinimum(<rela-
tionship>, <date-attr>)
InstantieMinimum(<rela-
tionship>, <datetime-attr>)
InstantieMinimum(<rela-
tionship>, <time-attr>)
<date-attr> die de vroegste is
voor alle [van]<ent>
<attr> die het minste is voor
alle [van]<ent>
de minste van alle <ent-attr>
de minste van alle <attr>
voor [alle]<ent>
de vroegste van alle <attr>
voor <ent>

InstantieMinimumAls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstantieMinimumAls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstantieMinimumAls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstantieMinimumAls(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> die de vroegste is
voor alle [van]<ent> waar-
voor geldt dat <ent-test>
<num-attr> die het minste is
voor alle [van]<ent> waar-
voor geldt dat <ent-test>
de minste van alle <ent-attr>
waarvoor geldt dat <ent-test>
de minste van alle <attr>
voor <ent> waarvoor geldt
dat <ent-test>
de vroegste van alle <attr>
voor <ent> waarvoor geldt
dat <ent-test>

Haalt de laagste/minst recente waarde op van een entity-level-variabele voor alle
instanties van de entity waarvoor een bepaalde entity-level attribute een bepaalde
waarde heeft.

InstantieTotaal Haalt de som op van alle instanties van een entity-level-variabele.

Syntaxis Omschrijving

(<relationship>, <number-attr>)
<num-attr> bij elkaar opgeteld
voor alle [van]<ent> waar-
voor geldt dat <ent-test>
<num-attr> is in totaal voor
alle[van]<ent>
het totale aantal van
[alle]<ent-attr>
het totaal voor alle<ent-attr>
totaal voor alle <ent>, <attr>

InstantieTotaalAls(<rela-
tionship>, <number-attr>, <con-
dition>)
het totale aantal van
alle<ent-attr> alleen waar
<condition>
het totale aantal van
[alle]<ent-attr> waarvoor
geldt dat <condition>
totaal voor alle<ent>, <attr>
alleen waar <condition>

Haalt de som op van alle instanties van een entity-level-variabele waarbij voor de
entity geldt dat een bepaalde booleaanse waarde attribute van de entity-level waar
is.

InstantieWaardeAls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstantieWaardeAls(<rela-
tionship>, <text-attr>, <con-
dition>)
InstantieWaardeAls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstantieWaardeAls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstantieWaardeAls(<rela-
tionship>, <time-attr>, <con-
dition>)

Haalt een waarde op van een unieke entity-instantie, met een conditie geïdentificeerd
vanuit de doel-entity-instanties van een relationship.

l Als de conditie een enkele doel-entity-instantie identificeert, wordt de waarde
berekend tegen deze entity-instantie.

l Als meer dan één doelinstantie aan de conditie voldoet, wordtuncertain gere-
tourneerd.

l Als er geen doelinstantie aan de conditie voldoet en de relationship is bekend, is
de waarde uncertain.

InstantieGelijkaan
(<instance1>, <instance2>)

Stelt vast of twee instanties van een entity dezelfde instantie zijn.

InstantieNietGelijkaan
(<instance1>, <instance2>)

Stelt vast of twee instanties van een entity niet dezelfde instantie zijn.

AfleidenInstantie(<rela- Deze optie wordt als conclusie gebruikt om af te leiden dat er een entity-instantie bestaat

Syntaxis Omschrijving

tionship>, <identity>)
<rel>(<identity>) bestaat

en dat deze lid is van een relationship.

Temporele-redeneringsfuncties(English)

Syntaxis Omschrijving

IntervalIndividuTelling(<start-date>,
<end-date>, <variable>)
IntervalIndividuTelling(<start-date>,
<end-date>, <condition>)

Telt het aantal bekende afzonderlijke waarden voor de variabele in het interval
vanaf de begin-date (inclusief) tot de eind-date (exclusief).

IntervalIndividuTellingAls(<start-
date>, <end-date>, <variable>, <con-
dition>)

Telt het aantal bekende afzonderlijke waarden voor de variabele in het interval
vanaf de begin-date (inclusief) tot de eind-date (exclusief), met alleen het aantal
keren dat een booleaans filter waar is.

IntervalDagelijksTotaal(<start-
date>, <end-date>, <number-attr>)
IntervalDagelijkseSom(<start>,
<end>, <var>)

Berekent de som van een valuta- of getalvariabele in het interval vanaf de begin-
date (inclusief) tot de eind-date (exclusief). Het attribute is naar verwachting
een dagelijkse hoeveelheid.

IntervalDagelijksTotaalAls(<start-
date>, <end-date>, <number-attr>,
<condition>)
IntervalDagelijkseSom(<start>,
<end>, <var>, <condition>)

Berekent de som van alle dagelijkse waarden voor een valuta- of getalvariabele in
het interval vanaf een begin-date (inclusief) tot een eind-date (exclusief), met
alleen de keren dat een conditie waar is.

IntervalMaximum(<start-date>,
<end-date>, <number-attr>)
IntervalMaximum(<start-date>,
<end-date>, <date-attr>)
IntervalMaximum(<start-date>,
<end-date>, <datetime-attr>)
IntervalMaximum(<start-date>,
<end-date>, <time-attr>)

Selecteert de maximumwaarde van een variabele in het interval vanaf een begin-
date (inclusief) tot een eind-date (exclusief).

IntervalMaximumAls(<start-date>,
<end-date>, <number-attr>, <con-
dition>)
IntervalMaximumAls(<start-date>,
<end-date>, <date-attr>, <condition>)
IntervalMaximumAls(<start-date>,
<end-date>, <datetime-attr>, <con-
dition>)
IntervalMaximumAls(<start-date>,
<end-date>, <time-attr>, <condition>)

Selecteert de maximumwaarde van een variabele in het interval vanaf een begin-
date (inclusief) tot een eind-date (exclusief), met alleen de keren dat een conditie
waar is.

Syntaxis Omschrijving

IntervalMaximum(<start>, <end>,
<var>, <condition>)

IntervalMinimum(<start-date>,
<end-date>, <number-attr>)
IntervalMinimum(<start-date>,
<end-date>, <date-attr>)
IntervalMinimum(<start-date>,
<end-date>, <datetime-attr>)
IntervalMinimum(<start-date>,
<end-date>, <time-attr>)

Selecteert de minimumwaarde van een variabele in het interval vanaf een begin-
date (inclusief) tot een eind-date (exclusief).

IntervalMinimumAls(<start-date>,
<end-date>, <number-attr>, <con-
dition>)
IntervalMinimumAls(<start-date>,
<end-date>, <date-attr>, <condition>)
IntervalMinimumAls(<start-date>,
<end-date>, <datetime-attr>, <con-
dition>)
IntervalMinimumAls(<start-date>,
<end-date>, <time-attr>, <condition>)
IntervalMinimum(<start>, <end>,
<var>, <condition>)

Selecteert de minimumwaarde van een variabele in het interval vanaf een begin-
date (inclusief) tot een eind-date (exclusief), met alleen de keren dat een conditie
waar is.

IntervalGewogenGemiddelde
(<start-date>, <end-date>, <number-
attribute>)
IntervalGewogenGemiddelde
(<start>, <end>, <var>)

Berekent de gemiddelde waarde van een valuta- of getalvariabele in het interval
vanaf een begin-date (inclusief) tot een eind-date (exclusief) gewogen per peri-
ode waarop elke waarde van toepassing is.

IntervalGewogenGemiddeldeAls
(<start-date>, <end-date>, <number-
attribute>, <condition>)
IntervalGewogenGemiddelde
(<start>, <end>, <var>, <condition>)

Berekent de gemiddelde waarde van een valuta- of getalvariabele in het interval
vanaf een begin-date (inclusief) tot een eind-date (exclusief) met alleen de keren
dat een booleaanse conditie waar is (gewogen per periode waarop elke waarde van
toepassing is en waarbij het filter waar is).

IntervalAltijd(<start-date>, <end-
date>, <condition>)

Retourneert 'waar' uitsluitend als een booleaanse conditie altijd waar is in het inter-
val vanaf de begin-date (inclusief) tot de eind-date (exclusief).

IntervalTenMinsteDagen(<start-
date>, <end-date>, <NumDays>, <con-
dition>)

Retourneert 'waar' uitsluitend als een booleaanse conditie waar voor tenminste het
opgegeven aantal dagen (niet per se opeenvolgend) in het interval vanaf de begin-
date (inclusief) tot de eind-date (exclusief).

IntervalOpeenvolgendeDagen
(<start-date>, <end-date>,
<NumDays>, <condition>)

Retourneert 'waar' uitsluitend als een booleaanse conditie waar voor tenminste een
gegeven aantal opeenvolgende dagen in het interval vanaf de begin-date
(inclusief) tot de eind-date (exclusief).

Syntaxis Omschrijving

IntervalSoms(<start-date>, <end-
date>, <condition>)

Retourneert 'waar' uitsluitend als een booleaanse conditie ooit waar is in het interval
vanaf de begin-date (inclusief) tot de eind-date (exclusief).

WaardeOp(<date>, <value>) Retourneert de waarde van het gegeven attribute bij de opgegeven date.

WanneerLaatst(<date>, <condition>)
Retourneert de datum date waarop een booleaanse conditie voor het laatst waar
was, waarbij wordt teruggekeken vanaf (inclusief) een opgegeven date.

WanneerVolgende(<date>, <con-
dition>)

Retourneert de datum date waarop een booleaanse conditie opnieuw waar is, waar-
bij wordt vooruitgekeken vanaf (inclusief) een opgegeven date.

Laatst()
Retourneert een date-waarde equivalent aan de laatste mogelijke date, namelijk
een date die gegarandeerd later is dan enige andere date die een date attrib-
ute kan aannemen of waarnaar een expressie kan worden geëvalueerd.

Vroegst()
Retourneert een date-waarde equivalent aan de eerst mogelijke date, namelijk
een date die gegarandeerd eerder is dan enige andere date die een date attrib-
ute kan aannemen of waarnaar een expressie kan worden geëvalueerd.

TemporeelDagenSinds(<date>,
<end-date>)

Retourneert een getalvariabele die elke dag varieert en en het aantal volledige
dagen aangeeft sinds de date.

TemporeelWekenSinds(<date>,
<end-date>)

Retourneert een getalvariabele die elke week varieert en en het aantal volledige
weken aangeeft sinds de date.

TemporeelMaandenSinds(<date>,
<end-date>)

Retourneert een getalvariabele die elke maand varieert en het aantal volledige
maanden sinds de date aangeeft. Opmerking: in de gevallen waarin de opgegeven
date later is dan de 28e dag van de maand en de volgende maand heeft minder
dagen dan de opgegevenmaand, wordt het wijzigingspunt voor de jubileummaand
gemaakt op de laatste dag van deze maand. Als de opgegeven date bijvoorbeeld
28, 29, 30 of 31 januari 2007 is, is het eerste wijzigingspunt 28 februari 2007.

TemporeelJarenSinds(<date>, <end-
date>)

Retourneert een getalvariabele die elk jaar varieert en en het aantal volledige jaren
aangeeft sinds de date.

TemporeelAltijdDagen(<days>, <con-
dition>)

Retourneert een booleaans attribute dat in de loop van de tijd varieert en dat
uitsluitend waar is als een booleaanse conditie waar is voor alle waarden van een
gegeven aantal voorafgaande dagen, de huidige dag niet inbegrepen.

TemporeelOpeenvolgendDagen
(<minDays>, <days>, <condition>)

Retourneert een booleaans attribute dat in de loop van de tijd varieert en dat
uitsluitend waar is als een booleaanse conditie waar is gedurende tenminste een
minimum aantal opeenvolgende dagen op elk willekeurig moment binnen het eer-
der ingestelde aantal dagen, de huidige dag niet inbegrepen.

TemporeelSomsDagen(<days>, <con-
dition>)

Retourneert een booleaans attribute dat in de loop van de tijd varieert en dat
uitsluitend waar is als een booleaanse conditie ooit waar is binnen een opgegeven
aantal voorafgaande dagen, de huidige dag niet inbegrepen.

TemporeelNa(<date>) Retourneert een booleaans attribute dat in de loop van de tijd varieert en waar is

Syntaxis Omschrijving

na een date en hierop en hiervóór onwaar is.

TemporeelVoor(<date>)
Retourneert een booleaans attribute dat in de loop van de tijd varieert en waar is
vóór een date en hierop en hierna onwaar is.

TemporeelOp(<date>)
Retourneert een booleaans attribute dat in de loop van de tijd varieert en waar is
op een date en hiervóór en hierna onwaar is.

TemporeelOpOfNa(<date>)
Retourneert een booleaans attribute dat in de loop van de tijd varieert en waar is
op of na een date en hiervóór onwaar is.

TemporeelOpOfVoor(<date>)
Retourneert een booleaans attribute dat in de loop van de tijd varieert en waar is
op en vóór een date en hierna onwaar is.

TemporeelGebaseerdOpBegindatum
(<relationship>, <date>, <value>)

Retourneert een enkel temporeel attribute (op het niveau van de bron-entity) op
basis van een relationship en een waarde-attribute voor de entiteitenmet
waarden die van kracht worden vanaf een begin-date attribute.

TemporeelGebaseerdOpEinddatum
(<relationship>, <date>, <value>)

Retourneert een enkel temporeel attribute (op het niveau van de bron-entity) op
basis van een relationship en een waarde-attribute voor de entiteitenmet
waarden die van kracht worden tot een eind-date attribute.

TemporeelGebaseerdOpReeks(<rela-
tionship>, <start-date>, <end-date>,
<Value>)

Retourneert een enkel temporeel attribute (op het niveau van de bron-entity) op
basis van een relationship en een waarde-attribute voor de entiteitenmet
waarden die van kracht worden vanaf een begin-date attribute tot een eind-
date attribute (exclusief). De waarde is uncertain als deze verloopt vóór de vol-
gende begin-date.

TemporeelIsWeekdag(<startdate>,
<enddate>)

Retourneert 'waar' voor werkdagen en 'onwaar' voor weekends vanaf de
opgegeven begin-date (inclusief) tot de eind-date (exclusief). Retourneert uncer-
tain buiten het date-bereik.

TemporeelEensPerMaand
(<startdate>, <enddate>, <day-
ofmonth>)

Retourneert waar als de dag gelijk is aan de dag-van-maandparameter en onwaar
op alle andere dagen van de maand vanaf de opgegeven begin-date (inclusief)
naar de eind-date (exclusief). Retourneert uncertain buiten het date-bereik. Als
de dag-van-de-maandparameter het aantal dagen in de huidige maand over-
schrijdt, is de waarde waar op de laatste dag van de maand, zodat de functie een
waarde retourneert die exact één dag per maand waar is.

Validatiegebeurtenisfuncties(English)

Syntaxis Omschrijving

Fout(<text>)
Een foutgebeurtenis wordt gebruikt om een bericht aan de gebruiker door te geven, zodat de gebruiker pas
kan doorgaanmet een onderzoek totdat de conditie waardoor de fout is getriggerd, niet meer van toepassing
is.

Waarschuwing Eenwaarschuwingsgebeurtenis wordt gebruikt om een bericht aan de gebruiker door te geven, maar biedt

Syntaxis Omschrijving

(<text>)
de gebruiker wel de gelegenheid door te gaan, ondanks de conditie waardoor de waarschuwing is get-
riggerd.

Verouderde functies(English)

Syntaxis Omschrijving

AanroepAangepasteFunctie
(<A>,)

Retourneert het resultaat van een externe aanroep naar een codebibliotheek. De aangepaste
functieaanroep slaagt alleen wanneer de codebibliotheek wordt opgegeven voor de vast-
stellings-engine.

Logical connectors

Syntax Description

if Optional term that can appear at the end of a conclusion line that has a following proof

and Logical conjunction between two attributes

or Logical disjunction between two attributes

either
one of
any
at least one of the following is
true
any of the following are sat-
isfied

Grouping element used with disjunctions where two or more attributes need to be
grouped

both
all
all of the following are true
all of the following are satisfied

Grouping element used with conjunctions where two or more attributes need to be
grouped

otherwise Term that appears at the end of a table rule to indicate the otherwise clause

is
Term that is used in a legend entry between the abbreviated phrase and the full attrib-
ute text

Logical functions

Syntax Description

it is not true that <expr> Operator used to return true if attribute has a value which is false

<var> is certain Operator used to return true if attribute has a value which is not

Syntax Description

it is certain whether [or not]<expr> uncertain

<var> is uncertain
<var> is not certain
it is uncertain that <expr>
it is uncertain whether [or not]<expr>
it is not certain that <expr>

Operator used to return true if attribute value is uncertain

<var> is known
<var> is currently known
it is known whether [or not]<expr>
it is currently known whether [or not]<expr>

Operator used to return true if attribute has any value

<var> is [currently] unknown
it is [currently] unknown whether [or
not]<expr>

Operator used to return true if attribute has no value

Logical constants

Syntax Description

true Constant true value used for table rules.

false Constant false value used for table rules.

uncertain Constantuncertain value used for table rules.

Comparison operators

Syntax Description

<x><<y>
<x> is earlier than <y>

Less than
Note: there is no natural language form when this operator is used with numerical and cur-
rency values.

<x> > <y>
<x> is later than <y>

Greater than
Note: there is no natural language form when this operator is used with numerical and cur-
rency values.

<x><=<y>
<x> is less than or equal to
<y>
<x> is on or earlier than <y>
<x> is at or earlier than <y>

Less than or equal to

<x> >= <y>
<x> is greater than or equal Greater than or equal to

Syntax Description

to <y>
<x> is on or later than <y>
<x> is at or later than <y>

<x>=<y>
<x> is equal to <y>
<x> equals <y>

Equals

<x> is not equal to <y>
<x> <> <y>

Not equal

Numerical functions

Syntax Description

Number(<numText>) Convert the specified string into a number value

<x> + <y> Mathematical addition

<x> - <y> Mathematical subtraction

<x> * <y> Mathematical multiplication

<x> / <y> Mathematical division

<x> \ <y> Integer division

<x> modulo <y> Remainder after integer division

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
the greater of <x> and <y>
the latest of <x> and <y>

Returns the greater of two values

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
the lesser of <x> and <y>
the earliest of <x> and <y>

Returns the lesser of two values

Xy(<x>, <y>)
<x> raised to the power of <y>

x to the power of y

Ex(<x>)
e to the power of <x>

Constant e to the power of x

Abs(<x>)
the absolute value of <x>
|<x>|

Absolute value of x

Syntax Description

Ln(<x>)
the natural logarithm of <x>

Natural logarithm of x

Log(<x>)
the logarithm base 10 of <x>

Logarithm base 10 of x

Sqrt(<x>)
the square root of <x>

Square root of x

Round(<x>, <n>)
<x> rounded to <n> decimal place
<x> rounded to <n> decimal places

Rounds x to n decimal places

Trunc(<x>, <n>)
<x> truncated to <n> decimal place
<x> truncated to <n> decimal places

x truncated to n decimal places

Sin(<x>) Sine of x

Cos(<x>) Cosine of x

Tan(<x>) Tangent of x

Asin(<x>) Arcsine of x

Acos(<x>) Arccosine of x

Atan(<x>) Arctangent of x

Date functions

Syntax Description

CurrentDate()
the current date

Returns today's date.

Date(<text>) Converts the specified string into a date value

MakeDate(<year>,
<month>, <day>)

Returns a date formed from the specified year, month, and day.

ExtractDay(<date/d-
atetime>)

Returns the day component of a date/datetime attribute.

ExtractMonth(<date/d-
atetime>)

Returns the month component of a date/datetime attribute.

ExtractYear(<date/d-
atetime>)

Returns the year component of a date/datetime attribute.

Syntax Description

NextDayOfTheWeek
(<date/datetime>, <day>)
the next Monday on or
after <from-date>
the Monday on or before
<from-date>
the next Tuesday on or
after <from-date>
the Tuesday on or before
<from-date>
the next Wednesday on
or after <from-date>
the Wednesday on or
before <from-date>
the next Thursday on or
after <from-date>
the Thursday on or before
<from-date>
the next Friday on or
after <from-date>
the Friday on or before
<from-date>
the next Saturday on or
after <from-date>
the Saturday on or before
<from-date>
the next Sunday on or
after <from-date>
the Sunday on or before
<from-date>

Returns the date of the next weekday on or after a date.

NextDate(<date>, <day>,
<month>)
the previous UK tax year
start date on or before
<from-date>
the next UK tax year end
date on or after <from-
date>

NextDateReturns the next instance of the given day andmonth after a date.

AddDays(<date/datetime>,
<num_days>)
the date <num_days> days
after <datetime>

Adds a number of days to a date. When using the terse syntactic form, the number must be a
positive integer in order to add days to the input date.

Syntax Description

the date <num_days> days
before <datetime>
the date <num_days> day
after <datetime>
the date <num_days> day
before <datetime>
the time <num_days> days
after <datetime>
the time <num_days> days
before <datetime>
the time <num_days> day
after <datetime>
the time <num_days> day
before <datetime>

AddWeeks
(<date/datetime>, <num_
weeks>)
the date <num_weeks>
weeks after <datetime>
the date <num_weeks>
weeks before <datetime>
the date <num_weeks>
week after <datetime>
the date <num_weeks>
week before <datetime>
the time <num_weeks>
weeks after <datetime>
the time <num_weeks>
weeks before <datetime>
the time <num_weeks>
week after <datetime>
the time <num_weeks>
week before <datetime>

Adds a number of weeks to a date. When using the terse syntactic form, the number must be a
positive integer in order to add weeks to the input date.

AddMonths(<date/d-
atetime>, <num_months>)
the date <num_months>
months after <datetime>
the date <num_months>
months before <datetime>
the date <num_months>
month after <datetime>
the date <num_months>

Adds a number of months to a date. When using the terse syntactic form, the number must be
a positive integer in order to addmonths to the input date.

Syntax Description

month before <datetime>
the time <num_months>
months after <datetime>
the time <num_months>
months before <datetime>
the time <num_months>
month after <datetime>
the time <num_months>
month before <datetime>

AddYears(<date/datetime>,
<num_years>)
the date <num_years>
years after <datetime>
the date <num_years>
years before <datetime>
the date <num_years>
year after <datetime>
the date <num_years>
year before <datetime>
the time <num_years>
years after <datetime>
the time <num_years>
years before <datetime>
the time <num_years>
year after <datetime>
the time <num_years>
year before <datetime>

Adds a number of years to a date. When using the terse syntactic form, the number must be a
positive integer in order to add years to the input date.

WeekdayCount(<date1>,
<date2>)
the number of weekdays
(inclusive) between
<date1> and <date2>

Counts the number of weekdays between date1 and date2. That is, the number of days falling
betweenMonday and Friday.
Note: The earlier date is inclusive and the later date is exclusive.

YearStart(<date/datetime>)

the first day of the year
in which <from-date> falls

Returns the first date in the year in which a date falls.

YearEnd(<date/datetime>)
the last day of the year in
which <from-date> falls

Returns the last date in the year in which a date falls.

DayDifference(<date/d-
atetime1>,

Returns the number of whole days between date/datetime1 and date/datetime2. Where
the second DATE is earlier than the first DATE, the result is 0.

Syntax Description

<date/datetime2>)
the number of days from
<date/datetime1> to <date/d-
atetime2>

DayDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of days
(inclusive) from <date/d-
atetime1> to <date/d-
atetime2>

Returns the number of whole days (inclusive) between date/datetime1 and date/d-
atetime2. This calculation includes both endpoints. Where the dates are the same, the result
is 1. Where the second DATE is earlier than the first DATE, the result is 0.

DayDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of days
(exclusive) from <date/d-
atetime1> to <date/d-
atetime2>

Returns the number of whole days (exclusive) between date/datetime1 and date/d-
atetime2. This calculation excludes both endpoints. Where the dates are the same, the result
is 0. Where the second DATE is earlier than the first DATE, the result is also 0.

WeekDifference(<date/d-
atetime1>,
<date/datetime2>)
the number of weeks
from <date1> to <date2>

Returns the number of whole elapsed weeks between date/datetime1 and date/d-
atetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

WeekDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of weeks
(inclusive) from <date1>
to <date2>

Returns the inclusive number of whole elapsed weeks between date/datetime1 and date/d-
atetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

WeekDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of weeks
(exclusive) from <date1>
to <date2>

Returns the exclusive number of whole elapsed weeks between date/datetime1 and
date/datetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

MonthDifference(<date/d-
atetime1>,
<date/datetime2>)
the number of months
from <date1> to <date2>

Returns the number of whole elapsedmonths between date/datetime1 and date/d-
atetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

Syntax Description

MonthDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of months
(inclusive) from <date1>
to <date2>

Returns the number of whole inclusive elapsedmonths between date/datetime1 and
date/datetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

MonthDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of months
(exclusive) from <date1>
to <date2>

Returns the number of whole exclusive elapsedmonths between date/datetime1 and
date/datetime2. If the second DATE is earlier than the first DATE, then the result will be 0.

YearDifference(<date/d-
atetime1>,
<date/datetime2>)
the number of whole
years which <date2> is
after <date1>
the number of years
between <date1> and
<date2>

Returns the number of years between date/datetime1 and date/datetime2. NOTE: The
earlier DATE is inclusive and the later DATE is exclusive.

YearDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of years
(inclusive) between
<date1> and <date2>

Returns the inclusive number of years between date/datetime1 and date/datetime2.

YearDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
the number of years
(exclusive) between
<date1> and <date2>

Returns the exclusive number of years between date/datetime1 and date/datetime2.

Time of day functions

Syntax Description

TimeOfDay(<text>) Converts the given string into a time of day

ExtractSecond(<time/datetime>) Returns the second component of a timeofday/datetime attribute.

Syntax Description

ExtractMinute(<time/datetime>) Returns the minute component of a timeofday/datetime attribute.

ExtractHour(<time/datetime>) Returns the hour component of a timeofday/datetime attribute.

Date and time functions

Syntax Description

CurrentDateTime()
the current date time

Sets the date time to the current date and time.

DateTime(<text>) Converts the specified string into a datetime value

ConcatenateDateTime
(<date>, <time>)
<date> at <time-of-day>
<time-of-day> on <date>

Sets the date time by joining the date and time of day together.

SecondDifference(<dat-
etime1>, <datetime2>)
SecondDifference
(<timeOfDay1>,
<timeOfDay2>)
the number of seconds
from <date1> to <date2>

Returns the number of seconds between datetime1 and datetime2.

SecondDifferenceInclusive
(<datetime1>, <datetime2>)
SecondDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
the number of seconds
(inclusive) from <date1> to
<date2>

Returns the inclusive number of seconds between datetime1 and datetime2.

SecondDifferenceExclusive
(<datetime1>, <datetime2>)
SecondDifferenceExclusive
(<timeOfDay1>,
<timeOfDay2>)
the number of seconds
(exclusive) from <date1> to
<date2>

Returns the exclusive number of seconds between datetime1 and datetime2.

MinuteDifference(<dat-
etime1>, <datetime2>) Returns the number of minutes between datetime1 and datetime2.

Syntax Description

MinuteDifference
(<timeOfDay1>,
<timeOfDay2>)
the number of minutes
from <datetime1> to <dat-
etime2>

MinuteDifferenceInclusive
(<datetime1>, <datetime2>)
MinuteDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
the number of minutes
(inclusive) from <date1> to
<date2>

Returns the inclusive number of minutes between datetime1 and datetime2.

MinuteDifferenceExclusive
(<datetime1>, <datetime2>)
MinuteDifferenceExclusive
(<timeOfDay1>,
<timeOfDay2>)
the number of minutes
(exclusive) from <date1> to
<date2>

Returns the exclusive number of minutes between datetime1 and datetime2.

HourDifference
(<datetime1>, <datetime2>)
HourDifference
(<timeOfDay1>,
<timeOfDay2>)
the number of hours from
<date1> to <date2>

Returns the number of hours between datetime1 and datetime2.

HourDifferenceInclusive
(<datetime1>, <datetime2>)
HourDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
the number of hours
(inclusive) from <date1> to
<date2>

Returns the inclusive number of hours between datetime1 and datetime2.

HourDifferenceExclusive
(<datetime1>, <datetime2>)
HourDifferenceExclusive
(<timeOfDay1>,

Returns the exclusive number of hours between datetime1 and datetime2.

Syntax Description

<timeOfDay2>)
the number of hours
(exclusive) from <date1> to
<date2>

ExtractDate(<datetime>) Extracts the date from a datetime attribute.

ExtractTimeOfDay(<dat-
etime>)

Extracts the time of day from a datetime attribute. Can be used to set the value of a
timeofday attribute to the time the rule is executed by extracting the time from the cur-
rent date and time.

AddHours(<datetime>,
<num_hours>)
AddHours(<timeOfDay>,
<num_hours>)
the time <num_hours>
hours after <datetime>
the time <num_hours>
hours before <datetime>
the time <num_hours> hour
after <datetime>
the time <num_hours> hour
before <datetime>

Adds a number of hours to a date time.

AddMinutes(<datetime>,
<num_minutes>)
AddMinutes(<timeOfDay>,
<num_minutes>)
the time <num_minutes>
minutes after <datetime>
the time <num_minutes>
minutes before <datetime>
the time <num_minutes>
minute after <datetime>
the time <num_minutes>
minute before <datetime>

Adds a number of minutes to a date time.

AddSeconds(<datetime>,
<num_seconds>)
AddSeconds(<timeOfDay>,
<num_seconds>)
the time <num_seconds>
seconds after <datetime>
the time <num_seconds>
seconds before <datetime>
the time <num_seconds>

Adds a number of seconds to a date time.

Syntax Description

second after <datetime>
the time <num_seconds>
second before <datetime>

Text functions

Syntax Description

<text1> & <text2> Combines text1with text2 and so on to form a single text value

the concatenation of
<text1> & <text2>

Combines text1with text2 and so on to form a single text value.
Note: that you can use variables of any type. Values are formatted using the formatter that is
installed in the rule session.

Contains(<text>, <sub-
string>)
<text> contains <sub-
string>

Returns a boolean value indicating whether the given text value contains the given text sub-
string. The text comparison is case-insensitive.

EndsWith(<text>, <sub-
string>)
<text> ends with <sub-
string>

Returns a boolean value indicating whether the given text value ends with the given text sub-
string. The text comparison is case-insensitive.

IsNumber(<text>)
<text> is a number

Returns a boolean value indicating whether the given text value represents a valid number.

Length(<text>)
the length of <text>

Returns the character length of the given text value.

StartsWith(<text>,
<substring>)
<text> starts with
<sub-string>

Returns a boolean value indicating whether the given text value starts with the given text sub-
string. The text comparison is case-insensitive.

Substring(<text>, <off-
set>, <length>)

Returns the substring of text that starts at the given offset, that is the specified length in char-
acters. Fewer characters are returned if the end of the string is reached.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Convert the specified number or date attribute into a text value.

Entity and relationship functions

Syntax Description

For(<relationship>, <Exp>)
in the case of <relationship>, <attr>
<val>, in the case of <relationship>

Used to refer from one entity to another entity in a "to-one" relationship
where there is only one condition.

ForScope(<relationship>, <alias>)
ForScope(<relationship>)
in the case of <relationship>
in the case of <relationship> (<alias>)

Used to refer from one entity to another entity in a "to-one" relationship
where there are one or more conditions.

ForAll(<relationship>, <Exp>)
each of <relationship-attr>
for each of <relationship>, <attr>
for all of <relationship>, <attr>

Used to refer from one entity to another entity in a "to-many"
relationship, when you need to determine whether all members of the target
entity group need to satisfy the rule.

ForAllScope(<relationship>)
ForAllScope(<relationship>, <alias>)
for all of <relationship>
each of <relationship>
for each of <relationship>
for all of <relationship> (<alias>)
each of <relationship> (<alias>)
for each of <relationship> (<alias>)

Used to refer from one entity to another entity in a "to-many"
relationship, when you need to determine whether all members of the target
entity group need to satisfy the rule.
This form is used when there are one or more conditions in the rule.

Exists(<relationship>, <Exp>)
at least one of <relationship-attr>
for at least one of <relationship>, <attr>

Used to refer from one entity to another entity in a "to-many"
relationship, when you need to determine whether any members of the tar-
get entity group need to satisfy the rule.

ExistsScope(<relationship>)
ExistsScope(<relationship>, <alias>)
at least one of <relationship>
for at least one of <relationship>
at least one of <relationship> (<alias>)
for at least one of <relationship>
(<alias>)

Used to refer from one entity to another entity in a "to-many"
relationship, when you need to determine whether any members of the tar-
get entity group need to satisfy the rule.

IsMemberOf(<target>, <relationship>)
IsMemberOf(<target>, <alias>, <rela-
tionship>)
<ent-target> is a member of <rela-
tionship>
<ent-target> (<alias>) is a member of
<relationship>

Used to test that an entity instance is a target of a relationship for which a
second entity instance is the source.

IsNotMemberOf(<target>, <relationship>)
<ent-target> is not a member of <rela-
tionship>

Used to test that an entity instance is not a target of a relationship for
which a second entity instance is the source.

Syntax Description

InstanceCount(<relationship>)
the number of <relationship>

Counts the number of instances that exist for an entity.

InstanceCountIf(<relationship>, <Exp>)
the number of <relationship> for which it
is the case that <condition>

Counts the number of instances there are of an entity for which a particular
entity-level attribute has a particular value.

InstanceMaximum(<relationship>, <num-
ber-attr>)
InstanceMaximum(<relationship>, <date-
attr>)
InstanceMaximum(<relationship>, <dat-
etime-attr>)
InstanceMaximum(<relationship>, <time-
attr>)
<date-attr> which is the latest for all
[of]<relationship>
<max-attr> which is the greatest for all
[of]<relationship>
the latest of all <relationship-attr>
the latest of all <attr> for <relationship>
the greatest of [all]<relationship-attr>
the greatest of [all]<attr> for [all]
[of]<relationship>

Obtains the highest/most recent value of an entity-level variable for all
instances of the entity.

InstanceMaximumIf(<relationship>,
<number-attr>, <condition>)
InstanceMaximumIf(<relationship>,
<date-attr>, <condition>)
InstanceMaximumIf(<relationship>, <dat-
etime-attr>, <condition>)
InstanceMaximumIf(<relationship>,
<time-attr>, <condition>)
<date-attr> which is the latest for all
[of]<relationship> for which it is the case
that <ent-test>
<max-attr> which is the greatest for all
[of]<relationship> for which it is the case
that <ent-test>
the latest of all <relationship-attr> for
which it is the case that <ent-test>
the greatest of all <relationship-attr> for
which it is the case that <ent-test>
the greatest of <attr> for all [of]<rela-
tionship> for which it is the case that

Obtains the highest/most recent value of an entity-level variable for all
instances of the entity for which a particular entity-level attribute has a
particular value.

Syntax Description

<ent-test>

InstanceMinimum(<relationship>, <num-
ber-attr>)
InstanceMinimum(<relationship>, <date-
attr>)
InstanceMinimum(<relationship>, <dat-
etime-attr>)
InstanceMinimum(<relationship>, <time-
attr>)
<date-attr> which is the earliest for all
[of]<relationship>
<attr> which is the least for all [of]<rela-
tionship>
the earliest of all <relationship-attr>
the earliest of all <attr> for <rela-
tionship>
the least of [all]<relationship-attr>
the least of [all]<attr> for [all][of]<rela-
tionship>

Obtains the lowest/least recent value of an entity-level variable for all
instances of the entity.

InstanceMinimumIf(<relationship>, <num-
ber-attr>, <condition>)
InstanceMinimumIf(<relationship>,
<date-attr>, <condition>)
InstanceMinimumIf(<relationship>, <dat-
etime-attr>, <condition>)
InstanceMinimumIf(<relationship>,
<time-attr>, <condition>)
<date-attr> which is the earliest for all
[of]<relationship> for which it is the case
that <ent-test>
<num-attr> which is the least for all
[of]<relationship> for which it is the case
that <ent-test>
the least of all <relationship-attr> for
which it is the case that <ent-test>
the least of all <attr> for <relationship>
for which it is the case that <ent-test>
the earliest of all <attr> for <rela-
tionship> for which it is the case that
<ent-test>

Obtains the lowest/least recent value of an entity-level variable for all
instances of the entity for which a particular entity-level attribute has a
particular value.

InstanceSum(<relationship>, <number-
attr>) Obtains the sum of all instances of an entity-level variable.

Syntax Description

<num-attr>(totaled | totalled) for all
[of]<relationship>
the total amount of [all]<relationship-
attr>
the total for all <relationship-attr>
total for all <relationship>, <attr>

InstanceSumIf(<relationship>, <number-
attr>, <condition>)
<num-attr> totalled for all [of]<rela-
tionship> for which it is the case that
<ent-test>
<num-attr> totaled for all [of]<rela-
tionship> for which it is the case that
<ent-test>
the total amount of all <relationship-attr>
only where <condition>
the total amount of [all]<relationship-
attr> for which it is the case that <con-
dition>
total for all <relationship>, <attr> only
where <condition>

Obtains the sum of all instances of an entity-level variable for which it is true
of the entity that a specific entity-level Boolean attribute is true.

InstanceValueIf(<relationship>, <number-
attr>, <condition>)
InstanceValueIf(<relationship>, <text-
attr>, <condition>)
InstanceValueIf(<relationship>, <date-
attr>, <condition>)
InstanceValueIf(<relationship>, <dat-
etime-attr>, <condition>)
InstanceValueIf(<relationship>, <time-
attr>, <condition>)

Obtains a value from a unique entity instance, identified from the target
entity instances of a relationship by a condition.

l If the condition identifies a single target entity instance, then the
value is the value calculated against that entity instance.

l If more than one target instance meets the condition, then uncertain
is returned.

l If no target instances meet the condition and the relationship is
known the value is uncertain.

InstanceEquals(<instance1>, <instance2>)

<ent-target> is <ent-target>
Determines if two instances of an entity are the same instance.

InstanceNotEquals(<instance1>,
<instance2>)
<ent-target> is not <ent-target>

Determines if two instances of an entity are not the same instance.

InferInstance(<relationship>, <identity>)
<rel>(<identity>) exists

Used as a conclusion to infer that an entity instance exists and is a member of
a relationship.

Temporal reasoning functions

Syntax Description

IntervalCountDistinct
(<start-date>, <end-date>,
<variable>)
IntervalCountDistinct
(<start-date>, <end-date>,
<condition>)

Counts the number of known distinct values for the variable, in the interval from the start
date (inclusive) to the end date (exclusive).

IntervalCountDistinctIf
(<start-date>, <end-date>,
<variable>, <condition>)

Counts the number of known distinct values for the variable, in the interval from the start
date (inclusive) to the end date (exclusive), only including times when a boolean filter is
true.

IntervalDailySum(<start-
date>, <end-date>, <number-
attr>)

Calculates the sum of a currency or number variable, in the interval from the start date
(inclusive) to end date (exclusive). The attribute is assumed to be a daily quantity.

IntervalDailySumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)

Calculates the sum of all the daily values for a currency or number variable, in the interval
from a start date (inclusive) to an end date (exclusive), only including times when a con-
dition is true.

IntervalMaximum(<start-
date>, <end-date>, <number-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <date-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <time-
attr>)

Selects the maximum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive).

IntervalMaximumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Selects the maximum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive), only including times when a condition is true.

IntervalMinimum(<start- Selects the minimum value of a variable in the interval from a start date (inclusive) to an end

Syntax Description

date>, <end-date>, <number-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <date-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <time-
attr>)

date (exclusive).

IntervalMinimumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Selects the minimum value of a variable in the interval from a start date (inclusive) to an end
date (exclusive), only including times when a condition is true.

IntervalWeightedAverage
(<start-date>, <end-date>,
<number-attribute>)

Calculates the average value of a currency or number variable in the interval from a start
date (inclusive) to an end date (exclusive) weighted by the time span to which each value
applies.

IntervalWeightedAverageIf
(<start-date>, <end-date>,
<number-attribute>, <con-
dition>)

Calculates the average value of a currency or number variable in the interval from a start
date (inclusive) to an end date (exclusive), only including times when a boolean condition is
true (weighted by the time span to which each value applies and where the filter is true).

IntervalAlways(<start-
date>, <end-date>, <con-
dition>)

Returns true if and only if a boolean condition is true at all times in the interval from the start
date (inclusive) to the end date (exclusive).

IntervalAtLeastDays(<start-
date>, <end-date>,
<NumDays>, <condition>)

Returns true if and only if a boolean condition is true for at least the specified number of days
(not necessarily consecutive) in the interval from the start date (inclusive) to the end date
(exclusive).

IntervalConsecutiveDays
(<start-date>, <end-date>,
<NumDays>, <condition>)

Returns true if and only if a boolean condition is true for at least a given number of consecutive
days in the interval from the start date (inclusive) to the end date (exclusive).

IntervalSometimes(<start- Returns true if and only if a boolean condition is ever true in the interval from the start date

Syntax Description

date>, <end-date>, <con-
dition>)

(inclusive) to the end date (exclusive).

ValueAt(<date>, <value>) Returns the value of the given attribute at the specified date.

WhenLast(<date>, <con-
dition>)

Returns the date onwhich a boolean condition was last true, looking backwards from (and
including) a specified date.

WhenNext(<date>, <con-
dition>)

Returns the date onwhich a boolean condition will next be true, looking forwards from (and
including) a specified date.

Latest()
Returns a date value equivalent to the latest possible date - namely a date guaranteed to be
later than any other date that a date attributemay take or an expressionmay evaluate to.

Earliest()
Returns a date value equivalent to the earliest possible date - namely a date guaranteed to
be earlier than any other date that a date attributemay take or an expressionmay eval-
uate to.

TemporalDaysSince(<date>,
<end-date>)

Returns a number variable that varies every day and is the number of full days since the
date.

TemporalWeeksSince
(<date>, <end-date>)

Returns a number variable that varies every week and is the number of full weeks since the
date.

TemporalMonthsSince
(<date>, <end-date>)

Returns a number variable that varies every month and is the number of full months since the
date. Note: Where the supplied date is after the 28th day of the month, and a subsequent
month has fewer days than the supplied month, the change point for the anniversary month
will be created on the last day of that month. For example, if the supplied date is 28, 29, 30 or
31 January 2007, the first change point will be 28 February 2007.

TemporalYearsSince
(<date>, <end-date>)

Returns a number variable that varies every year and is the number of full years since the
date.

TemporalAlwaysDays
(<days>, <condition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean con-
dition is true for all of a given number of preceding days, not including the current day.

TemporalConsecutiveDays
(<minDays>, <days>, <con-
dition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean con-
dition is true for at least a minimum number of consecutive days at any time within the pre-
ceding set number of days, not including the current day.

TemporalSometimesDays
(<days>, <condition>)

Returns a boolean attribute that varies over time and is true if and only if a boolean con-
dition is ever true within a specified number of preceding days, not including the current day.

TemporalAfter(<date>)
Returns a boolean attribute that varies over time and is true after a date and false on and
before.

TemporalBefore(<date>)
Returns a boolean attribute that varies over time and is true before a date and false on and
afterwards.

Syntax Description

TemporalOn(<date>)
Returns a boolean attribute that varies over time and is true on a date and false before and
afterwards.

TemporalOnOrAfter
(<date>)

Returns a boolean attribute that varies over time and is true on or after a date and false
before.

TemporalOnOrBefore
(<date>)

Returns a boolean attribute that varies over time and is true on and before a date and false
afterwards.

TemporalFromStartDate
(<relationship>, <date>,
<value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a
value attribute on the entities, with values that take effect from a start date attribute.

TemporalFromEndDate
(<relationship>, <date>,
<value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a
value attribute on the entities, with values that take effect up until an end date attribute.

TemporalFromRange(<rela-
tionship>, <start-date>, <end-
date>, <Value>)

Returns a single temporal attribute (at the source entity level) from a relationship and a
value attribute on the entities, with values that takes effect from a start date attribute
(inclusive) until and end date attribute (exclusive). The value is uncertain if it expires
before the next start date.

TemporalIsWeekday
(<startdate>, <enddate>)

Returns true on dates that are weekdays and false on dates that are weekends from the spe-
cified start date (inclusive) to the end date (exclusive). Returns uncertain outside of the
date range.

TemporalOncePerMonth
(<startdate>, <enddate>,
<dayofmonth>)

Returns true if the day is equal to the day-of-month parameter and false on all other days of
the month from the specified start date (inclusive) to the end date (exclusive). Returns
uncertain outside of the date range. When the day-of-month exceeds the number of days
in the current month, the value is true on the last day of that month, so that the function
returns a value that is true exactly one day per month.

Validation event functions

Syntax Description

Error
(<text>)

An error event is used to pass a message to the user, and prevent them from continuing an investigation until the
condition which triggered that error no longer applies.

Warning
(<text>)

A warning event is used to pass a message to the user, but permits them to continue despite the condition which
triggered that warning.

Deprecated functions

Syntax Description

CallCustomFunction(<A>,) CallCustomFunction

Conectores lógicos(English)

Sintaxe Descrição

se
Termo opcional que pode ser apresentado no final de uma linha de conclusão com uma prova a
acompanhar

e Conjunção lógica entre dois atributos: attributes

ou Disjunção lógica entre dois atributos: attributes

qualquer um
um de
algum
ao menos um destes é
verdadeiro
qualquer um destes está
satisfeito

Elemento de agrupamento utilizado com disjunções em que um oumais atributos (attributes)
necessitam de ser agrupados

ambos
tudo
todos estes são ver-
dadeiros
todos estes estão sat-
isfeitos

Elemento de agrupamento utilizado com conjunções em que um oumais atributos (attributes)
necessitam de ser agrupados

caso contrário
Termo apresentado no final de uma regra de tabela para indicar a cláusula de caso contrário
(otherwise)

é
Termo utilizado numa entrada de legenda entre a expressão abreviada e o valor de texto de
atributo integral: attribute text

Funções lógicas(English)

Sintaxe Descrição

não é verdade que <expr>
Operador utilizado para devolver verdadeiro se o atributo (attribute) tiver um valor que seja
falso

<var> é certo
<var> é certa
<var> é certos
<var> é certas
é certo que [ou
não]<expr>

Operador utilizado para devolver verdadeiro se o atributo (attribute) tiver um valor que não
seja uncertain

<var> é incerto
<var> é incerta
<var> é incertos

Operador utilizado para devolver verdadeiro se o atributo (attribute) for uncertain

Sintaxe Descrição

<var> é incertas
é incerto se [ou
não]<expr>
é incerto que [ou
não]<expr>
não é certo que <expr>
incerto

<var> é conhecido
<var> é conhecida
<var> é conhecidos
<var> é conhecidas
sabe-se se [ou
não]<expr>

Operador utilizado para devolver verdadeiro se o atributo (attribute) tiver qualquer valor

<var> é desconhecido
<var> é desconhecida
<var> é desconhecidos
<var> é desconhecidas
não se sabe se [ou
não]<expr>
desconhecido

Operador utilizado para devolver verdadeiro se o atributo (attribute) não tiver um valor

Constantes lógicas(English)

Sintaxe Descrição

verdadeiro Valor de constante verdadeiro utilizado para as regras de tabela.

falso Valor de constante falso utilizado para as regras de tabela.

incerto Valor de constante uncertain utilizado para as regras de tabela.

Operadores de comparação(English)

Sintaxe Descrição

<x><<y>
Menor que
Nota: não existe uma língua natural quando este operador é utilizado com valores numéricos e monetários.

<x> > <y>
Maior que
Nota: não existe uma língua natural quando este operador é utilizado com valores numéricos e monetários.

<x><=<y> Menor que ou igual a

<x> >= <y> Maior que ou igual a

Sintaxe Descrição

<x>=<y> Igual a

<x> <> <y> Diferente de

Funções numéricas(English)

Sintaxe Descrição

Número(<numText>)
Converte a cadeia de caracteres especificada num valor numérico

<x> + <y> Adição

<x> - <y> Subtração

<x> * <y> Multiplicação

<x> / <y> Divisão

<x> \ <y> Divisão inteira

<x> modulo <y> Resto da divisão inteira

Máximo(<x>, <y>)
Máximo(<date/time/datetime1>, <date/time/datetime2>) Devolve o maior de dois valores

Mínimo(<x>, <y>)
Mínimo(<date/time/datetime1>, <date/time/datetime2>)

Devolve o menor de dois valores

Xy(<x>, <y>) x à potência de y

Ex(<x>) Constante e à potência de x

Abs(<x>)
|<val>|

Valor absoluto de x

Ln(<x>) Logaritmo natural de x

Log(<x>) Logaritmo na base 10 de x

Raiz quadrada(<x>) Raiz quadrada de x

Arredond(<x>, <n>) Arredonda x para n casas decimais

Trunc(<x>, <n>) x truncado para n casas decimais

Sen(<x>) Seno de x

Cos(<x>) Co-seno de x

Tan(<x>) Tangente de x

Sintaxe Descrição

Asen(<x>) Arco seno de x

Acos(<x>) Arco co-seno de x

Atan(<x>) Arco tangente de x

Funções de data(English)

Sintaxe Descrição

DataAtual() Devolve a data atual (date) no início da sessão.

Data(<text>) Converte a cadeia de caracteres especificada num valor de data: date

DataDeCriação(<year>,
<month>, <day>)

Devolve uma data (date) formada a partir do ano, mês e dia especificado.

ExtrairDia(<date/datetime>) Devolve o componente de dia de uma data: date/datetime attribute.

ExtrairMês(<date/datetime>) Devolve o componente de mês de uma data: date/datetime attribute.

ExtrairAno(<date/datetime>) Devolve o componente de ano de uma data: date/datetime attribute.

PróximoDiaDaSemana
(<date/datetime>, <day>)

Devolve a data date do dia de semana seguinte que ocorre na ou antes/depois de uma
data date (dependendo da sintaxe utilizada).

PróximaData(<date>, <day>,
<month>)

Devolve a instância seguinte do dia e mês fornecidos após uma data: date.

AdicionarDias
(<date/datetime>, <num_days>)

Acrescenta/subtrai um número de dias a uma data date. Quando utilizar a forma sintática
concisa, o número deve ser um número inteiro positivo de forma a acrescentar dias à data
da entrada de dados date ou um número negativo de forma a subtrair dias da data de
entrada de dados date.

AdicionarSemanas(<date/d-
atetime>, <num_weeks>)

Acrescenta um número de semanas a uma data (date). Quando utilizar a forma sintática
concisa, o número deve ser um número inteiro positivo de forma a acrescentar semanas à
data da entrada de dados (date).

AdicionarMeses(<date/d-
atetime>, <num_months>)

Acrescenta um número de meses a uma data (date). Quando utilizar a forma sintática con-
cisa, o número deve ser um número inteiro positivo de forma a acrescentar meses à data
da entrada de dados (date).

AdicionarAnos(<date/d-
atetime>, <num_years>)

Acrescenta um número de anos a uma data (date). Quando utilizar a forma sintática con-
cisa, o número deve ser um número inteiro positivo de forma a acrescentar anos à data da
entrada de dados (date).

ContagemDosDiasDaSemana
(<date1>, <date2>)

Conta o número de dias da semana entre a data (date)1 e a data (date)2. Ou seja, o
número de dias entre segunda-feira e sexta-feira.
Nota: A data (date) anterior é inclusiva e a data (date) posterior é exclusiva.

Sintaxe Descrição

InícioDoAno(<date/datetime>) Devolve a primeira data (date) do ano a que pertence a data (date).

FimDoAno(<date/datetime>) Devolve a última data (date) do ano a que pertence a data (date).

DiferençaDeDia(<date/d-
atetime1>, <date/datetime2>)

Devolve o número de dias completos entre date/datetime1 e date/datetime2. A
ordem das duas datas não afeta o resultado.

DiferençaDeDiaInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de dias completos (inclusivamente) entre date/datetime1 e date/d-
atetime2. Este cálculo exclui ambos os pontos terminais. Em que as datas sejam iguais, o
resultado é 1. A ordem das duas datas não afeta o resultado.

DiferençaDeDiaExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de dias completos (exclusivamente) entre date/datetime1 e date/d-
atetime2. Este cálculo exclui ambos os pontos terminais. Nos casos em que as datas
sejam iguais, o resultado é 0. A ordem das duas datas não afeta o resultado.

DiferençaDeSemana(<date/d-
atetime1>, <date/datetime2>)

Devolve o número de semanas completas decorridas entre date/datetime1 e date/d-
atetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeSemanaInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de semanas completas decorridas inclusivamente entre date/d-
atetime1 e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeSemanaExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de semanas completas decorridas exclusivamente entre date/d-
atetime1 e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMês(<date/d-
atetime1>, <date/datetime2>)

Devolve o número de meses completos decorridos entre date/datetime1 e date/d-
atetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMêsInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de meses completos decorridos inclusivamente entre date/d-
atetime1 e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeMêsExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de meses completos decorridos exclusivamente entre date/d-
atetime1 e date/datetime2. A ordem das duas datas não afeta o resultado.

DiferençaDeAno(<date/d-
atetime1>, <date/datetime2>)

Devolve o número de anos entre date/datetime1 e date/datetime2. A ordem das
duas datas não afeta o resultado.

DiferençaDeAnoInclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de anos inclusivamente entre date/datetime1 e date/datetime2.
A ordem das duas datas não afeta o resultado.

DiferençaDeAnoExclusiva
(<date/datetime1>, <date/d-
atetime2>)

Devolve o número de anos exclusivamente entre date/datetime1 e date/datetime2.
A ordem das duas datas não afeta o resultado.

Funções de hora do dia(English)

Sintaxe Descrição

HoraDoDia(<text>) Converte a cadeia de caracteres fornecida numa hora do dia

ExtrairSegundo(<time/datetime>) Devolve o componente de segundo de um horário: timeofday/datetime attribute.

ExtrairMinuto(<time/datetime>) Devolve o componente de minuto de um horário: timeofday/datetime attribute.

ExtrairHora(<time/datetime>) Devolve o componente de hora de um horário: timeofday/datetime attribute.

Funções de data e hora(English)

Sintaxe Descrição

DataHoraAtual() Devolve a data (date) e hora atuais no início da sessão.

DataHora(<text>) Converte a cadeia de caracteres especificada num valor de data: datetime

ConcatenarDataHora(<date>,
<time>)

Define a hora da data (date) através da junção da data (date) com a hora do dia.

DiferençaDeSegundo(<dat-
etime1>, <datetime2>)
DiferençaDeSegundo
(<timeOfDay1>, <timeOfDay2>)

Devolve o número de segundos entre os valores de data-hora: datetime1 e datetime2.

DiferençaDeSegundoInclusiva
(<datetime1>, <datetime2>)
DiferençaDeSegundoInclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número inclusivamente de segundos entre os valores de data-hora: dat-
etime1 e datetime2.

DiferençaDeSegundoExclusiva
(<datetime1>, <datetime2>)
DiferençaDeSegundoExclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número exclusivamente de segundos entre os valores de data-hora: dat-
etime1 e datetime2.

DiferençaDeMinuto(<dat-
etime1>, <datetime2>)
DiferençaDeMinuto
(<timeOfDay1>, <timeOfDay2>)

Devolve o número de minutos entre os valores de data-hora: datetime1 e datetime2.

DiferençaDeMinutoInclusiva
(<datetime1>, <datetime2>)
DiferençaDeMinutoInclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número inclusivamente de minutos entre os valores de data-hora: datetime1
e datetime2.

DiferençaDeMinutoExclusiva
(<datetime1>, <datetime2>)
DiferençaDeMinutoExclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número exclusivamente de minutos entre os valores de data-hora: datetime1
e datetime2.

Sintaxe Descrição

DiferençaDeHora(<datetime1>,
<datetime2>)
DiferençaDeHora
(<timeOfDay1>, <timeOfDay2>)

Devolve o número de horas entre os valores de data-hora: datetime1 e datetime2.

DiferençaDeHoraInclusiva
(<datetime1>, <datetime2>)
DiferençaDeHoraInclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número inclusivamente de horas entre os valores de data-hora: datetime1 e
datetime2.

DiferençaDeHoraExclusiva
(<datetime1>, <datetime2>)
DiferençaDeHoraExclusiva
(<timeOfDay1>, <timeOfDay2>)

Devolve o número exclusivamente de horas entre os valores de data-hora: datetime1 e
datetime2.

ExtrairData(<datetime>) Extrai a data (date) de uma data-hora (datetime attribute).

ExtrairHoraDoDia(<datetime>)
Extrai a hora do dia a partir de uma data-hora (datetime attribute). Pode ser utilizado
para definir o valor de uma hora do dia (timeofday attribute) com a hora em que a
regra é executada através da extração da hora a partir da data (date) e hora.

AdicionarHoras(<datetime>,
<num_hours>)
AdicionarHoras(<timeOfDay>,
<num_hours>)

Acrescenta um número de horas a uma hora: date.

AdicionarMinutos(<datetime>,
<num_minutes>)
AdicionarMinutos
(<timeOfDay>, <num_minutes>)

Acrescenta um número de minutos a uma hora: date.

AdicionarSegundos
(<datetime>, <num_seconds>)
AdicionarSegundos
(<timeOfDay>, <num_seconds>)

Acrescenta um número de segundos a uma hora: date.

Funções de texto(English)

Sintaxe Descrição

<text1> & <text2>

Combina o valor do texto text1 com o valor do texto text2, e assim sucessivamente, até formar um
valor do texto text único.
Nota: é possível utilizar variáveis de qualquer tipo. Os valores são formatados com o formatador
instalado na sessão de execução de regras.

Combina o valor do texto text1 com o valor do texto text2, e assim sucessivamente, até formar um
valor do texto text único.

Sintaxe Descrição

Nota: é possível utilizar variáveis de qualquer tipo. Os valores são formatados com o formatador
instalado na sessão de execução de regras.

Contém(<text>,
<substring>)

Devolve um valor booleano a indicar se o valor text fornecido contém a subcadeia de caracteres text
fornecida. A comparação text não é sensível a maiúsculas e minúsculas.

TerminaCom
(<text>, <sub-
string>)

Devolve um valor booleano a indicar se o valor text fornecido termina com a subcadeia de caracteres
text fornecida. A comparação text não é sensível a maiúsculas e minúsculas.

ÉNúmero(<text>) Devolve um valor booleano a indicar se o valor de texto (text) fornecido representa um número válido.

Comprimento
(<text>)

Devolve o comprimento do carácter do valor de texto (text) fornecido.

ComeçaCom
(<text>, <sub-
string>)

Devolve um valor booleano a indicar se o valor text fornecido começa com a subcadeia de caracteres
text fornecida. A comparação text não é sensível a maiúsculas e minúsculas.

Subsequência
(<text>, <offset>,
<length>)

Devolve a subcadeia de caracteres de texto (text) que inicia com o desvio fornecido, que corresponde ao
comprimento especificado em caracteres. São devolvidos menos caracteres se o final da cadeia de cara-
cteres for atingida.

Texto(<number>)
Texto(<date>)
Texto(<datetime>)
Texto
(<timeOfDay>)

Converte o número especificado ou atributo de data (date attribute) num valor de texto (text).

Funções de entidade e relação(English)

Sintaxe Descrição

Para(<relationship>, <Exp>)
Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Uma", "Muitas para Uma" ou "Muitas para Muitas" relationship onde só
existe uma condição.

ParaEscopo(<relationship>,
<alias>)
ParaEscopo(<relationship>)

Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Uma", "Muitas para Uma" ou "Muitas para Muitas" relationship onde
existe uma oumais condições.

ParaTudo(<relationship>,
<Exp>)

Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Muitas" ou "Muitas para Muitas" relationship, quando é necessário
determinar se todos membros do grupo de entidades entity de destino têm de cumprir a
regra.
Esta forma é utilizada quando só existe uma condição na regra.

Sintaxe Descrição

ParaTodosEscopos(<rela-
tionship>)
ParaTodosEscopos(<rela-
tionship>, <alias>)

Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Muitas" ou "Muitas para Muitas" relationship, quando é necessário
determinar se todos os membros do grupo de entidades entity de destino têm de cumprir a
regra.
Esta forma é utilizada quando existe uma oumais condições na regra.

Existe(<relationship>, <Exp>)

Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Muitas" ou "Muitas para Muitas" relationship, quando é necessário
determinar se quaisquer membros do grupo de entidades entity de destino têm de cumprir a
regra.
Esta forma é utilizada quando só existe uma condição na regra.

ExisteEscopo(<relationship>)
ExisteEscopo(<relationship>,
<alias>)

Utilizado para fazer referência de uma entidade entity para outra entidade entity numa
relação "Uma para Muitas" ou "Muitas para Muitas" relationship, quando é necessário
determinar se quaisquer membros do grupo de entidades entity de destino têm de cumprir a
regra.
Esta forma é utilizada quando existe uma oumais condições na regra.

ÉMembroDe(<target>, <rela-
tionship>)
ÉMembroDe(<target>,
<alias>, <relationship>)

Utilizado como conclusão para demonstrar que uma instância de entidade (entity) é membro
de uma relação (relationship). Utilizado como uma condição para testar se uma instância
de entidade (entity) é um destino de uma relação (relationship) para a qual uma segunda
instância de entidade (entity) seja a origem.

NãoÉMembroDe(<target>,
<relationship>)

Utilizado como condição para testar se uma instância de entidade (entity) não é um destino
de uma relação (relationship) para a qual uma segunda instância de entidade (entity) seja
a origem.

ContagemDeInstâncias
(<relationship>)

Conta o número de instâncias que existem para uma entidade: entity.

ContagemDeInstânciasSe
(<relationship>, <Exp>)

Conta o número de instâncias existentes para uma entidade (entity) para a qual um atributo
ao nível da entidade (entity-level attribute) em particular tem um valor específico.

MáximoDeInstâncias(<rela-
tionship>, <number-attr>)
MáximoDeInstâncias(<rela-
tionship>, <date-attr>)
MáximoDeInstâncias(<rela-
tionship>, <datetime-attr>)
MáximoDeInstâncias(<rela-
tionship>, <time-attr>)

Obtém o valor mais elevado/mais recente de uma variável ao nível da entidade (entity-
level) para todas as instâncias da entidade (entity).

MáximoDeInstânciasSe
(<relationship>, <number-
attr>, <condition>)
MáximoDeInstânciasSe
(<relationship>, <date-attr>,

Obtém o valor mais elevado/mais recente de uma variável ao nível da entidade (entity-
level) para todas as instâncias da entidade (entity) para a qual um atributo ao nível da
entidade (entity-level attribute) em particular tem um valor específico.

Sintaxe Descrição

<condition>)
MáximoDeInstânciasSe
(<relationship>, <datetime-
attr>, <condition>)
MáximoDeInstânciasSe
(<relationship>, <time-attr>,
<condition>)

MínimoDeInstâncias(<rela-
tionship>, <number-attr>)
MínimoDeInstâncias(<rela-
tionship>, <date-attr>)
MínimoDeInstâncias(<rela-
tionship>, <datetime-attr>)
MínimoDeInstâncias(<rela-
tionship>, <time-attr>)

Obtém o valor mais baixo/menos recente de uma variável ao nível da entidade (entity-
level) para todas as instâncias da entidade (entity).

MínimoDeInstânciasSe
(<relationship>, <number-
attr>, <condition>)
MínimoDeInstânciasSe
(<relationship>, <date-attr>,
<condition>)
MínimoDeInstânciasSe
(<relationship>, <datetime-
attr>, <condition>)
MínimoDeInstânciasSe
(<relationship>, <time-attr>,
<condition>)

Obtém o valor mais baixo/menos recente de uma variável ao nível da entidade (entity-
level) para todas as instâncias da entidade (entity) para a qual um atributo ao nível da
entidade (entity-level attribute) em particular tem um valor específico.

SomaDeInstâncias(<rela-
tionship>, <number-attr>)

Obtém a soma de todas as instâncias de uma variável ao nível da entidade: entity-level.

SomaDeInstânciasSe(<rela-
tionship>, <number-attr>,
<condition>)

Obtém a soma de todas as instâncias de uma variável ao nível da entidade (entity-level)
para a qual se verifica ser verdadeiro uma entidade (entity) com atributo (attribute)
Booleano específico ao nível da entidade (entity-level).

ValorIfInstância(<rela-
tionship>, <number-attr>,
<condition>)
ValorIfInstância(<rela-
tionship>, <text-attr>, <con-
dition>)
ValorIfInstância(<rela-
tionship>, <date-attr>, <con-
dition>)

Obtém um valor de uma instância de entidade entity exclusiva, identificada a partir das
instâncias de entidade entity de destino de uma relação relationship por uma condição.

l Se a condição identificar uma única instância de entidade entity de destino, o valor
corresponde ao valor calculado relativamente a essa instância de entidade entity.

l Se mais do que uma instância de destino cumprir a condição, é devolvido o estado
uncertain.

l Se nenhuma instância de destino cumprir a condição e a relação relationship for
conhecida, o valor será uncertain.

Sintaxe Descrição

ValorIfInstância(<rela-
tionship>, <datetime-attr>,
<condition>)
ValorIfInstância(<rela-
tionship>, <time-attr>, <con-
dition>)

IgualdadesDeInstância
(<instance1>, <instance2>)

Determina se duas instâncias de uma entidade (entity) são a mesma instância.

SemIgualdadesDeInstância
(<instance1>, <instance2>)

Determina se duas instâncias de uma entidade (entity) não são a mesma instância.

InstânciaDemonstrada
(<relationship>, <identity>)
<rel>(<identity>) existe

Utilizado como uma conclusão para demonstrar que uma instância de entidade entity existe
e é ummembro de uma relação relationship.

Funções de raciocínio temporal(English)

Sintaxe Descrição

ContagemDeIntervalosDistintos
(<start-date>, <end-date>,
<variable>)
ContagemDeIntervalosDistintos
(<start-date>, <end-date>, <con-
dition>)

Conta o número de valores distintos conhecidos para a variável, no intervalo a partir
da data (date) de início (inclusivamente) até à data (date) de fim (exclusivamente).

ContagemDeIntervalosDistintosSe
(<start-date>, <end-date>,
<variable>, <condition>)

Conta o número de valores distintos conhecidos para a variável, no intervalo a partir
da data (date) de início (inclusivamente) até à data (date) de fim (exclusivamente),
incluindo apenas as ocorrências em que um filtro booleano é verdadeiro.

SomaDiáriaDeIntervalos(<start-
date>, <end-date>, <number-attr>)

Calcula a soma de uma variável monetária ou numérica, no intervalo a partir da data
(date) de início (inclusivamente) até à data (date) de fim (exclusivamente). O atrib-
uto (attribute) é assumido como uma quantidade diária.

SomaDiáriaDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)

Calcula a soma de todos os valores diários para uma variável monetária ou
numérica, no intervalo a partir de uma data (date) de início (inclusivamente) até
uma data (date) de fim (exclusivamente), incluindo apenas as ocorrências em que
uma condição é verdadeira.

MáximoDeIntervalos(<start-date>,
<end-date>, <number-attr>)
MáximoDeIntervalos(<start-date>,
<end-date>, <date-attr>)
MáximoDeIntervalos(<start-date>,

Seleciona o valor máximo de uma variável no intervalo a partir uma data (date) de
início (inclusivamente) até uma data (date) de fim (exclusivamente).

Sintaxe Descrição

<end-date>, <datetime-attr>)
MáximoDeIntervalos(<start-date>,
<end-date>, <time-attr>)

MáximoDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MáximoDeIntervalosSe(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Seleciona o valor máximo de uma variável no intervalo a partir de uma data (date)
de início (inclusivamente) até uma data (date) de fim (exclusivamente), incluindo
apenas as ocorrências em que uma condição é verdadeira.

MínimoDeIntervalos(<start-date>,
<end-date>, <number-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <date-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <datetime-attr>)
MínimoDeIntervalos(<start-date>,
<end-date>, <time-attr>)

Seleciona o valor mínimo de uma variável no intervalo a partir de uma data (date)
de início (inclusivamente) até uma data (date) de fim (exclusivamente).

MínimoDeIntervalosSe(<start-
date>, <end-date>, <number-attr>,
<condition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
MínimoDeIntervalosSe(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Seleciona o valor mínimo de uma variável no intervalo a partir de uma data (date)
de início (inclusivamente) até uma data (date) de fim (exclusivamente), incluindo
apenas as ocorrências em que uma condição é verdadeira.

MédiaPonderadaDeIntervalos
(<start-date>, <end-date>, <number-
attribute>)

Calcula o valor médio de uma variável monetária ou numérica no intervalo a partir de
uma data (date) de início (inclusivamente) até uma data (date) de fim (exclu-
sivamente) ponderada pelo espaço de tempo a que se aplica cada valor.

MédiaPonderadaDeIntervalosSe
(<start-date>, <end-date>, <number-
attribute>, <condition>)

Calcula o valor médio de uma variável monetária ou numérica no intervalo a partir de
uma data (date) de início (inclusivamente) até uma data (date) de fim (exclu-
sivamente), incluindo apenas as ocorrências em que uma condição booleana é ver-

Sintaxe Descrição

dadeira (ponderada pelo espaço de tempo a que se aplica cada valor e em que o filtro
seja verdadeiro).

IntervaloSempre(<start-date>,
<end-date>, <condition>)

Devolve verdadeiro se, e apenas se, uma condição booleana for sempre verdadeira
no intervalo a partir da data (date) de início (inclusivamente) até à data (date) de
fim (exclusivamente).

IntervalNoMínimo(<start-date>,
<end-date>, <NumDays>,
<condition>)

Devolve verdadeiro se, e apenas se, uma condição booleana for verdadeira pelo
menos para o número de dias especificado (não necessariamente consecutivos) no
intervalo a partir da data (date) de início (inclusivamente) até à data (date) de fim
(exclusivamente).

IntervaloDiasConsecutivos(<start-
date>, <end-date>, <NumDays>, <con-
dition>)

Devolve verdadeiro se, e apenas se, uma condição booleana for verdadeira pelo
menos para determinado número de dias consecutivos fornecidos no intervalo a
partir da data (date) de início (inclusivamente) até à data (date) de fim (exclu-
sivamente).

IntervaloAlgumasVezes(<start-
date>, <end-date>, <condition>)

Devolve verdadeiro se, e apenas se, uma condição booleana for alguma vez ver-
dadeira no intervalo a partir da data (date) de início (inclusivamente) até à data
(date) de fim (exclusivamente).

ValorEm(<date>, <value>) Devolve o valor do atributo (attribute) fornecido na data (date) especificada.

QuandoÚltimo(<date>, <condition>)
Devolve a data (date) na qual uma condição booleana foi verdadeira pela última
vez, ao observar retroativamente a partir de (e incluindo) uma data (date) espe-
cificada.

QuandoPróximo(<date>, <con-
dition>)

Devolve a data (date) na qual uma condição booleana será verdadeira de seguida,
ao observar retroativamente a partir de (e incluindo) uma data (date) especificada.

Último()

Devolve um valor de data (date) equivalente ao valor de data (date) mais recente
possível, nomeadamente uma data (date) garantidamente posterior a qualquer
outra data (date) que um atributo de data (date attribute) possa obter ou que
uma expressão possa equivaler.

Primeiro()

Devolve um valor de data (date) equivalente ao valor de data (date) mais antigo
possível, nomeadamente uma data (date) garantidamente anterior a qualquer outra
data (date) que um atributo de data (date attribute) possa obter ou que uma
expressão possa equivaler.

TemporalDiasDesde(<date>, <end-
date>)

Devolve uma variável numérica que varia todos os dias e corresponde ao número de
dias completos a partir da data: date.

TemporalSemanasDesde(<date>,
<end-date>)

Devolve uma variável numérica que varia todas as semanas e corresponde ao
número de semanas completas a partir da data: date.

TemporalMesesDesde(<date>,
<end-date>)

Devolve uma variável numérica que varia todos os meses e corresponde ao número
de meses completos a partir da data: date. Nota: Em que a data (date) fornecida
seja posterior ao dia 28 do mês e ummês subsequente tenha menos dias do que o

Sintaxe Descrição

mês fornecido, o ponto de mudança para o mês de aniversário será criado no último
dia desse mês. Por exemplo, se a data (date) fornecida for 28, 29, 30 ou 31 de
Janeiro de 2007, o primeiro ponto de mudança será 28 de Fevereiro de 2007.

TemporalAnosDesde(<date>, <end-
date>)

Devolve uma variável numérica que varia todos os anos e corresponde ao número de
anos completos a partir da data: date.

TemporalSempreDias(<days>, <con-
dition>)

Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro se, e apenas se, uma condição booleana for verdadeira para todos dentro de
determinado número de dias precedentes, não incluindo o dia atual.

TemporalDiasConsecutivos
(<minDays>, <days>, <condition>)

Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro se, e apenas se, uma condição booleana for verdadeira para pelo menos um
número mínimo de dias consecutivos em qualquer altura no âmbito do número defin-
ido de dias precedentes, não incluindo o dia atual.

TemporalAlgunsDias(<days>, <con-
dition>)

Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro se, e apenas se, uma condição booleana for alguma vez verdadeira no
âmbito de um número especificado de dias precedentes, não incluindo o dia atual.

TemporalApós(<date>)
Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro após uma data (date) e falso na data e antes da mesma.

TemporalAntes(<date>)
Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro antes de uma data (date) e falso na data ou após a mesma.

TemporalEm(<date>)
Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro numa data (date) e falso antes da data ou após a mesma.

TemporalEmOuApós(<date>)
Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro numa data (date) ou após a mesma e falso antes da data.

TemporalEmOuAntes(<date>)
Devolve um atributo (attribute) booleano que varia ao longo do tempo e que é ver-
dadeiro numa data e antes de uma data (date) e falso após a mesma.

TemporalDaDataDeInício(<rela-
tionship>, <date>, <value>)

Devolve um único atributo (attribute) temporal (ao nível da entidade (entity) de
origem) a partir de uma relação (relationship) e de um atributo (attribute) de
valor nas entidades, com valores que entram em vigor a partir de um atributo de data
(date attribute) de início.

TemporalDaDataDeTérmino(<rela-
tionship>, <date>, <value>)

Devolve um único atributo (attribute) temporal (ao nível da entidade (entity) de
origem) a partir de uma relação (relationship) e de um atributo (attribute) de
valor nas entidades, com valores que entram em vigor até um atributo de data (date
attribute) de fim.

TemporalDoIntervalo(<rela-
tionship>, <start-date>, <end-date>,
<Value>)

Devolve um único atributo (attribute) temporal (ao nível da entidade (entity) de
origem) a partir de uma relação (relationship) e de um atributo (attribute) de
valor nas entidades, com valores que entram em vigor a partir de uma data (date
attribute) de início (inclusivamente) até um atributo de data (date attribute) de

Sintaxe Descrição

fim (exclusivamente). O valor é uncertain se expirar antes da data (date) de início
seguinte.

TemporalDiaDaSemana
(<startdate>, <enddate>)

Devolve verdadeiro nas datas que são dias da semana e falso nas datas que são fins-
de-semana a partir da data (date) de início (inclusivamente) especificada até à data
(date) de fim (exclusivamente). Devolve uncertain fora do intervalo de data:
date.

TemporalUmaVezPorMês
(<startdate>, <enddate>, <day-
ofmonth>)

Devolve verdadeiro se o dia for igual ao parâmetro do dia do mês e falso em todos os
outros dias do mês a partir da data (date) de início (inclusivamente) especificada até
à data (date) de fim (exclusivamente). Devolve uncertain fora do intervalo de
data (date). Quando o dia do mês excede o número de dias do mês atual, o valor é
verdadeiro no último dia desse mês, de forma que a função devolve um valor que é
verdadeiro exatamente um dia por mês.

Funções do evento de validação(English)

Sintaxe Descrição

Erro
(<text>)

Um evento de erro é utilizado para transmitir uma mensagem ao utilizador e evitar que continue uma investigação
até a condição que desencadeou esse erro já não se aplicar.

Aviso
(<text>)

Um evento de aviso é utilizado para transmitir uma mensagem ao utilizador, mas permite que continue apesar da
condição que desencadeou esse aviso.

Funções recusadas(English)

Sintaxe Descrição

ChamarFunçãoPersonalizada
(<A>,)

Devolve o resultado de uma chamada externa para uma biblioteca de códigos. A biblioteca
de códigos deve ser fornecida para o Determinations Engine para que a chamada de função
personalizada tenha êxito.

Loogiset operaattorit(English)

Syntaksi Kuvaus

jos Valinnainen termi, joka voi esiintyä sellaisen päätelmärivin lopussa, jota seuraa todennus

ja Looginen yhteys kahdenmääritteen attributes välillä

tai Looginen disjunktio kahdenmääritteen attributes välillä

yksi
jompikumpi

Ryhmityselementit, joita käytetään disjunktioissa, joissa vähintään kaksi määritettä attrib-
utes täytyy ryhmitellä

Syntaksi Kuvaus

jokin seuraavista
mikä tahansa
ainakin yksi seuraavista on
tosi
mikä tahansa seuraavista on
täytetty

molemmat
kaikki
kaikki seuraavat ovat tosia
kaikki seuraavat on täytetty

Ryhmityselementit, joita käytetään yhteyksissä, joissa vähintään kaksi määritettä attrib-
utes täytyy ryhmitellä

muussa tapauksessa Termi, joka esiintyy taulusäännön lopussa ja ilmaisee muussa tapauksessa -lausekkeen

on
Termi, jota käytetään selitesyötössä lyhennetyn fraasin ja täyden kohteen attribute
text välillä

Loogiset funktiot(English)

Syntaksi Kuvaus

ei ole tosi, että <expr> Operaattori, jota käytetään palauttamaan arvo tosi, jos määritteen attribute arvo on epätosi

<var> on varma
on varmaa, onko <expr>
on varma, että <expr>

Operaattori, jota käytetään palauttamaan arvo tosi, jos määritteen attribute arvo on eri kuin
uncertain

<var> on epävarma
<var> ei ole varma
on epävarmaa, että
<expr>
on epävarmaa, onko
<expr>
ei ole varmaa, että
<expr>
epävarma

Operaattori, jota käytetään palauttamaan arvo tosi, jos määritteen attribute arvo on uncer-
tain

<var> on tunnettu
tiedetään, onko <expr>
on tiedossa, että <expr>

Operaattori, jota käytetään palauttamaan arvo tosi, jos määritteellä attribute onmitään arvoa

<var> on tuntematon
ei tiedetä, onko <expr>
ei ole tiedossa, onko
<expr>
tuntematon

Operaattori, jota käytetään palauttamaan arvo tosi, jos määritteellä attribute ei ole arvoa

Loogiset vakiot(English)

Syntaksi Kuvaus

tosi Tosi-vakioarvo, jota käytetään taulusäännöissä.

epätosi Epätosi-vakioarvo, jota käytetään taulusäännöissä.

epävarma Vakioarvo uncertain, jota käytetään taulusäännöissä.

Vertailuoperaattorit(English)

Syntaksi Kuvaus

<x><<y>
<x> on vähemmän kuin <y>

Pienempi kuin
Huomaa, ettei luonnollista kielimuotoa ole, kun tätä operaattoria käytetään numeeristen
arvojen ja valuutta-arvojen yhteydessä.

<x> > <y>
<x> on suurempi kuin <y>
<x> on myöhäisempi kuin
<y>

Suurempi kuin
Huomaa, ettei luonnollista kielimuotoa ole, kun tätä operaattoria käytetään numeeristen
arvojen ja valuutta-arvojen yhteydessä.

<x><=<y>
<x> on vähemmän tai yhtä
suuri kuin <y>

Pienempi tai yhtä suuri kuin

<x> >= <y>
<x> on suurempi tai yhtä
suuri kuin <y>

Suurempi tai yhtä suuri kuin

<x>=<y>
<x> on yhtäsuuri kuin <y>
<x> on yhtä kuin <y>

Yhtä suuri kuin

<x> != <y>
<x> <> <y>
<x> on erisuuri kuin <y>
<x> ei ole yhtä kuin <y>
<x> ei ole sama kuin <y>

Eri suuri

Numeeriset funktiot(English)

Syntaksi Kuvaus

Määrä(<numText>) Muunna määritetty merkkijono numeroarvoksi

<x> + <y> Yhteenlasku

<x> - <y> Vähennyslasku

Syntaksi Kuvaus

<x> * <y> Kertolasku

<x> / <y> Jakolasku

<x> \ <y> Kokonaisluvun jakolasku

<x> modulo <y> Kokonaisluvun jakojäännös

Enimmäisarvo(<x>, <y>)
Enimmäisarvo(<date/time/datetime1>, <date/time/datetime2>)

Palauttaa kahdesta arvosta suuremman

Vähimmäisarvo(<x>, <y>)
Vähimmäisarvo(<date/time/datetime1>, <date/time/datetime2>)

Palauttaa kahdesta arvosta pienemmän

Xy(<x>, <y>)
<x> korotettuna <y> . potenssiin
<x> potenssiin <y>

X potenssiin y

Eksponentti(<x>)
e potenssiin <x>

Vakio e potenssiin x

Itseisarvo(<x>)
|<val>|
<x> itseisarvo

X:n absoluuttinen arvo

LuonnollinenLogaritmi(<x>)
luonnollinen logaritmi <x>:sta
luonnollinen logaritmi <x>:stä

X:n luonnollinen logaritmi

Logaritmi(<x>)
10-kanta logaritmi <x>:sta
10-kanta logaritmi <x>:stä

X:n 10-kantainen logaritmi

Neliöjuuri(<x>)
neliöjuuri <x>:sta
neliöjuuri <x>:stä

X:n neliöjuuri

Pyöristys(<x>, <n>)
<x> pyöristettynä <n> desimaaliin

Pyöristää x:n n:n desimaalin tarkkuudelle

Katkaisu(<x>, <n>)
<x> katkaistuna <n> desimaaliin

X pyöristettynä n:n desimaalin tarkkuudelle

Sini(<x>) X:n sini

Kosini(<x>) X:n kosini

Tangentti(<x>) X:n tangentti

Arkussini(<x>) X:n arkussini

Syntaksi Kuvaus

Arkuskosini(<x>) X:n arkussini

Arkustangentti(<x>) X:n arkustangentti

Päivämäärän funktiot(English)

Syntaksi Kuvaus

NykyinenPvm() Palauttaa kuluvan pvm:n date istunnon alussa.

Pvm(<text>) Muuntaa määritetynmerkkijonon arvoksi date

TeonPvm(<year>, <month>,
<day>)

Palauttaa päivämäärän date, joka muodostetaanmääritetystä vuodesta, kuukaudesta ja
päivästä.

PoimiPäivä(<date/datetime>) Palauttaa päivän arvosta date/datetime attribute.

PoimiKuukausi(<date/d-
atetime>)

Palauttaa kuukauden arvosta date/datetime attribute.

PoimiVuosi(<date/datetime>) Palauttaa vuoden arvosta date/datetime attribute.

SeuraavaViikonpäivä(<date/d-
atetime>, <day>)

Palauttaa seuraavan viikonpäivän päivämäärän date päivämääränä date, sitä ennen tai
sen jälkeen (käytetyn syntaksin mukaan).

SeuraavaPvm(<date>, <day>,
<month>)

Palauttaa annetun päivän ja kuukauden seuraavan instanssin päivämäärän date jälkeen.

LisääPäivät(<date/datetime>,
<num_days>)

Lisää päiviä päivämäärään date tai poistaa siitä päiviä. Käytettäessä suppeaa syntaktista
muotoa numeron täytyy olla positiivinen kokonaisluku, jotta syötteeseen date voidaan
lisätä päiviä, tai negatiivinen luku, jotta syötteestä date voidaan vähentää päiviä.

LisääViikot(<date/datetime>,
<num_weeks>)

Lisää viikkoja päivämäärään date. Käytettäessä suppeaa syntaktista muotoa numeron
täytyy olla positiivinen kokonaisluku, jotta syötteeseen date voidaan lisätä viikkoja.

LisääKuukaudet(<date/d-
atetime>, <num_months>)

Lisää kuukausia päivämäärään date. Käytettäessä suppeaa syntaktista muotoa numeron
täytyy olla positiivinen kokonaisluku, jotta syötteeseen date voidaan lisätä kuukausia.

LisääVuodet(<date/datetime>,
<num_years>)

Lisää vuosia päivämäärään date. Käytettäessä suppeaa syntaktista muotoa numeron
täytyy olla positiivinen kokonaisluku, jotta syötteeseen date voidaan lisätä vuosia.

ViikonpäivienMäärä(<date1>,
<date2>)

Laskee arkipäivienmäärän päivien date1 ja date2 välillä. Mukaan lasketaan vain päivät
maanantaista perjantaihin.
Huom: aikaisempi date sisältyy laskelmaan, myöhäisempi date ei sisälly.

VuodenAlku(<date/datetime>) Palauttaa ensimmäisen päivämäärän date vuotena, jolle date osuu.

VuodenLoppu(<date/datetime>)
Palauttaa viimeisen päivämäärän date vuotena, jolle date osuu.

Syntaksi Kuvaus

PäivienErotus(<date/d-
atetime1>, <date/datetime2>)

Palauttaa kokonaisten päivien lukumäärän arvojen date/datetime1 ja date/d-
atetime2 välillä. Päivämäärien järjestys ei vaikuta tulokseen.

PäivienErotusSisällyttävä
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten päivien lukumäärän (sisällyttävä) arvojen date/datetime1 ja
date/datetime2 välillä. Laskennassa otetaanmukaan alku- ja loppupäivä. Jos
päivämäärät ovat samat, tulos on 1. Päivämäärien järjestys ei vaikuta tulokseen.

PäivienErotusPoissulkeva
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten päivien lukumäärän (poissulkeva) arvojen date/datetime1 ja
date/datetime2 välillä. Laskennassa jätetään pois alku- ja loppupäivä. Jos
päivämäärät ovat samat, tulos on 0. Päivämäärien järjestys ei vaikuta tulokseen.

ViikkojenErotus(<date/d-
atetime1>, <date/datetime2>)

Palauttaa kokonaisten kuluneiden viikkojenmäärän päivämäärien date/datetime1 ja
date/datetime2 välillä. Päivämäärien järjestys ei vaikuta lopputulokseen.

ViikkojenErotusSisällyttävä
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten kuluneiden viikkojen (sisällyttävä) määrän päivämäärien date/d-
atetime1 ja date/datetime2 välillä. Päivämäärien järjestys ei vaikuta lopputulokseen.

ViikkojenErotusPoissulkeva
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten kuluneiden viikkojen (poissulkeva) määrän päivämäärien date/d-
atetime1 ja date/datetime2 välillä. Päivämäärien järjestys ei vaikuta lopputulokseen.

KuukausienErotus(<date/d-
atetime1>, <date/datetime2>)

Palauttaa kokonaisten kuluneiden kuukausienmäärän arvojen date/datetime1 ja
date/datetime2 välillä. Päivämäärien järjestys ei vaikuta tulokseen.

KuukausienErotusSisällyttävä
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten kuluneiden kuukausienmäärän (sisällyttävä) arvojen date/d-
atetime1 ja date/datetime2 välillä. Päivämäärien järjestys ei vaikuta tulokseen.

KuukausienErotusPoissulkeva
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa kokonaisten kuluneiden kuukausienmäärän (poissulkeva) arvojen date/d-
atetime1 ja date/datetime2 välillä. Päivämäärien järjestys ei vaikuta tulokseen.

VuosienErotus(<date/d-
atetime1>, <date/datetime2>)

Palauttaa vuosienmäärän päivämäärien date/datetime1 ja date/datetime2 välillä.
Päivämäärien järjestys ei vaikuta lopputulokseen.

VuosienErotusSisällyttävä
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa vuosienmäärän (poissulkeva) päivämäärien date/datetime1 ja date/d-
atetime2 välillä. Päivämäärien järjestys ei vaikuta lopputulokseen.

VuosienErotusPoissulkeva
(<date/datetime1>, <date/d-
atetime2>)

Palauttaa vuosienmäärän (poissulkeva) päivämäärien date/datetime1 ja date/d-
atetime2 välillä. Päivämäärien järjestys ei vaikuta lopputulokseen.

Kellonajan funktiot(English)

Syntaksi Kuvaus

Kellonaika(<text>) Muuntaa annetunmerkkijonon kellonajaksi

PoimiSekunti(<time/datetime>) Palauttaa sekunnin arvosta timeofday/datetime attribute.

PoimiMinuutti(<time/datetime>) Palauttaa minuutin arvosta timeofday/datetime attribute.

PoimiTunti(<time/datetime>) Palauttaa tunnin arvosta timeofday/datetime attribute.

Päivämäärän ja kellonajan funktiot(English)

Syntaksi Kuvaus

NykyinenPvmAika() Palauttaa kuluvan pvm:n date ja kellonajan istunnon alussa.

PvmAika(<text>) Muuntaa määritetynmerkkijonon arvoksi datetime

LyhennettyPvmAika(<date>,
<time>)

Asettaa ajan date liittämällä ajan date ja kellonajan.

SekuntienErotus(<datetime1>,
<datetime2>)
SekuntienErotus
(<timeOfDay1>, <timeOfDay2>)

Palauttaa sekuntienmäärän arvojen datetime1 ja datetime2 välillä.

SekuntienErotusSisällyttävä
(<datetime1>, <datetime2>)
SekuntienErotusSisällyttävä
(<timeOfDay1>, <timeOfDay2>)

Palauttaa sekuntienmäärän (sisällyttävä) arvojen datetime1 ja datetime2 välillä.

SekuntienErotusPoissulkeva
(<datetime1>, <datetime2>)
SekuntienErotusPoissulkeva
(<timeOfDay1>, <timeOfDay2>)

Palauttaa sekuntienmäärän (poissulkeva) arvojen datetime1 ja datetime2 välillä.

MinuuttienErotus(<dat-
etime1>, <datetime2>)
MinuuttienErotus
(<timeOfDay1>, <timeOfDay2>)

Palauttaa minuuttienmäärän arvojen datetime1 ja datetime2 välillä.

MinuuttienErotusSisällyttävä
(<datetime1>, <datetime2>)
MinuuttienErotusSisällyttävä
(<timeOfDay1>, <timeOfDay2>)

Palauttaa minuuttienmäärän (sisällyttävä) arvojen datetime1 ja datetime2 välillä.

MinuuttienErotusPoissulkeva
(<datetime1>, <datetime2>)
MinuuttienErotusPoissulkeva
(<timeOfDay1>, <timeOfDay2>)

Palauttaa minuuttienmäärän (poissulkeva) arvojen datetime1 ja datetime2 välillä.

Syntaksi Kuvaus

TuntienErotus(<datetime1>,
<datetime2>)
TuntienErotus(<timeOfDay1>,
<timeOfDay2>)

Palauttaa tuntienmäärän arvojen datetime1 ja datetime2 välillä.

TuntienErotusSisällyttävä
(<datetime1>, <datetime2>)
TuntienErotusSisällyttävä
(<timeOfDay1>, <timeOfDay2>)

Palauttaa tuntienmäärän (sisällyttävä) arvojen datetime1 ja datetime2 välillä.

TuntienErotusPoissulkeva
(<datetime1>, <datetime2>)
TuntienErotusPoissulkeva
(<timeOfDay1>, <timeOfDay2>)

Palauttaa tuntienmäärän (poissulkeva) arvojen datetime1 ja datetime2 välillä.

PoimiPvm(<datetime>) Erottaa päivämäärän date arvosta datetime attribute.

PoimiKellonaika(<datetime>)
Erottaa kellonajan arvosta datetime attribute. Voidaan käyttää kellonajan timeofday
attribute arvon asettamiseen ajaksi, jolloin sääntö on suoritettu erottamalla aika tämän
hetkisestä päivämäärästä date ja ajasta.

LisääTunnit(<datetime>,
<num_hours>)
LisääTunnit(<timeOfDay>,
<num_hours>)

Lisää tunteja kohteen date aikaan.

LisääMinuutit(<datetime>,
<num_minutes>)
LisääMinuutit(<timeOfDay>,
<num_minutes>)

Lisää minuutteja kohteen date aikaan.

LisääSekunnit(<datetime>,
<num_seconds>)
LisääSekunnit(<timeOfDay>,
<num_seconds>)

Lisää sekunteja kohteen date aikaan.

Tekstin funktiot(English)

Syntaksi Kuvaus

<text1> & <text2>
Yhdistää arvot text1 ja text2 jne. yhdeksi arvoksi text.
Huomaa, että voit käyttää kaikentyyppisiä muuttujia. Arvot muotoillaan säännön istunnossa asen-
netussa muotoiluohjelmassa.

yhdistäminen <text1>
& <text2>

Yhdistää arvot text1 ja text2 jne. yhdeksi arvoksi text.
Huomaa, että voit käyttää kaikentyyppisiä muuttujia. Arvot muotoillaan säännön istunnossa asen-
netussa muotoiluohjelmassa.

Syntaksi Kuvaus

Sisältää(<text>, <sub-
string>)
<text> sisältää <sub-
string>

Palauttaa totuusarvon, joka kertoo, sisältääkö annettumerkkijono text annetun alimerkkijonon
text. Vertailussa text merkkikoko ei ole merkitsevä.

LoppuuKohteeseen
(<text>, <substring>)
<text> päättyy <sub-
string>

Palauttaa totuusarvon, joka kertoo, päättyykö annettumerkkijono text annettuun alimerkkijonoon
text. Vertailussa text merkkikoko ei ole merkitsevä.

OnNumero(<text>)
<text> on luku

Palauttaa totuusarvon, joka kertoo, edustaako annettu syöte text sallittua numeroa.

Pituus(<text>) Palauttaa annetunmerkkijonon text pituudenmerkkeinä.

AlkaaKohteella(<text>,
<substring>)
<text> alkaa <sub-
string>

Palauttaa totuusarvon, joka kertoo, alkaako annettumerkkijono text annetulla alimerkkijonolla
text. Vertailussa text merkkikoko ei ole merkitsevä.

Alimerkkijono(<text>,
<offset>, <length>)

Palauttaa merkkijonon text määrätyn pituisen alimerkkijonon, joka alkaa annetusta siirtymästä.
Merkkejä palautetaan vähemmän, jos merkkijonon loppu saavutetaan.

Teksti(<number>)
Teksti(<date>)
Teksti(<datetime>)
Teksti(<timeOfDay>)

Muunna määritetty numero tai date attribute text-arvoksi.

Yksikön ja suhteen funktiot(English)

Syntaksi Kuvaus

Kohteelle(<relationship>, <Exp>)
Käytetään viittaamaan yksiköstä entity yksikköön entity yksi yhteen-, monta yht-
een- tai monta moneen -suhteessa relationship, kun ehtoja on vain yksi.

KohteelleLaajuus(<relationship>,
<alias>)
KohteelleLaajuus(<relationship>)

Käytetään viittaamaan yksiköstä entity yksikköön entity yksi yhteen-, monta yht-
een- tai monta moneen -suhteessa relationship, kun ehtoja on vähintään yksi.

Kaikille(<relationship>, <Exp>)
jokainen <relationship-attr>

Käytetään viittaamaan yksiköstä entity yksikköön entity yksi moneen- tai monta
moneen -suhteessa relationship, kun täytyy määrittää, tarvitseeko kohdeyksikön
entity ryhmän kaikkien jäsenten täyttää sääntöä.
Tätä muotoa käytetään, kun säännössä on vain yksi ehto.

KaikilleLaajuus(<relationship>)
KaikilleLaajuus(<relationship>,
<alias>)

Käytetään viittaamaan yksiköstä entity yksikköön entity yksi moneen- tai monta
moneen -suhteessa relationship, kun täytyy määrittää, tarvitseeko kohdeyksikön
entity ryhmän kaikkien jäsenten täyttää sääntöä.

Syntaksi Kuvaus

Tätä muotoa käytetään, kun säännössä on vähintään yksi ehto.

On(<relationship>, <Exp>)
vähintään yksi <relationship-attr>

Käytetään viittaamaan yksiköstä entity yksikköön entity yksi moneen- tai monta
moneen -suhteessa relationship, kun täytyy määrittää, tarvitseeko kohdeyksikön
entity ryhmänminkään jäsenten täyttää sääntöä.
Tätä muotoa käytetään, kun säännössä on vain yksi ehto.

OnLaajuus(<relationship>)
OnLaajuus(<relationship>,
<alias>)

Käytetään viittaamaan yksiköstä entity yksikköön entity yksi moneen- tai monta
moneen -suhteessa relationship, kun täytyy määrittää, tarvitseeko kohdeyksikön
entity ryhmänminkään jäsenten täyttää sääntöä.
Tätä muotoa käytetään, kun säännössä on vähintään yksi ehto.

OnJäsen(<target>, <relationship>)
OnJäsen(<target>, <alias>, <rela-
tionship>)

Käytetään päätelmänä sen johtamiseen, että yksikön entity instanssi on suhteen rela-
tionship jäsen. Käytetään ehtona testaamaan, että yksikön entity instanssi on sel-
laisen suhteen relationship kohde, jonka toinen yksikön entity instanssi on lähde.

EiOleJäsen(<target>, <rela-
tionship>)

Käytetään ehtona testaamaan, että yksikön entity instanssi ei ole sellaisen suhteen
relationship kohde, jonka toinen yksikön entity instanssi on lähde.

InstanssienMäärä(<relationship>)
Laskee yksikölle entity olemassa olevien instanssienmäärän.

InstanssienMääräJos(<rela-
tionship>, <Exp>)

Laskee olemassa olevien instanssienmäärän yksikölle entity, jossa tietyllä määrit-
teellä entity-level attribute on tietty arvo.

InstanssienEnimmäismäärä
(<relationship>, <number-attr>)
InstanssienEnimmäismäärä
(<relationship>, <date-attr>)
InstanssienEnimmäismäärä
(<relationship>, <datetime-attr>)
InstanssienEnimmäismäärä
(<relationship>, <time-attr>)

Hakee muuttujan entity-level korkeimman/viimeisimmän arvon kaikissa yksikön
entity instansseissa.

InstanssienEnimmäismääräJos
(<relationship>, <number-attr>,
<condition>)
InstanssienEnimmäismääräJos
(<relationship>, <date-attr>, <con-
dition>)
InstanssienEnimmäismääräJos
(<relationship>, <datetime-attr>,
<condition>)
InstanssienEnimmäismääräJos
(<relationship>, <time-attr>, <con-
dition>)

Hakee muuttujan entity-level korkeimman/viimeisimmän arvon kaikissa yksikön
entity instansseissa, joissa tietyllä määritteellä entity-level attribute on tietty
arvo.

Syntaksi Kuvaus

InstanssienVähimmäismäärä
(<relationship>, <number-attr>)
InstanssienVähimmäismäärä
(<relationship>, <date-attr>)
InstanssienVähimmäismäärä
(<relationship>, <datetime-attr>)
InstanssienVähimmäismäärä
(<relationship>, <time-attr>)

Hakee muuttujan entity-level alhaisimman/vanhimman arvon kaikissa yksikön
entity instansseissa.

InstanssienVähimmäismääräJos
(<relationship>, <number-attr>,
<condition>)
InstanssienVähimmäismääräJos
(<relationship>, <date-attr>, <con-
dition>)
InstanssienVähimmäismääräJos
(<relationship>, <datetime-attr>,
<condition>)
InstanssienVähimmäismääräJos
(<relationship>, <time-attr>, <con-
dition>)

Hakee muuttujan entity-level alhaisimman/vanhimman arvon kaikissa yksikön
entity instansseissa, joissa tietyllä määritteellä entity-level attribute on tietty
arvo.

InstanssienSumma(<rela-
tionship>, <number-attr>)

Hakee kaikkienmuuttujan entity-level instanssien summan.

InstanssienSummaJos(<rela-
tionship>, <number-attr>, <con-
dition>)

Hakee kaikkienmuuttujan entity-level sellaisten instanssien summan, joissa
yksiköstä entity on tosi, että tietyn yksikkötason entity-level totuusarvo attribute
on tosi.

InstanssinArvoJos(<relationship>,
<number-attr>, <condition>)
InstanssinArvoJos(<relationship>,
<text-attr>, <condition>)
InstanssinArvoJos(<relationship>,
<date-attr>, <condition>)
InstanssinArvoJos(<relationship>,
<datetime-attr>, <condition>)
InstanssinArvoJos(<relationship>,
<time-attr>, <condition>)

Hakee arvon yksilöivästä instanssista entity, joka tunnistetaan relationship kohteen
entity instansseista ehdolla.

l Jos ehto määrittää yksittäisen kohteen entity instanssin, arvo on sitä entity
instanssia vastaan laskettu arvo.

l Jos useampi kuin yksi kohdeinstanssi täyttää ehdon, palautetaan uncertain.

l Jos yksikään kohdeinstanssi ei täytä ehtoa ja relationship tunnetaan, arvo
on uncertain.

InstanssiYhtäSuuriKuin
(<instance1>, <instance2>)

Määrittää, ovatko yksikön entity kaksi instanssia samoja instansseja.

InstanssiErisuuriKuin
(<instance1>, <instance2>)

Määrittää, ovatko yksikön entity kaksi instanssia eri instansseja.

JohdaInstanssi(<relationship>, Käytetään päätelmänä sen johtamiseen, että yksikön entity instanssi on olemassa ja

Syntaksi Kuvaus

<identity>)
<rel>(<identity>) on olemassa

on suhteen relationship jäsen.

Ajallisen perustelun funktiot(English)

Syntaksi Kuvaus

VälienMääräEro(<start-
date>, <end-date>,
<variable>)
VälienMääräEro(<start-
date>, <end-date>, <con-
dition>)

Laskee muuttujan tunnettujen erillisten arvojenmäärän alkupäivämäärän date (sisällyttävä)
ja loppupäivämäärän date (poissulkeva) välillä.

VälienMääräEroJos(<start-
date>, <end-date>,
<variable>, <condition>)

Laskee muuttujan tunnettujen erillisten arvojenmäärän alkupäivämäärän date (sisällyttävä)
ja loppupäivämäärän date (poissulkeva) välillä vain aikoina, jolloin totuusarvosuodatin on
tosi.

VäliPäivienSumma(<start-
date>, <end-date>, <number-
attr>)

Laskee valuutan tai numeromuuttujan summan alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä. Määritteen attribute oletetaan olevan päivit-
täinenmäärä.

VäliPäivienSummaJos
(<start-date>, <end-date>,
<number-attr>, <condition>)

Laskee valuutan tai numeromuuttujan kaikkien päivittäisten arvojen summan
alkupäivämäärän date (sisällyttävä) ja loppupäivämäärän date (poissulkeva) välillä vain
aikoina, jolloin ehto on tosi.

VäliEnimmäisarvo(<start-
date>, <end-date>, <number-
attr>)
VäliEnimmäisarvo(<start-
date>, <end-date>, <date-
attr>)
VäliEnimmäisarvo(<start-
date>, <end-date>, <datetime-
attr>)
VäliEnimmäisarvo(<start-
date>, <end-date>, <time-
attr>)

Valitsee muuttujan enimmäisarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä.

VäliEnimmäisarvoJos
(<start-date>, <end-date>,
<number-attr>, <condition>)
VäliEnimmäisarvoJos
(<start-date>, <end-date>,
<date-attr>, <condition>)

Valitsee muuttujan enimmäisarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä vain aikoina, jolloin ehto on tosi.

Syntaksi Kuvaus

VäliEnimmäisarvoJos
(<start-date>, <end-date>,
<datetime-attr>, <condition>)
VäliEnimmäisarvoJos
(<start-date>, <end-date>,
<time-attr>, <condition>)

VäliVähimmäisarvo(<start-
date>, <end-date>, <number-
attr>)
VäliVähimmäisarvo(<start-
date>, <end-date>, <date-
attr>)
VäliVähimmäisarvo(<start-
date>, <end-date>, <datetime-
attr>)
VäliVähimmäisarvo(<start-
date>, <end-date>, <time-
attr>)

Valitsee muuttujan vähimmäisarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä.

VäliVähimmäisarvoJos
(<start-date>, <end-date>,
<number-attr>, <condition>)
VäliVähimmäisarvoJos
(<start-date>, <end-date>,
<date-attr>, <condition>)
VäliVähimmäisarvoJos
(<start-date>, <end-date>,
<datetime-attr>, <condition>)
VäliVähimmäisarvoJos
(<start-date>, <end-date>,
<time-attr>, <condition>)

Valitsee muuttujan vähimmäisarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä vain aikoina, jolloin ehto on tosi.

VäliPainotettuKeskiarvo
(<start-date>, <end-date>,
<number-attribute>)

Laskee valuutan tai numeromuuttujan keskiarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä painotettuna aikavälillä, jota kukin arvo koskee.

VäliPainotettuKeskiarvoJos
(<start-date>, <end-date>,
<number-attribute>, <con-
dition>)

Laskee valuutan tai numeromuuttujan keskiarvon alkupäivämäärän date (sisällyttävä) ja lop-
pupäivämäärän date (poissulkeva) välillä vain aikoina, jolloin totuusarvoehto on tosi (pai-
notettuna aikavälillä, jota kukin arvo koskee ja joissa suodatin on tosi).

VäliAina(<start-date>, <end-
date>, <condition>)

Palauttaa arvon tosi vain jos totuusarvoehto on tosi kaikkina aikoina alkupäivämäärän date
(sisällyttävä) ja loppupäivämäärän date (poissulkeva) välillä.

VäliPäiviäVähintään(<start- Palauttaa arvon tosi vain jos totuusarvoehto on tosi vähintäänmääritettynä määränä päiviä

Syntaksi Kuvaus

date>, <end-date>,
<NumDays>, <condition>)

(ei välttämättä peräkkäisinä) alkupäivämäärän date (sisällyttävä) ja loppupäivämäärän
date (poissulkeva) välillä.

VäliPeräkkäisiäPäiviä
(<start-date>, <end-date>,
<NumDays>, <condition>)

Palauttaa arvon tosi vain jos totuusarvoehto on tosi vähintäänmääritettynä määränä per-
äkkäisiä päiviä alkupäivämäärän date (sisällyttävä) ja loppupäivämäärän date (pois-
sulkeva) välillä.

VäliJoskus(<start-date>,
<end-date>, <condition>)

Palauttaa arvon tosi vain jos totuusarvoehto on kertaakaan tosi alkupäivämäärän date (sis-
ällyttävä) ja loppupäivämäärän date (poissulkeva) välillä.

Arvo(<date>, <value>) Palauttaa annetunmääritteen attribute arvonmääritettynä päivämääränä date.

MilloinViimeisin(<date>,
<condition>)

Palauttaa päivämäärän date, jona totuusarvoehto on viimeksi ollut tosi, määritetystä
päivämäärästä (sisällyttävä) date taaksepäin.

MilloinSeuraava(<date>,
<condition>)

Palauttaa päivämäärän date, jona totuusarvoehto on seuraavan kerran tosi, määritetystä
päivämäärästä (sisällyttävä) date eteenpäin.

Viimeisin()
Palauttaa arvon date, joka vastaa myöhäisintä mahdollista arvoa date. Arvon date taataan
olevanmyöhempi kuinmikäänmuu arvo date, jonka date attribute voi ottaa tai lauseke
voi arvioida.

Aikaisin()
Palauttaa arvon date, joka vastaa aikaisinta mahdollista arvoa date. Arvon date taataan
olevan aikaisempi kuinmikäänmuu arvo date, jonka date attribute voi ottaa tai lauseke
voi arvioida.

AikaPäiviäHetkestä(<date>,
<end-date>)

Palauttaa numeromuuttujan, joka muuttuu joka päivä ja on täysien päivienmäärä date jäl-
keen.

AikaViikkojaHetkestä
(<date>, <end-date>)

Palauttaa numeromuuttujan, joka muuttuu viikoittain ja on täysien viikkojenmäärä date jäl-
keen.

AikaKuukausiaHetkestä
(<date>, <end-date>)

Palauttaa numeroarvon, joka muuttuu kuukausittain ja on kokonaisten kuukausienmäärä
date alkaen. Huomautus: Jos annettu date on kuukauden 28. päivän jälkeen ja seuraavassa
kuukaudessa on vähemmän päiviä kuin annetussa kuukaudessa, vuotuisen kuukauden
vaihtopiste luodaan kyseisen kuukauden viimeiselle päivälle. Esimerkiksi jos annettu date on
28., 29., 30. tai 31. tammikuuta 2007, ensimmäinen vaihtopiste on 28. helmikuuta 2007.

AikaVuosiaHetkestä
(<date>, <end-date>)

Palauttaa numeromuuttujan, joka muuttuu vuosittain ja on täysien vuosienmäärä date jäl-
keen.

AikaAinaPäivät(<days>,
<condition>)

Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja jonka arvo on tosi vain jos tot-
uusarvoehto on tosi annettuna määränä edeltäviä päiviä tämänhetkinen päivä poissulkien.

AikaPeräkkäisiäPäiviä
(<minDays>, <days>, <con-
dition>)

Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi vain jos totuusarvoehto
on tosi vähintään vähimmäismääränä peräkkäisiä päiviä minä tahansa aikana määrättynä
määränä edeltäviä päiviä tämänhetkinen päivä poislukien.

AikaJoskusPäivät(<days>, Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi vain jos totuusarvoehto

Syntaksi Kuvaus

<condition>)
on tosi jonakin päivänä annettuna määränä edeltäviä päiviä tämänhetkinen päivä poissulkien.

AikaJälkeen(<date>)
Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja jonka arvo on tosi
päivämäärän date jälkeen ja epätosi kyseisenä päivänä ja aikaisemmin.

AikaEnnen(<date>)
Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi ennen päivämäärää
date ja epätosi kyseisenä päivänä ja sitä myöhemmin.

Aikana(<date>)
Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi päivämääränä date ja
epätosi sitä ennen ja sen jälkeen.

AikanaTaiJälkeen(<date>)
Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi päivämääränä date ja
sen jälkeen ja epätosi sitä ennen.

AikanaTaiEnnen(<date>)
Palauttaa totuusarvon attribute, joka vaihtelee eri aikoina ja on tosi päivämääränä date ja
sitä ennen ja epätosi sitä myöhemmin.

AikaAloituspäivästä(<rela-
tionship>, <date>, <value>)

Palauttaa yksittäisen ajallisenmääritteen attribute (lähteen entity tasolta) suhteesta rela-
tionship ja arvon attribute yksiköille, joiden arvot vaikuttavat alusta date attribute.

AikaLopetuspäivästä(<rela-
tionship>, <date>, <value>)

Palauttaa yksittäisen ajallisenmääritteen attribute (lähteen entity tasolta) suhteesta rela-
tionship ja arvon attribute yksiköille, joiden arvot vaikuttavat päivämäärään date attrib-
ute asti.

AikaAlueesta(<relationship>,
<start-date>, <end-date>,
<Value>)

Palauttaa yksittäisen ajallisenmääritteen attribute (lähteen entity tasolta) suhteesta rela-
tionship ja arvon attribute yksiköille, joiden arvot vaikuttavat alusta date attribute (sis-
ällyttävä) loppuun date attribute (poissulkeva). Arvo on uncertain, jos sen voimassaolo
päättyy ennen seuraavaa alkua date.

AikaOnViikonpäivä
(<startdate>, <enddate>)

Palauttaa arvon tosi päivämäärinä, jotka ovat viikonpäiviä, ja epätosi päivämäärinä, jotka
ovat viikonloppuja alkupäivämäärästä date (sisällyttävä) loppupäivämäärään date (pois-
sulkeva). Palauttaa arvon uncertain alueen date ulkopuolella.

AikaKerranKuukaudessa
(<startdate>, <enddate>,
<dayofmonth>)

Palauttaa arvon tosi, jos päivä on sama kuin kuukaudenpäivä-parametri, ja epätosi kaikkina
muina kuukauden päivinä määritetystä alkupäivämäärästä date (sisällyttävä) lop-
pupäivämäärään date (poissulkeva). Palauttaa arvon uncertain päivämäärän date alueen
ulkopuolella. Jos kuukaudenpäivä ylittää tämän hetkisen kuukauden päivienmäärän, arvo on
tosi kyseisen kuukauden viimeisenä päivänä, joten toiminto palauttaa arvon tosi täsmälleen
yhtenä päivänä kuukaudessa.

Tarkistustapahtuman toiminnot(English)

Syntaksi Kuvaus

Virhe
(<text>)

Järjestelmä lähettää virhetapahtuman avulla sanoman käyttäjälle ja estää käyttäjiä jatkamasta tutkimusta,
kunnes virheen käynnistänyt ehto ei enää ole voimassa.

Syntaksi Kuvaus

Varoitus
(<text>)

Varoitustapahtuman avulla lähetetään sanoma käyttäjälle, mutta käyttäjän sallitaan jatkaa varoituksen käyn-
nistäneestä ehdosta huolimatta.

Hylätyt funktiot(English)

Syntaksi Kuvaus

KutsuRäätälöityFunktio
(<A>,)

Palauttaa koodikirjaston ulkoisen kutsun tuloksen. Koodikirjaston täytyy olla määritysohjelman
käytettävissä, jotta räätälöity toiminnon kutsu onnistuu.

Connecteurs logiques(English)

Syntaxe Description

si
Condition facultative apparaissant à la fin d'une ligne de conclusion qui est suivie d'une
preuve

et Conjonction logique entre deux attributs attributes

ou Disjonction logique entre deux attributs attributes

soit
un de
au moins un de la suite est
vrai
n'importe lequel de la suite
est satisfait
n’importe lequel de la suite
est satisfait

Elément de regroupement utilisé avec des disjonctions, où deux attributs attributes ou
plus doivent être regroupés

les deux
tout
tous
tous dans la suite sont vrais
tous dans la suite sont sat-
isfaits

Elément de regroupement utilisé avec des conjonctions, où deux attributs attributes ou
plus doivent être regroupés

autrement Condition apparaissant à la fin d'une règle de table pour indiquer la clause autrement

est
Condition utilisée dans une entrée de légende entre l'expression abrégée et le texte text
attribut attribute complet

Fonctions logiques(English)

Syntaxe Description

ce n'est pas vrai que <expr>
Opérateur utilisé pour renvoyer la valeur Vrai si l'attribut attribute a une valeur qui
est fausse

<var> est certain
<var> est certaine
il est certain [ou pas] que <expr>

Opérateur utilisé pour renvoyer la valeur Vrai si l'attribut attribute a une valeur qui
n'est pas "incertain" uncertain

<var> est incertain
<var> est incertaine
<var> n'est pas certain
<var> n'est pas certaine
il est incertain [ou pas] que
<expr>
il n'est pas certain que <expr>
incertain
incertaine

Opérateur utilisé pour renvoyer la valeur Vrai si la valeur de l'attribut attribute est
"incertain" uncertain

<var> est connu
<var> est connue
il est connu [ou pas] que <expr>
il est actuellement connu [ou
pas] que <expr>

Opérateur utilisé pour renvoyer la valeur Vrai si l'attribut attribute a une valeur

<var> est inconnu
<var> est inconnue
il est inconnu [ou pas] que
<expr>
inconnu
inconnue

Opérateur utilisé pour renvoyer la valeur Vrai si l'attribut attribute n'a pas de valeur

Constantes logiques(English)

Syntaxe Description

vrai Valeur Vrai constante utilisé pour les règles de table.

faux Valeur Faux constante utilisée pour les règles de table.

incertain Valeur "incertain" uncertain constante utilisée pour les règles de table.

Opérateurs de comparaison(English)

Syntaxe Description

<lhs><<rhs>
<lhs> est inférieur à <rhs>

Inférieur à
Note : Il n'existe pas de langage naturel quand cet opérateur est utilisé avec des valeurs

Syntaxe Description

<lhs> est inférieure à <rhs>
<lhs> est antérieur à <rhs>
<lhs> est antérieure à <rhs>

numériques et de devise.

<lhs> > <rhs>
<lhs> est supérieur à <rhs>
<lhs> est supérieure à <rhs>
<lhs> est postérieur à <rhs>
<lhs> est postérieure à <rhs>

Supérieur à
Note : Il n'existe pas de langage naturel quand cet opérateur est utilisé avec des valeurs
numériques et de devise.

<lhs><=<rhs>
<lhs> est inférieur ou égale à
<rhs>
<lhs> est inférieure ou égale
à <rhs>

Inférieur ou égal à

<lhs> >= <rhs>
<lhs> est supérieur ou égale
à <rhs>
<lhs> est supérieure ou égale
à <rhs>

Supérieur ou égal à

<lhs>=<rhs>
<lhs> est égale à <rhs>
<lhs> égale <rhs>

Egale

<lhs> n'est pas égale à <rhs>
<lhs> n'égale pas <rhs>
<lhs> <> <rhs>
<lhs> != <rhs>

Différent de

Fonctions numériques(English)

Syntaxe Description

Nombre(<numText>) Convertit la chaîne spécifiée en une valeur numérique

<x> + <y> Addition

<x> - <y> Soustraction

<lhs> * <rhs> Multiplication

<lhs> / <rhs> Division

<lhs> \ <rhs> Division entière

<lhs> modulo <rhs> Reste après une division entière

Syntaxe Description

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
le plus grand de <val1> et de <val2>
la plus grande de <val1> et de <val2>
le dernier de <val1> et <val2>
la dernière [date] de <val1> et <val2>

Renvoie la valeur supérieure entre deux valeurs

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
le plus petit de <val1> et de <val2>
la plus petite de <val1> et de <val2>
le premier de <val1> et de <val2>
la première [date] de <val1> et de <val2>

Renvoie la valeur inférieure entre deux valeurs

Xy(<x>, <y>)
<val> élevé à la puissance <power>

x à la puissance y

Ex(<x>)
e à la puissance <log-val>

Constante e à la puissance x

Abs(<x>)
la valeur absolue de <val>
|<val>|

Valeur absolue de x

Ln(<x>)
le logarithme naturel de <log-val>

Logarithme népérien de x

Log(<x>)
le logarithme à base 10 de <log-val>

Logarithme en base 10 de x

RacineCarrée(<x>)
la racine carrée de <val>

Racine carrée de x

Arrondi(<x>, <n>)
<val> arrondi à <num_places> décimale
<val> arrondi à <num_places> décimales

Arrondit x à n positions décimales

Troncation(<x>, <n>)
<val> tronqué à <num_places> décimale
<val> tronqué à <num_places> décimales

x tronqué à n positions décimales

Sin(<x>) Sinus de x

Cos(<x>) Cosinus de x

Tan(<x>) Tangente de x

Asin(<x>) Arcsinus de x

Acos(<x>) Arccosinus de x

Syntaxe Description

Atan(<x>) Alrctangente de x

Fonctions de date(English)

Syntaxe Description

DateActuelle()
la date actuelle

Renvoie la date date actuelle au début de la session.

Date(<text>) Convertit la chaîne spécifiée en une valeur de date date

DéfinirDate(<year>,
<month>, <day>)

Renvoie une date date constituée de l'année, dumois et du jour spécifiés.

ExtraireJour
(<date/datetime>)

Renvoie le composant jour d'un attribut date/date-heure date/datetime attribute.

ExtraireMois
(<date/datetime>)

Renvoie le composant mois d'un attribut date/date-heure date/datetime attribute.

ExtraireAnnée(<date/d-
atetime>)

Renvoie le composant année d'un attribut date/date-heure date/datetime attribute.

JourSuivantSemaine(<date/d-
atetime>, <day>)
le lundi [suivant][au
moment où] ou après <from-
date>
le lundi [précédant][au
moment où] ou avant
<from-date>
le mardi [suivant][au
moment où] ou après <from-
date>
le mardi [précédant][au
moment où] ou avant
<from-date>
le mercredi [suivant][au
moment où] ou après <from-
date>
le mercredi [précédant][au
moment où] ou avant
<from-date>
le jeudi [suivant][au
moment où] ou après <from-

Renvoie la date date du jour de semaine suivant à une date date ou avant/après celle-ci
(selon la syntaxe utilisée).

Syntaxe Description

date>
le jeudi [précédant][au
moment où] ou avant
<from-date>
le vendredi [suivant][au
moment où] ou après <from-
date>
le vendredi [précédant][au
moment où] ou avant
<from-date>
le samedi [suivant][au
moment où] ou après <from-
date>
le samedi [précédant][au
moment où] ou avant
<from-date>
le dimanche [suivant][au
moment où] ou après <from-
date>
le dimanche [précédant][au
moment où] ou avant
<from-date>

JourSuivant(<date>, <day>,
<month>)

Renvoie l'instance suivante du jour et dumois donnés après une date date.

AjouterJours(<date/d-
atetime>, <num_days>)
la date <num_days> jour
après <date>
la date <num_days> jours
après <date>
la date <num_days> jour
avant <date>
la date <num_days> jours
avant <date>
le temps <num_days> jour
après <date>
le temps <num_days> jours
après <date>
le temps <num_days> jour
avant <date>
le temps <num_days> jours
avant <date>

Ajoute un nombre de jours à une valeur de date date ou soustrait un nombre de jours de
cette valeur. En cas d'utilisation d'une forme syntaxique concise, le nombre doit être un
nombre entier positif pour ajouter des jours à la valeur de date date saisie, ou un nombre
entier négatif pour soustraire des jours de la valeur de date date saisie.

Syntaxe Description

AjouterSemaines(<date/d-
atetime>, <num_weeks>)
la date <num_weeks>
semaine après <date>
la date <num_weeks>
semaines après <date>
la date <num_weeks>
semaine avant <date>
la date <num_weeks>
semaines avant <date>
le temps <num_weeks>
semaine après <date>
le temps <num_weeks>
semaines après <date>
le temps <num_weeks>
semaine avant <date>
le temps <num_weeks>
semaines avant <date>

Ajoute un nombre de semaines à une date date. Lors de l'utilisation d'une forme syntaxique
concise, le nombre doit être un nombre entier positif pour ajouter des semaines à la date
date saisie.

AjouterMois(<date/datetime>,
<num_months>)
la date <num_months> mois
après <date>
la date <num_months> mois
avant <date>
le temps <num_months> mois
après <date>
le temps <num_months> mois
avant <date>

Ajoute un nombre de mois à une date date. Lors de l'utilisation d'une forme syntaxique con-
cise, le nombre doit être un nombre entier positif pour ajouter des mois à la date date saisie.

AjouterAnnées(<date/d-
atetime>, <num_years>)
la date <num_years> an
après <date>
la date <num_years> ans
après <date>
la date <num_years> an
avant <date>
la date <num_years> ans
avant <date>
le temps <num_years> an
après <date>
le temps <num_years> ans
après <date>
le temps <num_years> an

Ajoute un nombre d'années à une date date. Lors de l'utilisation d'une forme syntaxique con-
cise, le nombre doit être un nombre entier positif pour ajouter des années à la date date
saisie.

Syntaxe Description

avant <date>
le temps <num_years> ans
avant <date>

NombreJoursSemaine
(<date1>, <date2>)
le nombre de jours de la
semaine [entiers] de
<date1> à <date2>
le nombre de jours de la
semaine [entiers] entre
<date1> et <date2>

Compte le nombre de jours de semaine entre date1 et date2, autrement dit le nombre de
jours compris entre le lundi et le vendredi.
Note : La première date date est incluse et la dernière date date est exclue.

DébutAnnée
(<date/datetime>)
le premier jour de l'année
dans lequel <from-date>
arrive
le premier jour de l'année
dans laquelle <from-date>
arrive

Renvoie la première date date de l'année dans laquelle tombe la date date.

FinAnnée(<date/datetime>)
le dernier jour de l'année
dans lequel <from-date>
arrive
le dernier jour de l'année
dans laquelle <from-date>
arrive

Renvoie la dernière date date de l'année dans laquelle tombe la date date.

DifférenceJours(<date/d-
atetime1>, <date/datetime2>)
le nombre de jours [entiers]
de <date1> à <date2>
le nombre de jours [entiers]
entre <date1> et <date2>

Renvoie le nombre de jours complets entre date/datetime1 et date/datetime2.
L'ordre des deux dates n'affecte pas le résultat.

DifférenceJoursInclus
(<date/datetime1>, <date/d-
atetime2>)
le nombre de jours [entiers]
(inclusif) de <date1> à
<date2>
le nombre de jours [entiers]
(inclusif) entre <date1> et
<date2>

Renvoie le nombre de jours complets entre date/datetime1 et date/datetime2
(inclus). Ce calcul inclut les deux extrémités. Lorsque les dates sont identiques, le résultat est
1. L'ordre des deux dates n'affecte pas le résultat.

Syntaxe Description

DifférenceJoursExclus
(<date/datetime1>, <date/d-
atetime2>)
le nombre de jours [entiers]
(exclusif) de <date1> à
<date2>
le nombre de jours [entiers]
(exclusif) entre <date1> et
<date2>

Renvoie le nombre de jours complets entre date/datetime1 et date/datetime2
(exclus). Ce calcul exclut les deux extrémités. Lorsque les dates sont identiques, le résultat
est 0. L'ordre des deux dates n'affecte pas le résultat.

DifférenceSemaines(<date/d-
atetime1>, <date/datetime2>)
le nombre de semaines
[entières] de <date1> à
<date2>
le nombre de semaines
[entières] entre <date1> et
<date2>

Renvoie le nombre de semaines complètes écoulées entre date/date-heure1 date/d-
atetime1 et date/date-heure2 date/datetime2. L'ordre des deux dates n'affecte pas le
résultat.

DifférenceSemainesIncluses
(<date/datetime1>, <date/d-
atetime2>)
le nombre de semaines
[entières] (inclusif) de
<date1> à <date2>
le nombre de semaines
[entières] (inclusif) entre
<date1> et <date2>

Renvoie le nombre de semaines complètes écoulées entre date/date-heure1 date/d-
atetime1 et date/date-heure2 date/datetime2 incluses. L'ordre des deux dates
n'affecte pas le résultat.

DifférenceSemainesExclues
(<date/datetime1>, <date/d-
atetime2>)
le nombre de semaines
[entières] (exclusif) de
<date1> à <date2>
le nombre de semaines
[entières] (exclusif) entre
<date1> et <date2>

Renvoie le nombre de semaines complètes écoulées entre date/date-heure1 date/d-
atetime1 et date/date-heure2 date/datetime2 exclues. L'ordre des deux dates n'affecte
pas le résultat.

DifférenceMois(<date/d-
atetime1>, <date/datetime2>)
le nombre de mois [entiers]
de <date1> à <date2>
le nombre de mois [entiers]
entre <date1> et <date2>

Renvoie le nombre de mois complets écoulés entre date/date-heure1 date/datetime1 et
date/date-heure2 date/datetime2. L'ordre des deux dates n'affecte pas le résultat.

Syntaxe Description

DifférenceMoisInclus
(<date/datetime1>, <date/d-
atetime2>)
le nombre de mois [entiers]
(inclusif) de <date1> à
<date2>
le nombre de mois [entiers]
(inclusif) entre <date1> et
<date2>

Renvoie le nombre de mois complets écoulés entre date/date-heure1 date/datetime1 et
date/date-heure2 date/datetime2 incluses. L'ordre des deux dates n'affecte pas le
résultat.

DifférenceMoisExclus
(<date/datetime1>, <date/d-
atetime2>)
le nombre de mois [entiers]
(exclusif) de <date1> à
<date2>
le nombre de mois [entiers]
(exclusif) entre <date1> et
<date2>

Renvoie le nombre de mois complets écoulés entre date/date-heure1 date/datetime1 et
date/date-heure2 date/datetime2 exclues. L'ordre des deux dates n'affecte pas le
résultat.

DifférenceAnnées(<date/d-
atetime1>, <date/datetime2>)
le nombre d'années
[entières] de <date1> à
<date2>
le nombre d'années
[entières] entre <date1> et
<date2>

Renvoie le nombre d'années entre date/date-heure1 date/datetime1 et date/date-heure2
date/datetime2. L'ordre des deux dates n'affecte pas le résultat.

DifférenceAnnéesIncluses
(<date/datetime1>, <date/d-
atetime2>)
le nombre d'années
[entières] (inclusif) de
<date1> à <date2>
le nombre d'années
[entières] (inclusif) entre
<date1> et <date2>

Renvoie le nombre de jours entre date/date-heure1 date/datetime1 et date/date-heure2
date/datetime2 (incluses). L'ordre des deux dates n'affecte pas le résultat.

DifférenceAnnéesExclues
(<date/datetime1>, <date/d-
atetime2>)
le nombre d'années
[entières] (exclusif) de
<date1> à <date2>

Renvoie le nombre de jours entre date/date-heure1 date/datetime1 et date/date-heure2
date/datetime2 (exclues). L'ordre des deux dates n'affecte pas le résultat.

Syntaxe Description

le nombre d'années
[entières] (exclusif) entre
<date1> et <date2>

Fonctions d'heure du jour(English)

Syntaxe Description

HeureJour(<text>) Convertit la chaîne donnée en une heure du jour

ExtraireSeconde(<time/d-
atetime>)

Renvoie le composant seconde d'un attribut heure du jour/date-heure timeof-
day/datetime attribute.

ExtraireMinute(<time/d-
atetime>)

Renvoie le composant minute d'un attribut heure du jour/date-heure timeof-
day/datetime attribute.

ExtraireHeure(<time/d-
atetime>)

Renvoie le composant heure d'un attribut heure du jour/date-heure timeofday/datetime
attribute.

Fonctions de date et heure(English)

Syntaxe Description

DateHeureActuelles() Renvoie les date date et heure actuelles au début de la session.

DateEtHeure(<text>) Convertit la chaîne spécifiée en une valeur de date-heure datetime

DateHeureConcaténées
(<date>, <time>)

Définit la date date et heure en joignant la date date et l'heure.

DifférenceSecondes(<dat-
etime1>, <datetime2>)
DifférenceSecondes
(<timeOfDay1>,
<timeOfDay2>)
le nombre de secondes de
<date1> à <date2>
le nombre de secondes
entre <date1> et <date2>

Renvoie le nombre de secondes entre datetime1 et datetime2.

DifférenceSecondesIncluses
(<datetime1>, <datetime2>)
DifférenceSecondesIncluses
(<timeOfDay1>,
<timeOfDay2>)
le nombre de secondes

Renvoie le nombre de secondes entre les dates et heures datetime1 et datetime2
(incluses).

Syntaxe Description

(inclusif) de <date1> à
<date2>
le nombre de secondes
(inclusif) entre <date1> et
<date2>

DifférenceSecondesExclues
(<datetime1>, <datetime2>)
DifférenceSecondesExclues
(<timeOfDay1>,
<timeOfDay2>)
le nombre de secondes
(exclusif) de <date1> à
<date2>
le nombre de secondes
(exclusif) entre <date1> et
<date2>

Renvoie le nombre de secondes entre les dates et heures datetime1 et datetime2
(exclues).

DifférenceMinutes(<dat-
etime1>, <datetime2>)
DifférenceMinutes
(<timeOfDay1>,
<timeOfDay2>)
le nombre de minutes de
<date1> à <date2>
le nombre de minutes entre
<date1> et <date2>

Renvoie le nombre de minutes entre datetime1 et datetime2.

DifférenceMinutesIncluses
(<datetime1>, <datetime2>)
DifférenceMinutesIncluses
(<timeOfDay1>,
<timeOfDay2>)
le nombre de minutes
(inclusif) de <date1> à
<date2>
le nombre de minutes
(inclusif) entre <date1> et
<date2>

Renvoie le nombre de minutes entre les dates et heures datetime1 et datetime2
(incluses).

DifférenceMinutesExclues
(<datetime1>, <datetime2>)
DifférenceMinutesExclues
(<timeOfDay1>,
<timeOfDay2>)

Renvoie le nombre de minutes entre les dates et heures datetime1 et datetime2
(exclues).

Syntaxe Description

le nombre de minutes
(exclusif) de <date1> à
<date2>
le nombre de minutes
(exclusif) entre <date1> et
<date2>

DifférenceHeures(<dat-
etime1>, <datetime2>)
DifférenceHeures
(<timeOfDay1>,
<timeOfDay2>)
le nombre d'heures de
<date1> à <date2>
le nombre d'heures entre
<date1> et <date2>

Renvoie le nombre d'heures entre datetime1 et datetime2.

DifférenceHeuresIncluses
(<datetime1>, <datetime2>)
DifférenceHeuresIncluses
(<timeOfDay1>,
<timeOfDay2>)
le nombre d'heures
(inclusif) de <date1> à
<date2>
le nombre d'heures
(inclusif) entre <date1> et
<date2>

Renvoie le nombre d'heures entre les dates et heures datetime1 et datetime2 (incluses).

DifférenceHeuresExclues
(<datetime1>, <datetime2>)
DifférenceHeuresExclues
(<timeOfDay1>,
<timeOfDay2>)
le nombre d'heures
(exclusif) de <date1> à
<date2>
le nombre d'heures
(exclusif) entre <date1> et
<date2>

Renvoie le nombre d'heures entre les dates et heures datetime1 et datetime2 (exclues).

ExtraireDate(<datetime>) Extrait la date date à partir d'un attribut date-heure datetime attribute.

ExtraireHeureJour(<dat-
etime>)

Renvoie l'heure du jour d'un attribut date-heure datetime attribute. Peut être utilisé pour
définir la valeur d'un attribut heure du jour timeofday attribute avec l'heure à laquelle la
règle est exécutée en extrayant l'heure des date date et heure actuelles.

Syntaxe Description

AjouterHeures(<datetime>,
<num_hours>)
AjouterHeures(<timeOfDay>,
<num_hours>)
le temps <num_hours> heure
après <date>
le temps <num_hours>
heures après <date>
le temps <num_hours> heure
avant <date>
le temps <num_hours>
heures avant <date>
le temps de jour <num_
hours> heure aprés <time-of-
day>
le temps de jour <num_
hours> heures aprés <time-
of-day>
le temps de jour <num_
hours> heure avant <time-of-
day>
le temps de jour <num_
hours> heures avant <time-
of-day>

Ajoute un nombre d'heures à une date date.

AjouterMinutes(<datetime>,
<num_minutes>)
AjouterMinutes
(<timeOfDay>, <num_
minutes>)
le temps <num_minutes>
minute après <date>
le temps <num_minutes>
minutes après <date>
le temps <num_minutes>
minute avant <date>
le temps <num_minutes>
minutes avant <date>
le temps de jour <num_
minutes> minute aprés
<time-of-day>
le temps de jour <num_
minutes> minutes aprés
<time-of-day>

Ajoute un nombre de minutes à une date date.

Syntaxe Description

le temps de jour <num_
minutes> minute avant
<time-of-day>
le temps de jour <num_
minutes> minutes avant
<time-of-day>

AjouterSecondes
(<datetime>, <num_seconds>)
AjouterSecondes
(<timeOfDay>, <num_
seconds>)
le temps <num_seconds>
seconde après <date>
le temps <num_seconds>
secondes après <date>
le temps <num_seconds>
seconde avant <date>
le temps <num_seconds>
secondes avant <date>
le temps de jour <num_
seconds> seconde aprés
<time-of-day>
le temps de jour <num_
seconds> secondes aprés
<time-of-day>
le temps de jour <num_
seconds> seconde avant
<time-of-day>
le temps de jour <num_
seconds> secondes avant
<time-of-day>

Ajoute un nombre de secondes à une date date.

Fonctions de texte(English)

Syntaxe Description

<text1> & <text2>

Combine la valeur de texte text1 avec la valeur de texte text2, et ainsi de suite, afin de former une
valeur de texte text unique.
Note : Vous pouvez utiliser des variables de tout type. Les valeurs sont formatées avec le formateur
installé dans la session de règles.

la concatenation
de <text1> &
<text2>

Combine la valeur de texte text1 avec la valeur de texte text2, et ainsi de suite, afin de former une
valeur de texte text unique.
Note : Vous pouvez utiliser des variables de tout type. Les valeurs sont formatées avec le formateur

Syntaxe Description

installé dans la session de règles.

Contient(<text>,
<substring>)
<text> contient
<substring>

Renvoie une valeur booléenne indiquant si la valeur de texte text donnée contient la sous-chaîne de
texte text donnée. La comparaison text ne respecte pas la casse.

SeTerminePar
(<text>,
<substring>)
<text> se termine
avec <substring>

Renvoie une valeur booléenne indiquant si la valeur de texte text donnée se termine par la sous-chaîne
de texte text donnée. La comparaison text ne respecte pas la casse.

EstNombre(<text>)

<text> est un
nombre

Renvoie une valeur booléenne indiquant si la valeur de texte text donnée représente un nombre valide.

Longueur(<text>) Renvoie la longueur en caractères de la valeur de texte text donnée.

CommencePar
(<text>,
<substring>)
<text> commence
par <substring>

Renvoie une valeur booléenne indiquant si la valeur de texte text donnée commence par la sous-chaîne
de texte text donnée. La comparaison text ne respecte pas la casse.

Sous-chaîne
(<text>, <offset>,
<length>)

Renvoie la sous-chaîne de texte text commençant à l'emplacement donné, c'est-à-dire la longueur spé-
cifiée en caractères. Si la fin de la chaîne est atteinte, un nombre inférieur de caractères est renvoyé.

Texte(<number>)
Texte(<date>)
Texte(<datetime>)
Texte
(<timeOfDay>)

Convertit l'attribut date attribute ou le nombre spécifié ou en une valeur de texte text.

Fonctions d'entité et de relation(English)

Syntaxe Description

Pour(<relationship>,
<Exp>)
dans le cas de <ent>,
<attr>
<val>, dans le cas où
c'est <ent>

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à 1", "n à 1" ou "n à n", lorsqu'il n'y a qu'une condition.

Syntaxe Description

ChampPour(<rela-
tionship>, <alias>)
ChampPour(<rela-
tionship>)
dans le cas de <ent>

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à 1", "n à 1" ou "n à n", lorsqu'il y a une ou plusieurs conditions.

PourTous(<relationship>,
<Exp>)
chacun de <ent-attr>
chacune de <ent-attr>
pour chacun de <ent>,
<attr>
pour chacune de <ent>,
<attr>
pour tous <ent>, <attr>
pour toutes <ent>, <attr>

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à n" ou "n à n", lorsque vous devez déterminer si tous les membres du groupe
d'entités entity cible doivent satisfaire la règle.
Cette forme est utilisée lorsque la règle ne contient qu'une seule condition.

ChampPourTous(<rela-
tionship>)
ChampPourTous(<rela-
tionship>, <alias>)
pour tous <ent>
pour toutes <ent>
[pour] chacun de <ent>
[pour] chacune de <ent>
[pour] tous <ent>
(<alias>)
[pour] toutes <ent>
(<alias>)
[pour] chacun de <ent>
(<alias>)
[pour] chacune de <ent>
(<alias>)

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à n" ou "n à n", lorsque vous devez déterminer si tous les membres du groupe
d'entités entity cible doivent satisfaire la règle.
Cette forme est utilisée lorsque la règle contient une ou plusieurs conditions.

Existe(<relationship>,
<Exp>)
au moins un de <ent-
attr>
au moins une de <ent-
attr>
pour au moins un de
<ent>, <attr>
pour au moins une de
<ent>, <attr>

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à n" ou "n à n", lorsque vous devez déterminer si certains membres du groupe
d'entités entity cible doivent satisfaire la règle.
Cette forme est utilisée lorsque la règle ne contient qu'une seule condition.

Syntaxe Description

ChampExiste(<rela-
tionship>)
ChampExiste(<rela-
tionship>, <alias>)
[pour] au moins un de
<ent>
[pour] au moins une de
<ent>
[pour] au moins un de
<ent> (<alias>)
[pour] au moins une de
<ent> (<alias>)

Utilisé pour une référence d'une entité entity à une autre entité entity dans une relation rela-
tionship "1 à n" ou "n à n", lorsque vous devez déterminer si certains membres du groupe
d'entités entity cible doivent satisfaire la règle.
Cette forme est utilisée lorsque la règle contient une ou plusieurs conditions.

EstMembreDe(<target>,
<relationship>)
EstMembreDe(<target>,
<alias>, <relationship>)
<ent-target> es un miem-
bro de <ent>
<ent-target> (<alias>) es
un miembro de <ent>
IsMemberOf(<ent-
target>, <ent>)
IsMemberOf(<ent-
target>, <alias>, <ent>)

Utilisé en tant que conclusion pour inférer qu'une instance d'entité entity est unmembre de la
relation relationship. Utilisé comme condition pour tester si une instance d'entité entity est la
cible d'une relation relationship dont une deuxième instance d'entité entity est la source.

PasMembreDe(<target>,
<relationship>)

Utilisé comme condition pour tester si une instance d'entité entity n'est pas la cible d'une rela-
tion relationship dont une deuxième instance d'entité entity est la source.

InstancesNombre(<rela-
tionship>)
le nombre de <ent>

Compte le nombre d'instances existant pour une entité entity.

InstancesNombreSi(<rela-
tionship>, <Exp>)
le nombre de <ent> dans
le cas où <condition>

Compte le nombre d'instances d'une entité entity pour laquelle un attribut de niveau entité
entity-level attribute donné a une valeur particulière.

InstancesMaximum
(<relationship>, <number-
attr>)
InstancesMaximum
(<relationship>, <date-
attr>)

Obtient la valeur la plus élevée/la plus récente d'une variable de niveau entité entity-level
pour toutes les instances de l'entité entity.

Syntaxe Description

InstancesMaximum
(<relationship>, <datetime-
attr>)
InstancesMaximum
(<relationship>, <time-
attr>)
le plus grand de <attr>
pour tous <ent>
la plus grande de <attr>
pour tous <ent>
le plus grand de <attr>
pour toutes <ent>
la plus grande de <attr>
pour toutes <ent>
le dernier de <attr> pour
tous <ent>
la dernière [date] de
<attr> pour tous <ent>
le dernier de <attr> pour
toutes <ent>
la dernière [date] de
<attr> pour toutes <ent>
<attr>[qui] est le dernier
pour tous <ent>
<attr>[qui] est la
dernière [date] pour
tous <ent>
<attr>[qui] est le dernier
pour toutes <ent>
<attr>[qui] est la
dernière [date] pour
toutes <ent>
<attr>[qui] est le plus
grand pour tous <ent>
<attr>[qui] est la plus
grande pour tous <ent>
<attr>[qui] est le plus
grand pour toutes <ent>
<attr>[qui] est la plus
grande pour toutes
<ent>

Syntaxe Description

InstancesMaximumSi
(<relationship>, <number-
attr>, <condition>)
InstancesMaximumSi
(<relationship>, <date-
attr>, <condition>)
InstancesMaximumSi
(<relationship>, <datetime-
attr>, <condition>)
InstancesMaximumSi
(<relationship>, <time-
attr>, <condition>)
le plus grand de <attr>
pour tous <ent> dans le
cas où <ent-test>
la plus grande de <attr>
pour tous <ent> dans le
cas où <ent-test>
le plus grand de <attr>
pour toutes <ent> dans
le cas où <ent-test>
la plus grande de <attr>
pour toutes <ent> dans
le cas où <ent-test>
le dernier de <attr> pour
tous <ent> dans le cas
où <ent-test>
la dernière [date] de
<attr> pour tous <ent>
dans le cas où <ent-test>
le dernier de <attr> pour
toutes <ent> dans le cas
où <ent-test>
la dernière [date] de
<attr> pour toutes <ent>
dans le cas où <ent-test>
<attr>[qui] est le dernier
pour tous <ent> dans le
cas où <ent-test>
<attr>[qui] est la
dernière [date] pour
tous <ent> dans le cas
où <ent-test>

Obtient la valeur la plus élevée/la plus récente d'une variable de niveau entité entity-level
pour toutes les instances de l'entité entity pour laquelle un attribut de niveau entité entity-
level attribute donné a une valeur particulière.

Syntaxe Description

<attr>[qui] est le dernier
pour toutes <ent> dans
le cas où <ent-test>
<attr>[qui] est la
dernière [date] pour
toutes <ent> dans le cas
où <ent-test>
<attr>[qui] est le plus
grand pour tous <ent>
dans le cas où <ent-test>
<attr>[qui] est la plus
grande pour tous <ent>
dans le cas où <ent-test>
<attr>[qui] est le plus
grand pour toutes <ent>
dans le cas où <ent-test>
<attr>[qui] est la plus
grande pour toutes
<ent> dans le cas où
<ent-test>

InstancesMinimum(<rela-
tionship>, <number-attr>)
InstancesMinimum(<rela-
tionship>, <date-attr>)
InstancesMinimum(<rela-
tionship>, <datetime-attr>)
InstancesMinimum(<rela-
tionship>, <time-attr>)
le plus petit de <attr>
pour tous <ent>
la plus petite de <attr>
pour tous <ent>
le plus petit de <attr>
pour toutes <ent>
la plus petite de <attr>
pour toutes <ent>
le premier de <attr> pour
tous <ent>
la première [date] de
<attr> pour tous <ent>
le premier de <attr> pour
toutes <ent>

Obtient la valeur la plus basse/la moins récente d'une variable de niveau entité entity-level
pour toutes les instances de l'entité entity.

Syntaxe Description

la première [date] de
<attr> pour toutes <ent>
<attr>[qui] est le premier
pour tous <ent>
<attr>[qui] est la
première [date] pour
tous <ent>
<attr>[qui] est le premier
pour toutes <ent>
<attr>[qui] est la
première [date] pour
toutes <ent>
<attr>[qui] est le plus
petit pour tous <ent>
<attr>[qui] est la plus
petite pour tous <ent>
<attr>[qui] est le plus
petit pour toutes <ent>
<attr>[qui] est la plus
petite pour toutes <ent>

InstancesMinimumSi
(<relationship>, <number-
attr>, <condition>)
InstancesMinimumSi
(<relationship>, <date-
attr>, <condition>)
InstancesMinimumSi
(<relationship>, <datetime-
attr>, <condition>)
InstancesMinimumSi
(<relationship>, <time-
attr>, <condition>)
le plus petit de <attr>
pour tous <ent> dans le
cas où <ent-test>
la plus petite de <attr>
pour tous <ent> dans le
cas où <ent-test>
le plus petit de <attr>
pour toutes <ent> dans
le cas où <ent-test>

Obtient la valeur la plus basse/la moins récente d'une variable de niveau entité entity-level
pour toutes les instances de l'entité entity pour laquelle un attribut de niveau entité entity-
level attribute donné a une valeur particulière.

Syntaxe Description

la plus petite de <attr>
pour toutes <ent> dans
le cas où <ent-test>
le premier de <attr> pour
tous <ent> dans le cas
où <ent-test>
la première [date] de
<attr> pour tous <ent>
dans le cas où <ent-test>
le premier de <attr> pour
toutes <ent> dans le cas
où <ent-test>
la première [date] de
<attr> pour toutes <ent>
dans le cas où <ent-test>
<attr>[qui] est le premier
pour tous <ent> dans le
cas où <ent-test>
<attr>[qui] est la
première [date] pour
tous <ent> dans le cas
où <ent-test>
<attr>[qui] est le premier
pour toutes <ent> dans
le cas où <ent-test>
<attr>[qui] est la
première [date] pour
toutes <ent> dans le cas
où <ent-test>
<attr>[qui] est le plus
petit pour tous <ent>
dans le cas où <ent-test>
<attr>[qui] est la plus
petite pour tous <ent>
dans le cas où <ent-test>
<attr>[qui] est le plus
petit pour toutes <ent>
dans le cas où <ent-test>
<attr>[qui] est la plus
petite pour toutes <ent>
dans le cas où <ent-test>

InstancesSomme(<rela-
tionship>, <number-attr>) Obtient la somme de toutes les instances d'une variable de niveau entité entity-level.

Syntaxe Description

le total pour tous <ent>,
<attr>
le total pour toutes
<ent>, <attr>
la quantité totale pour
tous <ent>, <attr>
la quantité totale pour
toutes <ent>, <attr>
<attr> totalisé pour tous
<ent>
<attr> totalisé pour
toutes <ent>

InstancesSommeSi(<rela-
tionship>, <number-attr>,
<condition>)
le total pour tous <ent>,
<attr> dans le cas où
<condition>
le total pour toutes
<ent>, <attr> dans le cas
où <condition>
la quantité totale pour
tous <ent>, <attr> dans
le cas où <condition>
la quantité totale pour
toutes <ent>, <attr>
dans le cas où <con-
dition>
<attr> totalisé pour tous
<ent> dans le cas où
<condition>
<attr> totalisé pour
toutes <ent> dans le cas
où <condition>

Obtient la somme de toutes les instances d'une variable de niveau entité entity-level pour
laquelle il est vrai pour l'entité entity qu'un attribut attribute booléen de niveau entité entity-
level est vrai.

InstanceValeurSi(<rela-
tionship>, <number-attr>,
<condition>)
InstanceValeurSi(<rela-
tionship>, <text-attr>, <con-
dition>)
InstanceValeurSi(<rela-
tionship>, <date-attr>, <con-

Obtient une valeur d'une instance entity unique, identifiée à partir des instances entity cible
d'une relationship par une condition.

l Si la condition identifie une instance de l'instance entity cible unique, la valeur est la
valeur calculée par rapport à cette instance entity.

l Si plusieurs instances cible satisfont la condition, uncertain est renvoyé.

l Si aucune instance cible ne satisfait la condition et que la relationship est connue, la
valeur estuncertain.

Syntaxe Description

dition>)
InstanceValeurSi(<rela-
tionship>, <datetime-attr>,
<condition>)
InstanceValeurSi(<rela-
tionship>, <time-attr>, <con-
dition>)

InstanceEgale
(<instance1>, <instance2>)

Détermine si deux instances d'une entité entity sont la même instance.

InstanceDifférente
(<instance1>, <instance2>)

Détermine si deux instances d'une entité entity ne sont pas la même instance.

InférerInstance(<rela-
tionship>, <identity>)
<rel>(<identity>) (exist-
ent | existe)

Utilisé comme conclusion pour inférer qu'une instance de entity existe et est membre d'une rela-
tion relationship.

Fonctions de raisonnement temporel(English)

Syntaxe Description

IntervalleNombreDistinct(<start-
date>, <end-date>, <variable>)
IntervalleNombreDistinct(<start-
date>, <end-date>, <condition>)

Compte le nombre de valeurs distinctes connues pour la variable, dans l'intervalle com-
pris entre la date date de début (incluse) et la date date de fin (exclue).

IntervalleNombreDistinctSi
(<start-date>, <end-date>, <vari-
able>, <condition>)

Compte le nombre de valeurs distinctes connues pour la variable, dans l'intervalle com-
pris entre la date date de début (incluse) et la date date de fin (exclue), uniquement lor-
squ'un filtre booléen est vrai.

IntervalleSommeQuotidienne
(<start-date>, <end-date>, <num-
ber-attr>)

Calcule la somme d'une variable devise ou numérique, dans l'intervalle compris entre la
date date de début (incluse) et la date date de fin (exclue). L'attribut attribute est
supposé être une quantité par jour.

IntervalleSommeQuotidienneSsi
(<start-date>, <end-date>, <num-
ber-attr>, <condition>)

Calcule la somme de toutes les valeurs journalières pour une variable devise ou
numérique, dans l'intervalle compris entre la date date de début (incluse) et la date
date de fin (exclue), uniquement lorsqu'une condition est vraie.

IntervalleMaximum(<start-date>,
<end-date>, <number-attr>)
IntervalleMaximum(<start-date>,
<end-date>, <date-attr>)
IntervalleMaximum(<start-date>,
<end-date>, <datetime-attr>)

Sélectionne la valeur maximum d'une variable dans l'intervalle compris entre une date
date de début (incluse) et une date date de fin (exclue).

Syntaxe Description

IntervalleMaximum(<start-date>,
<end-date>, <time-attr>)

IntervalleMaximumSi(<start-
date>, <end-date>, <number-attr>,
<condition>)
IntervalleMaximumSi(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalleMaximumSi(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
IntervalleMaximumSi(<start-
date>, <end-date>, <time-attr>,
<condition>)

Sélectionne la valeur maximum d'une variable dans l'intervalle compris entre une date
date de début (incluse) et une date date de fin (exclue), uniquement lorsqu'une con-
dition est vraie.

IntervalleMinimum(<start-date>,
<end-date>, <number-attr>)
IntervalleMinimum(<start-date>,
<end-date>, <date-attr>)
IntervalleMinimum(<start-date>,
<end-date>, <datetime-attr>)
IntervalleMinimum(<start-date>,
<end-date>, <time-attr>)

Sélectionne la valeur minimum d'une variable dans l'intervalle compris entre une date
date de début (incluse) et une date date de fin (exclue).

IntervalleMinimumSi(<start-
date>, <end-date>, <number-attr>,
<condition>)
IntervalleMinimumSi(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalleMinimumSi(<start-
date>, <end-date>, <datetime-attr>,
<condition>)
IntervalleMinimumSi(<start-
date>, <end-date>, <time-attr>,
<condition>)

Sélectionne la valeur minimum d'une variable dans l'intervalle compris entre une date
date de début (incluse) et une date date de fin (exclue), uniquement lorsqu'une con-
dition est vraie.

IntervalleMoyennePondérée
(<start-date>, <end-date>, <num-
ber-attribute>)

Calcule la valeur moyenne d'une variable devise ou numérique, dans l'intervalle com-
pris entre la date date de début (incluse) et la date date de fin (exclue), pondérée par
le laps de temps durant lequel chaque valeur s'applique.

IntervalleMoyennePondéréeSi
(<start-date>, <end-date>, <num-
ber-attribute>, <condition>)

Calcule la valeur moyenne d'une variable devise ou numérique, dans l'intervalle com-
pris entre la date date de début (incluse) et la date date de fin (exclue), uniquement lor-
squ'une condition booléenne est vraie (pondérée par le laps de temps durant lequel
chaque valeur s'applique et lorsque le filtre est vrai).

Syntaxe Description

IntervalleToujours(<start-date>,
<end-date>, <condition>)

Renvoie Vrai si et seulement si une condition booléenne est toujours vraie à tout
moment dans l'intervalle compris entre la date date de début (incluse) et la date date
de fin (exclue).

TemporelJoursAuMoins(<start-
date>, <end-date>, <NumDays>,
<condition>)

Renvoie Vrai si et seulement si une condition booléenne est vraie pendant aumoins le
nombre de jours spécifié (pas nécessairement consécutifs) dans l'intervalle compris
entre la date date de début (incluse) et la date date de fin (exclue).

IntervalleJoursConsécutifs
(<start-date>, <end-date>,
<NumDays>, <condition>)

Renvoie Vrai si et seulement si une condition booléenne est vraie pendant aumoins un
nombre de jours consécutifs donné dans l'intervalle compris entre la date date de début
(incluse) et la date date de fin (exclue).

IntervalleParfois(<start-date>,
<end-date>, <condition>)

Renvoie Vrai si et seulement si une condition booléenne est toujours vraie dans
l'intervalle compris entre la date date de début (incluse) et la date date de fin (exclue).

ValeurA(<date>, <value>) Renvoie la valeur de l'attribut attribute donné à la date date spécifiée.

QuandDernier(<date>, <con-
dition>)

Renvoie la dernière date date à laquelle une condition booléenne a été vraie, en remont-
ant dans le temps à partir d'une date date (incluse) spécifiée.

QuandSuivant(<date>, <con-
dition>)

Renvoie la prochaine date date à laquelle une condition booléenne sera vraie, à partir
d'une date date (incluse) spécifiée.

Dernier()

Renvoie une valeur de date date équivalente à la dernière date date possible - c'est-à-
dire une date date garantie comme étant postérieure à toute autre date date pouvant
être prise par un attribut date date attribute ou résulter de l'évaluation d'une expres-
sion.

Premier()

Renvoie une valeur de date date équivalente à la première date date possible - c'est-
à-dire une date date garantie comme étant antérieure à toute autre date date pouvant
être prise par un attribut date date attribute ou résulter de l'évaluation d'une expres-
sion.

TemporelJoursEcoulés(<date>,
<end-date>)

Renvoie une variable numérique qui varie chaque jour et correspond au nombre de
jours complets depuis la date date.

TemporelSemainesEcoulées
(<date>, <end-date>)

Renvoie une variable numérique qui varie chaque semaine et correspond au nombre de
semaines complètes depuis la date date.

TemporelMoisEcoulés(<date>,
<end-date>)

Renvoie une variable numérique qui varie chaque mois et correspond au nombre de
mois complets depuis la date date. Note : Si la date date indiquée est postérieure au
28e jour dumois et que le mois suivant a moins de jours que le mois indiqué, le point de
modification pour le mois anniversaire est créé sur le dernier jour de ce mois. Par
exemple, si la date date indiquée est le 28, 29, 30 ou le 31 janvier 2007, le premier
point de modification est le 28 février 2007.

TemporelAnnéesEcoulées
(<date>, <end-date>)

Renvoie une variable numérique qui varie chaque année et correspond au nombre
d'années complètes depuis la date date.

Syntaxe Description

TemporelJoursToujours(<days>,
<condition>)

Renvoie un attribut attribute booléen qui varie dans le temps et est vrai si et seule-
ment si une condition booléenne est vraie pour un nombre de jours précédents donné,
sans inclure le jour actuel.

TemporelJoursConsécutifs
(<minDays>, <days>, <condition>)

Renvoie un attribut attribute booléen qui varie dans le temps et est vrai si et seule-
ment si une condition booléenne est vraie pour aumoins un nombre minimum de jours
consécutifs à tout moment dans le nombre défini de jours précédents, sans inclure le
jour actuel.

TemporelJoursParfois(<days>,
<condition>)

Renvoie un attribut attribute booléen qui varie dans le temps et est vrai si et seule-
ment si une condition booléenne est toujours vraie pour un nombre de jours précédents
donné, sans inclure le jour actuel.

TemporelAprès(<date>)
Renvoie un attribut attribute booléen qui varie dans le temps et est vrai après une
date date et faux à cette date et avant.

TemporelAvant(<date>)
Renvoie un attribut attribute booléen qui varie dans le temps et est vrai avant une
date date et faux à cette date et après.

TemporelEnCours(<date>)
Renvoie un attribut attribute booléen qui varie dans le temps et est vrai à une date
date, et faux avant et après cette date.

TemporelEnCoursOuAprès
(<date>)

Renvoie un attribut attribute booléen qui varie dans le temps et est vrai à une date
date ou après, et faux avant cette date.

TemporelEnCoursOuAvant
(<date>)

Renvoie un attribut attribute booléen qui varie dans le temps et est vrai à une date
date ou avant, et faux après cette date.

TemporelDateDepuisDébut(<rela-
tionship>, <date>, <value>)

Renvoie un attribut attribute temporel unique (au niveau entité entity source) à
partir d'une relation relationship et d'un attribut attribute de valeur sur les entités,
les valeurs prenant effet à compter d'un attribut date date attribute de début.

TemporelDateDepuisFin(<rela-
tionship>, <date>, <value>)

Renvoie un attribut attribute temporel unique (au niveau entité entity source) à
partir d'une relation relationship et d'un attribut attribute de valeur sur les entités,
les valeurs prenant effet jusqu'à un attribut date date attribute de fin.

TemporelAPartirPlage(<rela-
tionship>, <start-date>, <end-date>,
<Value>)

Renvoie un attribut attribute temporel unique (au niveau entité entity source) à
partir d'une relation relationship et d'un attribut attribute de valeur sur les entités,
les valeurs prenant effet entre un attribut date date attribute de début (incluse) et un
attribut date date attribute de fin (exclue). La valeur est "incertain" uncertain en
cas d'expiration avant la date date de début suivante.

TemporelEstJoursSemaine
(<startdate>, <enddate>)

Renvoie vrai pour les dates correspondant à des jours de semaine et faux pour les dates
correspondant à des jours de week-end entre la date date de début spécifiée (incluse)
et la date date de fin (exclue). Renvoie uncertain en dehors de la plage de dates
date.

TemporelUneFoisParMois
(<startdate>, <enddate>, <day-

Renvoie Vrai si le jour est égal au paramètre du jour dumois et Faux pour tous les

Syntaxe Description

ofmonth>)

autres jours dumois entre la date date de début (incluse) et la date date de fin
(exclue). Renvoie "incertain" uncertain si en dehors de la fourchette de valeurs de
date date. Lorsque le jour dumois dépasse le nombre de jours dumois actuel, la valeur
est Vrai pour le dernier jour de ce mois, afin que la fonction renvoie une valeur Vrai un
jour par mois.

Fonctions de l'événement de validation(English)

Syntaxe Description

Erreur(<text>)
Un événement d'erreur sert à transmettre unmessage à l'utilisateur et à l'empêcher de poursuivre une invest-
igation tant que la condition qui a été à l'origine de l'erreur reste vraie.

Avertissement
(<text>)

Un événement d'avertissement sert à transmettre unmessage à l'utilisateur ; il ne l'empêche pas de pour-
suivre bien que la condition à l'origine de l'avertissement persiste.

Fonctions en phase d'abandon(English)

Syntaxe Description

FonctionAppelPersonnalisée
(<A>,)

Renvoie le résultat d'un appel externe à une bibliothèque de code. La bibliothèque de code
doit être indiquée aumoteur de déterminations pour assurer le succès de la fonction per-
sonnalisée.

Logische Connectors(English)

Syntax Beschreibung

wenn
falls

Optionaler Ausdruck, der am Ende einer Konklusionszeile angezeigt werden kann, auf
die eine Prüfung folgt

und Logische Verknüpfung zwischen zwei attributes

oder Logische Disjunktion zwischen zwei attributes

entweder
eine von
einer von
beliebige
mindestens eine der folgenden
Bedingungen ist wahr
eine der folgenden Bedingungen
ist erfüllt

Gruppierungselement, das mit Disjunktionen verwendet wird, bei denenmindestens
zwei attributes gruppiert werdenmüssen

beide Gruppierungselement, das mit Verknüpfungen verwendet wird, bei denenmindestens

Syntax Beschreibung

alle
alle Folgenden sind wahr
alle Folgenden sind erfüllt

zwei attributes gruppiert werdenmüssen

anderenfalls
Ausdruck, der am Ende einer Tabellenregel angezeigt wird und die Klausel "Ander-
enfalls" angibt

ist
Ausdruck, der in einem Legendeneintrag zwischen dem abgekürzten Begriff und dem
vollständigen attribute text verwendet wird

Logische Funktionen(English)

Syntax Beschreibung

es ist nicht wahr, dass <expr> Operator, der True zurückgibt, wenn attribute einenWert hat, der falsch ist

<var> ist sicher
es ist sicher, [ungeachtet dessen] ob
<expr>

Operator, der True zurückgibt, wenn attribute einenWert aufweist, der
nichtuncertain ist

<var> ist unsicher
<var>ist nicht sicher
es ist unsicher, [ungeachtet dessen] ob
<expr>
es ist unsicher, dass <expr>
es ist nicht sicher, dass <expr>
unsicher

Operator, der True zurückgibt, wenn der Wert für attribute uncertain ist

<var> ist bekannt
es ist bekannt, [ungeachtet dessen] ob
<expr>

Operator, der True zurückgibt, wenn attribute einen beliebigenWert auf-
weist

<var> ist unbekannt
es ist unbekannt, [ungeachtet dessen]
ob <expr>
unbekannt

Operator, der True zurückgibt, wenn attribute keinenWert aufweist

Logische Konstanten(English)

Syntax Beschreibung

wahr Konstanter True-Wert, der für Tabellenregeln verwendet wird.

falsch Konstanter False-Wert, der für Tabellenregeln verwendet wird.

unbestimmt Konstanter Wertuncertain, der für Tabellenregeln verwendet wird.

Vergleichsoperatoren(English)

Syntax Beschreibung

<lhs><<rhs>
<lhs> ist weniger als <rhs>
<lhs> ist früher als <rhs>

Kleiner als
Hinweis: Es gibt keine natürliche Sprachform, wenn dieser Operator mit numerischen oder
Währungswerten verwendet wird.

<lhs> > <rhs>
<lhs> ist größer als <rhs>
<lhs> ist später als <rhs>

Größer als
Hinweis: Es gibt keine natürliche Sprachform, wenn dieser Operator mit numerischen oder
Währungswerten verwendet wird.

<lhs><=<rhs>
<lhs> ist weniger als oder
gleicht <rhs>
<lhs> ist früher als oder
gleicht <rhs>

Kleiner/gleich

<lhs> >= <rhs>
<lhs> ist größer als oder
gleicht <rhs>
<lhs> ist später als oder
gleicht <rhs>

Größer/gleich

<lhs>=<rhs>
<lhs> ist <rhs> gleich
<lhs> gleicht <rhs>

Gleich

<lhs> ist <rhs> nicht gleich
<lhs> gleicht <rhs> nicht
<lhs> <> <rhs>
<lhs> != <rhs>

Ungleich

Numerische Funktionen(English)

Syntax Beschreibung

Zahl(<numText>)
Konvertiert die angegebene Zeichenfolge in einen Zah-
lenwert

<x> + <y> Addition

<x> - <y> Subtraktion

<x> * <y> Multiplikation

<x> / <y> Division

<x> \ <y> Ganzzahlendivision

<x> modulo <y> Rest nach Ganzzahlendivision

Syntax Beschreibung

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
(der | die | das) größere von <val1> und <val2>
(der | die | das) höhere von <val1> und <val2>
(der | die | das) spätere von <val1> und <val2>
(der | die | das) letzte von <val1> und <val2>

Gibt den größeren von zwei Werten zurück

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
(der | die | das) geringere von <val1> und <val2>
(der | die | das) kleinere von <val1> und <val2>
(der | die | das) frühere von <val1> und <val2>
(der | die | das) erste von <val1> und <val2>

Gibt den kleineren von zwei Werten zurück

Xy(<x>, <y>) x hoch y

Ex(<x>) Konstante e hoch x

Absolut(<x>) Absoluter Wert von x

Natürl. Logarithmus(<x>) Natürlicher Logarithmus von x

Logarithmus(<x>) Logarithmus von x zur Basis 10

Wurzel(<x>)
die Quadartwurzel von <val>

Quadratwurzel von x

Runden(<x>, <n>)
<val> abgerundet zu <num_places>(Dezimalstelle |Dez-
imalstellen)

Rundet x auf n Dezimalstellen

Gekürzt(<x>, <n>) x gekürzt auf n Dezimalstellen

Sinus(<x>) Sinus von x

Kosinus(<x>) Kosinus von x

Tangens(<x>) Tangens von x

Arkussinus(<x>) Arkussinus von x

Arkuskosinus(<x>) Arkuskosinus von x

Arkustangens(<x>) Arkustangens von x

Datumsfunktionen(English)

Syntax Beschreibung

AktuellesDatum() Gibt das aktuelle date zu Beginn der Session zurück.

Syntax Beschreibung

das gegenwärtige Datum

Datum(<text>) Konvertiert die angegebene Zeichenfolge in einen date-Wert

DatumFestlegen(<year>,
<month>, <day>)

Gibt ein date zurück, das aus den angegebenenWerten für Jahr, Monat und Tag gebildet
wird.

TagExtrahieren(<date/d-
atetime>)

Gibt die Tageskomponente eines Attributs des Typs date/datetime attribute zurück.

MonatExtrahieren(<date/d-
atetime>)

Gibt die Monatskomponente eines Attributs des Typs date/datetime attribute zurück.

JahrExtrahieren(<date/d-
atetime>)

Gibt die Jahreskomponente eines Attributs des Typs date/datetime attribute zurück.

NächsterWochentag(<date/d-
atetime>, <day>)
der [nächste] Montag am
oder nach <from-date>
der [nächste] Dienstag am
oder nach <from-date>
der [nächste] Mittwoch am
oder nach <from-date>
der [nächste] Donnerstag am
oder nach <from-date>
der [nächste] Freitag am oder
nach <from-date>
der [nächste] Samstag am
oder nach <from-date>
der [nächste] Sonntag am
oder nach <from-date>

Gibt das date des nächstenWochentages an oder vor einem date zurück (abhängig von
der verwendeten Syntax).

NächstesDatum(<date>,
<day>, <month>)

Gibt die nächste Instanz des angegebenen Tages und Monats nach einem date zurück.

TageHinzufügen(<date/d-
atetime>, <num_days>)
das Datum <num_days>(Tag |
Tage) nach <date>
die Zeit <num_days>(Tag |
Tage) nach <date>

Fügt einem date eine Anzahl von Tagen hinzu bzw. zieht sie davon ab. Wenn die syn-
taktische Kurzform verwendet wird, muss die Zahl entweder eine positive Ganzzahl sein,
damit die Tage dem eingegebenen date hinzugefügt werden können, oder eine negative
Zahl, um die Tage vom eingegebenen date abzuziehen.

WochenHinzufügen(<date/d-
atetime>, <num_weeks>)
das Datum <num_weeks>
(Woche |Wochen) nach

Fügt einem date eine Anzahl vonWochen hinzu. Wenn die syntaktische Kurzform ver-
wendet wird, muss die Zahl eine positive Ganzzahl sein, damit die Wochen dem
eingegebenen date hinzugefügt werden können.

Syntax Beschreibung

<date>
die Zeit <num_weeks>(Woche
|Wochen) nach <date>

MonateHinzufügen(<date/d-
atetime>, <num_months>)
das Datum <num_months>
(Monat |Monate) nach <date>
die Zeit <num_months>(Monat
|Monate) nach <date>

Fügt einem date eine Anzahl vonMonaten hinzu. Wenn die syntaktische Kurzform ver-
wendet wird, muss die Zahl eine positive Ganzzahl sein, damit die Monate dem
eingegebenen date hinzugefügt werden können.

JahreHinzufügen(<date/d-
atetime>, <num_years>)
das Datum <num_years>(Jahr
| Jahre) nach <date>
die Zeit <num_years>(Jahr |
Jahre) nach <date>

Fügt einem date eine Anzahl von Jahren hinzu. Wenn die syntaktische Kurzform ver-
wendet wird, muss die Zahl eine positive Ganzzahl sein, damit die Jahre dem eingegebenen
date hinzugefügt werden können.

AnzahlWochentage(<date1>,
<date2>)
die Anzahl der [ganzen]
Werktage von <date1> bis zu
<date2>
die Anzahl der [ganzen]
Werktage zwischen <date1>
und <date2>

Zählt die Anzahl der Wochentage zwischen date1 und date2, d.h. die Anzahl der Tage
zwischenMontag und Freitag.
Hinweis: Das frühere date ist einschließlich, und das spätere date ist ausschließlich.

JahrBeginn(<date/datetime>)
der erste Tag im Jahr, in dem
<from-date> fällt

Gibt das erste date in dem Jahr zurück, in das ein date fällt.

JahrEnde(<date/datetime>)
der letzte Tag im Jahr, in
dem <from-date> fällt

Gibt das letzte date in dem Jahr zurück, in das ein date fällt.

TagDifferenz
(<date/datetime1>, <date/d-
atetime2>)
die Anzahl der [ganzen]Tage
von <date1> bis zu <date2>
die Anzahl der [ganzen]Tage
zwischen <date1> und
<date2>

Gibt die Anzahl der ganzen Tage zwischen date/datetime1 und date/datetime2
zurück. Die Reihenfolge der beiden Datumswerte wirkt sich nicht auf das Ergebnis aus.

TagDifferenzEinschließlich
(<date/datetime1>, <date/d-

Gibt die Anzahl der ganzen Tage zwischen date/datetime1 und date/datetime2
(einschließlich) zurück. Diese Berechnung schließt beide Endpunkte ein. Wenn die Datum-
swerte identisch sind, ist das Ergebnis 1. Die Reihenfolge der beiden Datumswerte wirkt

Syntax Beschreibung

atetime2>)
die Anzahl der [ganzen] Tage
(inklusiv) von <date1> bis zu
<date2>
die Anzahl der [ganzen] Tage
(inklusiv) zwischen <date1>
und <date2>

sich nicht auf das Ergebnis aus.

TagDifferenzOhne(<date/d-
atetime1>, <date/datetime2>)
die Anzahl der [ganzen] Tage
(exklusiv) von <date1> bis zu
<date2>
die Anzahl der [ganzen] Tage
(exklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der ganzen Tage zwischen date/datetime1 und date/datetime2 (aus-
schließlich) zurück. Diese Berechnung schließt beide Endpunkte aus. Wenn die Datum-
swerte identisch sind, ist das Ergebnis 0. Die Reihenfolge der beiden Datumswerte wirkt
sich nicht auf das Ergebnis aus.

WocheDifferenz(<date/d-
atetime1>, <date/datetime2>)
die Anzahl der [ganzen]
Wochen von <date1> bis zu
<date2>
die Anzahl der [ganzen]
Wochen zwischen <date1>
und <date2>

Gibt die Anzahl der ganzen verstrichenenWochen zwischen date/datetime1 und
date/datetime2 zurück. Die Reihenfolge der beiden Datumswerte wirkt sich nicht auf
das Ergebnis aus.

WocheDifferenzEinschließlich
(<date/datetime1>, <date/d-
atetime2>)
die Anzahl der [ganzen]
Wochen (inklusiv) von
<date1> bis zu <date2>
die Anzahl der [ganzen]
Wochen (inklusiv) zwischen
<date1> und <date2>

Gibt die Anzahl der ganzen verstrichenenWochen zwischen date/datetime1 und
date/datetime2 (einschließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt
sich nicht auf das Ergebnis aus.

WocheDifferenzOhne(<date/d-
atetime1>, <date/datetime2>)
die Anzahl der [ganzen]
Wochen (exklusiv) von
<date1> bis zu <date2>
die Anzahl der [ganzen]
Wochen (exklusiv) zwischen
<date1> und <date2>

Gibt die Anzahl der ganzen verstrichenenWochen zwischen date/datetime1 und
date/datetime2 (ausschließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt
sich nicht auf das Ergebnis aus.

MonatDifferenz(<date/d- Gibt die Anzahl der verstrichenen ganzenMonate zwischen date/datetime1 und date/d-

Syntax Beschreibung

atetime1>, <date/datetime2>)
die Anzahl der [ganzen] Mon-
ate von <date1> bis zu
<date2>
die Anzahl der [ganzen] Mon-
ate zwischen <date1> und
<date2>

atetime2 zurück. Die Reihenfolge der beiden Datumswerte wirkt sich nicht auf das Ergeb-
nis aus.

MonatDifferenzEinschließlich
(<date/datetime1>, <date/d-
atetime2>)
die Anzahl der [ganzen] Mon-
ate (inklusiv) von <date1> bis
zu <date2>
die Anzahl der [ganzen] Mon-
ate (inklusiv) zwischen
<date1> und <date2>

Gibt die Anzahl der verstrichenen ganzenMonate zwischen date/datetime1 und date/d-
atetime2 (einschließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt sich
nicht auf das Ergebnis aus.

MonatDifferenzOhne(<date/d-
atetime1>, <date/datetime2>)
die Anzahl der [ganzen] Mon-
ate (exklusiv) von <date1>
bis zu <date2>
die Anzahl der [ganzen] Mon-
ate (exklusiv) zwischen
<date1> und <date2>

Gibt die Anzahl der verstrichenen ganzenMonate zwischen date/datetime1 und date/d-
atetime2 (ausschließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt sich
nicht auf das Ergebnis aus.

JahrDifferenz(<date/d-
atetime1>, <date/datetime2>)
die Anzahl der [ganzen] Jahre
von <date1> bis zu <date2>
die Anzahl der [ganzen] Jahre
zwischen <date1> und
<date2>

Gibt die Anzahl der Jahre zwischen date/datetime1 und date/datetime2 zurück. Die
Reihenfolge der beiden Datumswerte wirkt sich nicht auf das Ergebnis aus.

JahrDifferenzEinschließlich
(<date/datetime1>, <date/d-
atetime2>)
die Anzahl der [ganzen] Jahre
(inklusiv) von <date1> bis zu
<date2>
die Anzahl der [ganzen] Jahre
(inklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der Jahre zwischen date/datetime1 und date/datetime2 (einsch-
ließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt sich nicht auf das Ergebnis
aus.

JahrDifferenzOhne(<date/d- Gibt die Anzahl der Jahre zwischen date/datetime1 und date/datetime2 (aus-

Syntax Beschreibung

atetime1>, <date/datetime2>)
die Anzahl der [ganzen] Jahre
(exklusiv) von <date1> bis zu
<date2>
die Anzahl der [ganzen] Jahre
(exklusiv) zwischen <date1>
und <date2>

schließlich) zurück. Die Reihenfolge der beiden Datumswerte wirkt sich nicht auf das Ergeb-
nis aus.

Uhrzeitfunktionen(English)

Syntax Beschreibung

Uhrzeit(<text>) Konvertiert die angegebene Zeichenfolge in eine Uhrzeit

SekundeExtrahieren(<time/d-
atetime>)

Gibt die Sekundenkomponente eines Attributs des Typs timeofday/datetime attrib-
ute zurück.

MinuteExtrahieren(<time/d-
atetime>)

Gibt die Minutenkomponente eines Attributs des Typs timeofday/datetime attrib-
ute zurück.

StundeExtrahieren(<time/d-
atetime>)

Gibt die Stundenkomponente eines Attributs des Typs timeofday/datetime attrib-
ute zurück.

Datums- und Uhrzeitfunktionen(English)

Syntax Beschreibung

AktuellesDatumUhrzeit() Gibt das aktuelle date und die aktuelle Uhrzeit zu Beginn der Session zurück.

DatumUhrzeit(<text>) Konvertiert die angegebene Zeichenfolge in einen datetime-Wert

DatumUhrzeitVerknüpfen
(<date>, <time>)
<date> um <time-of-day>
<time-of-day> am <date>

Legt die Uhrzeit an einem date fest, indem date und Uhrzeit miteinander verknüpft wer-
den.

SekundeDifferenz(<datetime1>,
<datetime2>)
SekundeDifferenz
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Sekunden von
<date1> bis zu <date2>
die Anzahl der Sekunden zwis-
chen <date1> und <date2>

Gibt die Anzahl der Sekunden zwischen datetime1 und datetime2 zurück.

SekundeDifferenzEinschließlich Gibt die Anzahl der Sekunden zwischen datetime1 und datetime2 (einschließlich)

Syntax Beschreibung

(<datetime1>, <datetime2>)
SekundeDifferenzEinschließlich
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Sekunden
(inklusiv) von <date1> bis zu
<date2>
die Anzahl der Sekunden
(inklusiv) zwischen <date1>
und <date2>

zurück.

SekundeDifferenzOhne(<dat-
etime1>, <datetime2>)
SekundeDifferenzOhne
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Sekunden
(exklusiv) von <date1> bis zu
<date2>
die Anzahl der Sekunden
(exklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der Sekunden zwischen datetime1 und datetime2 (ausschließlich)
zurück.

MinuteDifferenz(<datetime1>,
<datetime2>)
MinuteDifferenz(<timeOfDay1>,
<timeOfDay2>)
die Anzahl der Minuten von
<date1> bis zu <date2>
die Anzahl der Minuten zwis-
chen <date1> und <date2>

Gibt die Anzahl der Minuten zwischen datetime1 und datetime2 zurück.

MinuteDifferenzEinschließlich
(<datetime1>, <datetime2>)
MinuteDifferenzEinschließlich
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Minuten
(inklusiv) von <date1> bis zu
<date2>
die Anzahl der Minuten
(inklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der Minuten zwischen datetime1 und datetime2 (einschließlich)
zurück.

MinuteDifferenzOhne(<dat-
etime1>, <datetime2>)
MinuteDifferenzOhne
(<timeOfDay1>, <timeOfDay2>)

Gibt die Anzahl der Minuten zwischen datetime1 und datetime2 (ausschließlich)
zurück.

Syntax Beschreibung

die Anzahl der Minuten
(exklusiv) von <date1> bis zu
<date2>
die Anzahl der Minuten
(exklusiv) zwischen <date1>
und <date2>

StundeDifferenz(<datetime1>,
<datetime2>)
StundeDifferenz(<timeOfDay1>,
<timeOfDay2>)
die Anzahl der Stunden von
<date1> bis zu <date2>
die Anzahl der Stunden zwis-
chen <date1> und <date2>

Gibt die Anzahl der Stunden zwischen datetime1 und datetime2 zurück.

StundeDifferenzEinschließlich
(<datetime1>, <datetime2>)
StundeDifferenzEinschließlich
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Stunden
(inklusiv) von <date1> bis zu
<date2>
die Anzahl der Stunden
(inklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der Stunden zwischen datetime1 und datetime2 (einschließlich)
zurück.

StundeDifferenzOhne(<dat-
etime1>, <datetime2>)
StundeDifferenzOhne
(<timeOfDay1>, <timeOfDay2>)
die Anzahl der Stunden
(exklusiv) von <date1> bis zu
<date2>
die Anzahl der Stunden
(exklusiv) zwischen <date1>
und <date2>

Gibt die Anzahl der Stunden zwischen datetime1 und datetime2 (ausschließlich)
zurück.

DatumExtrahieren(<datetime>) Extrahiert das date aus einem Attribut des Typs datetime attribute.

TageszeitExtrahieren(<dat-
etime>)

Extrahiert die Tageszeit aus einem Attribut des Typs datetime attribute. Kann ver-
wendet werden, um denWert einer timeofday attribute auf die Uhrzeit der Regelaus-
führung zu setzen, indem die Uhrzeit aus dem aktuellen date und der aktuellen Uhrzeit
extrahiert wird.

StundenHinzufügen Fügt einer Uhrzeit an einem date eine Anzahl von Stunden hinzu.

Syntax Beschreibung

(<datetime>, <num_hours>)
StundenHinzufügen
(<timeOfDay>, <num_hours>)
die Zeit <num_hours>(Stunde |
Stunden) nach <date>
die Tageszeit <num_hours>
(Stunde | Stunden) nach <time-
of-day>

MinutenHinzufügen
(<datetime>, <num_minutes>)
MinutenHinzufügen
(<timeOfDay>, <num_minutes>)
die Zeit <num_minutes>(Minute |
Minuten) nach <date>
die Tageszeit <num_minutes>
(Minute |Minuten) nach <time-
of-day>

Fügt einer Uhrzeit an einem date eine Anzahl vonMinuten hinzu.

SekundenHinzufügen(<dat-
etime>, <num_seconds>)
SekundenHinzufügen
(<timeOfDay>, <num_seconds>)
die Zeit <num_seconds>
(Sekunde | Sekunden) nach
<date>
die Tageszeit <num_seconds>
(Sekunde | Sekunden) nach
<time-of-day>

Fügt einer Uhrzeit an einem date eine Anzahl von Sekunden hinzu.

Textfunktionen(English)

Syntax Beschreibung

<text1> & <text2>
Kombiniert text1mit text2 usw. zu einem einzelnen text-Wert.
Hinweis: Sie können Variablen jedes beliebigen Typs verwenden. Die Werte werdenmit dem in der
Regel-Session installierten Formatierer formatiert.

die Verkettung von
<text1> & <text2>

Kombiniert text1mit text2 usw. zu einem einzelnen text-Wert.
Hinweis: Sie können Variablen jedes beliebigen Typs verwenden. Die Werte werdenmit dem in der
Regel-Session installierten Formatierer formatiert.

Enthält(<text>, <sub-
string>)
<text> enthält <sub-

Gibt einen booleschenWert zurück, der angibt, ob ein bestimmter text-Wert die angegebene text-
Teilzeichenfolge enthält. Beim Vergleich von text ist die Groß-/Kleinschreibung irrelevant.

Syntax Beschreibung

string>

EndetMit(<text>,
<substring>)
<text> mit <sub-
string> endet

Gibt einen booleschenWert zurück, der angibt, ob ein bestimmter text-Wert mit der angegebenen
text-Teilzeichenfolge endet. Beim Vergleich von text ist die Groß-/Kleinschreibung irrelevant.

IstZahl(<text>)
<text> ist eine Zahl

Gibt einen booleschenWert zurück, der angibt, ob ein bestimmter text-Wert eine gültige Zahl
darstellt.

Länge(<text>) Gibt die Zeichenlänge des angegebenen text-Werts zurück.

BeginntMit(<text>,
<substring>)
<text> mit <sub-
string> beginnt

Gibt einen booleschenWert zurück, der angibt, ob ein bestimmter text-Wert mit der angegebenen
text-Teilzeichenfolge beginnt. Beim Vergleich von text ist die Groß-/Kleinschreibung irrelevant.

Teilzeichenfolge
(<text>, <offset>,
<length>)

Gibt die Teilzeichenfolge von text zurück, die beim angegebenen Offset beginnt, d.h. nach der
angegebenen Zeichenlänge. Bei Erreichen des Endes der Zeichenfolge werden weniger Zeichen zurück-
gegeben.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Konvertiert die angegebene Zahl oder das angegebene date attribute in einen text-Wert.

Entity- und Beziehungsfunktionen(English)

Syntax Beschreibung

Für(<relationship>, <Exp>)
im Fall von <ent>, <attr>
<val>, im Fall von <ent>

Wird für den Verweis von einer entity auf eine andere entity in einer relationship des
Typs "1:n", "n:1" oder "m:m" verwendet, wenn nur eine Bedingung vorhanden ist.

FürGeltungsbereich(<rela-
tionship>, <alias>)
FürGeltungsbereich(<rela-
tionship>)
im Fall von <ent>
im Fall von <ent> (<alias>)

Wird für den Verweis von einer entity auf eine andere entity in einer relationship des
Typs "1:n", "n:1" oder "m:m" verwendet, wennmindestens eine Bedingung vorhanden ist.

FürAlle(<relationship>, <Exp>)
für jedes <ent>, <attr>

Wird für den Verweis von einer entity auf eine andere entity in einer relationship des
Typs "1:n" oder "m:m" verwendet, wenn Sie festlegenmüssen, ob alle Mitglieder der Ziel-
entity-Gruppe die Regel erfüllenmüssen.
Diese Form wird verwendet, wenn die Regel nur eine Bedingung aufweist.

FürAlleGeltungsbereiche Wird für den Verweis von einer entity auf eine andere entity in einer relationship des

Syntax Beschreibung

(<relationship>)
FürAlleGeltungsbereiche
(<relationship>, <alias>)
für <ent>
für alle <ent>
[für] jedes <ent>
für <ent> (<alias>)
für alle <ent> (<alias>)
[für] jedes <ent> (<alias>)

Typs "1:n" oder "m:m" verwendet, wenn Sie festlegenmüssen, ob alle Mitglieder der Ziel-
entity-Gruppe die Regel erfüllenmüssen.
Diese Form wird verwendet, wenn die Regel mindestens eine Bedingung aufweist.

Vorhanden(<relationship>,
<Exp>)
für mindestens eins von
<ent>, <attr>

Wird für den Verweis von einer entity auf eine andere entity in einer relationship des
Typs "1:n" oder "m:m" verwendet, wenn Sie festlegenmüssen, ob Mitglieder der Ziel-
entity-Gruppe die Regel erfüllenmüssen.
Diese Form wird verwendet, wenn die Regel nur eine Bedingung aufweist.

VorhandenGeltungsbereich
(<relationship>)
VorhandenGeltungsbereich
(<relationship>, <alias>)
mindestens eins von <ent>
mindestens eins von <ent>
(<alias>)

Wird für den Verweis von einer entity auf eine andere entity in einer relationship des
Typs "1:n" oder "m:m" verwendet, wenn Sie festlegenmüssen, ob Mitglieder der Ziel-
entity-Gruppe die Regel erfüllenmüssen.
Diese Form wird verwendet, wenn die Regel mindestens eine Bedingung aufweist.

IstMitgliedVon(<target>, <rela-
tionship>)
IstMitgliedVon(<target>,
<alias>, <relationship>)
<ent-target> ist ein Mitglied
<relationship>
<ent-target> (<alias>) ist ein
Mitglied <relationship>

Wird in einer Konklusion verwendet, um abzuleiten, dass eine entity-Instanz Mitglied
einer relationship ist. Wird als Bedingung verwendet, um zu testen, ob eine entity-
Instanz Ziel einer relationship ist, deren Quelle eine zweite entity-Instanz ist.

IstKeinMitgliedVon(<target>,
<relationship>)
<ent-target> ist nicht ein Mit-
glied der <relationship>

Wird als Bedingung für den Test verwendet, ob eine entity-Instanz kein Ziel einer rela-
tionship ist, deren Quelle eine zweite entity-Instanz ist.

AnzahlInstanzen(<rela-
tionship>)
die Anzahl <ent>

Zählt die Anzahl der vorhandenen Instanzen für eine entity.

AnzahlInstanzenFalls(<rela-
tionship>, <Exp>)
die Anzahl <ent>, für den es
der Fall ist, dass <condition>

Zählt die Anzahl der für eine entity vorhandenen Instanzen, für die ein bestimmtes
entity-level attribute einen bestimmtenWert aufweist.

Syntax Beschreibung

InstanzMaximum(<rela-
tionship>, <number-attr>)
InstanzMaximum(<rela-
tionship>, <date-attr>)
InstanzMaximum(<rela-
tionship>, <datetime-attr>)
InstanzMaximum(<rela-
tionship>, <time-attr>)
(der | die | das) größte <attr>
für alle <ent>
(der | die | das) höchste
<attr> für alle <ent>
(der | die | das) späteste
<attr> für alle <ent>
(der | die | das) letzte <attr>
für alle <ent>
<attr> das für alle <ent> am
größten ist
<attr> das für alle <ent> am
höchsten ist
<attr> das für alle <ent> am
spätesten ist
<attr> das für alle <ent> am
letzten ist

Ermittelt den höchsten/aktuellenWert einer entity-level-Variable für alle Instanzen der
entity.

InstanzMaximumFalls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanzMaximumFalls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanzMaximumFalls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstanzMaximumFalls(<rela-
tionship>, <time-attr>, <con-
dition>)
(der | die | das) größte <attr>
für alle <ent> , für den es der
Fall ist, dass <ent-test>
(der | die | das) höchste
<attr> für alle <ent> , für den
es der Fall ist, dass <ent-test>

Ermittelt den höchsten/aktuellenWert einer entity-level-Variable für alle Instanzen der
entity, für die ein bestimmtes entity-level attribute einen bestimmtenWert aufweist.

Syntax Beschreibung

(der | die | das) späteste
<attr> für alle <ent> , für den
es der Fall ist, dass <ent-test>
(der | die | das) letzte <attr>
für alle <ent> , für den es der
Fall ist, dass <ent-test>
<attr> das für alle <ent> am
größten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
höchsten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
spätesten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
letzten ist und für den es der
Fall ist, dass <ent-test>

InstanzMinimum(<rela-
tionship>, <number-attr>)
InstanzMinimum(<rela-
tionship>, <date-attr>)
InstanzMinimum(<rela-
tionship>, <datetime-attr>)
InstanzMinimum(<rela-
tionship>, <time-attr>)
(der | die | das) kleinste
<attr> für alle <ent>
(der | die | das) geringste
<attr> für alle <ent>
(der | die | das) frühste <attr>
für alle <ent>
(der | die | das) erste <attr>
für alle <ent>
<attr> das für alle <ent> am
geringsten ist
<attr> das für alle <ent> am
kleinsten ist
<attr> das für alle <ent> am
frühsten ist
<attr> das für alle <ent> am
ersten ist

Ermittelt den niedrigsten/ältestenWert einer entity-level-Variable für alle Instanzen der
entity.

Syntax Beschreibung

InstanzMinimumFalls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanzMinimumFalls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanzMinimumFalls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstanzMinimumFalls(<rela-
tionship>, <time-attr>, <con-
dition>)
(der | die | das) geringste
<attr> für alle <ent> , für den
es der Fall ist, dass <ent-test>
(der | die | das) kleinste
<attr> für alle <ent> , für den
es der Fall ist, dass <ent-test>
(der | die | das) frühste <attr>
für alle <ent> , für den es der
Fall ist, dass <ent-test>
(der | die | das) erste <attr>
für alle <ent> , für den es der
Fall ist, dass <ent-test>
<attr> das für alle <ent> am
geringsten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
kleinsten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
frühsten ist und für den es
der Fall ist, dass <ent-test>
<attr> das für alle <ent> am
ersten ist und für den es der
Fall ist, dass <ent-test>

Ermittelt den niedrigsten/ältestenWert einer entity-level-Variable für alle Instanzen der
entity, für die ein bestimmtes entity-level attribute einen bestimmtenWert aufweist.

InstanzSumme(<relationship>,
<number-attr>)
<attr> summiert für alle
<ent>

Ermittelt die Summe aller Instanzen einer entity-level-Variable.

InstanzSummeFalls(<rela-
tionship>, <number-attr>, <con-

Ermittelt die Summe aller Instanzen einer entity-level-Variable, für die ein boolesches
attribute auf einer bestimmten entity-level für die entity wahr ist.

Syntax Beschreibung

dition>)
<attr> summiert für alle
<ent>[, nur dort] , wo <con-
dition>
<attr> summiert für alle
<ent> , für den es der Fall ist,
dass <condition>

InstanzWertFalls(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanzWertFalls(<rela-
tionship>, <text-attr>, <con-
dition>)
InstanzWertFalls(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanzWertFalls(<rela-
tionship>, <datetime-attr>, <con-
dition>)
InstanzWertFalls(<rela-
tionship>, <time-attr>, <con-
dition>)

Ermittelt einenWert aus einer eindeutigen entity-Instanz anhand der Ziel-entity-Instan-
zen einer relationshipmittels einer Bedingung.

l Wenn die Bedingung für eine einzelne Ziel-entity-Instanz gilt, ist der Wert der für
diese entity-Instanz berechnete Wert.

l Wennmehrere Zielinstanzen die Bedingung erfüllen, wird uncertain zurück-
gegeben.

l Wenn keine Zielinstanzen die Bedingung erfüllen und die relationship bekannt
ist, ist der Wertuncertain.

InstanzGleich(<instance1>,
<instance2>)

Legt fest, ob zwei Instanzen einer entity identisch sind.

InstanzUngleich(<instance1>,
<instance2>)

Legt fest, ob zwei Instanzen einer entity nicht identisch sind.

InstanzAbleiten
(<relationship>, <identity>)
<rel>(<identity>) (existieren |
existiert)

Wird in einer Konklusion verwendet, um abzuleiten, dass eine entity-Instanz vorhanden
undMitglied einer relationship ist.

Zeitbasierte Funktionen(English)

Syntax Beschreibung

IntervallAnzahlAbweichend(<start-
date>, <end-date>, <variable>)
IntervallAnzahlAbweichend(<start-
date>, <end-date>, <condition>)

Zählt die Anzahl der bekannten eindeutigenWerte für die Variable im Intervall
zwischen dem Start-date (einschließlich) und dem End-date (ausschließlich).

IntervallAnzahlAbweichendFalls
(<start-date>, <end-date>, <variable>,

Zählt die Anzahl der bekannten eindeutigenWerte für die Variable im Intervall
zwischen dem Start-date (einschließlich) und dem End-date (ausschließlich)

Syntax Beschreibung

<condition>) und berücksichtigt dabei nur die Zeiten, zu denen ein boolescher Filter wahr ist.

IntervallTäglicheSumme(<start-date>,
<end-date>, <number-attr>)

Berechnet die Summe einer Währungs- oder Zahlenvariable im Intervall zwis-
chen dem Start-date (einschließlich) und dem End-date (ausschließlich). Für
das attribute wird von einer täglichenMenge ausgegangen.

IntervallTäglicheSummeFalls(<start-
date>, <end-date>, <number-attr>, <con-
dition>)

Berechnet die Summe aller täglichenWerte für eine Währungs- oder Zah-
lenvariable im Intervall zwischen einem Start-date (einschließlich) und einem
End-date (ausschließlich) und berücksichtigt dabei nur die Zeiten, zu denen eine
Bedingung wahr ist.

IntervallMaximum(<start-date>, <end-
date>, <number-attr>)
IntervallMaximum(<start-date>, <end-
date>, <date-attr>)
IntervallMaximum(<start-date>, <end-
date>, <datetime-attr>)
IntervallMaximum(<start-date>, <end-
date>, <time-attr>)

Wählt denmaximalenWert einer Variable im Intervall zwischen einem Start-
date (einschließlich) und einem End-date (ausschließlich).

IntervallMaximumFalls(<start-date>,
<end-date>, <number-attr>, <condition>)
IntervallMaximumFalls(<start-date>,
<end-date>, <date-attr>, <condition>)
IntervallMaximumFalls(<start-date>,
<end-date>, <datetime-attr>, <condition>)
IntervallMaximumFalls(<start-date>,
<end-date>, <time-attr>, <condition>)

Wählt denmaximalenWert einer Variable im Intervall zwischen einem Start-
date (einschließlich) und einem End-date (ausschließlich) und berücksichtigt
dabei nur die Zeiten, zu denen eine Bedingung wahr ist.

IntervallMinimum(<start-date>, <end-
date>, <number-attr>)
IntervallMinimum(<start-date>, <end-
date>, <date-attr>)
IntervallMinimum(<start-date>, <end-
date>, <datetime-attr>)
IntervallMinimum(<start-date>, <end-
date>, <time-attr>)

Wählt denMindestwert einer Variable im Intervall zwischen einem Start-date
(einschließlich) und einem End-date (ausschließlich).

IntervallMinimumFalls(<start-date>,
<end-date>, <number-attr>, <condition>)
IntervallMinimumFalls(<start-date>,
<end-date>, <date-attr>, <condition>)
IntervallMinimumFalls(<start-date>,
<end-date>, <datetime-attr>, <condition>)
IntervallMinimumFalls(<start-date>,
<end-date>, <time-attr>, <condition>)

Wählt denMindestwert einer Variable im Intervall zwischen einem Start-date
(einschließlich) und einem End-date (ausschließlich) und berücksichtigt dabei
nur die Zeiten, zu denen eine Bedingung wahr ist.

Syntax Beschreibung

IntervallGewichteterDurchschnitt
(<start-date>, <end-date>, <number-attrib-
ute>)

Berechnet den Durchschnittswert einer Währungs- oder Zahlenvariablen im
Intervall zwischen einem Start-date (einschließlich) und einem End-date (aus-
schließlich), gewichtet nach dem für den jeweiligenWert geltenden Zeitraum.

IntervallGewichteterDurchschnittFalls
(<start-date>, <end-date>, <number-attrib-
ute>, <condition>)

Berechnet den Durchschnittswert einer Währungs- oder Zahlenvariablen im
Intervall zwischen einem Start-date (einschließlich) und einem End-date (aus-
schließlich) und berücksichtigt dabei nur die Zeiten, zu denen eine boolesche
Bedingung wahr ist (gewichtet nach dem für den jeweiligenWert geltenden
Zeitraum, für den der Filter wahr ist).

IntervallImmer(<start-date>, <end-
date>, <condition>)

Gibt nur dann True zurück, wenn eine boolesche Bedingung immer im Intervall
zwischen dem Start-date (einschließlich) und dem End-date (ausschließlich)
wahr ist.

IntervallMindestensTage(<start-date>,
<end-date>, <NumDays>, <condition>)

Gibt nur dann True zurück, wenn eine boolesche Bedingung für mindestens die
angegebene Anzahl von Tagen (nicht unbedingt aufeinanderfolgend) im Inter-
vall zwischen dem Start-date (einschließlich) und dem End-date (aus-
schließlich) wahr ist.

IntervallAufeinanderfolgendeTage
(<start-date>, <end-date>, <NumDays>,
<condition>)

Gibt nur dann True zurück, wenn eine boolesche Bedingung für mindestens eine
bestimmte Anzahl an aufeinanderfolgenden Tagen im Intervall zwischen dem
Start-date (einschließlich) und dem End-date (ausschließlich) wahr ist.

IntervallManchmal(<start-date>, <end-
date>, <condition>)

Gibt nur dann True zurück, wenn eine boolesche Bedingung jemals im Intervall
zwischen dem Start-date (einschließlich) und dem End-date (ausschließlich)
wahr ist.

WertBei(<date>, <value>) Gibt denWert für das angegebene attribute am angegebenen date zurück.

WennLetzte(<date>, <condition>)
Gibt das date zurück, an dem eine boolesche Bedingung letztmals wahr war.
Dabei wird ausgehend von einem angegebenen date (einschließlich) rückwärts
gerechnet.

WennNächste(<date>, <condition>)
Gibt das date zurück, an dem eine boolesche Bedingung zum nächsten Mal
wahr sein wird. Dabei wird ausgehend von einem angegebenen date (einsch-
ließlich) vorwärts gerechnet.

Spätestens()
Gibt einen date-Wert zurück, der dem letztmöglichen date entspricht. Dies ist
ein späteres date als jedes andere für ein date attributemögliche oder für
einen Ausdruck auswertbare date.

Frühestens()
Gibt einen date-Wert zurück, der dem frühestmöglichen date entspricht. Dies
ist ein früheres date als jedes andere für ein date attributemögliche oder für
einen Ausdruck auswertbare date.

ZeitlichTageSeit(<date>, <end-date>)
Gibt eine Zahlenvariable zurück, die sich täglich ändert und die die Anzahl der
vollständigen Tage seit dem date darstellt.

ZeitlichWochenSeit(<date>, <end- Gibt eine Zahlenvariable zurück, die sich wöchentlich ändert und die Anzahl der

Syntax Beschreibung

date>) vollständigenWochen seit dem date darstellt.

ZeitlichMonateSeit(<date>, <end-date>)

Gibt eine Zahlenvariable zurück, die sichmonatlich ändert und die Anzahl der
vollständigen Monate seit dem date darstellt. Hinweis: Wenn das angegebene
date nach dem 28. des Monats liegt und ein darauffolgender Monat weniger
Tage als der angegebene Monat hat, wird der Änderungspunkt für den wieder-
kehrendenMonat am letzten Tag dieses Monats erstellt. Beispiel: Wenn das
angegebene date der 28., 29., 30. oder 31. Januar 2007 ist, ist der erste Änder-
ungspunkt der 28. Februar 2007.

ZeitlichJahreSeit(<date>, <end-date>)
Gibt eine Zahlenvariable zurück, die sich jährlich ändert und die Anzahl der voll-
ständigen Jahre seit dem date darstellt.

ZeitlichImmerTage(<days>, <condition>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und nur
dann wahr ist, wenn eine boolesche Bedingung für alle Tage einer bestimmten
Anzahl vorausgehender Tage mit Ausnahme des aktuellen Tages wahr ist.

ZeitlichAufeinanderfolgendeTage
(<minDays>, <days>, <condition>)

Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und nur
dann wahr ist, wenn eine boolesche Bedingung jederzeit für mindestens eine
Mindestanzahl aufeinanderfolgender Tage innerhalb der vorausgehenden,
festgelegten Anzahl an Tagenmit Ausnahme des aktuellen Tages wahr ist.

ZeitlichManchmalTage(<days>, <con-
dition>)

Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und nur
dann wahr ist, wenn eine boolesche Bedingung jemals innerhalb einer bestim-
mten Anzahl vorhergehender Tage mit Ausnahme des aktuellen Tages wahr ist.

ZeitlichNach(<date>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und
nach einem date wahr und an oder vor diesem Datum falsch ist.

ZeitlichVor(<date>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und vor
einem date wahr und an oder nach diesem Datum falsch ist.

ZeitlichAm(<date>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und an
einem date wahr und vor oder nach diesem Datum falsch ist.

ZeitlichAmOderNach(<date>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und an
oder nach einem date wahr und vor diesem Datum falsch ist.

ZeitlichAmOderVor(<date>)
Gibt ein boolesches attribute zurück, das sich im Laufe der Zeit ändert und an
oder vor einem date wahr und nach diesem Datum falsch ist.

ZeitlichVonAnfangsdatum(<rela-
tionship>, <date>, <value>)

Gibt ein einzelnes zeitliches attribute (auf Ebene der Quell-entity) aus einer
relationship und einemWert-attribute für die Entitys mitWerten zurück, die
ab einem Start-date attribute wirksam sind.

ZeitlichVonEnddatum(<relationship>,
<date>, <value>)

Gibt ein einzelnes zeitliches attribute (auf Ebene der Quell-entity) aus einer
relationship und einemWert-attribute für die Entitys mitWerten zurück, die
bis zu einem End-date attribute wirksam sind.

Syntax Beschreibung

ZeitlichVonZeitraum(<relationship>,
<start-date>, <end-date>, <Value>)

Gibt ein einzelnes zeitliches attribute (auf Ebene der Quell-entity) aus einer
relationship und einemWert-attribute für die Entitys mitWerten zurück, die
von einem Start-date attribute (einschließlich) bis zu einem End-date attrib-
ute (ausschließlich) wirksam sind. Bei Ablauf vor dem nächsten Start-date ist
der Wertuncertain.

ZeitlichIstWochentag(<startdate>, <end-
date>)

Gibt zwischen dem angegebenen Start-date (einschließlich) und dem
angegebenen End-date (ausschließlich) True für Datumswerte zurück, die
Wochentage sind, und False für Datumswerte, die Wochenenden darstellen.
Gibt außerhalb des date-Bereichs uncertain zurück.

ZeitlichEinmalProMonat(<startdate>,
<enddate>, <dayofmonth>)

Gibt zwischen dem angegebenen Start-date (einschließlich) und dem
angegebenen End-date (ausschließlich) True zurück, wenn der Tag dem Para-
meter "Kalendertag" entspricht, und gibt an allen anderen Tagen des Monats
False zurück. Gibt außerhalb des date-Bereichs uncertain zurück. Wenn der
Tag des Monats die angegebene Anzahl an Tagen im aktuellen Monat über-
steigt, ist der Wert am letzten Tag dieses Monats wahr. Auf diese Weise gibt die
Funktion exakt für einen Tag pro Monat denWert True zurück.

Funktionen für Validierungsereignis(English)

Syntax Beschreibung

Fehler
(<text>)

Ein Fehlereignis übergibt eine Meldung an den Benutzer und verhindert solange die Fortsetzung einer Überprüfung,
bis die Bedingung, die den Fehler ausgelöst hat, nicht mehr gültig ist.

Warnung
(<text>)

EinWarnereignis übergibt eine Meldung an den Benutzer, gestattet jedoch die Fortsetzung ungeachtet der Bedin-
gung, die die Warnung ausgelöst hat.

Verworfene Funktionen(English)

Syntax Beschreibung

BenutzerdefinierteFunktionAufrufen
(<A>,)

Gibt das Ergebnis eines externen Aufrufs einer Codebibliothek zurück. Die Codebib-
liothek muss für die Determinations Engine bereitgestellt werden, damit die ben-
utzerdefinierte Funktion erfolgreich aufgerufen wird.

לוגייםמחברים (English)

תחביר תיאור

אם
if

הבאהההוכחהאתשמכילהמסקנהשורתבסוףלהופיעשיכולאופציונלימונח

וגם שתיביןלוגיצירוף attributes

תחביר תיאור

and

או
or

שתיביןלוגיתהפרדה attributes

זהאוזה
מאחד

מאחדלפחות
נכוןמהבאיםאחדלפחות

לפחות
מהבאיםאחדלפחות

משביעהנומהבאיםאחדכל
רצון

שתילקבץצורךכשישהפרדותעםהקבצהמרכיב attributes יותראו

שניהם
הכל

נכוניםהבאיםכל
רצוןמשביעיהבאיםכל

מתקיימיםהבאיםהתנאיםכל

שתילקבץצורךכשישצירופיםעםהקבצהמרכיב attributes יותראו

אחר
otherwise

'אחרתמשפטלציוןטבלהכללשלבסוףשמופיעמונח '

הנו
is

להמקוצרהביטוישביןהמקראברשומתשימושבושנעשהמונח -attribute text
המלא

לוגיותפונקציות (English)

תחביר תיאור

שנכוןלא <expr> לאם'אמת'להחזרתהמשמשמפעיל -attribute 'שקרערךיש '

<var> בטוחהוא
<var> ודאיהוא
<var> בטוחההיא
<var> ודאיתהיא
<var> ספקללאהוא
<var> ספקללאהיא

לאאו[האםבטוחזה]<expr>
לאאו[האםודאיזה]<expr>
לאאו[האםספקאין]<expr>

לאם'אמת'להחזרתהמשמשמפעיל -attribute לשווהשאינוערך -uncertain

<var> ודאילא
<var> בטוחלא
<var> בספקהוא
<var> ודאיתלא

שלהערךאם'אמת'להחזרתהמשמשמפעיל attribute הוא uncertain

תחביר תיאור

<var> בטוחהלא
<var> בספקהיא

האםבטוחלאזה <expr>
האםודאילאזה <expr>

האםספקיש <expr>
ודאילא
בטוחלא
ספקיש

<var> ידוע
<var> ידועה

לאאו[האםידוע]<expr>
אם'אמת'להחזרתהמשמשמפעיל attribute ערךמכילה

<var> ידועלא
<var> ידועהלא

לאאו[האםידועלא]<expr>
ידועלא

לאם'אמת'להחזרתהמשמשמפעיל -attribute ערךאין

עים לוגייםקבו (English)

תחביר תיאור

נכון
אמת

טבלהלכלליהמשמשקבוע'אמת'ערך .

נכוןלא
שקר

טבלהלכלליהמשמשקבוע'שקר'ערך .

בטוחלא ערך uncertain טבלהלכלליהמשמשקבוע .

השוואהמפעילי (English)

תחביר תיאור

<lhs><<rhs>
<lhs> מקטן <rhs>
<lhs> מקטנה <rhs>
<lhs> לפני <rhs>

מ-קטן
אומספרייםערכיםעםזהבאופרטורמשתמשיםכאשרטבעיתשפהשלצורהאיןלב:שים

מטבעערכי .

<lhs>><rhs>
<lhs> מגדול -<rhs>
<lhs> מגדולה <rhs>
<lhs> מגדול <rhs>
<lhs> מגדולה -<rhs>
<lhs> אחרי <rhs>

מ-גדול
אומספרייםערכיםעםזהבאופרטורמשתמשיםכאשרטבעיתשפהשלצורהאיןלב:שים

מטבעערכי .

תחביר תיאור

<lhs><=<rhs>
<lhs> שווהאוקטן
<rhs>ל

לשווהאוקטן -

<lhs>>=<rhs>
<lhs> לשווהאוגדול -
<rhs>

לשווהאוגדול -

<lhs>=<rhs>
<lhs> לשווה <rhs>
<lhs> שווה <rhs>

שווה

<lhs><><rhs>
<lhs> משונה <rhs>

שווהלא

מספריותפונקציות (English)

תחביר תיאור

(<numText>)מספר מספרילערךשצוינההמחרוזתאתממירה

<x> + <y> מתמטיחיבור

<x> - <y> מתמטיחיסור

מתמטיכפל

מתמטיחילוק

שלםחיובימספרשלחילוק

שלםמספרחילוקאחריהשארית

,<x>)מקסימום <y>)
,<date/time/datetime1>)מקסימום <date/time/datetime2>)

ביןהגבוההערך <val1> <val2>לבין
ביןהמאוחר <val1> לבין <val2>

השנייםמביןהגדולהערךאתמחזירה

,<x>)מינימום <y>)
,<date/time/datetime1>)מינימום <date/time/datetime2>)

ביןהנמוךהערך <val1> לבין <val2>
ביןהמוקדם <val1> לבין <val2>

השנייםמביןהקטןהערךאתמחזירה

Xy(<x>, <y>) x בחזקת y

Ex(<x>) ערך e שללחזקהקבוע x

מוחלטערך- (<x>) שלמוחלטערך x

(<x>)אקספוננט שלטבעילוגריתם x

תחביר תיאור

(<x>)לוגריתם של10בסיסעללוגריתם x

ריבועישורש- (<x>)
the square root of <val>

שלריבועישורש x

,<x>)עיגול <n>)
<val> rounded to <num_places> decimal place
<val> rounded to <num_places> decimal places

אתמעגלת x עשרונילמספר

,<x>)קיצור <n>) x-ה לקוצץ -n עשרונייםמקומות

(<x>)סינוס סינוס (Sine) של x

(<x>)קוסינוס קוסינוס (Cosine) של x

(<x>)טנגנס טנגנס (Tangent) של x

סינוסארק- (<x>) סינוסארק- (Arcsine) של x

קוסינוסארק- (<x>) קוסינוסארק- (Arccosine) של x

טנגנסארק- (<x>) טנגנסארק- (Arctangent) של x

תאריךשלפונקציות (English)

תחביר תיאור

()היוםהתאריך-
היוםהתאריך

האתמחזיר -date העבודהמושבבתחילתהנוכחי .

(<text>)תאריך שללערךשצוינההמחרוזתאתממירה date

תאריךצור- (<year>,
<month>, <day>)

מחזירה date שצוינווהיוםהחודשהשנה,מןשנוצר .

מתוךיום- (<date/datetime>) שלהיוםרכיבאתמחזירה date/datetime attribute.

מתוךחודש- (<date/d-
atetime>)

שלהחודשרכיבאתמחזירה date/datetime attribute.

מתוךשנה-
(<date/datetime>)

שלהשנהרכיבאתמחזירה date/datetime attribute.

בשבועהבא-היום- (<date/d-
atetime>, <day>)
the next Friday on or
after <from-date>
the next Monday on or
after <from-date>

האתמחזירה -date שלפני/אחריאובשבועהבאהיוםשל date (נעשהשבולתחבירבהתאם
.(שימוש

תחביר תיאור

the next Saturday on or
after <from-date>
the next Sunday on or
after <from-date>
the next Thursday on or
after <from-date>
the next Tuesday on or
after <from-date>
the next Wednesday on
or after <from-date>

הבאהתאריך- (<date>,
<day>, <month>)
the previous UK tax year
start date on or before
<from-date>

אחריהנתוניםוהחודשהיוםשלהבאהמופעאתמחזירה date.

ימיםהוסף-
(<date/datetime>, <num_
days>)

שחלהתאריך <num_days>
אחריימים <datetime>
שחלהזמן <num_days>
אחריימים <datetime>

מימיםמספרמחסירהאומוסיפה -date. המספרמקוצרתתחביריתבצורהכשמשתמשים
עלימיםלהוסיףכדיחיובישלםמספרלהיותצריך date לחסרכדישלילימספראוהקלט,של

מהימים -date הקלטשל .

שבועותהוסף- (<date/d-
atetime>, <num_weeks>)

שחלהתאריך <num_
weeks> weeks after <dat-
etime>
the time <num_weeks>
weeks after <datetime>

עלשבועותמספרמוסיפה date. להיותצריךהמספרמקוצרתתחביריתבצורהכשמשתמשים
עלשבועותלהוסיףכדיוחיובישלם date הקלטשל .

חודשיםהוסף- (<date/d-
atetime>, <num_months>)

שחלהתאריך <num_
months> אחריחודשים <dat-
etime>

שחלהזמן <num_months>
אחריחודשים <datetime>

עלחודשיםמספרמוסיפה date. צריךהמספרהמקוצרת,התחביריתבצורהכשמשתמשים
עלחודשיםלהוסיףכדיוחיובישלםלהיות date הקלטשל .

שניםהוסף- (<date/d-
atetime>, <num_years>)

שחלהתאריך <num_years>
years after <datetime>
the time <num_years>

עלשניםמספרמוסיפה date. להיותצריךהמספרמקוצרתתחביריתבצורהכשמשתמשים
עלשניםלהוסיףכדיוחיובישלם date הקלטשל .

תחביר תיאור

years after <datetime>

השבועימי-ספירת-
(<date1>, <date2>)
the number of weekdays
(inclusive) between
<date1> and <date2>

שביןהשבועימימספראתמונה date1 .date2-ל ששי.ויוםשנייוםשביןהימיםמספרכלומר,
ההערה: -date והכוללהואיותרהמוקדם -date כוללאינויותרהמאוחר .

שנהתחילת- (<date/d-
atetime>)

עבורבשנההראשוןהיום
<from-date>

האתמחזירה -date שבהבשנההראשון date .חל

שנהסוף- (<date/datetime>)
עבורבשנההאחרוןהיום

<from-date>
האתמחזירה -date שבהבשנההאחרון date .חל

בימיםהפרש- (<date/d-
atetime1>,
<date/datetime2>)

ביןהימיםמספר <date1>
לבין <date2>

ביןהשלמיםהימיםמספראתמחזירה date/datetime1 .date/datetime2-ל ההופעהסדר
התוצאהעלמשפיעלאהתאריכיםשנישל .

בימיםמשך- (<date/d-
atetime1>,
<date/datetime2>)

(כולל)ביןהימיםמספר
בין <date1> לבין <date2>

בין(כולל)השלמיםהימיםמספראתמחזירה date/datetime1 .date/datetime2-ל חישוב
שנישלההופעהסדר.1היאהתוצאהזהיםכשהתאריכיםהקצה.נקודותשתיאתכוללזה

התוצאהעלמשפיעלאהתאריכים .

בימיםפער- (<date/d-
atetime1>,
<date/datetime2>)

(לאביןהימיםמספר
ביןכולל) <date1> לבין

<date2>

ביןכולל)(לאהשלמיםהימיםמספראתמחזירה date/datetime1 .date/datetime2-ל
סדר).0(אפסהיאהתוצאהזהיםכשהתאריכיםהקצה.נקודותשתיאתכוללאינוזהחישוב

התוצאהעלמשפיעלאהתאריכיםשנישלההופעה .

בשבועותהפרש- (<date/d-
atetime1>,
<date/datetime2>)

ביןהשבועותמספר
<date1> לבין <date2>

ביןשחלפוהשלמיםהשבועותמספראתמחזירה date/datetime1 0ל -date/datetime2.
התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

בשבועותמשך- (<date/d-
atetime1>,
<date/datetime2>)

בין(כולל)השבועותמספר
<date1> לבין <date2>

ביןשחלפוהשלמיםהשבועותשלהכוללהמספראתמחזירה date/datetime1 -date/d-ו
atetime2. התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

תחביר תיאור

בשבועותפער- (<date/d-
atetime1>,
<date/datetime2>)

כולל)(לאהשבועותמספר
בין <date1> לבין <date2>

ביןשחלפוהשלמיםהשבועותשלכוללהלא-המספראתמחזירה date/datetime1 -ו
date/datetime2. התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

בחודשיםהפרש- (<date/d-
atetime1>,
<date/datetime2>)

ביןהחודשיםמספר
<date1> לבין <date2>

ביןשחלפוהשלמיםהחודשיםמספראתמחזירה date/datetime1 .date/datetime2-ל
התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

בחודשיםמשך- (<date/d-
atetime1>,
<date/datetime2>)

כולל)(לאהחודשיםמספר
בין <date1> לבין <date2>

ביןשחלפוחודשיםשלהכוללהמספראתמחזירה date/datetime1 .date/datetime2-ל
התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

בחודשיםפער- (<date/d-
atetime1>,
<date/datetime2>)

בין(כולל)החודשיםמספר
<date1> לבין <date2>

ביןשחלפוהשלמיםהחודשיםשלכוללהלא-המספראתמחזירה date/datetime1 -ל
date/datetime2. התוצאהעלמשפיעלאהתאריכיםשנישלההופעהסדר .

בשניםהפרש- (<date/d-
atetime1>,
<date/datetime2>)

ביןהשניםמספר <date1>
לבין <date2>

שביןהשניםמספראתמחזירה date/datetime1 .date/datetime2-ו שנישלההופעהסדר
התוצאהעלמשפיעלאהתאריכים .

בשניםמשך- (<date/d-
atetime1>,
<date/datetime2>)

בין(כולל)השניםמספר
<date1> לבין <date2>

שביןשניםשלהכוללהמספראתמחזירה date/datetime1 .date/datetime2-ו סדר
התוצאהעלמשפיעלאהתאריכיםשנישלההופעה .

בשניםפער- (<date/d-
atetime1>,
<date/datetime2>)

כולל)(לאהשניםמספר
בין <date1> לבין <date2>

שביןשניםשלכוללהלא-המספראתמחזירה date/datetime1 .date/datetime2-ו סדר
התוצאהעלמשפיעלאהתאריכיםשנישלההופעה .

ביוםהשעהשלפונקציות (English)

תחביר תיאור

(<text>)שעה ביוםלשעההנתונההמחרוזתאתממירה

מתוךשנייה- (<time/datetime>) שלהשנייהרכיבאתמחזירה timeofday/datetime attribute.

מתוךדקה- (<time/datetime>) שלהדקהרכיבאתמחזירה timeofday/datetime attribute.

מתוךשעה- (<time/datetime>) שלהשעהרכיבאתמחזירה timeofday/datetime attribute.

ושעהתאריךשלפונקציות (English)

תחביר תיאור

כעתהזמן- () האתמחזיר -date העבודהמושבבתחילתהנוכחייםהשעהואת .

שעהתאריך- (<text>) שללערךשצוינההמחרוזתאתממירה datetime

ושעהתאריך- (<date>,
<time>)
<date> בשעה <time-of-
day>
<time-of-day> בתאריך
<date>

בהשעהאתמגדירה -date שלוהיוםהשעהשליחדצירוףבאמצעות date.

בשניותהפרש- (<dat-
etime1>, <datetime2>)

בשניותהפרש-
(<timeOfDay1>,
<timeOfDay2>)

ביןהשניותמספר
<date1> לבין <date2>

שביןהשניותמספראתמחזיר datetime1 .datetime2-ו

בשניותמשך- (<dat-
etime1>, <datetime2>)

בשניותמשך-
(<timeOfDay1>,
<timeOfDay2>)

(כולל)השניותמספר
בין <date1> לבין
<date2>

שביןהשניותשלהכוללהמספראתמחזיר datetime1 .datetime2-ו

בשניותפער- (<dat-
etime1>, <datetime2>)

בשניותפער-
(<timeOfDay1>,
<timeOfDay2>)

(לאהשניותמספר
ביןכולל) <date1> לבין

שביןהשניותשלכוללהלא-המספראתמחזיר datetime1 .datetime2-ו

תחביר תיאור

<date2>

בדקותהפרש- (<dat-
etime1>, <datetime2>)

בדקותהפרש-
(<timeOfDay1>,
<timeOfDay2>)

ביןהדקותמספר
<date1> לבין <date2>

שביןהדקותמספראתמחזיר datetime1 .datetime2-ו

בדקותמשך- (<dat-
etime1>, <datetime2>)

בדקותמשך-
(<timeOfDay1>,
<timeOfDay2>)

(לאהדקוחמספר
ביןכולל) <date1> לבין

<date2>

שביןהדקותשלהכוללהמספראתמחזיר datetime1 .datetime2-ו

בדקותהפער- (<dat-
etime1>, <datetime2>)

בדקותהפער-
(<timeOfDay1>,
<timeOfDay2>)

(כולל)הדקוחמספר
בין <date1> לבין
<date2>

שביןהדקותשלכוללהלא-המספראתמחזיר datetime1 .datetime2-ו

בשעותהפרש- (<dat-
etime1>, <datetime2>)

בשעותהפרש-
(<timeOfDay1>,
<timeOfDay2>)

ביןהשעותמספר
<date1> לבין <date2>

שביןהשעותמספראתמחזיר datetime1 .datetime2-ו

בשעותמשך- (<dat-
etime1>, <datetime2>)

בשעותמשך-
(<timeOfDay1>,
<timeOfDay2>)

(כולל)השעותמספר
בין <date1> לבין
<date2>

שביןהשעותשלהכוללהמספראתמחזיר datetime1 .datetime2-ו

בשעותפער- (<dat- שביןהשעותשלכוללהלא-המספראתמחזיר datetime1 .datetime2-ו

תחביר תיאור

etime1>, <datetime2>)
בשעותפער-

(<timeOfDay1>,
<timeOfDay2>)

(לאהשעותמספר
ביןכולל) <date1> לבין

<date2>

מתוךתאריך- (<dat-
etime>)

אתמחלצת date datetime-מ attribute.

מתוךזמן- (<datetime>)
מתוךביוםהשעהאתמחלצת datetime attribute. שלהערךאתלהגדירכדיבהלהשתמשניתן

timeofday attribute המתוךהשעהחילוץבאמצעותהכלל,שלהביצועלשעת -date והשעה
.הנוכחיים

שעותהוסף-
(<datetime>, <num_
hours>)

שעותהוסף-
(<timeOfDay>, <num_
hours>)

שחלהזמן <num_hours>
אחרישעות <datetime>

עלשעותמספרמוסיפה date שעהשל .

דקותהוסף- (<datetime>,
<num_minutes>)

דקותהוסף-
(<timeOfDay>, <num_
minutes>)

שחלהזמן <num_
minutes> אחרידקות
<datetime>

עלדקותמספרמוסיפה date שעהשל .

שניותהוסף-
(<datetime>, <num_
seconds>)

שניותהוסף-
(<timeOfDay>, <num_
seconds>)

שחלהזמן <num_
seconds> אחרישניות
<datetime>

עלשניותמספרמוסיפה date שעהשל .

טקסטשלפונקציות (English)

תחביר תיאור

<text1> & <text2>
אתמשלבת text1עם text2 ערךליצירתהלאה,וכן text בודד.

המפרמטבאמצעותנוצריםהערכיםסוג.מכלבמשתניםלהשתמשבאפשרותךלב:שים
הכללשלהעבודהבמושבהמותקן .

שלשרשור <text1> &
<text2>

אתמשלבת text1עם text2 ערךליצירתהלאה,וכן text בודד.
המפרמטבאמצעותנוצריםהערכיםסוג.מכלבמשתניםלהשתמשבאפשרותךלב:שים

הכללשלהעבודהבמושבהמותקן .

,<text>)מכיל <substring>)
שלהנתוןהערךאםשמצייןבוליאניערךמחזיר text שלהנתונההמחרוזתתת-אתמכיל

text. השוואת text רישיותלאותיותרגישה .

עםמסתיים- (<text>, <sub-
string>)

שלהנתוןהערךאםשמצייןבוליאניערךמחזיר text שלהנתונההמחרוזתבתת-מסתיים
text. השוואת text רישיותלאותיותרגישה .

מספרהוא- (<text>) שלהנתוןהערךאםשמצייןבוליאניערךמחזירה text תקףמספרמייצג .

(<text>)אורך ערךשלבתוויםהאורךאתמחזירה text .הנתון

עםמתחיל- (<text>, <sub-
string>)

שלהנתוןהערךאםשמצייןבוליאניערךמחזיר text שלהנתונההמחרוזתבתת-מתחיל text.
השוואת text רישיותלאותיותרגישה .

ממחרוזתקטע- (<text>, <off-
set>, <length>)

שלהמחרוזתתת-אתמחזירה text אםבתווים.שצויןהאורךשהואהנתוןבהיסטשמתחילה
תוויםפחותיוחזרוהמחרוזתלסוףמגיעים .

(<number>)טקסט
(<date>)טקסט
(<datetime>)טקסט
(<timeOfDay>)טקסט

אתאושצויןהמספראתממירה date attribute שללערך text.

וקשרישותשלפונקציות (English)

תחביר תיאור

בקשרמתקיים- (<relationship>,
<Exp>)
בקשר <ent> מתקיים <attr>

בקשרמתקיים <ent>,<attr>
<val>, הקשרעבור <ent>

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " "רביםליחיד",יחיד
אחדתנאירקכשישלרבים","רביםאוליחיד" .

הקשרעבור- (<relationship>,
<alias>)

הקשרעבור- (<relationship>)
הקשרעבור <ent>
הקשרעבור <ent> (<alias>)

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " "רביםליחיד",יחיד
תנאיםכמהאואחדתנאיכשישלרבים","רביםאוליחיד" .

הקשרבכל- (<relationship>,
<Exp>)

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " אולרבים"יחיד
בקבוצתהחבריםכלאםלקבועצורךשישבמקרהלרבים","רבים entity צריכיםהיעד

הזה.לכלללהתאים

תחביר תיאור

בקשרמופעכלעבור <ent>,
<attr>

בקשרמופעכלעבור <ent>
מתקיים <attr>

מופעכלעבור <ent-attr>

אחדתנאירקמכילכשהכללשימושנעשהזובצורה .

בקשרמופע-בכל- (<relationship>)
בקשרמופע-בכל- (<relationship>,

<alias>)
בקשרמופעכלעבור <ent>

בקשר <ent> מקייםמופעכל
בקשרמופעכלעבור <ent>

(<alias>)
בקשר <ent> מקייםמופעכל
(<alias>)

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " אולרבים"יחיד
בקבוצתהחבריםשכללקבועצורךשישבמקרהלרבים","רבים entity צריכיםהיעד

הזה.לכלללהתאים
תנאיםכמהאואחדתנאימכילכשהכללשימושנעשהזובצורה .

בקשרקיים- (<relationship>,
<Exp>)
בקשר <ent> מופעלפחותיש

המקייםאחד <attr>
בקשראחדמופעלפחות

<ent>,<attr>

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " אולרבים"יחיד
בקבוצתכלשהוחברישאםלקבועצורךשישבמקרהלרבים","רבים entity היעד

הזה.לכלללהתאיםשצריך
אחדתנאירקמכילכשהכללשימושנעשהזובצורה .

בקשרמופע-קיים- (<relationship>)
בקשרמופע-קיים- (<relationship>,

<alias>)
המקייםאחדמופעלפחותיש

בקשר <ent>
בקשר <ent> מופעלפחותיש

המקייםאחד
המקייםאחדמופעלפחותיש

בקשר <ent> (<alias>)
בקשר <ent> מופעלפחותיש

המקייםאחד (<alias>)

מלהפניהמשמשת -entity לאחת -entity באחרת -relationship " אולרבים"יחיד
בקבוצתכלשהוחברישאםלקבועצורךשישבמקרהלרבים","רבים entity היעד

הזה.לכלללהתאיםשצריך
תנאיםכמהאואחדתנאימכילכשהכללשימושנעשהזובצורה .

בקשרחבר- (<target>, <rela-
tionship>)

בקשרחבר- (<target>, <alias>,
<relationship>)
<ent-target> (<alias>) חבר
בקשר <ent>
<ent-target> (<alias>) חברה
בקשר <ent>
<ent-target> בקשרחבר <ent>
<ent-target> בקשרחברה <ent>

שמופעלהסיקכדימשמש entity באיברהוא -relationship. שבודקכתנאימשמש
שלמופעאם entity שליעדהוא relationship שלשניבמופעשמקורו entity.

תחביר תיאור

בקשרחבר-אינו- (<target>, <rela-
tionship>)

שמופעלבדוקהמאפשרכתנאימשמש entity שליעדאינו relationship שמקורו
שלשניבמופע entity.

מופעיםספירת- (<relationship>)
בקשרמופעיםכמות <ent>

שלהקיימיםהמופעיםמספראתמונה entity.

אםמופעים-ספירת- (<rela-
tionship>, <Exp>)

בקשרמופעיםכמות <ent>
המקיימים <condition>

שלהמופעיםמספראתמונה entity שמכילה entity-level attribute עםמסוימת
מסויםערך .

מקסימאלימופע-ערך- (<rela-
tionship>, <number-attr>)

מקסימאלימופע-ערך- (<rela-
tionship>, <date-attr>)

מקסימאלימופע-ערך- (<rela-
tionship>, <datetime-attr>)

מקסימאלימופע-ערך- (<rela-
tionship>, <time-attr>)

עבורהגבוההערך <attr> בקשר
<ent>

עבורהמירביהערך <attr> בקשר
<ent>

עבורהמקסימאליהערך <attr>
בקשר <ent>
<date-attr> בקשרהמאוחר <ent>
<max-attr> המירביהערךשהינו
בקשר <ent>
<max-attr> הגבוההערךשהינו
בקשר <ent>
<max-attr> הערךשהינו

בקשרהמקסימאלי <ent>

משתנהשלהאחרוןאוביותרהגבוההערךאתמביאה entity-level שלהמופעיםלכל
.entity-ה

אםמקסימאלי-מופע-ערך- (<rela-
tionship>, <number-attr>, <con-
dition>)

אםמקסימאלי-מופע-ערך- (<rela-
tionship>, <date-attr>, <condition>)

אםמקסימאלי-מופע-ערך- (<rela-
tionship>, <datetime-attr>, <con-
dition>)

אםמקסימאלי-מופע-ערך- (<rela-
tionship>, <time-attr>, <condition>)

עבורהגבוההערך <attr> בקשר

משתנהשלהאחרוןאוביותרהגבוההערךאתמביאה entity-level, שלהמופעיםלכל
entity-ה שמכילה entity-level attribute מסויםערךעםמסוימת .

תחביר תיאור

<ent> מתקייםכאשר <ent-test>
עבורהמירביהערך <attr> בקשר

<ent> מתקייםכאשר <ent-test>
עבורהמקסימאליהערך <attr>

בקשר <ent> מתקייםכאשר <ent-
test>
<date-attr> בקשרהמאוחר <ent>

מתקייםכאשר <ent-test>
<max-attr> המירביהערךשהינו
בקשר <ent> מתקייםכאשר <ent-
test>
<max-attr> הגבוההערךשהינו
בקשר <ent> מתקייםכאשר <ent-
test>
<max-attr> הערךשהינו

בקשרהמקסימאלי <ent> כאשר
מתקיים <ent-test>

מינימאלימופע-ערך- (<rela-
tionship>, <number-attr>)

מינימאלימופע-ערך- (<rela-
tionship>, <date-attr>)

מינימאלימופע-ערך- (<rela-
tionship>, <datetime-attr>)

מינימאלימופע-ערך- (<rela-
tionship>, <time-attr>)

עבורהנמוךהערך <attr> בקשר
<ent>

עבורהמזעריהערך <attr> בקשר
<ent>

עבורהמינימאליהערך <attr>
בקשר <ent>
<date-attr> בקשרהמוקדם <ent>

משתנהשלביותרהישןאוביותרהנמוךהערךאתמביאה entity-level המופעיםלכל
השל -entity.

אםמינימאלי-מופע-ערך- (<rela-
tionship>, <number-attr>, <con-
dition>)

אםמינימאלי-מופע-ערך- (<rela-
tionship>, <date-attr>, <condition>)

אםמינימאלי-מופע-ערך- (<rela-
tionship>, <datetime-attr>, <con-
dition>)

אםמינימאלי-מופע-ערך- (<rela-
tionship>, <time-attr>, <condition>)

משתנהשלביותרהישןאוביותרהנמוךהערךאתמביאה entity-level המופעיםלכל
השל -entity שמכילה entity-level attribute מסויםערךעםמסוימת .

תחביר תיאור

עבורהנמוךהערך <attr> בקשר
<ent> מתקייםכאשר <ent-test>

עבורהמזעריהערך <attr> בקשר
<ent> מתקייםכאשר <ent-test>

עבורהמינימאליהערך <attr>
בקשר <ent> מתקייםכאשר <ent-
test>
<date-attr> בקשרהמוקדם <ent>

מתקייםכאשר <ent-test>
<num-attr> המזעריהערךשהינו
בקשר <ent> מתקייםכאשר <ent-
test>
<num-attr> הנמוךהערךשהינו
בקשר <ent> מתקייםכאשר <ent-
test>
<num-attr> הערךשהינו

בקשרהמינימאלי <ent> כאשר
מתקיים <ent-test>

מופעיםסכום- (<relationship>,
<number-attr>)

כלשלכוללסיכום <attr> בקשר
<ent>
<num-attr> הקשרעבורמסוכם
<ent>

משתנהשלהמופעיםכלסכוםאתמביאה entity-level.

אםמופעים-סכום- (<relationship>,
<number-attr>, <condition>)

כלשלכוללסיכום <attr> בקשר
<ent> מתקייםכאשר <condition>
<num-attr> הקשרעבורמסוכם
<ent> מתקייםכאשר <ent-test>

משתנהשלהמופעיםכלסכוםאתמביאה entity-level הבעבורכ'אמת',שנקבע -
entity להשיש attribute בוליאנית entity-level כ'אמתשנקבעה '.

אםמופע-ערך- (<relationship>,
<number-attr>, <condition>)

אםמופע-ערך- (<relationship>,
<text-attr>, <condition>)

אםמופע-ערך- (<relationship>,
<date-attr>, <condition>)

אםמופע-ערך- (<relationship>,
<datetime-attr>, <condition>)

אםמופע-ערך- (<relationship>,
<time-attr>, <condition>)

שלייחודיממופעערךמביאה entity , מופעימתוךשזוהה entity שלהיעד rela-
tionship תנאיבאמצעות .

l שלבודדמופעמזהההתנאיאם entity המחושבהערךהואהערךאזהיעד,
שלזהמופעכנגד entity.

l אתמחזירהאזלתנאי,שמתאיםאחדיעדממופעיותרישאם uncertain.

l והלתנאי,שמתאיםיעדמופעאףאיןאם -relationship הואהערךאזידועה,
uncertain.

שווהמופע- (<instance1>, שלמופעיםשניאםקובעת entity אחדלמעשההם .

תחביר תיאור

<instance2>)

שונהמופע- (<instance1>,
<instance2>)

שלמופעיםשניאםקובעת entity לאואואחדלמעשההם .

InferInstance(<relationship>,
<identity>)

שמופעשמסיקכתנאימשמש entity בחברוהואקיים -relationship.

זמניתהנמקהשלפונקציות (English)

תחביר תיאור

מבדלת-ספירה-
,<start-date>)בתקופה
<end-date>, <vari-
able>)

מבדלת-ספירה-
,<start-date>)בתקופה
<end-date>, <con-
dition>)

שביןבמרווחהמשתנה,שלהידועיםהבדידיםהערכיםמספראתמונה date עד(כולל)ההתחלתי
date כולל(לאהאחרון).

מבדלת-ספירה-
אםבתקופה- (<start-

date>, <end-date>,
<variable>, <con-
dition>)

שביןבמרווחהידועיםהבדידיםהערכיםמספראתמונה date עד(כולל)ההתחלתי date האחרון
'אמתהואבוליאנימסנןשבהםמקריםרקכוללתזוספירהכולל).(לא '.

בתקופהסיכום-
(<start-date>, <end-
date>, <number-attr>)

שביןבמרווחמספר,משתנהאומטבעמשתנהשלהסכוםאתמחשבת date עד(כולל)ההתחלתי
date שבהנחהכולל).(לאהאחרון -attribute יומיתכמותהיא .

אםבתקופה-סיכום-
(<start-date>, <end-
date>, <number-attr>,
<condition>)

שביןבמרווחמספר,משתנהאומטבעלמשתנההיומייםהערכיםכלשלהסכוםאתמחשבת date
עד(כולל)ההתחלתי date 'אמתהואתנאישבהןהפעמיםאתרקכוללהחישובכולל).(לאהאחרון '.

בתקופהמקסימום-
(<start-date>, <end-
date>, <number-attr>)

בתקופהמקסימום-
(<start-date>, <end-
date>, <date-attr>)

בתקופהמקסימום-
(<start-date>, <end-
date>, <datetime-
attr>)

שביןבמרווחמשתנהשלהמרביהערךאתבוחרת date עד(כולל)ההתחלתי date (לאהאחרון
.(כולל

תחביר תיאור

בתקופהמקסימום-
(<start-date>, <end-
date>, <time-attr>)

בתקופה-מקסימום-
,<start-date>)אם
<end-date>, <number-
attr>, <condition>)

בתקופה-מקסימום-
,<start-date>)אם
<end-date>, <date-
attr>, <condition>)

בתקופה-מקסימום-
,<start-date>)אם
<end-date>, <dat-
etime-attr>, <con-
dition>)

בתקופה-מקסימום-
,<start-date>)אם
<end-date>, <time-
attr>, <condition>)

שביןבמרווחמשתנהשלהמרביהערךאתבוחרת date עד(כולל)ההתחלתי date (לאהאחרון
'אמתהואתנאישבהןהפעמיםאתרקכוללהחישובכולל). '.

בתקופהמינימום-
(<start-date>, <end-
date>, <number-attr>)

בתקופהמינימום-
(<start-date>, <end-
date>, <date-attr>)

בתקופהמינימום-
(<start-date>, <end-
date>, <datetime-
attr>)

בתקופהמינימום-
(<start-date>, <end-
date>, <time-attr>)

שביןבמרווחמשתנהשלהמזעריהערךאתבוחרת date עד(כולל)ההתחלתי date (לאהאחרון
.(כולל

אםבתקופה-מינימום-
(<start-date>, <end-
date>, <number-attr>,
<condition>)

אםבתקופה-מינימום-
(<start-date>, <end-
date>, <date-attr>,
<condition>)

אםבתקופה-מינימום-

שביןבמרווחמשתנהשלהמזעריהערךאתבוחרת date עד(כולל)ההתחלתי date (לאהאחרון
'אמתהואתנאישבהןהפעמיםאתרקכוללהחישובכולל). '.

תחביר תיאור

(<start-date>, <end-
date>, <datetime-
attr>, <condition>)

אםבתקופה-מינימום-
(<start-date>, <end-
date>, <time-attr>,
<condition>)

משוקלל-ממוצע-
,<start-date>)בתקופה
<end-date>, <number-
attribute>)

שביןבמרווחמספרמשתנהאומטבעמשתנהשלהממוצעהערךאתמחשבת date (כולל)ההתחלתי
עד date ערךכלחלשבוהזמןטווחלפימשוקללהממוצעהערךכולל).(לאהאחרון .

משוקלל-ממוצע-
אםבתקופה- (<start-

date>, <end-date>,
<number-attribute>,
<condition>)

שביןבמרווחמספרמשתנהאומטבעמשתנהשלהממוצעהערךאתמחשבת date (כולל)ההתחלתי
עד date הערך(כלומר,'אמת'הואתנאישבהןהפעמיםאתרקכוללהחישובכולל).(לאהאחרון

'אמתהיהשהמסנןפעםבכלונערךערךכלחלשבוהזמןטווחלפימשוקללהממוצע ').

בתקופה-מתקיים-
,<start-date>)תמיד
<end-date>, <con-
dition>)

שביןבמרווחהפעמיםבכלאמתהואבוליאניתנאיכאשרורקאם'אמת'מחזירה date ההתחלתי
עד(כולל) date כולל(לאהאחרון).

בתקופה-מתקיים-
ימיםלפחות- (<start-

date>, <end-date>,
<NumDays>, <con-
dition>)

בסדרבהכרח(לאשצויןהימיםבמספרלפחותאמתהואבוליאניתנאיכאשרורקאם'אמת'מחזירה
שביןבמרווחעוקב) date עד(כולל)ההתחלתי date כולל(לאהאחרון).

בתקופה-מתקיים-
ימיםברצף- (<start-

date>, <end-date>,
<NumDays>, <con-
dition>)

במרווחעוקביםימיםשלנתוןבמספרלפחותאמתהואבוליאניתנאיכאשרורקאם'אמת'מחזירה
שבין date עד(כולל)ההתחלתי date כולל(לאהאחרון).

בתקופה-מתקיים-
,<start-date>)לעיתים
<end-date>, <con-
dition>)

שביןבמרווחאמתתמידהואבוליאניתנאיכאשרורקאם'אמת'מחזירה date עד(כולל)ההתחלתי
date כולל(לאהאחרון).

בתאריךערך-
(<date>, <value>)

השלהערךאתמחזירה -attribute בהנתונה -date .שצוין

בתאריך-התקיים-
,<date>)האחרון <con-
dition>)

האתמחזירה -date מאחורהבמבטהאחרונה,בפעם'אמת'היהבוליאניתנאישבו -date וכולל))
.שצוין

תחביר תיאור

בתאריך-מתקיים-
,<date>)הבא <con-
dition>)

האתמחזירה -date מאחורהבמבטהבאה,בפעם'אמת'יהיהבוליאניתנאישבו -date (שצויןוכולל) .

גגתאריך- ()
ערךמחזירה date לערךשווהשהוא date קריהאפשרי,ביותרהמאוחר date, יותרהואשלבטח
מכלמאוחר date ללהיותשעשויאחר -date attribute לביטויאו .

ריצפהתאריך- ()
ערךמחזירה date לערךשווהשהוא date קרי-האפשריביותרהמוקדם , date יותרהואשלבטח
מכלמוקדם date ללהיותשעשויאחר -date attribute לביטויאו .

מתאריךימים-
(<date>, <end-date>)

מאזהמלאיםהימיםמספראתמבטאוהואיוםכלשמשתנהמספרמשתנהמחזירה date.

מתאריךשבועות-
(<date>, <end-date>)

מאזהמלאיםהשבועותמספראתמבטאוהואשבועכלשמשתנהמספרמשתנהמחזירה date.

מתאריךחודשים-
(<date>, <end-date>)

מהחלהמלאיםהחודשיםמספראתומבטאחודשכלשמשתנהמספרמשתנהמחזירה -date. שים
האםלב: -date מהחודשימיםפחותמכילשאחריוהחודשואילולחודש28ה-היוםאחריחלהנתון

אםלדוגמה,שאחריו.החודששלהאחרוןביוםתיווצרהשנתילחודשהשינוינקודתאזי-הנתון date
2007בפברואר28תהיההראשונההשינוינקודתאז,2007בינואר31או28,29,30הואהנתון .

מתאריךשנים-
(<date>, <end-date>)

מאזהמלאותהשניםמספראתמבטאוהואשנהכלשמשתנהמספרמשתנהמחזירה date.

רצף-בכל-מתקיים-
,<days>)הימים <con-
dition>)

מחזירה attribute לכל'אמת'הואבוליאניתנאיאםרק'אמת'והיאהזמןבמשךשמשתנהבוליאנית
הנוכחיהיוםאתכולללאהקודמים,הימיםשלהנתוןהמספר .

ימים-ברצף-מתקיים-
,<minDays>)בתקופה
<days>, <condition>)

מחזירה attribute בעבור'אמת'הואבוליאניתנאיאםרק'אמת'והיאהזמןבמשךשמשתנהבוליאנית
היוםאתכולללאקודמים,ימיםשלנתוןמספרבטווחעתבכלעוקביםימיםשללפחותמזערימספר

.הנוכחי

ימיםברצף-מתקיים-
(<days>, <condition>)

מחזירה attribute תמידהואבוליאניתנאיכאשרורקאם'אמת'והיאהזמןבמשךשמשתנהבוליאנית
הנוכחיהיוםאתכולללאקודמים,ימיםשלשצויןהמספרבטווחאמת .

לאחר-מתרחש-
(<date>)התאריך

מחזירה attribute אחרי'אמת'והיאהזמןבמשךשמשתנהבוליאנית date ולפניובו'שקר'אך .

לפני-מתרחש-
(<date>)התאריך

מחזירה attribute לפני'אמת'והיאהזמןבמשךשמשתנהבוליאנית date ואחריובו'שקר'אך .

בתאריךמתרחש-
(<date>)

מחזירה attribute ב'אמת'והיאהזמןבמשךשמשתנהבוליאנית -date ואחריולפניו'שקר'אך .

או-בתאריך-מתרחש-
(<date>)לאחריו

מחזירה attribute ב'אמת'והיאהזמןבמשךשמשתנהבוליאנית -date לפניו'שקר'אךאחריואו .

או-בתאריך-מתרחש-
(<date>)לפניו

מחזירה attribute ב'אמת'והיאהזמןבמשךשמשתנהבוליאנית -date אחריו'שקר'אךולפניו .

תחביר תיאור

מתאריך-ערך-
-rela>)ההתחלה
tionship>, <date>,
<value>)

מחזירה attribute שלהמקור(ברמתבודדתזמנית entity) עםrelationship-מ attribute שלערך
מהחלבתוקףשהיוהערכיםעםזאת,הישויות. -date attribute .התחלתי

תאריך-עד-ערך-
,<relationship>)סיום
<date>, <value>)

מחזירה attribute שלהמקור(ברמתבודדתזמנית entity) עםrelationship-מ attribute שלערך
עדבתוקףשיהיוהערכיםעםזאת,הישויות. date attribute הסיוםתאריךשל .

תאריכיםבטווח-ערך-
(<relationship>, <start-
date>, <end-date>,
<Value>)

מחזירה attribute שלהמקור(ברמתבודדתזמנית entity) עםrelationship-מ attribute שלערך
מבתוקףשהיוהערכיםעםזאת,הישויות. -date attribute עד(כולל)התחלתי date attribute

יהיההערךכולל).(לאאחרון uncertain לפניפגתוקפואם date הבאההתחלתי .

זמנייםהשבוע-ימי-
(<startdate>, <end-
date>)

מהחלשבוע,סופישהםבתאריכים'שקר'ומחזירההשבועימישהםבתאריכים'אמת'מחזירה -date
עד(כולל)התחלתי date מחזירהכולל).(לאאחרון uncertain לטווחמחוץ date.

בחודשפעם-זמני-
(<startdate>, <end-
date>, <dayofmonth>)

בחודש,הימיםשארבכל'שקר'ומחזירהבחודש''היוםלפרמטרשווההיוםאם'אמת'מחזירה
שביןבתקופה date ועד(כולל)שצויןההתחלה date מחזירהכולל).(לאהאחרון uncertain מחוץ

לטווח date. האחרוןביום'אמת'הואהערךהנוכחי,בחודשהימיםמספראתעוברבחודשכשהיום
בחודשאחתפעםבדיוקאמתשהואערךמחזירהשהפונקציהכךזהחודששל .

עפונקציות אימותאירו (English)

תחביר תיאור

שגיאה
(<text>)

אתשהזניקשהתנאיעדבחקירהלהמשיךממנוומונעלמשתמש,הודעהלהעברתמשמששגיאהאירוע
עודחלאינוהשגיאה .

אזהרה
(<text>)

זואזהרהשהזניקהתנאילמרותלהמשיךלומאפשראבללמשתמש,הודעהלהעברתמשמשאזהרהאירוע .

מוחלפותפונקציות (English)

תחביר תיאור

פונקציה-
,<A>)מקומית
)

הקסטומיזציהלפונקציתשהקריאהמנתעלקודים.לספרייתחיצוניתקריאהשלהתוצאהאתמחזירה
ההגדרותלמנועהספריהקודאתלספקישתצליח, (Oracle Determinations Engine).

Connettori logici(English)

Sintassi Descrizione

se
Termine opzionale che può apparire alla fine di una riga conclusiva cui segue una
prova

e Congiunzione logica tra due valori attributes

o Disgiunzione logica tra due valori attributes

oppure
uno di
qualsiasi
almeno uno dei seguenti è vero
uno qualsiasi dei seguenti è sod-
disfatto

Elemento di raggruppamento utilizzato con disgiunzioni per raggruppare due o più
attributes

entrambi
tutti
tutti i seguenti sono veri
tutti i seguenti sono soddisfatti

Elemento di raggruppamento utilizzato con congiunzioni per raggruppare due o più
attributes

altrimenti Termine che appare alla fine di una regola tabella per indicare la clausola altrimenti

è
Termine utilizzato in una voce legenda tra la frase abbreviata e il valore attribute
text completo

Funzioni logiche(English)

Sintassi Descrizione

non è vero che <expr> Operatore utilizzato per restituire vero se attribute contiene un valore che è falso

<var> è certo
<var> è certa
<var> sono certe
<var> sono certi
è certo se <expr>

Operatore utilizzato per restituire vero se attribute contiene un valore diverso da uncertain

<var> non è certo
<var> non è certa
<var> non sono certe
<var> non sono certi
non è certo se <expr>
non è certo se <expr>
non è certo che <expr>
non certo

Operatore utilizzato per restituire vero se il valore di attribute è uncertain

<var> è noto
<var> è nota Operatore utilizzato per restituire vero se attribute contiene un valore

Sintassi Descrizione

<var> sono note
<var> sono noti
è noto se <expr>

<var> non è noto
<var> non è nota
<var> non sono note
<var> non sono noti
non è noto se <expr>
non noto

Operatore utilizzato per restituire vero se attribute non contiene alcun valore

Costanti logiche(English)

Sintassi Descrizione

vero Valore vero costante utilizzato per le regole tabella.

falso Valore falso costante utilizzato per le regole tabella.

non certo Valore uncertain costante utilizzato per le regole tabella.

Operatori di confronto(English)

Sintassi Descrizione

<x><<y>
<x> minore (di | del | dell' | dell’ | della | delle | dei |
degli)<y>

Minore di
Nota: non esiste una forma di linguaggio naturale in cui tale
operatore viene utilizzato con valori numerici o di valuta.

<x> > <y>
<x> maggiore (di | del | dell' | dell’ | della | delle | dei |
degli)<y>

Maggiore di
Nota: non esiste una forma di linguaggio naturale in cui tale
operatore viene utilizzato con valori numerici o di valuta.

<x><=<y>
<x> minore o uguale (a | al | all' | all’ | alla | alle | di |
del | dell' | dell’ | della | delle | dei | degli)<y>

Minore di o uguale a

<x> >= <y>
<x> maggiore o uguale (a | al | all' | all’ | alla | alle | di
| del | dell' | dell’ | della | delle | dei | degli)<y>

Maggiore di o uguale a

<x>=<y>
<x> uguale (a | al | all' | all’ | alla | alle)<y>

Uguale

<x> <> <y>
<x> diverso (da | dal | dall' | dall’ | della | delle)<y>

Diverso

Funzioni numeriche(English)

Sintassi Descrizione

Numero(<numText>) Converte la stringa specificata in un valore numerico

<x> + <y> Addizione matematica

<x> - <y> Sottrazione matematica

<x> * <y> Moltiplicazione matematica

<x> / <y> Divisione matematica

<x> \ <y> Divisione di un intero

<x> modulo <y> Resto rimanente dalla divisione di un intero

Massimo(<x>, <y>)
Massimo(<date/time/datetime1>, <date/time/datetime2>)

Restituisce il più grande di due valori

Minimo(<x>, <y>)
Minimo(<date/time/datetime1>, <date/time/datetime2>)

Restituisce il più piccolo di due valori

Xy(<x>, <y>) x elevata alla potenza di y

Ex(<x>) Costante e elevata alla potenza di x

Ass(<x>)
|<val>|

Valore assoluto di x

Ln(<x>) Logaritmo naturale di x

Log(<x>) Logaritmo in base 10 di x

Radq(<x>) Radice quadrata di x

Arrotonda(<x>, <n>) Arrotonda a n posizioni decimali

Tronca(<x>, <n>) x troncata a n posizioni decimali

Sen(<x>) Seno di x

Cos(<x>) Coseno di x

Tan(<x>) Tangente di x

Arcsen(<x>) Arcoseno di x

Arccos(<x>) Arcocoseno di x

Arctan(<x>) Arcotangente di x

Funzioni data(English)

Sintassi Descrizione

DataAttuale()
data corrente

Restituisce il valore date corrente all'inizio della sessione.

Data(<text>) Converte la stringa specificata in un valore date

CalcolaData(<year>, <month>,
<day>)

Restituisce un valore date formato dall'anno, dal mese e dal giorno specificati.

EstraiGiorno(<date/datetime>) Restituisce il componente giorno di un valore date/datetime attribute.

EstraiMese(<date/datetime>) Restituisce il componente mese di un valore date/datetime attribute.

EstraiAnno(<date/datetime>) Restituisce il componente anno di un valore date/datetime attribute.

GiornoSuccessivoDellaSettimana
(<date/datetime>, <day>)

Restituisce la data date del giorno feriale successivo corrispondente o anteri-
ore/successivo a date (in base alla sintassi utilizzata).

DataSuccessiva(<date>, <day>,
<month>)

Restituisce l'istanza successiva del giorno e del mese specificati dopo un valore date.

AggiungiGiorni(<date/datetime>,
<num_days>)

Aggiunge/sottrae un numero di giorni a un valore date. Quando si usa la forma sint-
attica concisa, il numero deve essere un intero positivo per aggiungere giorni al valore
date di input, oppure un numero negativo per sottrarre giorni al valore date di input.

AggiungiSettimane(<date/d-
atetime>, <num_weeks>)

Aggiunge un numero di settimane a un valore date. Quando si usa la forma sintattica
concisa, il numero deve essere un intero positivo per aggiungere settimane al valore
date di input.

AggiungiMesi(<date/datetime>,
<num_months>)

Aggiunge un numero di mesi a un valore date. Quando si usa la forma sintattica con-
cisa, il numero deve essere un intero positivo per aggiungere mesi al valore date di
input.

AggiungiAnni(<date/datetime>,
<num_years>)

Aggiunge un numero di anni a un valore date. Quando si usa la forma sintattica con-
cisa, il numero deve essere un intero positivo per aggiungere anni al valore date di
input.

NumeroGiorniFeriali(<date1>,
<date2>)

Conteggia il numero di giorni feriali tra date1 e date2, ovvero il numero di giorni com-
presi tra lunedì e venerdì.
Nota: il primo valore date è incluso, l'ultimo date escluso.

InizioAnno(<date/datetime>) Restituisce il primo valore date dell'anno in cui cade il valore date.

FineAnno(<date/datetime>) Restituisce l'ultimo valore date dell'anno in cui cade il valore date.

DifferenzaGiorni(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di giorni interi tra date/datetime1 e date/datetime2.
L'ordine delle due date non influenza il risultato.

DifferenzaGiorniInclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di giorni interi (in modalità di inclusione) compresi tra date/d-
atetime1 e date/datetime2. Il calcolo include il giorno di inizio e il giorno di fine. Se
le date coincidono, il risultato è uguale a uno. L'ordine delle due date non influenza il

Sintassi Descrizione

risultato.

DifferenzaGiorniEsclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di giorni interi (in modalità di esclusione) compresi tra date/d-
atetime1 e date/datetime2. Il calcolo esclude il giorno di inizio e il giorno di fine. Se
le date coincidono, il risultato è uguale a zero. L'ordine delle due date non influenza il
risultato.

DifferenzaSettimane(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di settimane intere trascorse tra date/datetime1 e date/d-
atetime2. L'ordine delle due date non influenza il risultato

DifferenzaSettimaneInclusa
(<date/datetime1>, <date/d-
atetime2>)

Restituisce il numero di settimane intere trascorse (in modalità di esclusione) tra
date/datetime1 e date/datetime2. L'ordine delle due date non influenza il
risultato.

DifferenzaSettimaneEsclusa
(<date/datetime1>, <date/d-
atetime2>)

Restituisce il numero di settimane intere trascorse (in modalità di esclusione) tra
date/datetime1 e date/datetime2. L'ordine delle due date non influenza il
risultato

DifferenzaMesi(<date/datetime1>,
<date/datetime2>)

Restituisce il numero di mesi interi trascorsi tra date/datetime1 e
date/datetime2. L'ordine delle due date non influenza il risultato.

DifferenzaMesiInclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di mesi interi trascorsi (in modalità di inclusione) compresi tra
date/datetime1 e date/datetime2. L'ordine delle due date non influenza il
risultato.

DifferenzaMesiEsclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di mesi interi trascorsi (in modalità di esclusione) tra date/d-
atetime1 e date/datetime2. L'ordine delle due date non influenza il risultato.

DifferenzaAnni(<date/datetime1>,
<date/datetime2>)

Restituisce il numero di anni tra date/datetime1 e date/datetime2. L'ordine delle
due date non influenza il risultato

DifferenzaAnniInclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di anni (in modalità di inclusione) tra date/datetime1 e date/d-
atetime2. L'ordine delle due date non influenza il risultato.

DifferenzaAnniEsclusa(<date/d-
atetime1>, <date/datetime2>)

Restituisce il numero di anni (in modalità di esclusione) tra date/datetime1 e
date/datetime2. L'ordine delle due date non influenza il risultato.

Funzioni ora del giorno(English)

Sintassi Descrizione

OraDelGiorno(<text>) Converte la stringa specificata in un'ora del giorno.

EstraiSecondo(<time/datetime>) Restituisce il componente secondo di un valore timeofday/datetime attribute.

EstraiMinuto(<time/datetime>) Restituisce il componente minuto di un valore timeofday/datetime attribute.

EstraiOra(<time/datetime>) Restituisce il componente ora di un valore timeofday/datetime attribute.

Funzioni data e ora(English)

Sintassi Descrizione

DataOraAttuale() Restituisce il valore date e ora corrente all'inizio della sessione.

DataOra(<text>) Converte la stringa specificata in un valore datetime

ConcatenaDataOra
(<date>, <time>)

Imposta il valore date e ora collegando il valore date all'ora del giorno.

DifferenzaSecondi(<dat-
etime1>, <datetime2>)
DifferenzaSecondi
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di secondi tra datetime1 e datetime2.

DifferenzaSecondiInclusa
(<datetime1>, <datetime2>)
DifferenzaSecondiInclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di secondi (in modalità di inclusione) tra datetime1 e datetime2.

DifferenzaSecondiEsclusa
(<datetime1>, <datetime2>)
DifferenzaSecondiEsclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di secondi (in modalità di esclusione) tra datetime1 e datetime2.

DifferenzaMinuti(<dat-
etime1>, <datetime2>)
DifferenzaMinuti
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di minuti tra datetime1 e datetime2.

DifferenzaMinutiInclusa
(<datetime1>, <datetime2>)
DifferenzaMinutiInclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di minuti (in modalità di inclusione) tra datetime1 e datetime2.

DifferenzaMinutiEsclusa
(<datetime1>, <datetime2>)
DifferenzaMinutiEsclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di minuti (in modalità di esclusione) tra datetime1 e datetime2.

DifferenzaOre(<dat-
etime1>, <datetime2>)
DifferenzaOre
(<timeOfDay1>,

Restituisce il numero di ore tra datetime1 e datetime2.

Sintassi Descrizione

<timeOfDay2>)

DifferenzaOreInclusa
(<datetime1>, <datetime2>)
DifferenzaOreInclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di ore (in modalità di inclusione) tra datetime1 e datetime2.

DifferenzaOreEsclusa
(<datetime1>, <datetime2>)
DifferenzaOreEsclusa
(<timeOfDay1>,
<timeOfDay2>)

Restituisce il numero di ore (in modalità di esclusione) tra datetime1 e datetime2.

EstraiData(<datetime>) Estrae il valore date da un valore datetime attribute.

EstraiOraDelGiorno(<dat-
etime>)

Estrae l'ora del giorno da un valore datetime attribute. La funzione può essere utilizzata per
impostare un valore timeofday attribute sull'ora di esecuzione della regola estraendo l'ora
dal valore date e ora attuali.

AggiungiOre(<datetime>,
<num_hours>)
AggiungiOre
(<timeOfDay>, <num_
hours>)

Aggiunge un numero di ore a un valore date e ora.

AggiungiMinuti(<dat-
etime>, <num_minutes>)
AggiungiMinuti
(<timeOfDay>, <num_
minutes>)

Aggiunge un numero di minuti a un valore date e ora.

AggiungiSecondi(<dat-
etime>, <num_seconds>)
AggiungiSecondi
(<timeOfDay>, <num_
seconds>)

Aggiunge un numero di secondi a un valore date e ora.

Funzioni testo(English)

Sintassi Descrizione

<text1> & <text2>
Combina text1 e text2 in modo da formare un valore text singolo.
Nota: è possibile utilizzare variabili di qualsiasi tipo. I valori vengono formattati utilizzando il formatter
installato nella sessione delle regole.

Combina text1 e text2 in modo da formare un valore text singolo.

Sintassi Descrizione

Nota: è possibile utilizzare variabili di qualsiasi tipo. I valori vengono formattati utilizzando il formatter
installato nella sessione delle regole.

Contiene(<text>,
<substring>)

Restituisce un valore booleano che indica se il valore text specificato contiene la sottostringa text spe-
cificata. Per il confronto text non è rilevante la distinzione tra maiuscole e minuscole.

TerminaCon
(<text>,
<substring>)

Restituisce un valore booleano che indica se il valore text specificato finisce con la sottostringa text spe-
cificata. Per il confronto text non è rilevante la distinzione tra maiuscole e minuscole.

ÈUnNumero
(<text>)

Restituisce un valore booleano che indica se il valore text specificato rappresenta un numero valido.

Lunghezza(<text>)
Restituisce la lunghezza di caratteri del valore text specificato.

IniziaCon(<text>,
<substring>)

Restituisce un valore booleano che indica se il valore text specificato inizia con la sottostringa text spe-
cificata. Per il confronto text non è rilevante la distinzione tra maiuscole e minuscole.

Sottostringa
(<text>, <offset>,
<length>)

Restituisce la sottostringa del valore text che inizia all'offset specificato, vale a dire la lunghezza spe-
cificata in caratteri. Viene restituito un numero inferiore di caratteri se viene raggiunta la fine della
stringa.

Testo(<number>)
Testo(<date>)
Testo(<datetime>)
Testo
(<timeOfDay>)

Converte il numero o il valore date attribute specificato in un valore text.

Funzioni entità e relazione(English)

Sintassi Descrizione

Per(<relationship>,
<Exp>)
nel caso del <rela-
tionship>, <attr>
<val>, nel caso del
<relationship>

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-uno, molti-a-uno o molti-a-molti dove esiste una sola condizione.

PerAmbito(<rela-
tionship>, <alias>)
PerAmbito(<rela-
tionship>)
nel caso (del | di)<rela-
tionship>
nel caso del <rela-

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-uno, molti-a-uno o molti-a-molti dove esistono una o più condizioni.

Sintassi Descrizione

tionship> (<alias>)

PerTutto
(<relationship>, <Exp>)

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-molti o molti-a-molti, quando si desidera stabilire se tutti i membri del gruppo entity di des-
tinazione devono soddisfare la regola.
Questa forma viene utilizzata quando nella regola è presente una sola condizione.

PerTuttoAmbito(<rela-
tionship>)
PerTuttoAmbito(<rela-
tionship>, <alias>)

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-molti o molti-a-molti, quando si desidera stabilire se tutti i membri del gruppo entity di des-
tinazione devono soddisfare la regola.
Questa forma viene utilizzata quando nella regola sono presenti una o più condizioni.

Esiste(<relationship>,
<Exp>)

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-molti o molti-a-molti, quando si desidera stabilire se unmembro del gruppo entity di des-
tinazione deve soddisfare la regola.
Questa forma viene utilizzata quando nella regola è presente una sola condizione.

EsisteAmbito(<rela-
tionship>)
EsisteAmbito(<rela-
tionship>, <alias>)

Funzione utilizzata per creare un riferimento da una entity a un'altra entity in una relationship
uno-a-molti o molti-a-molti, quando si desidera stabilire se unmembro del gruppo entity di des-
tinazione deve soddisfare la regola.
Questa forma viene utilizzata quando nella regola sono presenti una o più condizioni.

ÈMembroDi(<target>,
<relationship>)
ÈMembroDi(<target>,
<alias>, <relationship>)
<ent-target> è un
membro (di | dei |
del)<relationship>
<ent-target> (<alias>)
è un membro (di | dei |
del)<relationship>

Utilizzato come conclusione per dedurre che un'istanza di entity è membro di una relazione rela-
tionship. Utilizzato come condizione per verificare se un'istanza di entity è destinazione di una
relazione relationship che ha come origine una seconda istanza di entity.

NonÈMembroDi(<tar-
get>, <relationship>)

Funzione utilizzata come condizione per verificare che una istanza di entity non sia una des-
tinazione di una relationship per cui una seconda istanza di entity rappresenta l'origine.

NumeroIstanze(<rela-
tionship>)

Conteggia il numero di istanze esistenti per una entity.

NumeroIstanzeSe
(<relationship>, <Exp>)

Conteggia il numero di istanze esistenti per una entity per cui un entity-level attribute par-
ticolare contiene un valore particolare.

NumeroMaxIstanze
(<relationship>, <num-
ber-attr>)
NumeroMaxIstanze
(<relationship>, <date-

Ottiene il valore massimo/più recente di una variabile entity-level per tutte le istanze di una
entity.

Sintassi Descrizione

attr>)
NumeroMaxIstanze
(<relationship>, <dat-
etime-attr>)
NumeroMaxIstanze
(<relationship>, <time-
attr>)

NumeroMaxIstanzeSe
(<relationship>, <num-
ber-attr>, <condition>)
NumeroMaxIstanzeSe
(<relationship>, <date-
attr>, <condition>)
NumeroMaxIstanzeSe
(<relationship>, <dat-
etime-attr>, <condition>)
NumeroMaxIstanzeSe
(<relationship>, <time-
attr>, <condition>)

Ottiene il valore massimo/più recente di una variabile entity-level per tutte le istanze di una
entity per cui un entity-level attribute particolare contiene un valore particolare.

NumeroMinIstanze
(<relationship>, <num-
ber-attr>)
NumeroMinIstanze
(<relationship>, <date-
attr>)
NumeroMinIstanze
(<relationship>, <dat-
etime-attr>)
NumeroMinIstanze
(<relationship>, <time-
attr>)

Ottiene il valore minimo/meno recente di una variabile entity-level per tutte le istanze di una
entity.

NumeroMinIstanzeSe
(<relationship>, <num-
ber-attr>, <condition>)
NumeroMinIstanzeSe
(<relationship>, <date-
attr>, <condition>)
NumeroMinIstanzeSe
(<relationship>, <dat-
etime-attr>, <condition>)
NumeroMinIstanzeSe
(<relationship>, <time-

Ottiene il valore minimo/meno recente di una variabile entity-level per tutte le istanze di una
entity per cui un entity-level attribute particolare contiene un valore particolare.

Sintassi Descrizione

attr>, <condition>)

SommaIstanze(<rela-
tionship>, <number-
attr>)

Ottiene la somma di tutte le istanze di una variabile entity-level.

SommaIstanzeSe
(<relationship>, <num-
ber-attr>, <condition>)

Ottiene la somma di tutte le istanze di una variabile entity-level per cui è vero un attribute
booleano entity-level specifico di una entity.

ValoreIstanzaSe(<rela-
tionship>, <number-
attr>, <condition>)
ValoreIstanzaSe(<rela-
tionship>, <text-attr>,
<condition>)
ValoreIstanzaSe(<rela-
tionship>, <date-attr>,
<condition>)
ValoreIstanzaSe(<rela-
tionship>, <datetime-
attr>, <condition>)
ValoreIstanzaSe(<rela-
tionship>, <time-attr>,
<condition>)

Ottiene un valore da una istanza entity univoca, identificata dalle istanze entity di destinazione di
una relationship in base a una condizione.

l Se la condizione identifica una istanza entity di destinazione singola, il valore corrisponde
al valore calcolato a fronte di quella istanza entity.

l Se più di una istanza di destinazione soddisfa la condizione, viene restituito uncertain.

l Se nessuna istanza di destinazione soddisfa la condizione e la relationship è nota, il
valore è uncertain.

IstanzeUguali
(<instance1>,
<instance2>)

Determina se due istanze di una entity coincidono.

IstanzeDiverse
(<instance1>,
<instance2>)

Determina se due istanze di una entity non coincidono.

DeduciIstanza(<rela-
tionship>, <identity>)
<rel>(<identity>)
esiste

Funzione utilizzata come conclusione per dedurre che esiste un'istanza entity ed è membro di una
relationship.

Funzioni ragionamento temporale(English)

Sintassi Descrizione

NumeroIntervalloDistinto
(<start-date>, <end-date>, <vari-
able>)

Conteggia il numero di valori distinti noti per la variabile nell'intervallo tra il valore date
iniziale incluso e il valore date finale escluso.

Sintassi Descrizione

NumeroIntervalloDistinto
(<start-date>, <end-date>, <con-
dition>)

NumeroIntervalloDistintoSe
(<start-date>, <end-date>, <vari-
able>, <condition>)

Conteggia il numero di valori distinti noti per la variabile nell'intervallo tra il valore date
iniziale incluso e il valore date finale escluso, includendo solo le volte in cui è vero un filtro
booleano.

SommaGiornalieraIntervallo
(<start-date>, <end-date>, <num-
ber-attr>)

Calcola la somma di una variabile valuta o numerica nell'intervallo tra il valore date iniz-
iale incluso e il valore date finale escluso. Si suppone che il valore attribute corrisponda
a una quantità giornaliera.

SommaGiornalieraIntervalloSe
(<start-date>, <end-date>, <num-
ber-attr>, <condition>)

Calcola la somma di tutti i valori giornalieri di una variabile valuta o numerica
nell'intervallo tra il valore date iniziale incluso e il valore date finale escluso, includendo
solo le volte in cui una condizione è vera.

IntervalloMassimo(<start-
date>, <end-date>, <number-
attr>)
IntervalloMassimo(<start-
date>, <end-date>, <date-attr>)
IntervalloMassimo(<start-
date>, <end-date>, <datetime-
attr>)
IntervalloMassimo(<start-
date>, <end-date>, <time-attr>)

Seleziona il valore massimo di una variabile nell'intervallo tra il valore date iniziale
incluso e il valore date finale escluso.

IntervalloMassimoSe(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalloMassimoSe(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalloMassimoSe(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalloMassimoSe(<start-
date>, <end-date>, <time-attr>,
<condition>)

Seleziona il valore massimo di una variabile nell'intervallo tra il valore date iniziale
incluso e il valore date finale escluso, includendo solo le volte in cui una condizione è
vera.

IntervalloMinimo(<start-date>,
<end-date>, <number-attr>)
IntervalloMinimo(<start-date>,
<end-date>, <date-attr>)
IntervalloMinimo(<start-date>,
<end-date>, <datetime-attr>)

Seleziona il valore minimo di una variabile nell'intervallo tra il valore date iniziale incluso
e il valore date finale escluso.

Sintassi Descrizione

IntervalloMinimo(<start-date>,
<end-date>, <time-attr>)

IntervalloMinimoSe(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalloMinimoSe(<start-
date>, <end-date>, <date-attr>,
<condition>)
IntervalloMinimoSe(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalloMinimoSe(<start-
date>, <end-date>, <time-attr>,
<condition>)

Seleziona il valore minimo di una variabile nell'intervallo tra il valore date iniziale incluso
e il valore date finale escluso, includendo solo le volte in cui una condizione è vera.

MediaPonderataIntervallo
(<start-date>, <end-date>, <num-
ber-attribute>)

Calcola il valore medio di una variabile valuta o numerica nell'intervallo tra il valore date
iniziale incluso e il valore date finale escluso ponderato in base all'intervallo di tempo a
cui si applica il valore.

MediaPonderataIntervalloSe
(<start-date>, <end-date>, <num-
ber-attribute>, <condition>)

Calcola il valore medio di una variabile valuta o numerica nell'intervallo tra il valore date
iniziale incluso e il valore date finale escluso includendo solo le volte in cui una condizione
booleana è vera, ponderato in base all'intervallo di tempo a cui si applica il valore e lad-
dove il filtro è vero.

IntervalloSempre(<start-date>,
<end-date>, <condition>)

Restituisce vero se e solo se è tutte le volte vera una condizione booleana nell'intervallo
compreso tra il valore date iniziale incluso e il valore date finale escluso.

GiorniIntervalloAlmeno(<start-
date>, <end-date>, <NumDays>,
<condition>)

Restituisce vero se e solo se è vera una condizione booleana per almeno il numero di
giorni non necessariamente consecutivi specificato nell'intervallo tra il valore date iniziale
incluso e il valore date finale escluso.

GiorniConsecutiviIntervallo
(<start-date>, <end-date>,
<NumDays>, <condition>)

Restituisce vero se e solo se è vera una condizione booleana per almeno un numero di
giorni consecutivi specificato nell'intervallo tra il valore date iniziale incluso e il valore
date finale escluso.

IntervalloAVolte(<start-date>,
<end-date>, <condition>)

Restituisce vero se e solo se è sempre vera una condizione booleana nell'intervallo tra il
valore date iniziale incluso e il valore date finale escluso.

ValoreAl(<date>, <value>) Restituisce il valore di un dato attribute in corrispondenza del valore date specificato.

QuandoUltimo(<date>, <con-
dition>)

Restituisce l'ultimo valore date in cui una condizione booleana è stata vera, procedendo
all'indietro a partire da un valore date specificato (incluso).

QuandoSuccessivo(<date>,
<condition>)

Restituisce il prossimo valore date in cui una condizione booleana sarà vera, procedendo
in avanti a partire da un valore date specificato (incluso).

Ultimo() Restituisce un valore date equivalente all'ultimo valore date possibile, vale a dire un

Sintassi Descrizione

valore date sicuramente successivo a qualunque altro valore date che un valore date
attribute potrebbe assumere o un'espressione potrebbe restituire.

Primo()
Restituisce un valore date equivalente al primo valore date possibile, vale a dire un
valore date sicuramente precedente a qualunque altro valore date che un valore date
attribute potrebbe assumere o un'espressione potrebbe restituire.

TemporaleGiorniDa(<date>,
<end-date>)

Restituisce una variabile numerica che varia ogni giorno e che corrisponde al numero di
giorni interi dal valore date.

TemporaleSettimaneDa
(<date>, <end-date>)

Restituisce una variabile numerica che varia ogni settimana e che corrisponde al numero
di settimane intere dal valore date.

TemporaleMesiDa(<date>,
<end-date>)

Restituisce una variabile numerica che varia ogni mese e che corrisponde al numero di
mesi interi dal valore date. Nota: se il valore date specificato è successivo al vent-
ottesimo giorno del mese e il numero di giorni del mese successivo è inferiore a quello del
mese specificato, il punto di svolta per il mese anniversario verrà creato l'ultimo giorno di
quel mese. Ad esempio, se il valore date specificato corrisponde al 28, 29, 30 o 31 gen-
naio 2007, il primo punto di svolta sarà il 28 febbraio 2007.

TemporaleAnniDa(<date>,
<end-date>)

Restituisce una variabile numerica che varia ogni anno e che corrisponde al numero di
anni interi dal valore date.

TemporaleGiorniSempre
(<days>, <condition>)

Restituisce un attribute booleano che varia nel tempo ed è vero se e solo se è vera una
condizione booleana per l'intero numero di giorni precedenti specificato, giorno corrente
escluso.

TemporaleGiorniConsecutivi
(<minDays>, <days>,
<condition>)

Restituisce un attribute booleano che varia nel tempo ed è vero se e solo se è vera una
condizione booleana per almeno un numero minimo di giorni consecutivi all'interno del
numero precedente di giorni impostato, giorno corrente escluso.

TemporaleGiorniAVolte
(<days>, <condition>)

Restituisce un attribute booleano che varia nel tempo ed è vero se e solo se è sempre
vera una condizione booleana all'interno di un numero di giorni precedenti specificato,
giorno corrente escluso.

TemporaleDopo(<date>)
Restituisce un attribute booleano che varia nel tempo ed è vero dopo il valore date e
falso prima e alla data del valore.

TemporalePrima(<date>)
Restituisce un attribute booleano che varia nel tempo ed è vero prima del valore date e
falso alla data del valore e successivamente.

TemporaleIl(<date>)
Restituisce un attribute booleano che varia nel tempo ed è vero in corrispondenza del
valore date e falso prima e successivamente.

TemporaleIlODopo(<date>)
Restituisce un attribute booleano che varia nel tempo ed è vero in corrispondenza di o
successivamente al valore date e falso prima.

TemporaleIlOPrima(<date>)
Restituisce un attribute booleano che varia nel tempo ed è vero in corrispondenza di e
prima del valore date e falso successivamente.

Sintassi Descrizione

TemporaleDaDataInizio(<rela-
tionship>, <date>, <value>)

Restituisce un attribute temporale singolo a livello di entity di origine da una rela-
tionship e un attribute valore sulle entità, con valori che diventano effettivi da un
valore date attribute di inizio.

TemporaleDaDataFine(<rela-
tionship>, <date>, <value>)

Restituisce un attribute temporale singolo a livello di entity di origine da una rela-
tionship e un attribute valore sulle entità, con valori effettivi fino a un valore date
attribute di fine.

TemporaleDaIntervallo(<rela-
tionship>, <start-date>, <end-
date>, <Value>)

Restituisce un attribute temporale singolo a livello di entity di origine da una rela-
tionship e un attribute valore sulle entità, con valori che diventano effettivi da un
valore date attribute inizio incluso fino a un valore date attribute fine escluso. Il
valore è uncertain se scade prima del valore date di inizio successivo.

TemporaleÈGiorniFeriali
(<startdate>, <enddate>)

Restituisce vero se le date corrispondono a giorni feriali e falso se le date corrispondono a
giorni festivi a partire dal valore date inizio specificato incluso fino al valore date fine
escluso. Restituisce uncertain all'esterno dell'intervallo di valori date.

TemporaleUnaVoltaAlMese
(<startdate>, <enddate>, <day-
ofmonth>)

Restituisce vero se il giorno corrisponde al parametro giorno del mese e falso tutti gli altri
giorni del mese a partire dal valore date inizio specificato incluso fino al valore date fine
escluso. Restituisce uncertain all'esterno dell'intervallo del valore date. Se il valore di
giorno del mese supera il numero di giorni del mese corrente, il valore è vero l'ultimo
giorno di quel mese, pertanto la funzione restituisce un valore che è vero esattamente un
giorno al mese.

Funzioni evento di convalida(English)

Sintassi Descrizione

Errore
(<text>)

Viene utilizzato un evento di errore per passare all'utente unmessaggio ed evitare che continui ad indagare fino a
quando la condizione che ha attivato l'errore non sarà più valida.

Avvertenza
(<text>)

Viene utilizzato un evento di avvertenza per passare unmessaggio all'utente, che può però continuare nono-
stante la condizione che ha attivato l'avvertenza.

Funzioni obsolete(English)

Sintassi Descrizione

ChiamaFunzionePersonalizzata
(<A>,)

Restituisce il risultato di una chiamata esterna a una libreria di codice. È necessario
fornire la libreria di codice al motore delle determinazioni perché la chiamata di funzione
personalizzata abbia esito positivo.

論理コネクタ(English)

構文 摘要

もし

もし
次のプルーフが含まれる結論行の最後に指定可能なオプションの条件

および

および

また

かつ

それで

そして

又

且つ

及び

2つのattributesの論理積

または

それとも

もしくは

あるいは

又は

若しくは

或いは

2つのattributesの論理和

いずれか

次のうち1つ

任意

次の少なくとも1つが真

次のいずれかを満たす

もしくは

あるいは

2つ以上のattributesのグループ化が必要な場合に、論理和とあわせて使用するグループ化要素

両方

すべて

次のすべてが真

次のすべてを満たす

また

かつ

2つ以上のattributesのグループ化が必要な場合に、論理積とともに使用するグループ化要素

それ以外 表ルールの最後に出現する、それ以外句を示す条件

= 凡例エントリの短縮句と短縮していないattribute textの間で使用する条件

論理関数 (English)

構文 摘要

次の条件が真ではない<expr> 演算子で、使用するとattributeの値が偽の場合に真を返します

構文 摘要

<var> は明確

次の条件を満たすかどうかが明確 <expr>
演算子で、使用するとattributeの値がuncertainでない場合に真を返します

<var> は不明瞭

次の条件が不明瞭 <expr>
次の条件を満たすかどうかが不明瞭 <expr>
次の条件が不明確 <expr>
不明瞭

演算子で、使用するとattributeの値がuncertainの場合に真を返します

<var> は既知

次の条件を満たすかどうかが既知 <expr>
演算子で、使用するとattributeに値が含まれている場合に真を返します

<var> は不明

次の条件を満たすかどうか不明 <expr>
不明

演算子で、使用するとattributeに値が含まれていない場合に真を返します

論理定数 (English)

構文 摘要

真 表ルールで使用する真の定数値です。

偽 表ルールで使用する偽の定数値

不明瞭 表ルールで使用するuncertainの定数値

比較演算子 (English)

構文 摘要

<x><<y>
次より小さい

注意 :この演算子が数値および通貨の値とともに使用される場合、自然言語フォームはありません。

<x> > <y>
次より大きい

注意 :この演算子が数値および通貨の値とともに使用される場合、自然言語フォームはありません。

<x><=<y> 次以下

<x> >= <y> 次以上

<x>=<y> 等しい

<x> <> <y> 等しくない

数値関数 (English)

構文 摘要

番号 (<numText>) 指定した文字列を数値に変換します

<x> + <y> 数値の加算

<x> - <y> 数値の減算

<x> * <y> 数値の乗算

<x> / <y> 数値の除算

<x> \ <y> 整数の除算

<x> modulo <y> 整数を除算した余り

最大値 (<x>, <y>)
最大値 (<date/time/datetime1>, <date/time/datetime2>)

2つの値のうち大きい方を返します

最小値 (<x>, <y>)
最小値 (<date/time/datetime1>, <date/time/datetime2>)

2つの値のうち小さい方を返します

Xのy乗 (<x>, <y>) xのy乗

e指数 (<x>) 定数eのx乗

絶対値 (<x>)
|<val>|

xの絶対値

自然対数 (<x>) xの自然対数

常用対数 (<x>) 10を底とするxの対数

平方根 (<x>) xの平方根

四捨五入 (<x>, <n>) xを小数点以下n桁に四捨五入します

切り捨て(<x>, <n>) 小数点以下n桁に切り捨てたx

正弦 (<x>) xの正弦

余弦 (<x>) xの余弦

正接 (<x>) xの正接

逆正弦 (<x>) xの逆正弦

逆余弦 (<x>) xの逆余弦

逆正接 (<x>) xの逆正接

日付関数 (English)

構文 摘要

現在の日付 () セッションの開始時に現在のdateを返します。

日付 (<text>) 指定した文字列をdate値に変換します

日付の作成 (<year>,
<month>, <day>)

指定した年、月および日から作成したdateを返します。

抽出日 (<date/d-
atetime>)

date/datetime attributeの日付コンポーネントを返します。

抽出月 (<date/d-
atetime>)

date/datetime attributeの月コンポーネントを返します。

抽出年 (<date/d-
atetime>)

date/datetime attributeの年コンポーネントを返します。

次の曜日 (<date/d-
atetime>, <day>)

date (date以前 /以降の次の平日)を返します(使用する構文によります)。

次の日付 (<date>,
<day>, <month>)

dateの指定日数後および指定月数後の次のインスタンスを返します。

日付の追加 (<date/d-
atetime>, <num_days>)

dateに対して日数を加算または減算します。簡潔な構文形式を使用する場合は、入力dateに日

数を加算するには数値が正の整数である必要があり、または入力dateから日数を減算するには数

値が負の数値である必要があります。

週の追加 (<date/d-
atetime>, <num_
weeks>)

dateに週数を加算します。簡潔な構文形式を使用する場合は、入力dateに週数を加算するため

に、数値が正の整数である必要があります。

月の追加 (<date/d-
atetime>, <num_
months>)

dateに月数を加算します。簡潔な構文形式を使用する場合は、入力dateに月数を加算するため

に、数値が正の整数である必要があります。

年の追加 (<date/d-
atetime>, <num_
years>)

dateに年数を加算します。簡潔な構文形式を使用する場合は、入力dateに年数を加算するため

に、数値が正の整数である必要があります。

平日の日数 (<date1>,
<date2>)

date1とdate2の間の平日の日数をカウントします。つまり、月曜日から金曜日までの曜日の日数で

す。

注意 :古いdateは含まれますが、新しいdateは除外されます。

年の開始 (<date/d-
atetime>)

最初のdate (dateが含まれる年の)を返します。

年の終了 (<date/d-
atetime>)

最後のdate (dateが含まれる年の)を返します。

日単位の差異 (<date/d-
atetime1>, <date/d-

date/datetime1とdate/datetime2の間の、満で数えた日数を返します。2つの日付の順序は、

結果に影響しません。

構文 摘要

atetime2>)

日単位の差異(包含)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた日数 (包含)を返します。この計算では、

両方のエンドポイントが含まれます。日付が同じ場合、結果は1になります。2つの日付の順序は、

結果に影響しません。

日単位の差異(除外)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた日数 (除外)を返します。この計算では、

両方のエンドポイントは含まれません。日付が同じ場合、結果は0になります。2つの日付の順序は、

結果に影響しません。

週単位の差異 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過週数を返します。2つの日付の順

序は、結果に影響しません。

週単位の差異(包含)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過週数 (包含)を返します。2つの日

付の順序は、結果に影響しません。

週単位の差異(除外)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過週数 (除外)を返します。2つの日

付の順序は、結果に影響しません。

月単位の差異 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過月数を返します。2つの日付の順

序は、結果に影響しません。

月単位の差異(包含)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過月数 (包含)を返します。2つの日

付の順序は、結果に影響しません。

月単位の差異(除外)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の、満で数えた経過月数 (除外)を返します。2つの日

付の順序は、結果に影響しません。

年単位の差異 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1とdate/datetime2の間の年数を返します。2つの日付の順序は、結果に影響

しません。

年単位の差異(包含)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の年数 (包含)を返します。2つの日付の順序は、結果

に影響しません。

年単位の差異(除外)
(<date/datetime1>,
<date/datetime2>)

date/datetime1とdate/datetime2の間の年数 (除外)を返します。2つの日付の順序は、結果

に影響しません。

時刻関数 (English)

構文 摘要

時刻 (<text>) 指定した文字列を時刻に変換します

抽出秒 (<time/datetime>) timeofday/datetime attributeの秒コンポーネントを返します。

抽出分 (<time/datetime>) timeofday/datetime attributeの分コンポーネントを返します。

抽出時 (<time/datetime>) timeofday/datetime attributeの時間コンポーネントを返します。

日時関数 (English)

構文 摘要

現在の日時 () セッションの開始時に現在のdateおよび時刻を返します。

日時 (<text>) 指定した文字列をdatetime値に変換します

日時の連結 (<date>,
<time>)

dateの時間の設定 (dateと時刻との結合による)を行います。

秒単位の差異 (<datetime1>,
<datetime2>)
秒単位の差異

(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の秒数を返します。

秒単位の差異(包含)(<dat-
etime1>, <datetime2>)
秒単位の差異(包含)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の秒数 (包含)を返します。

秒単位の差異(除外)(<dat-
etime1>, <datetime2>)
秒単位の差異(除外)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の秒数 (除外)を返します。

分単位の差異 (<datetime1>,
<datetime2>)
分単位の差異

(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の分数を返します。

分単位の差異(包含)(<dat-
etime1>, <datetime2>)
分単位の差異(包含)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の分数 (包含)を返します。

構文 摘要

分単位の差異(除外)(<dat-
etime1>, <datetime2>)
分単位の差異(除外)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の分数 (除外)を返します。

時単位の差異 (<datetime1>,
<datetime2>)
時単位の差異

(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の時間数を返します。

時単位の差異(包含)(<dat-
etime1>, <datetime2>)
時単位の差異(包含)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の時間数 (包含)を返します。

時単位の差異(除外)(<dat-
etime1>, <datetime2>)
時単位の差異(除外)
(<timeOfDay1>,
<timeOfDay2>)

datetime1とdatetime2の間の時間数 (除外)を返します。

抽出日 (<datetime>) datetime attributeからdateを抽出します。

抽出時刻 (<datetime>)
datetime attributeから時刻を抽出します。現在のdateと時刻から時刻を抽出してルールを

実行する時刻にtimeofday attributeの値を設定する場合に使用できます。

時間の追加 (<datetime>,
<num_hours>)
時間の追加 (<timeOfDay>,
<num_hours>)

dateの時刻に時間数を加算します。

分の追加 (<datetime>,
<num_minutes>)
分の追加 (<timeOfDay>,
<num_minutes>)

dateの時刻に分数を加算します。

秒の追加 (<datetime>,
<num_seconds>)
秒の追加 (<timeOfDay>,
<num_seconds>)

dateの時刻に秒数を加算します。

テキスト関数 (English)

構文 摘要

<text1> & <text2>
text1をtext2と結合し、単一のtext値を形成します。

注意 :任意のタイプの変数を使用できます。値は、ルール・セッションにインストールされているフォー

マッタを使用して書式設定されます。

text1をtext2と結合し、単一のtext値を形成します。

注意 :任意のタイプの変数を使用できます。値は、ルール・セッションにインストールされているフォー

マッタを使用して書式設定されます。

含む(<text>, <sub-
string>)

指定したtext値に、指定したtextのサブ文字列が含まれているかどうかを示すブール値を返しま

す。text比較では大文字小文字は区別されません。

最後 (<text>, <sub-
string>)

指定したtext値が、指定したtextのサブ文字列で終わっているかどうかを示すブール値を返します。

text比較では大文字小文字は区別されません。

数値 (<text>) 指定したtextの値が、有効な数値を表しているかどうかを示すブール値を返します。

長さ(<text>) 指定したtext値の文字の長さを返します。

先頭 (<text>, <sub-
string>)

指定したtext値が、指定したtextのサブ文字列で始まっているかどうかを示すブール値を返します。

text比較では大文字小文字は区別されません。

サブ文字列 (<text>, <off-
set>, <length>)

指定したオフセット、つまり指定した文字の長さで始まるtextのサブ文字列を返します。文字列の終

わりに達した場合は、指定より少ない文字が返されます。

テキスト(<number>)
テキスト(<date>)
テキスト(<datetime>)
テキスト(<timeOfDay>)

指定した数値またはdate attributeをtext値に変換します。

エンティティおよび関係関数 (English)

構文 摘要

合致 (<relationship>, <Exp>)
条件が1つしか存在しない"一対一 "、"多対一 "または"多対多 "のrelationshipにおいて、あ

るentityから別のentityまでの範囲で指定するために使用します。

範囲 (<relationship>, <alias>)
範囲 (<relationship>)

1つ以上の条件がある"一対一 "、"多対一 "または"多対多 "のrelationshipにおいて、ある

entityから別のentityまでの範囲で指定するために使用します。

すべてで合致 (<relationship>,
<Exp>)

"一対多 "または"多対多 "のrelationshipにおいて、あるentityから別のentityまでの範囲で

指定するために使用します(ターゲットentityのグループのすべてのメンバーがルールを満たす必

要があるかどうかの判別が必要な場合)。
このフォームは、ルールに条件が1つしか存在しない場合に使用します。

すべての範囲で合致 (<rela-
tionship>)
すべての範囲で合致 (<rela-
tionship>, <alias>)

"一対多 "または"多対多 "のrelationshipにおいて、あるentityから別のentityまでの範囲で

指定するために使用します(ターゲットentityのグループのすべてのメンバーがルールを満たす必

要があるかどうかの判別が必要な場合)。
このフォームは、ルールに条件が1つ以上存在する場合に使用します。

構文 摘要

存在 (<relationship>, <Exp>)

"一対多 "または"多対多 "のrelationshipにおいて、あるentityから別のentityまでの範囲で

指定するために使用します(ターゲットentityのグループのいずれかのメンバーがルールを満たす

必要があるかどうかの判別が必要な場合)。
このフォームは、ルールに条件が1つしか存在しない場合に使用します。

範囲で合致 (<relationship>)
範囲で合致 (<relationship>,
<alias>)

"一対多 "または"多対多 "のrelationshipにおいて、あるentityから別のentityまでの範囲で

指定するために使用します(ターゲットentityのグループのいずれかのメンバーがルールを満たす

必要があるかどうかの判別が必要な場合)。
このフォームは、ルールに条件が1つ以上存在する場合に使用します。

メンバー(<target>, <rela-
tionship>)
メンバー(<target>, <alias>,
<relationship>)

entityインスタンスがrelationshipのメンバーであると推測するための結論として使用します。

entityインスタンスが、2番目のentityインスタンスがソースであるrelationshipのターゲットであ

ることをテストする条件として使用します。

非メンバー(<target>, <rela-
tionship>)

entityインスタンスが、2番目のentityインスタンスがソースであるrelationshipのターゲットでな

いことをテストする条件として使用します。

インスタンスの数 (<rela-
tionship>)

存在するentityのインスタンスの数をカウントします。

次の条件時のインスタンスの数

(<relationship>, <Exp>)
特定のentity-level attributeに特定の値が含まれているentityのインスタンスの数をカウン

トします。

インスタンス最大 (<rela-
tionship>, <number-attr>)
インスタンス最大 (<rela-
tionship>, <date-attr>)
インスタンス最大 (<rela-
tionship>, <datetime-attr>)
インスタンス最大 (<rela-
tionship>, <time-attr>)

entityのすべてのインスタンスについて、entity-level変数の最高値 /最新の値を取得しま

す。

次の条件時のインスタンス最大

(<relationship>, <number-
attr>, <condition>)
次の条件時のインスタンス最大

(<relationship>, <date-attr>,
<condition>)
次の条件時のインスタンス最大

(<relationship>, <datetime-
attr>, <condition>)
次の条件時のインスタンス最大

(<relationship>, <time-attr>,
<condition>)

特定のentity-level attributeに特定の値が含まれているentityのすべてのインスタンスにつ

いて、entity-level変数の最高値 /最新の値を取得します。

インスタンス最小 (<rela- entityのすべてのインスタンスについて、entity-level変数の最低値 /最も古い値を取得しま

構文 摘要

tionship>, <number-attr>)
インスタンス最小 (<rela-
tionship>, <date-attr>)
インスタンス最小 (<rela-
tionship>, <datetime-attr>)
インスタンス最小 (<rela-
tionship>, <time-attr>)

す。

次の条件時のインスタンス最小

(<relationship>, <number-
attr>, <condition>)
次の条件時のインスタンス最小

(<relationship>, <date-attr>,
<condition>)
次の条件時のインスタンス最小

(<relationship>, <datetime-
attr>, <condition>)
次の条件時のインスタンス最小

(<relationship>, <time-attr>,
<condition>)

特定のentity-level attributeに特定の値が含まれているentityのすべてのインスタンスにつ

いて、entity-level変数の最低値 /最も古い値を取得します。

インスタンス合計 (<rela-
tionship>, <number-attr>)

entity-level変数のすべてのインスタンスの合計を取得します。

次の条件時のインスタンス合計

(<relationship>, <number-
attr>, <condition>)

entity-level変数 (entityの特定のentity-levelブールattributeが真である)のすべてのイン

スタンスの合計を取得します。

次の条件時のインスタンス値

(<relationship>, <number-
attr>, <condition>)
次の条件時のインスタンス値

(<relationship>, <text-attr>,
<condition>)
次の条件時のインスタンス値

(<relationship>, <date-attr>,
<condition>)
次の条件時のインスタンス値

(<relationship>, <datetime-
attr>, <condition>)
次の条件時のインスタンス値

(<relationship>, <time-attr>,
<condition>)

一意のentityインスタンスから値を取得します。relationshipのターゲットentityインスタンスの

中から、対象を条件で識別します。

l 条件によって単一のターゲットentityインスタンスが識別された場合、値はそのentity
インスタンスに対して計算を行った値になります。

l 複数のターゲット・インスタンスが条件を満たす場合は、uncertainが返されます。

l 条件を満たすターゲット・インスタンスが存在せず、relationshipが既知の場合、値は

uncertainになります。

インスタンスが等しい

(<instance1>, <instance2>)
entityの2つのインスタンスが同じインスタンスであるかどうかを判別します。

構文 摘要

インスタンスが等しくない

(<instance1>, <instance2>)
entityの2つのインスタンスが同じインスタンスでないかどうかを判別します。

InferInstance(<rela-
tionship>, <identity>)
<rel>(<identity>)存在する

entityインスタンスが存在し、relationshipのメンバーであると推測するための結論として使用

します。

時間推論関数 (English)

構文 摘要

間隔実数 (<start-
date>, <end-date>,
<variable>)
間隔実数 (<start-
date>, <end-date>,
<condition>)

開始date (包含)から終了date (除外)までの間隔内における、変数の既知の実数値の数をカウン

トします。

次の条件時の間隔実

数 (<start-date>, <end-
date>, <variable>,
<condition>)

開始date (包含)から終了date (除外)までの間隔内で、ブール・フィルタが真である時間のみを対象

に、変数の既知の実数値の数をカウントします。

合計日単位間隔

(<start-date>, <end-
date>, <number-attr>)

開始date (包含)から終了date (除外)までの間隔内における、通貨または数値変数の合計を計

算します。attributeは、1日当たりの数量とみなされます。

次の条件時の合計日

単位間隔 (<start-
date>, <end-date>,
<number-attr>, <con-
dition>)

開始date (包含)から終了date (除外)までの間隔内で、条件が真である時間のみを対象に、通貨

または数値変数のすべての1日当たりの値の合計を計算します。

最大間隔 (<start-
date>, <end-date>,
<number-attr>)
最大間隔 (<start-
date>, <end-date>,
<date-attr>)
最大間隔 (<start-
date>, <end-date>,
<datetime-attr>)
最大間隔 (<start-
date>, <end-date>,
<time-attr>)

開始date (包含)から終了date (除外)までの間隔内における、変数の最大値を選択します。

構文 摘要

次の条件時の最大間

隔 (<start-date>, <end-
date>, <number-attr>,
<condition>)
次の条件時の最大間

隔 (<start-date>, <end-
date>, <date-attr>,
<condition>)
次の条件時の最大間

隔 (<start-date>, <end-
date>, <datetime-attr>,
<condition>)
次の条件時の最大間

隔 (<start-date>, <end-
date>, <time-attr>,
<condition>)

開始date (包含)から終了date (除外)までの間隔内で、条件が真である時間のみを対象に、変数

の最大値を選択します。

最小間隔 (<start-
date>, <end-date>,
<number-attr>)
最小間隔 (<start-
date>, <end-date>,
<date-attr>)
最小間隔 (<start-
date>, <end-date>,
<datetime-attr>)
最小間隔 (<start-
date>, <end-date>,
<time-attr>)

開始date (包含)から終了date (除外)までの間隔内における、変数の最小値を選択します。

次の条件時の最小間

隔 (<start-date>, <end-
date>, <number-attr>,
<condition>)
次の条件時の最小間

隔 (<start-date>, <end-
date>, <date-attr>,
<condition>)
次の条件時の最小間

隔 (<start-date>, <end-
date>, <datetime-attr>,
<condition>)
次の条件時の最小間

隔 (<start-date>, <end-
date>, <time-attr>,

開始date (包含)から終了date (除外)までの間隔内で、条件が真である時間のみを対象に、変数

の最小値を選択します。

構文 摘要

<condition>)

加重平均間隔 (<start-
date>, <end-date>,
<number-attribute>)

開始date (包含)から終了date (除外)までの間隔内における、通貨または数値変数の平均値を

計算します。この平均値は、それぞれの値に適用される期間で加重が付加されます。

次の条件時の加重平

均間隔 (<start-date>,
<end-date>, <number-
attribute>, <condition>)

開始date (包含)から終了date (除外)までの間隔内で、ブール条件が真である時間のみを対象

に、通貨または数値変数の平均値を計算します(それぞれの値に適用される期間およびフィルタが真

である期間で加重が付加されます)。

常時間隔 (<start-
date>, <end-date>,
<condition>)

開始date (包含)から終了date (除外)までの間隔内にあるすべての時間のブール条件が真の場合

にのみ、真を返します。

最低日数間隔 (<start-
date>, <end-date>,
<NumDays>, <con-
dition>)

開始date (包含)から終了date (除外)までの間隔内で、指定した日数 (連続でなくてもかまいませ

ん)以上のブール条件が真である場合にのみ、真を返します。

連続日数間隔 (<start-
date>, <end-date>,
<NumDays>, <con-
dition>)

開始date (包含)から終了date (除外)までの間隔内で、指定した連続日数以上のブール条件が

真である場合にのみ、真を返します。

暫時間隔 (<start-
date>, <end-date>,
<condition>)

開始date (包含)から終了date (除外)までの期間内で、ブール条件が真のものが1つでもあれば、

真を返します。

該当値 (<date>,
<value>)

指定したdateにおける、指定したattributeの値を返します。

最後の場合 (<date>,
<condition>)

最後にブール条件が真になったdateを返します。指定したdateから(当日を含めて)過去にさかの

ぼって検索します。

次の場合 (<date>,
<condition>)

次にブール条件が真になるdateを返します。指定したdateから(当日を含めて)先の日付に向かって

検索します。

最後 ()
date値 (最遅可能dateに相当)を返します -つまり、dateはdate attributeでかかる時間または式

で評価する他のすべてのdateよりも遅いことが保証されます。

先頭 ()
date値 (最早可能dateに相当)を返します -つまり、dateはdate attributeでかかる時間または式

で評価する他のすべてのdateよりも早いことが保証されます。

次の日時以降の日数

(<date>, <end-date>)
数値変数を返します。この変数は毎日変化し、date以降の満で数えた日数になります。

次の日時以降の週数 数値変数を返します。この変数は毎週変化し、date以降の満で数えた週数になります。

構文 摘要

(<date>, <end-date>)

次の日時以降の月数

(<date>, <end-date>)

数値変数を返します。この変数は毎月変化し、date以降の満で数えた月数になります。注意 :指
定したdateがその月の28日より後で、次の月の日数が指定月よりも少ない場合、月ごとの変更ポイ

ントは、その月の最後の日に作成されます。たとえば、指定したdateが2007年1月28、29、30または

31日の場合、最初の変更ポイントは2007年2月28日になります。

次の日時以降の年数

(<date>, <end-date>)
数値変数を返します。この変数は毎年変化し、date以降の満で数えた年数になります。

常時日数 (<days>,
<condition>)

ブールattributeを返します。この値は時間の経過とともに変化し、直近の指定日数 (現在の日付は

含まない)のすべてでブール条件が真の場合にのみ、真になります。

連続日数 (<minDays>,
<days>, <condition>)

ブールattributeを返します。この値は時間の経過とともに変化し、直近の指定日数内 (現在の日

付は含まない)のいずれかの時点で、少なくとも最低連続日数のブール条件が真の場合にのみ、真

になります。

暫時日数 (<days>,
<condition>)

ブールattributeを返します。この値は時間の経過とともに変化し、直近の指定日数内 (現在の日

付は含まない)にブール条件が真のものが1つでもあれば、真になります。

次の日時以降 (<date>) ブールattributeを返します。この値は時間の経過とともに変化し、dateより後の場合は真、それ以

前の場合は偽です。

次の日時以前 (<date>) ブールattributeを返します。この値は時間の経過とともに変化し、dateより前の場合は真、それ以

降の場合は偽です。

次の日時 (<date>)
ブールattributeを返します。この値は時間の経過とともに変化し、dateである場合は真、それより前

や後の場合は偽です。

次の日時またはそれ以

降 (<date>)
ブールattributeを返します。この値は時間の経過とともに変化し、date以降の場合は真、それより

前の場合は偽です。

次の日時またはそれ以

前 (<date>)
ブールattributeを返します。この値は時間の経過とともに変化し、date以前の場合は真、それより

後の場合は偽です。

開始日から(<rela-
tionship>, <date>,
<value>)

relationshipから(ソースentityレベルの)単一の時間attributeとそのエンティティの値attributeを
返します。その値は開始date attributeから有効です。

終了日から(<rela-
tionship>, <date>,
<value>)

relationshipから(ソースentityレベルの)単一の時間attributeとそのエンティティの値attributeを
返します。その値は終了date attributeまで有効です。

範囲から

(<relationship>, <start-
date>, <end-date>,
<Value>)

relationshipから(ソースentityレベルの)単一の時間attributeとそのエンティティの値attributeを
返します。その値は開始date attribute (包含)から終了date attribute (除外)まで有効です。こ

の値は、次の開始dateより前に期限が切れる場合、uncertainになります。

平日 (<startdate>,
<enddate>)

指定した開始date (包含)から終了date (除外)までの日付が平日の場合は真を、週末の場合は

偽を返します。date範囲外の場合は、uncertainを返します。

構文 摘要

1か月に1回
(<startdate>, <end-
date>, <dayofmonth>)

日付がday-of-monthパラメータと等しい場合は真を、指定した開始date (包含)から終了date (除
外)の範囲にある他のすべての日付である場合は偽を返します。date範囲外の場合は、uncertain
を返します。day-of-monthが現在の月の日数を超えた場合、その月の最後の日に真になります。そ

のため、この関数では、ちょうど1か月に1日、真の値が返されます。

検証イベント関数 (English)

構文 摘要

エラー

(<text>)
エラー・イベントは、ユーザーにメッセージを伝達し、エラーを発生させた条件が適用されなくなるまでユーザーが調査を

続行できないようにするために使用されます。

警告

(<text>)
警告イベントは、ユーザーにメッセージを伝達するために使用されますが、その警告を発生させた条件にかかわらず

ユーザーが続行することを許可します。

非推奨関数 (English)

構文 摘要

カスタム機能の呼び

出し(<A>,)
コード・ライブラリへの外部呼び出しの結果を返します。カスタム機能の呼び出しを成功させるには、

Determinations Engineにコード・ライブラリが提供されている必要があります。

논리적 연결자 (English)

구문 설명

if
만일

만약

뒤따르는 검증이 있는 결론 라인의 끝에 표시할 수 있는 선택적 조건입니다 .

and
그리고

두 attributes간의 논리적 결합

or
또는

혹은

두 attributes간의 논리적 분리

둘 중 하나

다음 중 하나가 충족됨

다음 중 하나가 충족합니다

다음 중 하나에 해당합니다

다음 중 하나가 충족되었습니

다

다음 중 하나

임의

두 개 이상의 attributes을 (를)그룹핑해야 하는 경우 ,분리에 사용하는 그룹핑
요소

구문 설명

다음 중 최소 하나가 참

다음 중 무언가가 충족됨

both
둘 다

모두

다음 모두가 참

다음 모두가 충족됨

두 개 이상의 attributes을 (를)그룹핑해야 하는 경우 ,결합에 사용하는 그룹핑
요소

그렇지 않으면 그렇지 않으면 절을 나타내기 위해 테이블 규칙 끝에 표시하는 조건입니다 .

= 축약된 구문 및 전체 attribute text사이의 범례 항목에서 사용되는 조건입니다 .

논리적 함수 (English)

구문 설명

사실이 아닙니다 (은 |는)<expr>
사실이 아님(<expr>)
IsNotTrue(<expr>)

attribute의 값이 거짓인 경우 참을 반환하기 위해 사용하는 연산자

(확실함 | IsCertain)(<var>)
<var>(은 |이 |는 |가 |)확실함
(확실함 | IsCertain)(<expr>)
확실함 (은 |이 |는 |가 |)<expr>

attribute의 값이 uncertain이 아닌 경우 참을 반환하기 위해 사용하는
연산자

<var>(은 |이 |는 |가 |)확실하지 않음
(확실하지 않음 | IsUncertain)(<var>)

<var>(은 |이 |는 |가 |)불확실함
(불확실함)(<var>)
여부가 확실하지 않습니다 (가 |
는)<expr>
(확실하지 않음 | IsUncertain)
(<expr>)
확실하지 않음 (은 |이 |는 |가 |
)<expr>
(불확실함)(<expr>)
불확실함 (은 |이 |는 |가 |)<expr>

attribute의 값이 uncertain인 경우 참을 반환하는 연산자입니다 .

<var>(은 |을 |는 |를 |)알 수 있음
(알 수 있음 | IsKnown)(<var>)
<var>(를 |을)확인하였음
(알 수 있음 | IsKnown)(<expr>)
알 수 있음 (은 |을 |는 |를 |)<expr>

attribute에 값이 있는 경우 참을 반환하는 데 사용하는 연산자입니다 .

구문 설명

<var>(은 |을 |는 |를 |)알 수 없음
(알 수 없음 | IsUnKnown)(<var>)
(알 수 없음 | IsUnKnown)(<expr>)
알 수 없음 (은 |을 |는 |를 |)<expr>

attribute에 값이 없는 경우 참을 반환하는 데 사용하는 연산자입니다 .

논리적 상수 (English)

구문 설명

참 테이블 규칙에 사용되는 상수 참 값입니다 .

거짓 테이블 규칙에 사용되는 상수 거짓 값입니다 .

확실하지 않음

불확실함
테이블 규칙에 사용되는 상수 uncertain값입니다 .

비교 연산자 (English)

구문 설명

<x><<y>
다음보다 작음

참고 :이 연산자가 숫자 및 통화 값에 대해 사용될 경우 자연 언어 형식이 없습니다 .

<x> > <y>
다음보다 큼

참고 :이 연산자가 숫자 및 통화 값에 대해 사용될 경우 자연 언어 형식이 없습니다 .

<x><=<y> 다음보다 작거나 같음

<x> >= <y> 다음보다 크거나 같음

<x>=<y> 같음

<x> <> <y> 같지 않음

숫자 함수 (English)

구문 설명

숫자 (<numText>) 지정된 문자열을 숫자 값으로 변환합니다 .

<x> + <y> 수학적 더하기

<x> - <y> 수학적 빼기

<x> * <y> 수학적 곱하기

<x> / <y> 수학적 나누기

구문 설명

<x> \ <y> 정수 나누기

<x> modulo <y> 정수 나누기 후 나머지

최대 (<x>, <y>)
최대 (<date/time/datetime1>, <date/time/datetime2>)

두 값 중 큰 값을 반환합니다 .

최소 (<x>, <y>)
최소 (<date/time/datetime1>, <date/time/datetime2>)

두 값 중 작은 값을 반환합니다 .

Xy(<x>, <y>) y를 지수로 한 x의 거듭제곱

Ex(<x>) x를 지수로 한 상수 e의 거듭제곱

절대값 (<x>)
|<val>|

x의 절대값

자연 로그 (<x>) x의 자연 로그

로그 (<x>) 밑이 10인 x의 로그

제곱근 (<x>) x의 제곱근

반올림 (<x>, <n>) x를 소수점 n자리까지 반올림합니다 .

내림 (<x>, <n>) x를 소수점 n자리까지 자릅니다 .

Sin(<x>) x의 사인

Cos(<x>) x의 코사인

Tan(<x>) x의 탄젠트

Asin(<x>) x의 아크사인

Acos(<x>) x의 아크코사인

Atan(<x>) x의 아크탄젠트

날짜 함수 (English)

구문 설명

현재날짜 () 세션 시작 시 현재 date을 (를)반환합니다 .

날짜 (<text>) 지정된 문자열을 date값으로 변환합니다 .

날짜생성 (<year>,
<month>, <day>)

지정된 연도 ,월 및 일로 구성된 date을 (를)반환합니다 .

일추출 (<date/d-
atetime>)

date/datetime attribute의 일 구성 요소를 반환합니다 .

구문 설명

월추출 (<date/d-
atetime>)

date/datetime attribute의 월 구성 요소를 반환합니다 .

연도추출 (<date/d-
atetime>)

date/datetime attribute의 연도 구성 요소를 반환합니다 .

다음날짜 (<date/d-
atetime>, <day>)

date또는 그 이전 /이후의 다음 평일의 date을 (를)반환합니다 (사용된 구문에 따름).

다음지정날짜 (<date>,
<day>, <month>)

date(으)로부터 지정된 일 및 월 이후에 해당하는 다음 인스턴스를 반환합니다 .

일추가 (<date/d-
atetime>, <num_days>)

date에 일수를 더하거나 뺍니다 .간결한 구문 형식을 사용하는 경우 ,입력 date에 일을 더
하려면 해당 숫자가 양의 정수여야 하고 ,입력 date에서 일을 빼려면 음의 정수여야 합니
다 .

주추가 (<date/d-
atetime>, <num_
weeks>)

date에 주 수를 더합니다 .간결한 구문 형식을 사용하는 경우 ,입력 date에 주를 더하려면
해당 숫자가 양의 정수여야 합니다 .

월추가 (<date/d-
atetime>, <num_
months>)

date에 개월 수를 더합니다 .간결한 구문 형식을 사용하는 경우 ,입력 date에 개월을 더하
려면 해당 숫자가 양의 정수여야 합니다 .

연도추가 (<date/d-
atetime>, <num_
years>)

date에 연도 수를 더합니다 .간결한 구문 형식을 사용하는 경우 ,입력 date에 연도를 더하
려면 해당 숫자가 양의 정수여야 합니다 .

평일수 (<date1>,
<date2>)

date및 date사이의 평일 수를 셉니다 .즉 ,월요일 및 금요일 사이의 일수입니다 .
참고 :이른 date은 (는)포함되며 늦은 date은 (는)제외됩니다 .

연도시작 (<date/d-
atetime>)

특정 date이 (가)포함되는 연도의 첫 date을 (를)반환합니다 .

연도끝 (<date/d-
atetime>)

특정 date이 (가)포함되는 연도의 마지막 date을 (를)반환합니다 .

일차이 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1및 date/datetime2사이의 전체 일수를 반환합니다 .두 날짜의 순서는
결과에 영향을 미치지 않습니다 .

경계포함일차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 전체 일수 (포함 방식)를 반환합니다 .이 계산
에서는 양끝 날짜를 포함합니다 .두 날짜가 같은 경우 결과는 1입니다 .두 날짜의 순서는
결과에 영향을 미치지 않습니다 .

경계제외일차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 전체 일수 (제외 방식)를 반환합니다 .이 계산
에서는 양끝 날짜를 제외합니다 .두 날짜가 같은 경우 결과는 0입니다 .두 날짜의 순서는
결과에 영향을 미치지 않습니다 .

구문 설명

주차이 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 주 수를 반환합니다 .두 날짜의
순서는 결과에 영향을 미치지 않습니다 .

경계포함주차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 주 수 (포함 방식)를 반환합니다 .
두 날짜의 순서는 결과에 영향을 미치지 않습니다 .

경계제외주차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 주 수 (제외 방식)를 반환합니다 .
두 날짜의 순서는 결과에 영향을 미치지 않습니다 .

월차이 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 개월 수를 반환합니다 .두 날짜
의 순서는 결과에 영향을 미치지 않습니다 .

경계포함월차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 개월 수 (포함 방식)를 반환합니
다 .두 날짜의 순서는 결과에 영향을 미치지 않습니다 .

경계제외월차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 경과된 전체 개월 수 (제외 방식)를 반환합니
다 .두 날짜의 순서는 결과에 영향을 미치지 않습니다 .

연도차이 (<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1및 date/datetime2사이의 연도 수를 반환합니다 .두 날짜의 순서는 결
과에 영향을 미치지 않습니다 .

경계포함연도차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 연도 수 (포함 방식)를 반환합니다 .두 날짜의
순서는 결과에 영향을 미치지 않습니다 .

경계제외연도차이

(<date/datetime1>,
<date/datetime2>)

date/datetime1및 date/datetime2사이의 연도 수 (제외 방식)를 반환합니다 .두 날짜의
순서는 결과에 영향을 미치지 않습니다 .

시간 함수 (English)

구문 설명

시간 (<text>) 지정된 문자열을 시간으로 변환합니다 .

초추출 (<time/datetime>) timeofday/datetime attribute의 초 구성 요소를 반환합니다 .

분추출 (<time/datetime>) timeofday/datetime attribute의 분 구성 요소를 반환합니다 .

시추출 (<time/datetime>) timeofday/datetime attribute의 시간 구성 요소를 반환합니다 .

날짜 및 시간 함수 (English)

구문 설명

현재날짜시간 () 세션 시작 시 현재 date및 시간을 반환합니다 .

날짜시간 (<text>) 지정된 문자열을 datetime값으로 변환합니다 .

날짜시간연결 (<date>,
<time>)

date과 (와)시간을 같이 결합하여 date시간을 설정합니다 .

초차이 (<datetime1>,
<datetime2>)
초차이 (<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 초 수를 반환합니다 .

경계포함초차이 (<dat-
etime1>, <datetime2>)
경계포함초차이

(<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 초 수 (포함 방식)를 반환합니다 .

경계제외초차이 (<dat-
etime1>, <datetime2>)
경계제외초차이

(<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 초 수 (제외 방식)를 반환합니다 .

분차이 (<datetime1>,
<datetime2>)
분차이 (<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 분 수를 반환합니다 .

경계포함분차이 (<dat-
etime1>, <datetime2>)
경계포함분차이

(<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 분 수 (포함 방식)를 반환합니다 .

경계제외분차이 (<dat-
etime1>, <datetime2>)
경계제외분차이

(<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 분 수 (제외 방식)를 반환합니다 .

시차이 (<datetime1>,
<datetime2>)
시차이 (<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 시간 수를 반환합니다 .

경계포함시차이 (<dat- datetime1및 datetime2사이의 시간 수 (포함 방식)를 반환합니다 .

구문 설명

etime1>, <datetime2>)
경계포함시차이

(<timeOfDay1>,
<timeOfDay2>)

경계제외시차이 (<dat-
etime1>, <datetime2>)
경계제외시차이

(<timeOfDay1>,
<timeOfDay2>)

datetime1및 datetime2사이의 시간 수 (제외 방식)를 반환합니다 .

날짜추출 (<datetime>) datetime attribute에서 date을 (를)추출합니다 .

시간추출 (<datetime>)
datetime attribute에서 시간을 추출합니다 .현재 date및 시간에서 시간을 추출하여
timeofday attribute의 값을 규칙을 실행한 시간으로 설정하는 데 사용할 수 있습니다 .

시추가 (<datetime>,
<num_hours>)
시추가 (<timeOfDay>,
<num_hours>)

date시간에 시간 수를 더합니다 .

분추가 (<datetime>,
<num_minutes>)
분추가 (<timeOfDay>,
<num_minutes>)

date시간에 분 수를 더합니다 .

초추가 (<datetime>,
<num_seconds>)
초추가 (<timeOfDay>,
<num_seconds>)

date시간에 초 수를 더합니다 .

텍스트 함수 (English)

구문 설명

<text1> & <text2>
text1과 (와) text2을 (를)결합하여 단일 text값을 생성합니다 .
참고 :모든 유형의 변수를 사용할 수 있습니다 .값은 규칙 세션에서 설치된 포맷터를 사
용하여 형식이 설정됩니다 .

text1과 (와) text2을 (를)결합하여 단일 text값을 생성합니다 .
참고 :모든 유형의 변수를 사용할 수 있습니다 .값은 규칙 세션에서 설치된 포맷터를 사
용하여 형식이 설정됩니다 .

포함 (<text>, <sub-
string>)

지정된 text값이 지정된 text하위 문자열을 포함하는지 여부를 나타내는 부울 값을 반
환합니다 . text비교는 대소문자를 구분하지 않습니다 .

끝문자 (<text>, <sub- 지정된 text값이 지정된 text하위 문자열로 끝나는지 여부를 나타내는 부울 값을 반환

구문 설명

string>) 합니다 . text비교는 대소문자를 구분하지 않습니다 .

유효수치 (<text>) 지정된 text값이 적합한 숫자를 나타내는지 여부를 표시하는 부울 값을 반환합니다 .

길이 (<text>) 지정된 text값의 문자 길이를 반환합니다 .

시작문자 (<text>, <sub-
string>)

지정된 text값이 지정된 text하위 문자열로 시작하는지 여부를 나타내는 부울 값을 반
환합니다 . text비교는 대소문자를 구분하지 않습니다 .

부분문자열 (<text>,
<offset>, <length>)

지정된 오프셋에서 시작하여 지정된 문자 길이만큼 text의 하위문자열을 반환합니다 .
문자열 끝에 도달하는 경우 보다 적은 문자가 반환됩니다 .

텍스트 (<number>)
텍스트 (<date>)
텍스트 (<datetime>)
텍스트 (<timeOfDay>)

지정된 숫자 또는 date attribute을 (를) text값으로 변환합니다 .

개체 및 관계 함수 (English)

구문 설명

대상 (<relationship>, <Exp>)
조건이 하나뿐인 "일대일 ", "다대일 "또는 "다대다 " relationship의 하
나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .

대상범위 (<relationship>, <alias>)
대상범위 (<relationship>)

조건이 하나 이상인 "일대일 ", "다대일 "또는 "다대다 " relationship의
하나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .

대상전체 (<relationship>, <Exp>)

대상 entity그룹의 모든 멤버가 규칙을 충족할 필요가 있는지 여부
를 판단할 필요가 있을 때 , "일대다 "또는 "다대다 " relationship의 하
나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .
이 형식은 규칙에 조건이 하나만 있을 때 사용됩니다 .

대상전체범위 (<relationship>)
대상전체범위 (<relationship>, <alias>)

대상 entity그룹의 모든 멤버가 규칙을 충족할 필요가 있는지 여부
를 판단할 필요가 있을 때 , "일대다 "또는 "다대다 " relationship의 하
나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .
이 형식은 규칙에 조건이 하나 이상 있을 때 사용됩니다 .

존재 (<relationship>, <Exp>)

대상 entity그룹의 어떠한 멤버가 규칙을 충족할 필요가 있는지 여
부를 판단할 필요가 있을 때 , "일대다 "또는 "다대다 " relationship의
하나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .
이 형식은 규칙에 조건이 하나만 있을 때 사용됩니다 .

존재범위 (<relationship>)
존재범위 (<relationship>, <alias>)

대상 entity그룹의 어떠한 멤버가 규칙을 충족할 필요가 있는지 여
부를 판단할 필요가 있을 때 , "일대다 "또는 "다대다 " relationship의
하나의 entity에서 다른 entity(으)로 참조하는 데 사용됩니다 .
이 형식은 규칙에 조건이 하나 이상 있을 때 사용됩니다 .

멤버임 (<target>, <relationship>) entity인스턴스가 relationship의 멤버라는 것을 추론하는 결론으

구문 설명

멤버임 (<target>, <alias>, <relationship>)
로 사용됩니다 .특정 entity인스턴스에 대해 두 번째 entity인스턴
스가 소스인 relationship의 대상인지 여부를 테스트하는 조건으로
사용됩니다 .

멤버가아님 (<target>, <relationship>)
특정 entity인스턴스에 대해 두 번째 entity인스턴스가 소스인 rela-
tionship의 대상이 아닌지 여부를 테스트하는 조건으로 사용됩니다 .

인스턴스수 (<relationship>) entity에 존재하는 인스턴스의 수를 셉니다 .

인스턴스수조건부 (<relationship>, <Exp>)
특정 entity-level attribute이 (가)특정 값을 가지는 entity에 존재
하는 인스턴스의 수를 셉니다 .

인스턴스최대 (<relationship>, <number-
attr>)
인스턴스최대 (<relationship>, <date-attr>)
인스턴스최대 (<relationship>, <datetime-
attr>)
인스턴스최대 (<relationship>, <time-attr>)

entity의 모든 인스턴스에 대한 entity-level변수의 가장 높거나 가
장 최근의 값을 구합니다 .

인스턴스최대조건부 (<relationship>, <num-
ber-attr>, <condition>)
인스턴스최대조건부 (<relationship>, <date-
attr>, <condition>)
인스턴스최대조건부 (<relationship>, <dat-
etime-attr>, <condition>)
인스턴스최대조건부 (<relationship>, <time-
attr>, <condition>)

특정 entity-level attribute이 (가)특정 값을 가지는 entity의 모든
인스턴스에 대한 entity-level변수의 가장 높거나 가장 최근의 값을
구합니다 .

인스턴스최소 (<relationship>, <number-
attr>)
인스턴스최소 (<relationship>, <date-attr>)
인스턴스최소 (<relationship>, <datetime-
attr>)
인스턴스최소 (<relationship>, <time-attr>)

entity의 모든 인스턴스에 대한 entity-level변수의 가장 낮거나 가
장 이전의 값을 구합니다 .

인스턴스최소조건부 (<relationship>, <num-
ber-attr>, <condition>)
인스턴스최소조건부 (<relationship>, <date-
attr>, <condition>)
인스턴스최소조건부 (<relationship>, <dat-
etime-attr>, <condition>)
인스턴스최소조건부 (<relationship>, <time-
attr>, <condition>)

특정 entity-level attribute이 (가)특정 값을 가지는 entity의 모든
인스턴스에 대한 entity-level변수의 가장 낮거나 가장 이전의 값을
구합니다 .

인스턴스합계 (<relationship>, <number-
attr>)

entity-level변수의 모든 인스턴스 합계를 구합니다 .

구문 설명

인스턴스합계조건부 (<relationship>, <num-
ber-attr>, <condition>)

entity에 대해 특정 entity-level부울 attribute이 (가)참인 entity-
level변수의 모든 인스턴스 합계를 구합니다 .

인스턴스값조건부 (<relationship>, <number-
attr>, <condition>)
인스턴스값조건부 (<relationship>, <text-
attr>, <condition>)
인스턴스값조건부 (<relationship>, <date-
attr>, <condition>)
인스턴스값조건부 (<relationship>, <dat-
etime-attr>, <condition>)
인스턴스값조건부 (<relationship>, <time-
attr>, <condition>)

하나의 조건으로 relationship의 대상 entity인스턴스를 식별하여
고유한 entity인스턴스로부터 값을 구합니다 .

l 해당 조건이 단일 대상 entity인스턴스를 식별하는 경우 ,해
당 entity인스턴스에 대해 계산된 값이 결과 값이 됩니다 .

l 해당 조건을 만족하는 대상 인스턴스가 두 개 이상인 경우 ,
uncertain이 (가)반환됩니다 .

l 해당 조건을 만족하는 대상 인스턴스가 없고 relationship이
(가)알려진 경우 ,값은 uncertain이 (가)됩니다 .

인스턴스같음 (<instance1>, <instance2>) entity의 두 인스턴스가 동일한 인스턴스인지를 판단합니다 .

인스턴스같지않음 (<instance1>,
<instance2>)

entity의 두 인스턴스가 동일한 인스턴스가 아닌지를 판단합니다 .

추론인스턴스 (<relationship>, <identity>)
<rel>(<identity>) (이 존재합니다 |가 존재
합니다 |이 존재한다 |가 존재한다 |이존
재합니다 |가존재합니다 |이존재한다 |가
존재한다)

entity인스턴스가 있으며 relationship의 멤버라는 것을 추론하는
결론으로 사용됩니다 .

시간 기준 추론 기능 (English)

구문 설명

일정내고유값계

산 (<start-date>,
<end-date>, <vari-
able>)
일정내고유값계

산 (<start-date>,
<end-date>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 변수의 알려진 고유 값의
수를 셉니다 .

조건부고유값계

산 (<start-date>,
<end-date>, <vari-
able>,
<condition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 필터가 참인 시간만
을 포함하는 변수의 알려진 고유 값의 수를 셉니다 .

일정내일일합계

(<start-date>,
시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 통화 또는 숫자 변수의 합
계를 계산합니다 . attribute은 (는)일별 값으로 간주됩니다 .

구문 설명

<end-date>, <num-
ber-attr>)

조건부일일합계

(<start-date>,
<end-date>, <num-
ber-attr>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 조건이 참인 시간만을 포
함하는 통화 또는 숫자 변수의 모든 일별 값의 합계를 계산합니다 .

일정내최대값

(<start-date>,
<end-date>, <num-
ber-attr>)
일정내최대값

(<start-date>,
<end-date>,
<date-attr>)
일정내최대값

(<start-date>,
<end-date>, <dat-
etime-attr>)
일정내최대값

(<start-date>,
<end-date>,
<time-attr>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 변수의 최대 값을 선택합
니다 .

조건부최대값

(<start-date>,
<end-date>, <num-
ber-attr>, <con-
dition>)
조건부최대값

(<start-date>,
<end-date>,
<date-attr>, <con-
dition>)
조건부최대값

(<start-date>,
<end-date>, <dat-
etime-attr>, <con-
dition>)
조건부최대값

(<start-date>,
<end-date>,
<time-attr>, <con-

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 조건이 참인 시간만을 포
함하는 변수의 최대 값을 선택합니다 .

구문 설명

dition>)

일정내최소값

(<start-date>,
<end-date>, <num-
ber-attr>)
일정내최소값

(<start-date>,
<end-date>,
<date-attr>)
일정내최소값

(<start-date>,
<end-date>, <dat-
etime-attr>)
일정내최소값

(<start-date>,
<end-date>,
<time-attr>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 변수의 최소 값을 선택합
니다 .

조건부최소값

(<start-date>,
<end-date>, <num-
ber-attr>, <con-
dition>)
조건부최소값

(<start-date>,
<end-date>,
<date-attr>, <con-
dition>)
조건부최소값

(<start-date>,
<end-date>, <dat-
etime-attr>, <con-
dition>)
조건부최소값

(<start-date>,
<end-date>,
<time-attr>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 조건이 참인 시간만을 포
함하는 변수의 최소 값을 선택합니다 .

일정가중평균

(<start-date>,
<end-date>, <num-
ber-attribute>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 각 값이 적용되는 시간 범
위에 가중치를 적용하여 통화 또는 숫자 변수의 평균 값을 계산합니다 .

구문 설명

조건부가중평균

(<start-date>,
<end-date>, <num-
ber-attribute>,
<condition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 조건이 참인 시간만
을 포함하는 통화 또는 숫자 변수의 평균 값을 계산합니다 (각 값이 적용되는 시간 범위에 가중
치를 적용하며 필터가 참이어야 함).

일정간격만족

(<start-date>,
<end-date>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 조건이 항상 참인 경
우에만 참을 반환합니다 .

일정내포함

(<start-date>,
<end-date>,
<NumDays>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 조건이 지정된 일수
이상 (연속될 필요는 없음)참인 경우에만 참을 반환합니다 .

연속일정포함

(<start-date>,
<end-date>,
<NumDays>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 조건이 지정된 연속
일수 이상 참인 경우에만 참을 반환합니다 .

일정내값존재

(<start-date>,
<end-date>, <con-
dition>)

시작 date(포함 방식)에서 종료 date(제외 방식)까지의 간격에 대해 부울 조건이 한 번이라도
참인 경우에만 참을 반환합니다 .

값시점 (<date>,
<value>)

지정된 date에 지정된 attribute값을 반환합니다 .

최근참값 (<date>,
<condition>)

지정된 date을 (를)포함하여 그 이전으로 거슬러 올라가며 확인하여 ,부울 조건이 마지막으로
참인 date을 (를)반환합니다 .

다음참값 (<date>,
<condition>)

지정된 date을 (를)포함하여 그 이후를 시간 흐름에 따라 확인하여 ,부울 조건이 다음으로 참
인 date을 (를)반환합니다 .

최근값 ()
가능한 가장 늦은 date과 (와)동등한 date값을 반환합니다 .이는 date attribute이 (가)가질
수 있거나 표현식이 계산 가능한 다른 모든 date보다 늦다는 것이 보장된 date입니다 .

최초값 ()
가능한 가장 이른 date과 (와)동등한 date값을 반환합니다 .이는 date attribute이 (가)가질
수 있거나 표현식이 계산 가능한 다른 모든 date보다 이르다는 것이 보장된 date입니다 .

기준이후충족일

수 (<date>, <end-
date>)

매일 변화하며 date이후 전체 일수인 숫자 변수를 반환합니다 .

기준시작주 매주 변화하며 date이후 전체 주 수인 숫자 변수를 반환합니다 .

구문 설명

(<date>, <end-
date>)

기준시작월

(<date>, <end-
date>)

매월 변화하며 date이후 전체 개월 수인 숫자 변수를 반환합니다 .참고 :입력된 date이 (가)해
당 월의 28일 이후이며 ,그 다음 월의 일수가 입력된 월보다 작은 경우 ,기념 월의 변경 시점은
그 월의 마지막 날에 생성됩니다 .예를 들어 ,입력된 date이 (가) 2007년 1월 28일 , 29일 , 30일 또
는 31일이면 첫 변경 시점은 2007년 2월 28일이 됩니다 .

기준시작연도

(<date>, <end-
date>)

매년 변화하며 date이후 전체 연도 수인 숫자 변수를 반환합니다 .

지속충족값

(<days>, <con-
dition>)

시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .지정된 선행 일수 (현재 일 제외)동안
부울 조건이 항상 참일 때만 참이 됩니다 .

연속충족값

(<minDays>,
<days>, <con-
dition>)

시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .선행 설정 일수 (현재 일 제외)내에서
언제든지 최소 연속 일수 이상 부울 조건이 참일 경우에만 참이 됩니다 .

간헐기준적용

(<days>, <con-
dition>)

시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .지정된 선행 일수 (현재 일 제외)동안
부울 조건이 한 번이라도 참일 때만 참이 됩니다 .

기준이후충족값

(<date>)
시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .특정 date이후는 참이고 ,해당 일 및
이전은 거짓이 됩니다 .

기준이전충족값

(<date>)
시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .특정 date이전은 참이고 ,해당 일 및
이후는 거짓이 됩니다 .

기준적용시

(<date>)
시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .특정 date이면 참이고 ,그 이전 및 이
후는 거짓이 됩니다 .

기준포함이후충

족값 (<date>)
시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .특정 date및 이후는 참이고 ,이전은
거짓이 됩니다 .

기준포함이전충

족값 (<date>)
시간에 따라 변화하는 부울 attribute을 (를)반환합니다 .특정 date및 이전은 참이고 ,이후는
거짓이 됩니다 .

기준시작일 (<rela-
tionship>, <date>,
<value>)

relationship의 단일 시간 기준 attribute(소스 entity레벨)및 개체의 값 attribute을 (를)시작
date attribute(으)로부터 유효한 값과 함께 반환합니다 .

기준종료일 (<rela-
tionship>, <date>,
<value>)

relationship의 단일 시간 기준 attribute(소스 entity레벨)및 개체의 값 attribute을 (를)종료
date attribute까지 유효한 값과 함께 반환합니다 .

기준범위 (<rela- relationship의 단일 시간 기준 attribute(소스 entity레벨)및 개체의 값 attribute을 (를)시작

구문 설명

tionship>, <start-
date>, <end-
date>, <Value>)

date attribute(포함 방식)에서 종료 date attribute(제외 방식)까지 유효한 값과 함께 반환합
니다 .다음 시작 date이전에 만료되는 경우 값은 uncertain이 (가)됩니다 .

기준평일

(<startdate>, <end-
date>)

지정된 시작 date(포함 방식)에서 종료 date(제외 방식)까지 날짜가 평일이면 참을 ,날짜가 주
말이면 거짓을 반환합니다 . date범위를 벗어나는 경우 uncertain을 (를)반환합니다 .

기준 (<startdate>,
<enddate>, <day-
ofmonth>)

지정된 시작 date(포함 방식)에서 종료 date(제외 방식)까지 일이 월중 특정일 매개변수와 같
으면 참을 ,그 외 모든 월중 특정일이면 거짓을 반환합니다 . date범위를 벗어나는 경우 uncer-
tain을 (를)반환합니다 .월중 특정일이 현재 월의 일수를 초과하는 경우 그 월의 마지막 날에
값이 참이 됩니다 .따라서 함수가 월별로 정확히 하루에 대해 참 값을 반환합니다 .

검증 이벤트 함수 (English)

구문 설명

오류

(<text>)
사용자에게 메시지를 전달하기 위해 오류 이벤트가 사용되며 사용자는 오류를 트리거한 조건이 더 이

상 적용되지 않을 때까지 조사를 계속할 수 없습니다 .

경고

(<text>)
사용자에게 메시지를 전달하기 위해 경고 이벤트가 사용되지만 사용자는 경고를 트리거한 조건이 있

어도 계속할 수 있습니다 .

사용되지 않는 함수 (English)

구문 설명

사용자지정기능

호출 (<A>,)
외부 호출의 결과를 코드 라이브러리에 반환합니다 .사용자 지정 함수 호출에 성공하기 위해
서는 코드 라이브러리가 Determinations Engine에 제공되어야 합니다 .

Logiske koblinger(English)

Syntaks Beskrivelse

hvis
Valgfri betingelse som kan forekomme på slutten av en konklusjonslinje som har et påføl-
gende bevis

og Logisk konjunksjonmellom to attributes

eller Logisk disjunksjonmellom to attributes

enten
en av

Grupperingselement som brukes for disjunksjoner der to eller flere attributesmå
grupperes

Syntaks Beskrivelse

any
at least one of the following is
true
any of the following are sat-
isfied

begge
alle
all of the following are true
all of the following are sat-
isfied

Grupperingselement som brukes for konjunksjoner der to eller flere attributesmå
grupperes

ellers Betingelse som vises på slutten av en tabellregel for å angi ellers-leddet

er
Betingelse som brukes i en forklaringsoppføringmellom forkortet uttrykk og fullstendig
attribute text

Logiske funksjoner(English)

Syntaks Beskrivelse

det er ikke sant at <attr> Operator som brukes til å returnere sann hvis attribute har en verdi som er usann

<var> er sikkert
det er usikkert om <attr>
det er sikkert hvorvidt <attr>

Operator som brukes til å returnere sann hvis attribute har en verdi som ikke er uncer-
tain

<var> er usikkert
<var> er ikke sikkert
det er usikkert at <attr>
det er usikkert om <attr>
det er usikkert hvorvidt
<attr>
det er ikke sikkert at <attr>
usikker

Operator som brukes til å returnere sann hvis attribute-verdien er uncertain

<var> er kjent
det er kjent hvorvidt <attr>

Operator som brukes til å returnere sann hvis attribute har enhver verdi

<var> er ukjent
det er ukjent om <attr>
det er ukjent hvorvidt <attr>
ukjent

Operator som brukes til å returnere sann hvis attribute ikke har en verdi

Logiske konstanter(English)

Syntaks Beskrivelse

sann Konstant sann verdi som brukes for tabellregler.

usann Konstant usann verdi som brukes for tabellregler.

usikker Konstantuncertain-verdi som brukes for tabellregler.

Sammenligningsoperatorer(English)

Syntaks Beskrivelse

<lhs><<rhs>
<lhs> er tidligere enn <rhs>

Mindre enn
Merknad: Det finnes ingen naturlig språkform der denne operatoren brukes med tall- og
valutaverdier.

<lhs> > <rhs>
<lhs> er senere enn <rhs>

Større enn
Merknad: Det finnes ingen naturlig språkform der denne operatoren brukes med tall- og
valutaverdier.

<lhs><=<rhs>
<lhs> er mindre enn eller lik
<rhs>

Mindre enn eller lik

<lhs> >= <rhs>
<lhs> er større enn eller lik
<rhs>

Større enn eller lik

<lhs>=<rhs>
<lhs> er lik <rhs>
<lhs> equals <rhs>

Er lik

<lhs> er ikke lik <rhs>
<lhs> <> <rhs>

Ikke lik

Numeriske funksjoner(English)

Syntaks Beskrivelse

Number(<numText>) Konverter den angitte strengen til en tallverdi

<lhs> + <rhs> Matematisk addisjon

<lhs> - <rhs> Matematisk subtraksjon

<lhs> * <rhs> Matematisk multiplikasjon

<lhs> / <rhs> Matematisk divisjon

<lhs> \ <rhs> Heltallsdivisjon

Syntaks Beskrivelse

<lhs> modulo <rhs> Gjenstående etter heltallsdivisjon

Maximum(<x>, <y>)
Maximum(<date/time/datetime1>, <date/time/datetime2>)
det høyeste av <val1> og <val2>
den siste av <val1> og <val2>

Returnerer den største av to verdier

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
utleier av <val1> og <val2>
det tidligste av <val1> og <val2>

Returnerer denminste av to verdier

Xy(<x>, <y>) x i y. potens

Ex(<x>) Konstant e i x. potens

Abs(<x>) Absolutt verdi av x

Ln(<x>) Naturlig logaritme for x

Log(<x>) Logaritmebase 10 for x

Sqrt(<x>)
kvadratroten av <val>

Kvadratrot av x

Round(<x>, <n>)
<val> avrundet til <num_places> desimal
<val> avrundet til <num_places> desimaler

Avrunder x til n desimaler

Trunc(<x>, <n>) x avkortet til n desimaler

Sin(<x>) Sinus av x

Cos(<x>) Cosinus av x

Tan(<x>) Tangens av x

Asin(<x>) Arcsinus av x

Acos(<x>) Arccosinus av x

Atan(<x>) Arctangens av x

Datofunksjoner(English)

Syntaks Beskrivelse

CurrentDate()
gjeldende dato

Returnerer gjeldende date ved oppstart av økten.

Syntaks Beskrivelse

Date(<text>) Konverterer den angitte strengen til en date-verdi

MakeDate(<year>,
<month>, <day>)

Returnerer date dannet på grunnlag av angitt år, måned og dag.

ExtractDay(<date/d-
atetime>)

Returnerer dagskomponenten i date/datetime attribute.

ExtractMonth(<date/d-
atetime>)

Returnerer månedskomponenten i date/datetime attribute.

ExtractYear(<date/d-
atetime>)

Returnerer årskomponenten i date/datetime attribute.

NextDayOfTheWeek
(<date/datetime>, <day>)
neste mandag på eller
etter <from-date>
neste tirsdag på eller
etter <from-date>
neste onsdag på eller
etter <from-date>
neste torsdag på eller
etter <from-date>
neste fredag på eller etter
<from-date>
neste lørdag på eller etter
<from-date>
neste søndag på eller
etter <from-date>

Returnerer date for neste ukedag på eller før/etter date (avhengig av syntaksen som brukes).

NextDate(<date>, <day>,
<month>)

Returnerer den neste forekomsten av angitt dag ogmåned etter date.

AddDays(<date/datetime>,
<num_days>)
datoen <num_days> dager
etter <datetime>
tiden <num_days> dager
etter <datetime>

Legger til / trekker fra et antall dager for date. Når den korte syntaktiske formen brukes, må
antallet være et positivt heltall hvis du vil legge dager til inndataene date, eller et negativt tall
hvis du vil trekke dager fra inndataene date.

AddWeeks
(<date/datetime>, <num_
weeks>)
datoen <num_weeks> uker
etter <datetime>
tiden <num_weeks> uker

Legger til et antall uker for date. Når den korte syntaktiske formen brukes, må antallet være
et positivt heltall hvis du vil legge uker til inndataene date.

Syntaks Beskrivelse

etter <datetime>

AddMonths(<date/d-
atetime>, <num_months>)
datoen <num_months>
måneder etter at <dat-
etime>
tiden <num_months>
måneder etter <datetime>

Legger til et antall måneder for date. Når den korte syntaktiske formen brukes, må antallet
være et positivt heltall hvis du vil legge måneder til inndataene date.

AddYears(<date/datetime>,
<num_years>)
datoen <num_years> år
etter at <datetime>
tiden <num_years> år
etter <datetime>

Legger til et antall år for date. Når den korte syntaktiske formen brukes, må antallet være et
positivt heltall hvis du vil legge år til inndataene date.

WeekdayCount(<date1>,
<date2>)
antall ukedager
(inkludert) mellom
<date1> og <date2>

Teller antall ukedager mellom date1 og date2, dvs. antall dager mellommandag og fredag.
Merknad: Første date er inkludert og siste date er utelatt.

YearStart(<date/datetime>)

den første dagen i året
hvor <from-date> faller

Returnerer første date i året der date ligger.

YearEnd(<date/datetime>)
den siste dagen i året
hvor <from-date> faller

Returnerer siste date i året der date ligger.

DayDifference(<date/d-
atetime1>,
<date/datetime2>)
antall dager fra <date1>
til <date2>

Returnerer antall hele dager mellom date/datetime1 og date/datetime2. Rekkefølgen på
de to datoene påvirker ikke resultatet.

DayDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
antall dager (inklud-
erende) fra <date1> til
<date2>

Returnerer antall hele dager (inkluderende) mellom date/datetime1 og date/datetime2.
Begge sluttpunktene inngår i denne beregningen. Når datoene er de samme, blir resultatet 1.
Rekkefølgen på de to datoene påvirker ikke resultatet.

DayDifferenceExclusive
(<date/datetime1>, <date/d-

Returnerer antall hele dager (ekskluderende) mellom date/datetime1 og
date/datetime2. Begge sluttpunktene utelates fra denne beregningen. Når datoene er de

Syntaks Beskrivelse

atetime2>)
antall dager (eksklusive)
fra <date1> til <date2>

samme, blir resultatet 0. Rekkefølgen på de to datoene påvirker ikke resultatet.

WeekDifference(<date/d-
atetime1>,
<date/datetime2>)
antall uker fra <date1> til
<date2>

Returnerer antall hele medgåtte uker mellom date/datetime1 og date/datetime2. Rekke-
følgen på de to datoene påvirker ikke resultatet.

WeekDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
antall uker (inklud-
erende) fra <date1> til
<date2>

Returnerer inkluderende antall hele medgåtte uker mellom date/datetime1 og date/d-
atetime2. Rekkefølgen på de to datoene påvirker ikke resultatet.

WeekDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
antall uker (eksklusive)
fra <date1> til <date2>

Returnerer ekskluderende antall hele medgåtte uker mellom date/datetime1 og date/d-
atetime2. Rekkefølgen på de to datoene påvirker ikke resultatet.

MonthDifference(<date/d-
atetime1>,
<date/datetime2>)
antall måneder fra
<date1> til <date2>

Returnerer antall hele medgåtte måneder mellom date/datetime1 og date/datetime2.
Rekkefølgen på de to datoene påvirker ikke resultatet.

MonthDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
antall måneder (inklud-
erende) fra <date1> til
<date2>

Returnerer antall hele inkluderende medgåtte måneder mellom date/datetime1 og date/d-
atetime2. Rekkefølgen på de to datoene påvirker ikke resultatet.

MonthDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
antall måneder (eksklus-
ive) fra <date1> til
<date2>

Returnerer antall hele ekskluderende medgåtte måneder mellom date/datetime1 og
date/datetime2. Rekkefølgen på de to datoene påvirker ikke resultatet.

YearDifference(<date/d-
atetime1>,
<date/datetime2>)
antall hele år som

Returnerer antall år mellom date/datetime1 og date/datetime2. Rekkefølgen på de to
datoene påvirker ikke resultatet.

Syntaks Beskrivelse

<date2> er etter <date1>
antall år fra <date1> og
<date2>

YearDifferenceInclusive
(<date/datetime1>, <date/d-
atetime2>)
antall år (inkluderende)
fra <date1> og <date2>

Returnerer inkluderende antall år mellom date/datetime1 og date/datetime2. Rekke-
følgen på de to datoene påvirker ikke resultatet.

YearDifferenceExclusive
(<date/datetime1>, <date/d-
atetime2>)
antall år (eksklusive) fra
<date1> og <date2>

Returnerer ekskluderende antall år mellom date/datetime1 og date/datetime2. Rekke-
følgen på de to datoene påvirker ikke resultatet.

Klokkeslettfunksjoner(English)

Syntaks Beskrivelse

TimeOfDay(<text>) Konverterer den angitte strengen til et tidspunkt på dagen

ExtractSecond(<time/datetime>) Returnerer sekundkomponenten i timeofday/datetime attribute.

ExtractMinute(<time/datetime>) Returnerer minuttkomponenten i timeofday/datetime attribute.

ExtractHour(<time/datetime>) Returnerer timekomponenten i timeofday/datetime attribute.

Dato- og tidsfunksjoner(English)

Syntaks Beskrivelse

CurrentDateTime() Returnerer gjeldende date og tidspunkt ved oppstart av økten.

DateTime(<text>) Konverterer den angitte strengen til en datetime-verdi

ConcatenateDateTime
(<date>, <time>)
<date> kl <time-of-day>
<time-of-day> på <date>

Angir date-tidspunktet ved å slå sammen date og tidspunkt på dagen.

SecondDifference(<dat-
etime1>, <datetime2>)
SecondDifference
(<timeOfDay1>,
<timeOfDay2>)
antall sekunder fra

Returnerer antall sekunder mellom datetime1 og datetime2.

Syntaks Beskrivelse

<date1> til <date2>

SecondDifferenceInclusive
(<datetime1>, <datetime2>)
SecondDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
antall sekunder (inklud-
erende) fra <date1> til
<date2>

Returnerer inkluderende antall sekunder mellom datetime1 og datetime2.

SecondDifferenceExclusive
(<datetime1>, <datetime2>)
SecondDifferenceExclusive
(<timeOfDay1>,
<timeOfDay2>)
antall sekunder (eksklus-
ive) fra <date1> til <date2>

Returnerer ekskluderende antall sekunder mellom datetime1 og datetime2.

MinuteDifference(<dat-
etime1>, <datetime2>)
MinuteDifference
(<timeOfDay1>,
<timeOfDay2>)
antall minutter fra
<date1> til <date2>

Returnerer antall minutter mellom datetime1 og datetime2.

MinuteDifferenceInclusive
(<datetime1>, <datetime2>)
MinuteDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
antall minutter (inklud-
erende) fra <date1> til
<date2>

Returnerer inkluderende antall minutter mellom datetime1 og datetime2.

MinuteDifferenceExclusive
(<datetime1>, <datetime2>)
MinuteDifferenceExclusive
(<timeOfDay1>,
<timeOfDay2>)
antall minutter (eksklus-
ive) fra <date1> til <date2>

Returnerer ekskluderende antall minutter mellom datetime1 og datetime2.

HourDifference(<dat-
etime1>, <datetime2>) Returnerer antall timer mellom datetime1 og datetime2.

Syntaks Beskrivelse

HourDifference
(<timeOfDay1>,
<timeOfDay2>)
antall timer fra <date1> til
<date2>

HourDifferenceInclusive
(<datetime1>, <datetime2>)
HourDifferenceInclusive
(<timeOfDay1>,
<timeOfDay2>)
antall timer (inklud-
erende) fra <date1> til
<date2>

Returnerer inkluderende antall timer mellom datetime1 og datetime2.

HourDifferenceExclusive
(<datetime1>, <datetime2>)
HourDifferenceExclusive
(<timeOfDay1>,
<timeOfDay2>)
antall timer (eksklusive)
fra <date1> til <date2>

Returnerer ekskluderende antall timer mellom datetime1 og datetime2.

ExtractDate(<datetime>) Trekker ut date fra datetime attribute.

ExtractTimeOfDay(<dat-
etime>)

Trekker ut tidspunkt på dagen fra datetime attribute. Kan brukes til å angi utførelsest-
idspunktet for regelen som verdi for timeofday attribute ved å trekke ut tidspunktet fra
gjeldende date og tidspunkt.

AddHours(<datetime>,
<num_hours>)
AddHours(<timeOfDay>,
<num_hours>)
tiden <num_hours> timer
etter <datetime>

Legger et antall timer til et date-tidspunkt.

AddMinutes(<datetime>,
<num_minutes>)
AddMinutes(<timeOfDay>,
<num_minutes>)
tiden <num_minutes> minut-
ter etter <datetime>

Legger et antall minutter til et date-tidspunkt.

AddSeconds(<datetime>,
<num_seconds>)
AddSeconds(<timeOfDay>,
<num_seconds>)

Legger et antall sekunder til et date-tidspunkt.

Syntaks Beskrivelse

tiden <num_seconds>
sekunder etter <datetime>

Tekstfunksjoner(English)

Syntaks Beskrivelse

<lhs> & <rhs>
Kombinerer text1med text2 osv. for å danne én text-verdi.
Du kan bruke variabler av alle typer. Verdiene formateres ved hjelp av formatereren som er
installert i regeløkten.

på sammensetning
av <text1> & <text2>

Kombinerer text1med text2 osv. for å danne én text-verdi.
Du kan bruke variabler av alle typer. Verdiene formateres ved hjelp av formatereren som er
installert i regeløkten.

Contains(<text>, <sub-
string>)

Returnerer en boolsk verdi som angir om den angitte text-verdien inneholder den angitte text-del-
strengen. text-sammenligningen skiller ikke mellom store og små bokstaver.

EndsWith(<text>,
<substring>)

Returnerer en boolsk verdi som angir om den angitte text-verdien slutter med den angitte text-del-
strengen. text-sammenligningen skiller ikke mellom store og små bokstaver.

IsNumber(<text>) Returnerer en boolsk verdi som angir om den angitte text-verdien representerer et gyldig tall.

Length(<text>) Returnerer tegnlengden for den angitte text-verdien.

StartsWith(<text>,
<substring>)

Returnerer en boolsk verdi som angir om den angitte text-verdien starter med den angitte text-del-
strengen. text-sammenligningen skiller ikke mellom store og små bokstaver.

Substring(<text>, <off-
set>, <length>)

Returnerer delstrengen for text som begynner på angitt forskyvning, dvs. den angitte tegnlengden.
Færre tegn returneres hvis slutten på strengen nås.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Konverter angitt tall eller date attribute til en text-verdi.

Entitets- og relasjonsfunksjoner(English)

Syntaks Beskrivelse

For(<relationship>, <Exp>)
i tilfelle av <ent>, <attr>
<val>, i tilfelle <ent>

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til én,
Mange til én eller Mange til mange der det bare er én betingelse.

ForScope(<relationship>,
<alias>)
ForScope(<relationship>)

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til én,
Mange til én eller Mange til mange der det er en eller flere betingelser.

Syntaks Beskrivelse

i tilfelle av <ent>
i tilfelle av <ent> (<alias>)

ForAll(<relationship>, <Exp>)
hvert av <ent-attr>
for hvert av <ent>, <attr>
for hele <ent>, <attr>

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til
mange eller Mange til mange når du har behov for å fastslå om alle medlemmer i entity-mål-
gruppenmå oppfylle regelen.
Dette skjermbildet brukes når det bare er én betingelse i regelen.

ForAllScope(<relationship>)
ForAllScope(<relationship>,
<alias>)
for alle <ent>
hvert av <ent>
for alle <ent> (<alias>)
hvert av <ent> (<alias>)
for hver av <ent> (<alias>)

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til
mange eller Mange til mange når du har behov for å fastslå om alle medlemmer i entity-mål-
gruppenmå oppfylle regelen.
Dette skjermbildet brukes når det er en eller flere betingelser i regelen.

Exists(<relationship>, <Exp>)
minst ett av <ent-attr>
for minst ett av <ent>,
<attr>

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til
mange eller Mange til mange når du har behov for å fastslå om noenmedlemmer i entity-
målgruppenmå oppfylle regelen.
Dette skjermbildet brukes når det bare er én betingelse i regelen.

ExistsScope(<relationship>)
ExistsScope(<relationship>,
<alias>)
minst ett av <ent>
minst ett av <ent> (<alias>)
for minst ett av <ent>
(<alias>)

Brukes til referanser fra én entity til en annen entity i en relationship av typen Én til
mange eller Mange til mange når du har behov for å fastslå om noenmedlemmer i entity-
målgruppenmå oppfylle regelen.
Dette skjermbildet brukes når det er en eller flere betingelser i regelen.

IsMemberOf(<target>, <rela-
tionship>)
IsMemberOf(<target>,
<alias>, <relationship>)
<ent-target> er medlem av
<ent>
<ent-target> (<alias>) er
medlem av <ent>

Brukes som en konklusjon for å utlede at en entity-forekomst er et medlem av en rela-
tionship. Brukes som en betingelse for å teste at en entity-forekomst er et mål for en rela-
tionship som har en annen entity-forekomst som kilde.

IsNotMemberOf(<target>,
<relationship>)

Brukes som en betingelse for å teste at en entity-forekomst ikke er et mål for en rela-
tionship som har en annen entity-forekomst som kilde.

InstanceCount
(<relationship>)
antall <ent>

Teller antall forekomster som finnes for entity.

InstanceCountIf(<rela- Teller antall forekomster som finnes av entity der bestemt entity-level attribute har en

Syntaks Beskrivelse

tionship>, <Exp>)
antall <ent> for der er det
slik at <condition>

bestemt verdi.

InstanceMaximum(<rela-
tionship>, <number-attr>)
InstanceMaximum(<rela-
tionship>, <date-attr>)
InstanceMaximum(<rela-
tionship>, <datetime-attr>)
InstanceMaximum(<rela-
tionship>, <time-attr>)
<date-attr> som er den siste
for alle <ent>
<max-attr> som er størst for
alle <ent>
den siste av alle <ent-attr>
den siste av alle <attr> for
<ent>
den største av [alle]<ent-
attr>
den største av [all]<attr> for
[alle]<ent>

Henter den høyeste/seneste verdien for en entity-level-variabel for alle forekomster av
entity.

InstanceMaximumIf(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanceMaximumIf(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanceMaximumIf(<rela-
tionship>, <datetime-attr>,
<condition>)
InstanceMaximumIf(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> som er den siste
for alle <ent> for der er det
slik at <ent-test>
<max-attr> som er det stør-
ste for alle <ent> for der er
det slik at <ent-test>
den siste av alle <ent-attr>
der det er slik at <ent-test>
den største av alle <ent-attr>

Henter den høyeste/seneste verdien for en entity-level-variabel for alle forekomster av
entity der bestemt entity-level attribute har en bestemt verdi.

Syntaks Beskrivelse

der det er slik at <ent-test>
den største av <attr> for alle
<ent> der det er slik at <ent-
test>

InstanceMinimum(<rela-
tionship>, <number-attr>)
InstanceMinimum(<rela-
tionship>, <date-attr>)
InstanceMinimum(<rela-
tionship>, <datetime-attr>)
InstanceMinimum(<rela-
tionship>, <time-attr>)
<date-attr> som er den tid-
ligste for alle <ent>
<attr> som er det minste for
alle <ent>
det tidligste av alle <ent-
attr>
det tidligste av alle <attr>
for <ent>
den minste av [alle]<ent-
attr>
den minste av [alle]<attr>
for [alle]<ent>

Henter den laveste/tidligste verdien for en entity-level-variabel for alle forekomster av
entity.

InstanceMinimumIf(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanceMinimumIf(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanceMinimumIf(<rela-
tionship>, <datetime-attr>,
<condition>)
InstanceMinimumIf(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> som er den tid-
ligste for alle <ent> for der
er det slik at <ent-test>
<num-attr> som er det min-
ste for alle <ent> for der er
det slik at <ent-test>

Henter den laveste/tidligste verdien for en entity-level-variabel for alle forekomster av
entity der bestemt entity-level attribute har en bestemt verdi.

Syntaks Beskrivelse

den minste av alle <ent-attr>
der det er slik at <ent-test>
den minste av alle <attr> for
<ent> som det er slik at
<ent-test>
det tidligste av alle <attr>
for <ent> der det er slik at
<ent-test>

InstanceSum(<relationship>,
<number-attr>)
<num-attr> utgjorde for alle
<ent>
den totale mengden [av
alle]<ent-attr>
totalen for alle <ent-attr>
totalt for alle <ent>, <attr>

Henter summen av alle forekomster av en entity-level-variabel.

InstanceSumIf
(<relationship>, <number-attr>,
<condition>)
<num-attr> utgjorde for alle
<ent> for der er det slik at
<ent-test>
den totale mengden av alle
<ent-attr> bare der <con-
dition>
den totale mengden av
[alle]<ent-attr> som det er
tilfelle at <condition>
totalt for alle <ent>, <attr>
bare der <condition>

Henter summen av alle forekomster av en entity-level-variabel der bestemt entity-
level boolsk attribute er sann for entity.

InstanceValueIf(<rela-
tionship>, <number-attr>, <con-
dition>)
InstanceValueIf(<rela-
tionship>, <text-attr>, <con-
dition>)
InstanceValueIf(<rela-
tionship>, <date-attr>, <con-
dition>)
InstanceValueIf(<rela-
tionship>, <datetime-attr>,
<condition>)

Henter en verdi fra en unik entity-forekomst, identifisert fra entity-målforekomstene i
relationshipmed en betingelse.

l Hvis betingelsen identifiserer én entity-målforekomst, er dette verdien som
beregnes mot denne entity-forekomsten.

l Hvis mer enn énmålforekomst oppfyller betingelsen, returneres uncertain.

l Hvis ingenmålforekomster oppfyller betingelsen og relationship er kjent, er
verdien uncertain.

Syntaks Beskrivelse

InstanceValueIf(<rela-
tionship>, <time-attr>, <con-
dition>)

InstanceEquals(<instance1>,
<instance2>)

Fastslår om to forekomster av entity er den samme forekomsten.

InstanceNotEquals
(<instance1>, <instance2>)

Fastslår om to forekomster av entity ikke er den samme forekomsten.

InferInstance(<relationship>,
<identity>)

Brukes som en konklusjon for å utlede at det finnes en entity-forekomst som er medlem av
relationship.

Funksjoner for tidsbestemt resonnering(English)

Syntaks Beskrivelse

IntervalCountDistinct
(<start-date>, <end-date>,
<variable>)
IntervalCountDistinct
(<start-date>, <end-date>,
<condition>)

Teller antall kjente unike verdier for variabelen, i intervallet fra start date (inkludert) til slutt
date (utelatt).

IntervalCountDistinctIf
(<start-date>, <end-date>,
<variable>, <condition>)

Teller antall kjente unike verdier for variabelen, i intervallet fra start date (inkludert) til slutt
date (utelatt), bare inkludert tilfeller der et boolsk filter er sant.

IntervalDailySum(<start-
date>, <end-date>, <number-
attr>)

Beregner summen for en valuta- eller tallvariabel, i intervallet fra start date (inkludert) til
slutt date (utelatt). attribute forutsettes å være en daglig mengde.

IntervalDailySumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)

Beregner summen av alle de daglige verdiene for en valuta- eller tallvariabel, i intervallet fra
start date (inkludert) til slutt date (utelatt), bare inkludert tilfeller der en betingelse er sann.

IntervalMaximum(<start-
date>, <end-date>, <number-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <date-
attr>)
IntervalMaximum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMaximum(<start-

Velger maksimumsverdien for en variabel i intervallet fra start date (inkludert) til slutt date
(utelatt).

Syntaks Beskrivelse

date>, <end-date>, <time-
attr>)

IntervalMaximumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMaximumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Velger maksimumsverdien for en variabel i intervallet fra start date (inkludert) til slutt date
(utelatt), bare inkludert tilfeller der en betingelse er sann.

IntervalMinimum(<start-
date>, <end-date>, <number-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <date-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <datetime-
attr>)
IntervalMinimum(<start-
date>, <end-date>, <time-
attr>)

Velger minimumsverdien for en variabel i intervallet fra start date (inkludert) til slutt date
(utelatt).

IntervalMinimumIf(<start-
date>, <end-date>, <number-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <date-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <datetime-
attr>, <condition>)
IntervalMinimumIf(<start-
date>, <end-date>, <time-
attr>, <condition>)

Velger minimumsverdien for en variabel i intervallet fra start date (inkludert) til slutt date
(utelatt), bare inkludert tilfeller der en betingelse er sann.

IntervalWeightedAverage
(<start-date>, <end-date>,
<number-attribute>)

Beregner gjennomsnittsverdien for en valuta- eller tallvariabel i intervallet fra start date
(inkludert) til slutt date (utelatt), vektet med tidsrommet som hver verdi gjelder.

Syntaks Beskrivelse

IntervalWeightedAverageIf
(<start-date>, <end-date>,
<number-attribute>, <con-
dition>)

Beregner gjennomsnittsverdien for en valuta- eller tallvariabel i intervallet fra start date
(inkludert) til slutt date (utelatt), bare inkludert tilfeller der en boolsk betingelse er sann (vek-
tet med tidsrommet som hver verdi gjelder og der filteret er sant).

IntervalAlways(<start-
date>, <end-date>, <con-
dition>)

Returnerer sann bare hvis en boolsk betingelse alltid er sann i intervallet fra start date
(inkludert) til slutt date (utelatt).

IntervalAtLeastDays(<start-
date>, <end-date>,
<NumDays>, <condition>)

Returnerer sann bare hvis en boolsk betingelse er sann for minst det angitte antall dager (ikke
nødvendigvis sammenhengende) i intervallet fra start date (inkludert) til slutt date (utelatt).

IntervalConsecutiveDays
(<start-date>, <end-date>,
<NumDays>, <condition>)

Returnerer sann bare hvis en boolsk betingelse er sann for minst et angitt antall sam-
menhengende dager i intervallet fra start date (inkludert) til slutt date (utelatt).

IntervalSometimes(<start-
date>, <end-date>, <con-
dition>)

Returnerer sann bare hvis en boolsk betingelse tidvis er sann i intervallet fra start date
(inkludert) til slutt date (utelatt).

ValueAt(<date>, <value>) Returnerer verdien for angitt attribute på angitt date.

WhenLast(<date>, <con-
dition>)

Returnerer date da en boolsk betingelse sist var sann, bakover fra (og inkludert) angitt date.

WhenNext(<date>, <con-
dition>)

Returnerer neste date da en boolsk betingelse vil være sann, fremover fra (og inkludert)
angitt date.

Latest()
Returnerer en date-verdi som tilsvarer senest mulig date - nemlig en date som garantert vil
være senere enn noen annen date som date attribute kan ta eller et uttrykk kan eval-
ueres til.

Earliest()
Returnerer en date-verdi som tilsvarer tidligst mulig date - nemlig en date som garantert vil
være tidligere enn noen annen date som date attribute kan ta eller et uttrykk kan eval-
ueres til.

TemporalDaysSince(<date>,
<end-date>)

Returnerer en tallvariabel som varierer hver dag, og er lik antall hele dager siden date.

TemporalWeeksSince
(<date>, <end-date>)

Returnerer en tallvariabel som varierer hver uke, og er lik antall hele uker siden date.

TemporalMonthsSince
(<date>, <end-date>)

Returnerer en tallvariabel som varierer hver måned, og er lik antall hele måneder siden date.
Merknad: Når angitt date er etter den 28. dagen i måneden, og en påfølgende måned har
færre dager enn den angitte måneden, opprettes endringspunktet for merkemåneden på den
siste dagen i denne måneden. Hvis for eksempel angitt date er 28., 29., 30. eller 31. januar
2007, vil det første endringspunktet være 28. februar 2007.

Syntaks Beskrivelse

TemporalYearsSince
(<date>, <end-date>)

Returnerer en tallvariabel som varierer hvert år, og er lik antall hele år siden date.

TemporalAlwaysDays
(<days>, <condition>)

Returnerer boolsk attribute som varierer over tid, og er sann bare hvis en boolsk betingelse
er sann for alle av et angitt antall forutgående dager, ikke inkludert dagens dato.

TemporalConsecutiveDays
(<minDays>, <days>, <con-
dition>)

Returnerer boolsk attribute som varierer over tid, og er sann bare hvis en boolsk betingelse
er sann for minst et minste antall sammenhengende dager når som helst innenfor angitt antall
forutgående dager, ikke inkludert dagens dato.

TemporalSometimesDays
(<days>, <condition>)

Returnerer boolsk attribute som varierer over tid, og er sann bare hvis en boolsk betingelse
tidvis er sann innenfor et angitt antall forutgående dager, ikke inkludert dagens dato.

TemporalAfter(<date>)
Returnerer boolsk attribute som varierer over tid, og er sann etter date og usann på og før.

TemporalBefore(<date>)
Returnerer boolsk attribute som varierer over tid, og er sann før date og usann på og etter.

TemporalOn(<date>)
Returnerer boolsk attribute som varierer over tid, og er sann på date og usann før og etter.

TemporalOnOrAfter
(<date>)

Returnerer boolsk attribute som varierer over tid, og er sann på eller etter date og usann
før.

TemporalOnOrBefore
(<date>)

Returnerer boolsk attribute som varierer over tid, og er sann på og før date og usann etter.

TemporalFromStartDate
(<relationship>, <date>,
<value>)

Returnerer én tidsbestemt attribute (på entity-kildenivå) fra relationship og en verdi
attribute for entitetene, med verdier som er gjeldende fra en start date attribute.

TemporalFromEndDate
(<relationship>, <date>,
<value>)

Returnerer én tidsbestemt attribute (på entity-kildenivå) fra relationship og en verdi
attribute for entitetene, med verdier som er gjeldende inntil en slutt date attribute.

TemporalFromRange(<rela-
tionship>, <start-date>, <end-
date>, <Value>)

Returnerer én tidsbestemt attribute (på entity-kildenivå) fra relationship og en verdi
attribute for entitetene, med verdier som er gjeldende fra start date attribute (inkludert)
til slutt date attribute (utelatt). Verdien er uncertain hvis den utløper før neste start
date.

TemporalIsWeekday
(<startdate>, <enddate>)

Returnerer sann for datoer som er ukedager og usann for datoer som er helgedager fra angitt
start date (inkludert) til slutt date (utelatt). Returnerer uncertain utenfor date-området.

TemporalOncePerMonth
(<startdate>, <enddate>,
<dayofmonth>)

Returnerer sann hvis dagen er lik parameteren for dag i måneden og usann for alle andre
dager i måneden fra angitt start date (inkludert) til slutt date (utelatt). Returnerer uncer-
tain utenfor date-området. Når dagen i måneden overskrider antall dager i inneværende
måned, er verdien sann på den siste dagen i denne måneden, slik at funksjonen returnerer en
verdi som er sann nøyaktig én dag per måned.

Funksjoner for valideringshendelser(English)

Syntaks Beskrivelse

Feil(<text>) En feilhendelse brukes til å gi brukeren enmelding og hindre vedkommende i å fortsette en undersøkelse til betin-
gelsen som utløste feilen, ikke lenger gjelder.

Advarsel
(<text>)

En advarselshendelse brukes til å gi brukeren enmelding, men tillater at vedkommende fortsetter til tross for
betingelsen som utløste advarselen.

Frarådede funksjoner(English)

Syntaks Beskrivelse

CallCustomFunction
(<A>,)

Returnerer resultatet av et eksternt kall til et kodebibliotek. Kodebiblioteket må angis for fast-
settelsesmotoren for at det egendefinerte funksjonskallet skal kunne utføres.

Łączniki logiczne(English)

Składnia Opis

jeśli
Opcjonalny termin, mogący występować na końcu linii wniosku, po której
następuje dowód

i Koniunkcja logiczna dwóch atrybutów attributes

lub Alternatywa logiczna dwóch atrybutów attributes

którekolwiek
jedno z
dowolne
co najmniej jedno z poniższych stwi-
erdzeń jest prawdziwe
dowolny z poniższych warunków jest
spełniony

Element grupujący używany w przypadku alternatyw, w których należy
zgrupować przynajmniej dwie wartości attributes

oba
wszystkie
wszystkie z poniższych stwierdzeń są
prawdziwe
wszystkie z poniższych warunków są
spełnione

Element grupujący używany w przypadku koniunkcji, w których należy
zgrupować przynajmniej dwie wartości attributes

w przeciwnym razie
Termin występujący na końcu reguły tabeli, oznaczający klauzulę "w prze-
ciwnym razie"

jest
Termin używany w zapisie opisumiędzy skróconymwyrażeniem a pełnym tek-
stem text atrybutu attribute

Funkcje logiczne(English)

Składnia Opis

nie jest prawdą, że
<attr>

Operator używany do zwracania wartości "prawda", jeśli attributema wartość "fałsz"

<var> jest pewny
jest pewne, że <attr>

Operator używany do zwracania wartości "prawda", jeśli attributema wartość inną niż uncer-
tain

<var> jest niepewny
nie jest pewne, że <attr>
nie jest pewne, czy
<attr>
nie jest pewne, że <attr>
niepewne

Operator używany do zwracania wartości "prawda", jeśli wartość attribute to uncertain

<var> jest znany
wiadomo, czy <attr>

Operator używany do zwracania wartości "prawda", jeśli attributema dowolną wartość

<var> jest nieznany
nie wiadomo, czy <attr>
nieznane

Operator używany do zwracania wartości "prawda", jeśli attribute nie ma wartości

Stałe logiczne(English)

Składnia Opis

prawda Stała wartość "prawda" używana dla reguł tabeli.

fałsz Stała wartość "fałsz" używana dla reguł tabeli.

niepewne Stała wartość "uncertain" używana dla reguł tabeli.

Operatory porównania(English)

Składnia Opis

<x><<y>
Mniejsze niż
Uwaga: Nie istnieje naturalna forma językowa, jeśli ten operator używany jest z wartościami liczbowymi i
walutowymi.

<x> > <y>
Większe niż
Uwaga: Nie istnieje naturalna forma językowa, jeśli ten operator używany jest z wartościami liczbowymi i
walutowymi.

<x><=<y> Mniejsze lub równe

<x> >=
<y>

Większe lub równe

Składnia Opis

<x>=<y> Równa się

<x> <>
<y>

Nie równa się

Funkcje liczbowe(English)

Składnia Opis

Liczba(<numText>) Konwertuje określony napis na wartość liczbową

<x> + <y> Dodawanie matematyczne

<x> - <y> Odejmowanie matematyczne

<x> * <y> Mnożenie matematyczne

<x> / <y> Dzielenie matematyczne

<x> \ <y> Dzielenie całkowite

<x> modulo <y> Reszta z dzielenia całkowitego

Maksimum(<x>, <y>)
Maksimum(<date/time/datetime1>, <date/time/datetime2>)

Zwraca większą z dwóch wartości

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)

Zwraca mniejszą z dwóch wartości

Xy(<x>, <y>) x do potęgi y

Wartość wykładnicza(<x>) Stała x do potęgi y

Wartość bezwzględna(<x>)
|<val>|

Wartość bezwzględna x

Logarytm naturalny(<x>) Logarytm naturalny z x

Logarytm(<x>) Logarytm dziesiętny z x

Pierwiastek kwadratowy(<x>) Pierwiastek kwadratowy z x

Zaokrąglenie(<x>, <n>) Zaokrągla x do nmiejsc po przecinku

Ograniczenie cyfr po przecinku(<x>, <n>) Wartość x skrócona do nmiejsc po przecinku

Sin(<x>) Sinus x

Cos(<x>) Cosinus x

Tan(<x>) Tangens x

Składnia Opis

Asin(<x>) Arcus sinus x

Acos(<x>) Arcus cosinus x

Atan(<x>) Arcus tangens x

Funkcje dotyczące daty(English)

Składnia Opis

BieżącaData() Zwraca bieżącą wartość date na początku sesji.

Data(<text>) Konwertuje określony napis na wartość date

UtwórzDatę(<year>, <month>,
<day>)

Zwraca atrybut typu date utworzony z określonego roku, miesiąca i dnia.

WyodrębnijDzień(<date/d-
atetime>)

Zwraca składnik "dzień" wartości w polu date/datetime attribute.

WyodrębnijMiesiąc(<date/d-
atetime>)

Zwraca składnik "miesiąc" wartości w polu date/datetime attribute.

WyodrębnijRok
(<date/datetime>)

Zwraca składnik "rok" wartości w polu date/datetime attribute.

NastępnyDzieńTygodnia
(<date/datetime>, <day>)

Zwraca datę date następnego dnia roboczego, która jest równa, wcześniejsza lub
późniejsza względem date (zależnie od zastosowanej składni).

NastęnaData(<date>, <day>,
<month>)

Zwraca następne wystąpienie danego dnia i miesiąca po dacie date.

DodajDni(<date/datetime>,
<num_days>)

Dodaje/odejmuje liczbę dni do/od date. W przypadku użycia zwięzłej formy syn-
taktycznej musi to być dodatnia liczba całkowita, jeśli trzeba dodać dni do wejściowej war-
tości date, albo liczba ujemna, jeśli trzeba odjąć dni od wejściowej wartości date.

DodajTygodnie(<date/datetime>,
<num_weeks>)

Dodaje liczbę tygodni w polu date. Przy użyciu zwięzłej formy syntaktycznej liczba musi
być dodatnią liczbą całkowitą, aby dodać tygodnie do wejściowej wartości w polu date.

DodajMiesiące(<date/datetime>,
<num_months>)

Dodaje liczbę miesięcy w polu date. Przy użyciu zwięzłej formy syntaktycznej liczba
musi być dodatnią liczbą całkowitą, aby dodać miesiące do wejściowej wartości w polu
date.

DodajLata(<date/datetime>,
<num_years>)

Dodaje liczbę lat w polu date. Przy użyciu zwięzłej formy syntaktycznej liczba musi być
dodatnią liczbą całkowitą, aby dodać lata do wejściowej wartości w polu date.

LiczbaDniRoboczych(<date1>,
<date2>)

Oblicza liczbę dni roboczychmiędzy date1 a date2, czyli liczbę dni przypadających
między poniedziałkiem a piątkiem.
Uwaga: Pierwsza wartość date jest włączana do zakresu, a druga wartość date - nie.

Składnia Opis

PoczątekRoku(<date/datetime>) Zwraca pierwszą wartość date w roku, w którym przypada date.

KoniecRoku(<date/datetime>) Zwraca ostatnią wartość date w roku, w którym przypada date.

RóżnicaDni(<date/datetime1>,
<date/datetime2>)

Zwraca liczbę pełnych dni między date/datetime1 a date/datetime2. Kolejność dat
nie ma wpływu na wynik.

RóżnicaDniWłącznie(<date/d-
atetime1>, <date/datetime2>)

Zwraca liczbę pełnych dni (włącznie) między date/datetime1 a date/datetime2.
Obliczenie uwzględnia obydwa punkty końcowe. Jeśli obie daty mają tę samą wartość,
wynik wynosi 1. Kolejność dat nie ma wpływu na wynik.

RóżnicaDniZWyłączeniem
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę pełnych dni (z wyłączeniem) między date/datetime1 a date/d-
atetime2. Obliczenie nie uwzględnia żadnego z dwóch punktów końcowych. Jeśli obie
daty mają tę samą wartość, wynik wynosi 0. Kolejność dat nie ma wpływu na wynik.

RóżnicaTygodni(<date/d-
atetime1>, <date/datetime2>)

Zwraca liczbę pełnych tygodni, jakie upłynęły między date/datetime1 a date/d-
atetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaTygodniWłącznie
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę pełnych tygodni (włącznie), jakie upłynęły między date/datetime1 a
date/datetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaTygodniZWyłączeniem
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę pełnych tygodni (z wyłączeniem), jakie upłynęły między date/d-
atetime1 a date/datetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaMiesięcy(<date/d-
atetime1>, <date/datetime2>)

Zwraca liczbę pełnychmiesięcy, jakie upłynęły między date/datetime1 a date/d-
atetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaMiesięcyWłącznie
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę pełnychmiesięcy (włącznie), jakie upłynęły między date/datetime1 a
date/datetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaMiesięcyZWyłączeniem
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę pełnychmiesięcy (z wyłączeniem), jakie upłynęły między date/d-
atetime1 a date/datetime2. Kolejność dat nie ma wpływu na wynik.

RóżnicaLat(<date/datetime1>,
<date/datetime2>)

Zwraca liczbę lat między date/datetime1 a date/datetime2. Kolejność dat nie ma
wpływu na wynik.

RóżnicaLatWłącznie(<date/d-
atetime1>, <date/datetime2>)

Zwraca liczbę lat (włącznie) między date/datetime1 a date/datetime2. Kolejność
dat nie ma wpływu na wynik.

RóżnicaLatZWyłączeniem
(<date/datetime1>, <date/d-
atetime2>)

Zwraca liczbę lat (z wyłączeniem) między date/datetime1 a date/datetime2. Kole-
jność dat nie ma wpływu na wynik.

Funkcje dotyczące pory dnia(English)

Składnia Opis

PoraDnia(<text>) Konwertuje dany napis na porę dnia

WyodrębnijSekundy(<time/datetime>) Zwraca składnik "sekunda" wartości w polu timeofday/datetime attribute.

WyodrębnijMinuty(<time/datetime>) Zwraca składnik "minuta" wartości w polu timeofday/datetime attribute.

WyodrębnijGodzinę(<time/datetime>) Zwraca składnik "godzina" wartości w polu timeofday/datetime attribute.

Funkcje dotyczące daty i godziny(English)

Składnia Opis

BieżącaDataIGodzina() Zwraca bieżącą wartość date i godzinę na początku sesji.

DataGodzina(<text>) Konwertuje określony napis na wartość datetime

PołączDatęGodzinę(<date>,
<time>)

Ustawia godzinę w polu date, łącząc ze sobą atrybut date i porę dnia.

RóżnicaSekund(<datetime1>,
<datetime2>)
RóżnicaSekund(<timeOfDay1>,
<timeOfDay2>)

Zwraca liczbę sekundmiędzy datetime1 a datetime2.

RóżnicaSekundWłącznie(<dat-
etime1>, <datetime2>)
RóżnicaSekundWłącznie
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę sekundmiędzy datetime1 a datetime2włącznie z wartościami krań-
cowymi.

RóżnicaSekundZWyłączeniem
(<datetime1>, <datetime2>)
RóżnicaSekundZWyłączeniem
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę sekundmiędzy datetime1 a datetime2 z wyłączeniem wartości krań-
cowych.

RóżnicaMinut(<datetime1>,
<datetime2>)
RóżnicaMinut(<timeOfDay1>,
<timeOfDay2>)

Zwraca liczbę minut między datetime1 a datetime2.

RóżnicaMinutWłącznie(<dat-
etime1>, <datetime2>)
RóżnicaMinutWłącznie
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę minut między datetime1 a datetime2włącznie z wartościami krań-
cowymi.

RóżnicaMinutZWyłączeniem
(<datetime1>, <datetime2>)
RóżnicaMinutZWyłączeniem
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę minut między datetime1 a datetime2 z wyłączeniem wartości krań-
cowych.

Składnia Opis

RóżnicaGodzin(<datetime1>,
<datetime2>)
RóżnicaGodzin(<timeOfDay1>,
<timeOfDay2>)

Zwraca liczbę godzinmiędzy datetime1 a datetime2.

RóżnicaGodzinWłącznie(<dat-
etime1>, <datetime2>)
RóżnicaGodzinWłącznie
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę godzinmiędzy datetime1 a datetime2włącznie z wartościami krań-
cowymi.

RóżnicaGodzinZWyłączeniem
(<datetime1>, <datetime2>)
RóżnicaGodzinZWyłączeniem
(<timeOfDay1>, <timeOfDay2>)

Zwraca liczbę godzinmiędzy datetime1 a datetime2 z wyłączeniem wartości krań-
cowych.

WyodrębnijDatę(<datetime>) Wyodrębnia wartość date z wartości w polu datetime attribute.

WyodrębnijPoręDnia(<dat-
etime>)

Wyodrębnia porę dnia z wartości w polu datetime attribute. Można jej użyć do
ustawienia wartości w polu timeofday attribute na godzinę wykonania reguły poprzez
wyodrębnienie godziny z bieżącej wartości w polu date i godzina.

DodajGodziny(<datetime>,
<num_hours>)
DodajGodziny(<timeOfDay>,
<num_hours>)

Dodaje liczbę godzin w polu date.

DodajMinuty(<datetime>,
<num_minutes>)
DodajMinuty(<timeOfDay>,
<num_minutes>)

Dodaje liczbę minut w polu date.

DodajSekundy(<datetime>,
<num_seconds>)
DodajSekundy(<timeOfDay>,
<num_seconds>)

Dodaje liczbę sekund w polu date.

Funkcje tekstowe(English)

Składnia Opis

<text1> & <text2>
Łączy text1 z text2 itd. w celu utworzenia pojedynczej wartości text.
Uwaga: można używać zmiennych dowolnego typu. Wartości formatowane są za pomocą programu
formatującego zainstalowanego w sesji reguły.

Łączy text1 z text2 itd. w celu utworzenia pojedynczej wartości text.
Uwaga: można używać zmiennych dowolnego typu. Wartości formatowane są za pomocą programu
formatującego zainstalowanego w sesji reguły.

Składnia Opis

Zawiera(<text>, <sub-
string>)

Zwraca wartość logiczną wskazującą, czy dana wartość w polu text zawiera dany fragment napisu
text. W porównaniu text jest uwzględniana wielkość liter.

KończySię(<text>,
<substring>)

Zwraca wartość logiczną wskazującą, czy dana wartość w polu text kończy się danym fragmentem
napisu text. W porównaniu text jest uwzględniana wielkość liter.

JestLiczbą(<text>) Zwraca wartość logiczną wskazującą, czy dana wartość text oznacza prawidłową liczbę.

Długość(<text>) Zwraca ilość znaków danej wartości atrybutu typu text.

ZaczynaSię(<text>,
<substring>)

Zwraca wartość logiczną wskazującą, czy dana wartość w polu text zaczyna się danym fragmentem
napisu text. W porównaniu text jest uwzględniana wielkość liter.

CiągPodrzędny
(<text>, <offset>,
<length>)

Zwraca fragment napisu atrybutu typu text zaczynający się z danym przesunięciem, o określonej
ilości znaków. Jeśli zostanie osiągnięty koniec napisu, zwracanych jest mniej znaków.

Tekst(<number>)
Tekst(<date>)
Tekst(<datetime>)
Tekst(<timeOfDay>)

Konwertuje określoną wartość liczbową lub wartość w polu date attribute na wartość atrybutu
typu text.

Funkcje dotyczące encji i relacji(English)

Składnia Opis

Dla(<relationship>, <Exp>)
Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do jed-
nego", "wiele do jednego" lub "wiele do wielu" relationshipw przypadku, gdy istnieje tylko
jeden warunek.

DlaZakresu(<relationship>,
<alias>)
DlaZakresu(<relationship>)

Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do jed-
nego", "wiele do jednego" lub "wiele do wielu" relationshipw przypadku, gdy istnieje
przynajmniej jeden warunek.

DlaWszystkich(<rela-
tionship>, <Exp>)

Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do
wielu" lub "wiele do wielu" relationship, aby określić, czy wszystkie elementy docelowej
grupy encji entity powinny być zgodne z regułą.
Ta forma wykorzystywana jest w przypadku, gdy reguła zawiera tylko jeden warunek.

DlaCałegoZakresu(<rela-
tionship>)
DlaCałegoZakresu(<rela-
tionship>, <alias>)

Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do
wielu" lub "wiele do wielu" relationship, aby określić, czy wszystkie elementy docelowej
grupy encji entity powinny być zgodne z regułą.
Ta forma wykorzystywana jest w przypadku, gdy reguła zawiera przynajmniej jeden war-
unek.

Istnieje(<relationship>,
<Exp>)

Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do
wielu" lub "wiele do wielu" relationship, aby określić, czy jakiekolwiek elementy docelowej
grupy encji entity powinny być zgodne z regułą.

Składnia Opis

Ta forma wykorzystywana jest w przypadku, gdy reguła zawiera tylko jeden warunek.

ZakresIstnieje(<rela-
tionship>)
ZakresIstnieje(<rela-
tionship>, <alias>)

Używana w celu odniesienia encji entity względem innej encji entity w relacji "jeden do
wielu" lub "wiele do wielu" relationship, aby określić, czy jakiekolwiek elementy docelowej
grupy encji entity powinny być zgodne z regułą.
Ta forma wykorzystywana jest w przypadku, gdy reguła zawiera przynajmniej jeden war-
unek.

JestSkładową(<target>,
<relationship>)
JestSkładową(<target>,
<alias>, <relationship>)

Używana jako wniosek sugerujący, że wystąpienie encji entity należy do relacji rela-
tionship. Służy jako warunek pozwalający sprawdzić, czy wystąpienie encji entity jest
celem relacji relationship, której źródłem jest wystąpienie drugiej encji entity.

NieJestSkładową(<target>,
<relationship>)

Używana jako warunek pozwalający sprawdzić, czy wystąpienie encji entity nie jest celem
relacji relationship, której źródłem jest drugie wystąpienie encji entity.

LiczbaWystąpień(<rela-
tionship>)

Liczy liczbę wystąpień istniejących dla encji entity.

LiczbaWystąpieńJeśli(<rela-
tionship>, <Exp>)

Liczy liczbę wystąpień istniejących dla encji entity, dla których atrybut entity-level attrib-
utema konkretną wartość.

MaksimumWystąpień(<rela-
tionship>, <number-attr>)
MaksimumWystąpień(<rela-
tionship>, <date-attr>)
MaksimumWystąpień(<rela-
tionship>, <datetime-attr>)
MaksimumWystąpień(<rela-
tionship>, <time-attr>)

Pobiera najwyższą/najnowszą wartość zmiennej entity-level dla wszystkich wystąpień
encji entity.

MaksimumWystąpieńJeśli
(<relationship>, <number-
attr>, <condition>)
MaksimumWystąpieńJeśli
(<relationship>, <date-attr>,
<condition>)
MaksimumWystąpieńJeśli
(<relationship>, <datetime-
attr>, <condition>)
MaksimumWystąpieńJeśli
(<relationship>, <time-attr>,
<condition>)

Pobiera najwyższą/najnowszą wartość zmiennej entity-level dla wszystkich wystąpień
encji entity, dla których konkretny atrybut entity-level attributema konkretną wartość.

MinimumWystąpień(<rela-
tionship>, <number-attr>)
MinimumWystąpień(<rela-

Pobiera najniższą/najstarszą wartość zmiennej entity-level dla wszystkich wystąpień encji
entity.

Składnia Opis

tionship>, <date-attr>)
MinimumWystąpień(<rela-
tionship>, <datetime-attr>)
MinimumWystąpień(<rela-
tionship>, <time-attr>)

MinimumWystąpieńJeśli
(<relationship>, <number-
attr>, <condition>)
MinimumWystąpieńJeśli
(<relationship>, <date-attr>,
<condition>)
MinimumWystąpieńJeśli
(<relationship>, <datetime-
attr>, <condition>)
MinimumWystąpieńJeśli
(<relationship>, <time-attr>,
<condition>)

Pobiera najniższą/najstarszą wartość zmiennej entity-level dla wszystkich wystąpień encji
entity, dla których konkretny atrybut entity-level attributema konkretną wartość.

SumaWystąpień(<rela-
tionship>, <number-attr>)

Pobiera sumę wszystkich wystąpień zmiennej entity-level.

SumaWystąpieńJeśli(<rela-
tionship>, <number-attr>,
<condition>)

Pobiera sumę wszystkich wystąpień zmiennej entity-level, w przypadku których prawdą
jest dla entity, że określona wartość logiczna attribute zmiennej entity-level to
"prawda".

WartośćWystąpieńJeśli
(<relationship>, <number-
attr>, <condition>)
WartośćWystąpieńJeśli
(<relationship>, <text-attr>,
<condition>)
WartośćWystąpieńJeśli
(<relationship>, <date-attr>,
<condition>)
WartośćWystąpieńJeśli
(<relationship>, <datetime-
attr>, <condition>)
WartośćWystąpieńJeśli
(<relationship>, <time-attr>,
<condition>)

Pobiera wartość z unikatowego wystąpienia entity, zidentyfikowanego spośród docelowych
wystąpień entity encji relationship za pomocą warunku.

l Jeśli warunek zidentyfikuje jedno docelowe wystąpienie entity, wówczas wartość
jest wartością obliczoną na podstawie tego wystąpienia entity.

l Jeśli warunek jest spełniony przez więcej niż jedno docelowe wystąpienie, wówczas
zwracana jest wartość uncertain.

l Jeśli żadne docelowe wystąpienie nie spełnia warunku i wartość relationship jest
znana, wówczas wartość wynosi uncertain.

LiczbaWystąpieńRówne
(<instance1>, <instance2>)

Określa, czy dwa wystąpienia encji entity są tym samymwystąpieniem.

LiczbaWystąpieńNierówne Określa, czy dwa wystąpienia encji entity nie są tym samymwystąpieniem.

Składnia Opis

(<instance1>, <instance2>)

WnioskowanieWystąpienia
(<relationship>, <identity>)

Używana jako wniosek sugerujący, że wystąpienie encji entity istnieje i należy do relacji
relationship.

Funkcje dotyczące relacji okresowych(English)

Składnia Opis

LiczbaPrzedziałówOdmienne(<start-
date>, <end-date>, <variable>)
LiczbaPrzedziałówOdmienne(<start-
date>, <end-date>, <condition>)

Liczy liczbę znanych odmiennych wartości dla zmiennej, w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem).

LiczbaPrzedziałówOdmienneJeśli
(<start-date>, <end-date>, <variable>,
<condition>)

Liczy liczbę znanych odmiennych wartości dla zmiennej, w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem), uwzględ-
niając tylko sytuacje, gdy wartość dla filtra logicznego to "prawda".

SumaDziennaPrzedziału(<start-date>,
<end-date>, <number-attr>)

Oblicza sumę wartości zmiennej walutowej lub liczbowej, w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem).
Przyjmuje się, że atrybut attribute jest ilością dzienną.

SumaDziennaPrzedziałuJeśli(<start-
date>, <end-date>, <number-attr>, <con-
dition>)

Oblicza sumę wszystkich dziennych wartości zmiennej walutowej lub liczbowej,
w przedziale od daty początkowej date (włącznie) do daty końcowej date (z
wyłączeniem), uwzględniając tylko sytuacje, gdy warunek jest spełniony.

MaksimumPrzedziału(<start-date>,
<end-date>, <number-attr>)
MaksimumPrzedziału(<start-date>,
<end-date>, <date-attr>)
MaksimumPrzedziału(<start-date>,
<end-date>, <datetime-attr>)
MaksimumPrzedziału(<start-date>,
<end-date>, <time-attr>)

Wybiera wartość maksymalną zmiennej w przedziale od daty początkowej date
(włącznie) do daty końcowej date (z wyłączeniem).

MaksimumPrzedziałuJeśli(<start-date>,
<end-date>, <number-attr>, <condition>)
MaksimumPrzedziałuJeśli(<start-date>,
<end-date>, <date-attr>, <condition>)
MaksimumPrzedziałuJeśli(<start-date>,
<end-date>, <datetime-attr>, <condition>)
MaksimumPrzedziałuJeśli(<start-date>,
<end-date>, <time-attr>, <condition>)

Wybiera wartość maksymalną zmiennej w przedziale od daty początkowej date
(włącznie) do daty końcowej date (z wyłączeniem), uwzględniając tylko sytu-
acje, gdy warunek jest spełniony.

MinimumPrzedziału(<start-date>, <end-
date>, <number-attr>)

Wybiera wartość minimalną zmiennej w przedziale od daty początkowej date
(włącznie) do daty końcowej date (z wyłączeniem).

Składnia Opis

MinimumPrzedziału(<start-date>, <end-
date>, <date-attr>)
MinimumPrzedziału(<start-date>, <end-
date>, <datetime-attr>)
MinimumPrzedziału(<start-date>, <end-
date>, <time-attr>)

MinimumPrzedziałyJeśli(<start-date>,
<end-date>, <number-attr>, <condition>)
MinimumPrzedziałyJeśli(<start-date>,
<end-date>, <date-attr>, <condition>)
MinimumPrzedziałyJeśli(<start-date>,
<end-date>, <datetime-attr>, <condition>)
MinimumPrzedziałyJeśli(<start-date>,
<end-date>, <time-attr>, <condition>)

Wybiera wartość minimalną zmiennej w przedziale od daty początkowej date
(włącznie) do daty końcowej date (z wyłączeniem), uwzględniając tylko sytu-
acje, gdy warunek jest spełniony.

ŚredniaWażonaPrzedziału(<start-date>,
<end-date>, <number-attribute>)

Oblicza średnią wartość zmiennej walutowej lub liczbowej w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem), ważoną
w zależności od przedziałów czasu, do których odnoszą się poszczególne war-
tości.

ŚredniaWażonaPrzedziałuJeśli(<start-
date>, <end-date>, <number-attribute>,
<condition>)

Oblicza średnią wartość zmiennej walutowej lub liczbowej w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem), uwzględ-
niając tylko sytuacje, gdy warunek logiczny jest spełniony (ważoną w zależności
od przedziałów czasu, do których odnoszą się poszczególne wartości).

PrzedziałZawsze(<start-date>, <end-
date>, <condition>)

Zwraca wartość "prawda" wtedy i tylko wtedy, gdy warunek logiczny jest
zawsze spełniony w przedziale od daty początkowej date (włącznie) do daty
końcowej date (z wyłączeniem).

PrzedziałCoNajmniejDni(<start-date>,
<end-date>, <NumDays>, <condition>)

Zwraca wartość "prawda" wtedy i tylko wtedy, gdy warunek logiczny jest
spełniony co najmniej dla określonej liczby dni (niekoniecznie kolejnych) w
przedziale od daty początkowej date (włącznie) do daty końcowej date (z
wyłączeniem).

PrzedziałKolejnychDni(<start-date>,
<end-date>, <NumDays>, <condition>)

Zwraca wartość "prawda" wtedy i tylko wtedy, gdy warunek logiczny jest
spełniony co najmniej dla danej liczby kolejnych dni w przedziale od daty
początkowej date (włącznie) do daty końcowej date (z wyłączeniem).

PrzedziałCzasami(<start-date>, <end-
date>, <condition>)

Zwraca wartość "prawda" wtedy i tylko wtedy, gdy warunek logiczny jest kie-
dykolwiek spełniony w przedziale od daty początkowej date (włącznie) do daty
końcowej date (z wyłączeniem).

WartośćW(<date>, <value>)
Zwraca wartość danego atrybutu attribute dla określonej wartości atrybutu
typu date.

GdyOstatni(<date>, <condition>) Zwraca wartość atrybutu date, dla której warunek logiczny był ostatnim razem

Składnia Opis

spełniony, patrząc wstecz od określonej wartości date (włącznie z tą war-
tością).

GdyNastępny(<date>, <condition>)
Zwraca wartość date, dla której warunek logiczny będzie następnym razem
spełniony, zaczynając od określonej wartości date (włącznie z tą wartością).

Najpóźniejsze()
Zwraca wartość w polu date równoważną najpóźniejszej możliwej wartości w
polu date - mianowicie wartość date, która na pewno jest późniejsza niż każda
inna wartość w polu date, jaką może przyjąć date attribute lub wyrażenie.

Najwcześniejsze()

Zwraca wartość w polu date równoważną najwcześniejszej możliwej wartości
w polu date - mianowicie wartość date, która na pewno jest wcześniejsza niż
każda inna wartość w polu date, jaką może przyjąć date attribute lub
wyrażenie.

OkresowoZmienneDniOd(<date>, <end-
date>)

Zwraca zmienną liczbową różną każdego dnia i wskazującą liczbę pełnych dni od
daty date.

OkresowoZmienneTygodnieOd(<date>,
<end-date>)

Zwraca zmienną liczbową różną każdego tygodnia i wskazującą liczbę pełnych
tygodni od daty date.

OkresowoZmienneMiesiąceOd(<date>,
<end-date>)

Zwraca zmienną liczbową różną każdego miesiąca i wskazującą liczbę pełnych
miesięcy od daty date. Uwaga: W przypadku, gdy podana data date występuje
po 28 dniumiesiąca, a kolejny miesiąc jest krótszy od podanego, punkt zmiany
miesiąca rocznicowego zostanie utworzony ostatniego dnia kolejnego miesiąca.
Przykładowo, jeśli podana data date to 28, 29, 30 lub 31 stycznia 2007 roku, to
pierwszym punktem zmiany będzie dzień 28 lutego 2007 roku.

OkresowoZmienneLataOd(<date>,
<end-date>)

Zwraca zmienną liczbową różną każdego roku i wskazującą liczbę pełnych lat od
daty date.

OkresowoZmienneZawszeDni(<days>,
<condition>)

Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą wtedy i tylko wtedy, gdy warunek logiczny jest spełniony dla wszystkich
z danej liczby poprzedzających dni, bez uwzględnienia dnia bieżącego.

OkresowoZmienneKolejneDni
(<minDays>, <days>, <condition>)

Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą wtedy i tylko wtedy, gdy warunek logiczny jest spełniony co najmniej
dla minimalnej liczby kolejnych dni w dowolnym czasie w ciągu ustalonej liczby
poprzedzających dni, bez uwzględnienia dnia bieżącego.

OkresowoZmienneCzasamiDni
(<days>, <condition>)

Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą wtedy i tylko wtedy, gdy warunek logiczny jest kiedykolwiek spełniony
w ciągu określonej liczby poprzedzających dni, bez uwzględnienia dnia
bieżącego.

OkresowoZmiennePo(<date>)
Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą po dacie date i fałszem w i przed tą datą.

OkresowoZmiennePrzed(<date>) Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą

Składnia Opis

prawdą przed datą date i fałszem w i po tej dacie.

OkresowoZmienneWDniu(<date>)
Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą w datę date i fałszem przed i po tej dacie.

OkresowoZmienneWDniuLubPo
(<date>)

Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą po dacie date i fałszem przed tą datą.

OkresowoZmienneWDniuLubPrzed
(<date>)

Zwraca wartość atrybutu logicznego attribute zmienną w czasie i będącą
prawdą przed datą date i fałszem po tej dacie.

OkresowoZmienneOdDatyRozpoczęcia
(<relationship>, <date>, <value>)

Zwraca pojedynczą wartość atrybutu czasowego attribute (na poziomie encji
źródłowej entity) z relacji relationship i wartości atrybutu attribute dla
encji, o wartościach obowiązujących od daty początkowej date attribute.

OkresowoZmienneOdDatyZakończenia
(<relationship>, <date>, <value>)

Zwraca pojedynczą wartość atrybutu czasowego attribute (na poziomie encji
źródłowej entity) z relacji relationship i wartości atrybutu attribute dla
encji, o wartościach obowiązujących do daty końcowej date attribute.

OkresowoZmienneOdZakresu(<rela-
tionship>, <start-date>, <end-date>,
<Value>)

Zwraca pojedynczą wartość atrybutu czasowego attribute (na poziomie encji
źródłowej entity) z relacji relationship i wartości atrybutu attribute dla
encji, o wartościach obowiązujących od daty początkowej date attribute
(włącznie) do daty końcowej date attribute (z wyłączeniem). Zwraca wartość
uncertain, jeśli przestanie obowiązywać przed następną datą początkową
date.

OkresowoZmienneJestDzieńRoboczy
(<startdate>, <enddate>)

Zwraca wartość "prawda" w dni będące dniami roboczymi i "fałsz" w dni week-
endu od określonej daty początkowej date (włącznie) i daty końcowej date (z
wyłączeniem). Zwraca wartość uncertain poza zakresem date.

OkresowoZmienneRazWMiesiącu
(<startdate>, <enddate>, <dayofmonth>)

Zwraca wartość "prawda", jeśli dzień jest równy wartości parametru dzień
miesiąca, i "fałsz" we wszystkie inne dni od określonej daty początkowej date
(włącznie) do daty końcowej date (z wyłączeniem). Zwraca wartość uncer-
tain poza zakresem date. Gdy wartość parametru dzieńmiesiąca przekracza
liczbę dni w bieżącymmiesiącu, zwracana jest wartość "prawda" - w ten sposób
funkcja zwraca wartość "prawda" dokładnie przez jeden dzień w miesiącu.

Funkcje zdarzeń sprawdzania(English)

Składnia Opis

Błąd
(<text>)

Zdarzenie błędu służy do przekazywania użytkownikowi komunikatu oraz do przerywania toku badania aż do
momentu, gdy warunek wywołujący błąd przestanie obowiązywać.

Ostrzeżenie
(<text>)

Zdarzenie ostrzeżenia jest używane do przekazywania użytkownikowi komunikatu, ale umożliwia kontynuow-
anie pracy pomimo zaistnienia warunku, który zainicjował ostrzeżenie.

Funkcje odrzucone(English)

Składnia Opis

WywołajFunkcjęNiestandardową
(<A>,)

Zwraca wynik zewnętrznego wywołania biblioteki kodów. Aby wywołanie funkcji niest-
andardowej powiodło się, należy podać bibliotekę kodów domotoru określającego.

Логические соединители(English)

Синтаксис Описание

если
Необязательный элемент, который может появиться в конце строки
заключения, имеющей следующее подтверждение

и Логическая конъюнкция между двумя attributes

или Логическая дизъюнкция между двумя attributes

либо
один из
одно из
любой
хотя бы одно из следующих
утверждений истинно
удовлетворяется любое из
следующих условий

Элемент группировки, используемый с дизъюнкцией в случае, когда
требуется сгруппировать два или более attributes

оба
все
все следующие утверждения
истинны
все следующие условия
удовлетворяются

Элемент группировки, используемый с конъюнкцией в случае, когда
требуется сгруппировать два или более attributes

иначе
Элемент, который появляется в конце табличного правила для указания
оператора, выполняемого в остальных случаях

является
Элемент, который используется в записи условных обозначений между
сокращенной фразой и полным attribute text

Логические функции(English)

Синтаксис Описание

неверно, что <expr>
Оператор, используемый для возвращения значения "истина", если attribute имеет
значение "ложь"

<var> является
достоверным

Оператор, используемый для возвращения значения "Истина", если attribute имеет
значение, отличное от uncertain

Синтаксис Описание

достоверно известно,
<expr>

<var> является
сомнительным
достоверно известно,
что <expr>
недостоверно известно,
<expr>
нет уверенности, что
<expr>
не достоверно

Оператор, используемый для возвращения значения "истина", если attribute имеет
значение uncertain

<var> является
известным
известно, <expr>

Оператор, используемый для возвращения значения "истина", если attribute имеет
любое значение

<var> не является
известным
не известно, <expr>
не известно

Оператор, используемый для возвращения значения "истина", если attribute не имеет
значений

Логические константы(English)

Синтаксис Описание

истина Постоянное значение "истина", используемое для правил таблицы.

ложь Постоянное значение "ложь", используемое для табличных правил.

не достоверно Постоянное значение uncertain, используемое для табличных правил.

Операторы сравнения(English)

Синтаксис Описание

<lhs>
<<rhs>

Меньше
Примечание: для использования этого оператора с числовыми и валютными значениями не
предусмотрено формы на естественном языке.

<lhs> >
<rhs>

Больше
Примечание: для использования этого оператора с числовыми и валютными значениями не
предусмотрено формы на естественном языке.

<lhs>
<=<rhs>

Меньше или равно

Синтаксис Описание

<lhs> >=
<rhs>

Больше или равно

<lhs>
=<rhs>

Равно

<lhs> <>
<rhs>

Не равно

Числовые функции(English)

Синтаксис Описание

Число(<numText>) Преобразование указанной строки в числовое значение

<x> + <y> Математическое сложение

<x> - <y> Математическое вычитание

<lhs> * <rhs> Математическое умножение

<lhs> / <rhs> Математическое деление

<lhs> \ <rhs> Целочисленное деление

<lhs> modulo <rhs> Остаток от целочисленного деления

Максимум(<x>, <y>)
Максимум(<date/time/datetime1>, <date/time/datetime2>)

Возвращает большее из двух значений

Минимум(<x>, <y>)
Минимум(<date/time/datetime1>, <date/time/datetime2>)

Возвращает меньшее из двух значений

XстепY(<x>, <y>) x в степени y

EстепX(<x>) e (основание натуральных логарифмов) в степени x

Модуль(<x>)
|<val>|

Абсолютное значение x

НатЛог(<x>) Натуральный логарифм x

ДесЛог(<x>) Десятичный логарифм x

КвКорень(<x>) Квадратный корень из x

Округл(<x>, <n>) Округляет x до n десятичных знаков

Усеч(<x>, <n>) Усекает x до n десятичных знаков

Синус(<x>) Синус x

Синтаксис Описание

Косинус(<x>) Косинус x

Тангенс(<x>) Тангенс x

Арксинус(<x>) Арксинус x

Арккосинус(<x>) Арккосинус x

Арктангенс(<x>) Арктангенс x

Функции даты(English)

Синтаксис Описание

ТекущаяДата() Возвращает текущее значение "date" в начале сеанса.

Дата(<text>) Преобразование указанной строки в значение date

ДатаВыпуска(<year>, <month>,
<day>)

Возвращает значение date, образованное из указанного года, месяца и дня.

ИзвлечьДень(<date/datetime>) Возвращает компонент дня для date/datetime attribute.

ИзвлечьМесяц(<date/datetime>) Возвращает компонент месяца для date/datetime attribute.

ИзвлечьГод(<date/datetime>) Возвращает компонент года для date/datetime attribute.

СледДеньНедели(<date/datetime>,
<day>)

Возвращает date следующего буднего дня до или после date включительно
(в зависимости от используемого синтаксиса).

СледующаяДата(<date>, <day>,
<month>)

Возвращает следующий экземпляр данного дня и месяца после date.

ДобДн(<date/datetime>, <num_days>)
Прибавляет к date или вычитает указанное число дней. При использовании
краткой синтаксической формы для прибавления дней к входному значению
date необходимо указывать целое положительное число, а для вычитания
дней из date - отрицательное число.

ДобНедели(<date/datetime>, <num_
weeks>)

Прибавляет число недель к date. При использовании краткой
синтаксической формы число должно быть положительным целым числом
для прибавления недель к вводу date.

ДобМесяцы(<date/datetime>, <num_
months>)

Прибавляет число месяцев к date. При использовании краткой
синтаксической формы число должно быть положительным целым числом
для прибавления месяцев к вводу date.

ДобГоды(<date/datetime>, <num_
years>)

Прибавляет число лет к date. При использовании краткой синтаксической
формы число должно быть положительным целым числом для прибавления
лет к вводу date.

Синтаксис Описание

ЧислоДнейНедели(<date1>,
<date2>)

Подсчет числа будних дней между date1 и date2, т. е. дней с понедельника
по пятницу.
Примечание: более ранний date включается, а более поздний date
исключается.

НачалоГода(<date/datetime>) Возвращает первое значение date в году, в который попадает date.

КонецГода(<date/datetime>) Возвращает последнее значение date в году, в который попадает date.

РазницаДней(<date/datetime1>,
<date/datetime2>)

Возвращает число целых дней между date/datetime1 и date/datetime2.
Порядок двух дат не влияет на результат.

РазницаДнейВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых дней между date/datetime1 и date/datetime2
(включая граничные даты). В этом расчете включаются обе конечные точки.
Если граничные даты совпадают, возвращается результат 1. Порядок этих
двух дат не влияет на результат.

РазницаДнейНеВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых дней между date/datetime1 и date/datetime2
(не включая граничные даты). В этом расчете исключаются обе конечные
точки. Если граничные даты совпадают, возвращается результат 0. Порядок
этих двух дат не влияет на результат.

РазницаНедель(<date/datetime1>,
<date/datetime2>)

Возвращает число целых прошедших недель между date/datetime1 и
date/datetime2. Порядок двух дат не влияет на результат.

РазницаНедельВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых прошедших недель между date/datetime1 и
date/datetime2 (включая граничные точки). Порядок двух дат не влияет на
результат.

РазницаНедельНеВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых прошедших недель между date/datetime1 и
date/datetime2 (не включая граничные точки). Порядок двух дат не влияет
на результат.

РазницаМесяцев(<date/datetime1>,
<date/datetime2>)

Возвращает число целых прошедших месяцев между date/datetime1 и
date/datetime2. Порядок двух дат не влияет на результат.

РазницаМесяцевВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых прошедших месяцев между date/datetime1 и
date/datetime2 (включая граничные точки). Порядок двух дат не влияет на
результат.

РазницаМесяцевНеВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число целых прошедших месяцев между date/datetime1 и
date/datetime2 (не включая граничные точки). Порядок двух дат не влияет
на результат.

РазницаЛет(<date/datetime1>,
<date/datetime2>)

Возвращает число лет между date/datetime1 и date/datetime2. Порядок
двух дат не влияет на результат.

РазницаЛетВключительно(<date/d-
atetime1>, <date/datetime2>)

Возвращает число лет между date/datetime1 и date/datetime2 (включая
граничные точки). Порядок двух дат не влияет на результат.

Синтаксис Описание

РазницаЛетНеВключительно
(<date/datetime1>, <date/datetime2>)

Возвращает число лет между date/datetime1 и date/datetime2 (не
включая граничные точки). Порядок двух дат не влияет на результат.

Функции времени суток(English)

Синтаксис Описание

ВремяСуток(<text>) Преобразование указанной строки во время дня

ИзвлечьСекунды(<time/datetime>) Возвращает компонент секунд для timeofday/datetime attribute.

ИзвлечьМинуты(<time/datetime>) Возвращает компонент минут для timeofday/datetime attribute.

ИзвлечьЧасы(<time/datetime>) Возвращает компонент часа для timeofday/datetime attribute.

Функции дат и времени(English)

Синтаксис Описание

ТекущаяДатаВремя() Возвращает текущее значение "date и время" в начале сеанса.

ДатаВремя(<text>) Преобразование указанной строки в значение datetime

УсечьДатуВремя(<date>, <time>) Устанавливает время date, объединяя date и время дня.

РазницаСекунд(<datetime1>, <dat-
etime2>)
РазницаСекунд(<timeOfDay1>,
<timeOfDay2>)

Возвращает число секунд между datetime1 и datetime2.

РазницаСекундВключительно
(<datetime1>, <datetime2>)
РазницаСекундВключительно
(<timeOfDay1>, <timeOfDay2>)

Возвращает число секунд между datetime1 и datetime2, включая граничные
точки.

РазницаСекундНеВключительно
(<datetime1>, <datetime2>)
РазницаСекундНеВключительно
(<timeOfDay1>, <timeOfDay2>)

Возвращает число секунд между datetime1 и datetime2, исключая
граничные точки.

РазницаМинут(<datetime1>, <dat-
etime2>)
РазницаМинут(<timeOfDay1>,
<timeOfDay2>)

Возвращает число минут между datetime1 и datetime2.

РазницаМинутВключительно
(<datetime1>, <datetime2>)

Возвращает число минут между datetime1 и datetime2, включая граничные
точки.

Синтаксис Описание

РазницаМинутВключительно
(<timeOfDay1>, <timeOfDay2>)

РазницаМинутНеВключительно
(<datetime1>, <datetime2>)
РазницаМинутНеВключительно
(<timeOfDay1>, <timeOfDay2>)

Возвращает число минут между datetime1 и datetime2, исключая
граничные точки.

РазницаЧасов(<datetime1>, <dat-
etime2>)
РазницаЧасов(<timeOfDay1>,
<timeOfDay2>)

Возвращает число часов между datetime1 и datetime2.

РазницаЧасовВключительно
(<datetime1>, <datetime2>)
РазницаЧасовВключительно
(<timeOfDay1>, <timeOfDay2>)

Возвращает число часов между datetime1 и datetime2, включая граничные
точки.

РазницаЧасовНеВключительно
(<datetime1>, <datetime2>)
РазницаЧасовНеВключительно
(<timeOfDay1>, <timeOfDay2>)

Возвращает число часов между datetime1 и datetime2, исключая граничные
точки.

ИзвлечьДату(<datetime>) Извлекает date из datetime attribute.

ИзвлечьВремяСуток(<datetime>)
Извлекает время дня из datetime attribute. Может использоваться для
установки значения timeofday attribute на время выполнения правила,
извлекая время из текущего значения date и времени.

ДобЧасы(<datetime>, <num_
hours>)
ДобЧасы(<timeOfDay>, <num_
hours>)

Прибавляет число часов к времени date.

ДобМинуты(<datetime>, <num_
minutes>)
ДобМинуты(<timeOfDay>, <num_
minutes>)

Прибавляет число минут к времени date.

ДобСекунды(<datetime>, <num_
seconds>)
ДобСекунды(<timeOfDay>, <num_
seconds>)

Прибавляет число секунд к времени date.

Текстовые функции(English)

Синтаксис Описание

<text1> & <text2>
Объединяет text1 с text2 и т. д., образуя единое значение text.
Можно использовать переменные любого типа. Значения форматируются с помощью
средства форматирования, устанавливаемого в сеансе работы с правилами.

Объединяет text1 с text2 и т. д., образуя единое значение text.
Можно использовать переменные любого типа. Значения форматируются с помощью
средства форматирования, устанавливаемого в сеансе работы с правилами.

Содержит(<text>,
<substring>)

Возвращает логическое значение, указывающее, содержит ли указанное значение text
данную подстроку text. Сравнение text выполняется без учета регистра.

ОкончаниеС
(<text>, <substring>)

Возвращает логическое значение, указывающее, оканчивается ли указанное значение text
данной подстрокой text. Сравнение text выполняется без учета регистра.

ЯвляетсяЧислом
(<text>)

Возвращает логическое значение, указывающее, представляет ли данное значение text
допустимое число.

Длина(<text>) Возвращает длину в символах для данного значения text.

НачинаетсяС
(<text>, <substring>)

Возвращает логическое значение, указывающее, начинается ли указанное значение text
данной подстрокой text. Сравнение text выполняется без учета регистра.

Подстрока(<text>,
<offset>, <length>)

Возвращает подстроку для text, которая начинается с данным отступом и указывает длину в
символах. Если достигнут конец строки, возвращается меньше символов.

Текст(<number>)
Текст(<date>)
Текст(<datetime>)
Текст(<timeOfDay>)

Преобразование указанного числа или date attribute в значение text.

Функции логических объектов и отношений(English)

Синтаксис Описание

Для(<relationship>, <Exp>)
Используется для ссылки из одного entity на другое entity в relationship типа
"один к одному", "многие к одному" или "многие ко многим", если имеется только
одно условие.

ДляОбласти(<relationship>,
<alias>)
ДляОбласти(<relationship>)

Используется для ссылки из одного entity на другое entity в relationship типа
"один к одному", "многие к одному" или "многие ко многим", если имеется одно или
несколько условий.

ДляВсех(<relationship>,
<Exp>)

Используется для ссылки из одного entity на другое entity в relationship типа
"один ко многим" или "многие ко многим", когда требуется определить, должны ли
все члены группы-адресата entity соответствовать правилу.
Эта форма используется, если в правиле имеется только одно условие.

ДляВсейОбласти(<rela- Используется для ссылки из одного entity на другое entity в relationship типа

Синтаксис Описание

tionship>)
ДляВсейОбласти(<rela-
tionship>, <alias>)

"один ко многим" или "многие ко многим", когда требуется определить, должны ли
все члены группы-адресата entity соответствовать правилу.
Эта форма используется, если в правиле имеется одно или несколько условий.

Существует(<relationship>,
<Exp>)

Используется для ссылки из одного entity на другое entity в relationship типа
"один ко многим" или "многие ко многим", когда требуется определить, должны ли
какие-либо члены группы-адресата entity соответствовать правилу.
Эта форма используется, если в правиле имеется только одно условие.

СуществуетОбласть(<rela-
tionship>)
СуществуетОбласть(<rela-
tionship>, <alias>)

Используется для ссылки из одного entity на другое entity в relationship типа
"один ко многим" или "многие ко многим", когда требуется определить, должны ли
какие-либо члены группы-адресата entity соответствовать правилу.
Эта форма используется, если в правиле имеется одно или несколько условий.

ЯвляетсяЧленом(<target>,
<relationship>)
ЯвляетсяЧленом(<target>,
<alias>, <relationship>)

Используется в качестве заключения о том, что экземпляр entity является
элементом relationship. Используется в качестве условия проверки того, что
экземпляр entity является конечным для relationship, для которого второй
экземпляр entity является исходным.

НеЯвляетсяЧленом
(<target>, <relationship>)

Используется в качестве условия проверки того, что экземпляр entity не является
конечным для relationship, для которого второй экземпляр entity является
исходным.

ЧислоЭкземпляров(<rela-
tionship>)

Считает количество экземпляров, существующих для entity.

ЧислоЭкземпляровЕсли
(<relationship>, <Exp>)

Считает количество имеющихся экземпляров entity, для которых определенный
entity-level attribute имеет конкретное значение.

ЭкземпляровМаксимум
(<relationship>, <number-attr>)
ЭкземпляровМаксимум
(<relationship>, <date-attr>)
ЭкземпляровМаксимум
(<relationship>, <datetime-
attr>)
ЭкземпляровМаксимум
(<relationship>, <time-attr>)

Получает самое высокое/самое последнее значение переменной entity-level для
всех экземпляров entity.

ЭкземпляровМаксимумЕсли
(<relationship>, <number-attr>,
<condition>)
ЭкземпляровМаксимумЕсли
(<relationship>, <date-attr>,
<condition>)
ЭкземпляровМаксимумЕсли
(<relationship>, <datetime-attr>,

Получает самое высокое/самое последнее значение переменной entity-level для
всех экземпляров entity, для которых каждое entity-level attribute имеет
отдельное значение.

Синтаксис Описание

<condition>)
ЭкземпляровМаксимумЕсли
(<relationship>, <time-attr>,
<condition>)

ЭкземпляровМинимум(<rela-
tionship>, <number-attr>)
ЭкземпляровМинимум(<rela-
tionship>, <date-attr>)
ЭкземпляровМинимум(<rela-
tionship>, <datetime-attr>)
ЭкземпляровМинимум(<rela-
tionship>, <time-attr>)

Получает самое низкое/самое давнее значение переменной entity-level для всех
экземпляров entity.

ЭкземпляровМинимумЕсли
(<relationship>, <number-attr>,
<condition>)
ЭкземпляровМинимумЕсли
(<relationship>, <date-attr>,
<condition>)
ЭкземпляровМинимумЕсли
(<relationship>, <datetime-attr>,
<condition>)
ЭкземпляровМинимумЕсли
(<relationship>, <time-attr>,
<condition>)

Получает самое низкое/самое давнее значение переменной entity-level для всех
экземпляров entity, для которых каждое entity-level attribute имеет отдельное
значение.

СуммаЭкземпляров(<rela-
tionship>, <number-attr>)

Получает сумму всех экземпляров переменной entity-level.

СуммаЭкземпляровЕсли
(<relationship>, <number-attr>,
<condition>)

Получает сумму всех экземпляров переменной entity-level, для которых является
"истиной" для entity, что определенное значение attribute логического условия
entity-level является "истиной".

ЗначениеЭкземпляровЕсли
(<relationship>, <number-attr>,
<condition>)
ЗначениеЭкземпляровЕсли
(<relationship>, <text-attr>,
<condition>)
ЗначениеЭкземпляровЕсли
(<relationship>, <date-attr>,
<condition>)
ЗначениеЭкземпляровЕсли
(<relationship>, <datetime-attr>,
<condition>)

Получает значение из уникального экземпляра entity, идентифицированного из
экземпляров-адресатов entity для relationship в соответствии с условием.

l Если условие идентифицирует единственный экземпляр-адресат entity, то
значение вычисляется по этому экземпляру entity.

l Если условию соответствуют более одного экземпляра-адресата, то
возвращается значение uncertain.

l Если никакие экземпляры-адресаты не соответствуют условию, и rela-
tionship известно, то возвращается значение uncertain.

Синтаксис Описание

ЗначениеЭкземпляровЕсли
(<relationship>, <time-attr>,
<condition>)

ЭкземплярыРавны
(<instance1>, <instance2>)

Определяет, являются ли два экземпляра entity одним и тем же экземпляром.

ЭкземплярыНеРавны
(<instance1>, <instance2>)

Определяет, являются ли два экземпляра entity разными экземплярами.

InferInstance(<relationship>,
<identity>)

Используется в качестве заключения для вывода о том, что экземпляр entity
существует и является членом relationship.

Функции временного вывода заключений(English)

Синтаксис Описание

ЧислоИнтеваловБезПовторов(<start-
date>, <end-date>, <variable>)
ЧислоИнтеваловБезПовторов(<start-
date>, <end-date>, <condition>)

Считает количество известных разных значений для переменной в
интервале от начала date (включительно) до конца date (не включая
конечную точку).

ЧислоИнтеваловБезПовторовЕсли
(<start-date>, <end-date>, <variable>,
<condition>)

Считает количество известных разных значений для переменной в
интервале от начала date (включительно) до конца date (не включая
конечную точку), причем включается только время, когда логический
фильтр дает значение "истина".

ЕжедневнСуммарныйИнтервал
(<start-date>, <end-date>, <number-
attr>)

Вычисляет сумму для переменной с типом Currency или Number в
интервале от начала date (включительно) до конца date (не включая
конечную точку). Подразумевается, что attribute является количеством за
день.

ЕжедневнСуммарныйИнтервалЕсли
(<start-date>, <end-date>, <number-
attr>, <condition>)

Вычисляет сумму всех ежедневных значений для переменной с типом Cur-
rency или Number в интервале от начала date (включительно) до конца
date (не включая конечную точку), причем включается только время,
когда условие является "истиной".

МаксимальныйИнтервал(<start-
date>, <end-date>, <number-attr>)
МаксимальныйИнтервал(<start-
date>, <end-date>, <date-attr>)
МаксимальныйИнтервал(<start-
date>, <end-date>, <datetime-attr>)
МаксимальныйИнтервал(<start-
date>, <end-date>, <time-attr>)

Выбирает максимальное значение переменной в интервале от начала
date (включительно) до конца date (не включая конечную точку).

Синтаксис Описание

МаксимальныйИнтервалЕсли
(<start-date>, <end-date>, <number-
attr>, <condition>)
МаксимальныйИнтервалЕсли
(<start-date>, <end-date>, <date-attr>,
<condition>)
МаксимальныйИнтервалЕсли
(<start-date>, <end-date>, <datetime-
attr>, <condition>)
МаксимальныйИнтервалЕсли
(<start-date>, <end-date>, <time-attr>,
<condition>)

Выбирает максимальное значение переменной в интервале от начала
date (включительно) до конца date (не включая конечную точку), причем
включается только время, когда условие является "истиной".

МинимальныйИнтервал(<start-
date>, <end-date>, <number-attr>)
МинимальныйИнтервал(<start-
date>, <end-date>, <date-attr>)
МинимальныйИнтервал(<start-
date>, <end-date>, <datetime-attr>)
МинимальныйИнтервал(<start-
date>, <end-date>, <time-attr>)

Выбирает минимальное значение переменной в интервале от начала date
(включительно) до конца date (не включая конечную точку).

МинимальныйИнтервалЕсли(<start-
date>, <end-date>, <number-attr>, <con-
dition>)
МинимальныйИнтервалЕсли(<start-
date>, <end-date>, <date-attr>, <con-
dition>)
МинимальныйИнтервалЕсли(<start-
date>, <end-date>, <datetime-attr>, <con-
dition>)
МинимальныйИнтервалЕсли(<start-
date>, <end-date>, <time-attr>, <con-
dition>)

Выбирает минимальное значение переменной в интервале от начала date
(включительно) до конца date (не включая конечную точку), причем
включается только время, когда условие является "истиной".

ВзвешенныйСреднийИнтервал
(<start-date>, <end-date>, <number-
attribute>)

Вычисляет среднее значение для переменной с типом Currency или Number
в интервале от начала date (включительно) до конца date (не включая
конечную точку), взвешенное по тому промежутку времени, к которому
применяется каждое значение.

ВзвешенныйСреднийИнтервалЕсли
(<start-date>, <end-date>, <number-
attribute>, <condition>)

Вычисляет среднее значение для переменной с типом Currency или Number
в интервале от начала date (включительно) до конца date (не включая
конечную точку), причем включается только время, когда логическое
условие дает значение "истина" (взвешивается по тому промежутку
времени, к которому применяется каждое значение и в котором фильтр
дает значение "истина").

Синтаксис Описание

ИнтервалВсегда(<start-date>, <end-
date>, <condition>)

Возвращает значение "истина", только если логическое условие является
"истиной" во всем интервале от начала date (включительно) до конца
date (не включая конечную точку).

ИнтервалНеМенееДней(<start-date>,
<end-date>, <NumDays>, <condition>)

Возвращает значение "истина", только если логическое условие является
"истиной" по крайней мере для указанного числа дней (необязательно
последовательных) в интервале от начала date (включительно) до конца
date (не включая конечную точку).

ИнтервалПоследовательныхДней
(<start-date>, <end-date>, <NumDays>,
<condition>)

Возвращает значение "истина", только если логическое условие является
"истиной" по крайней мере для указанного числа последовательных дней в
интервале от начала date (включительно) до конца date (не включая
конечную точку).

ИнтервалИногда(<start-date>, <end-
date>, <condition>)

Возвращает значение "истина", только если логическое условие является
"истиной" в какой-то момент в интервале от начала date (включительно)
до конца date (не включая конечную точку).

ЗначениеВ(<date>, <value>) Возвращает значение данного attribute в указанном date.

КогдаПоследний(<date>, <condition>)
Возвращает значение date, на которое логическое условие было "истиной"
в последний раз, отсчитывая в обратную сторону от указанного date
(включительно).

КогдаДалее(<date>, <condition>)
Возвращает значение date, на которое логическое условие будет
"истиной" в следующий раз, отсчитывая вперед от указанного date
(включительно).

СамоеПозднее()

Возвращает значение date, эквивалентное самому позднему из
возможных date, а именно: date гарантированно является более
поздним, чем любое другое значение date, которое может принимать
date attribute или до которого может быть оценено выражение.

СамоеРаннее()

Возвращает значение date, эквивалентное самому раннему из возможных
date, а именно: date гарантированно является более ранним, чем любое
другое значение date, которое может принимать date attribute или до
которого может быть оценено выражение.

ВременнДнейС(<date>, <end-date>)
Возвращает числовую переменную, которая изменяется каждый день и
является числом полных дней, начиная с date.

ВременнНедельС(<date>, <end-
date>)

Возвращает числовую переменную, которая изменяется каждую неделю и
является числом полных недель, начиная с date.

ВременнМесяцевС(<date>, <end-
date>)

Возвращает числовую переменную, которая изменяется каждый месяц и
является числом полных месяцев, начиная с date. Примечание. Если
предоставленное значение date попадает после 28-го дня месяца, и в
последующем месяце меньше дней, чем в предоставленном месяце, то

Синтаксис Описание

точка изменения будет создана в последний день того месяца. Например,
если предоставленное значение date соответствует 28, 29, 30 или 31
января 2007 года, то первая точка изменения будет 28 февраля 2007 г.

ВременнЛетС(<date>, <end-date>)
Возвращает числовую переменную, которая изменяется каждый год и
является числом полных лет, начиная с date.

ВременнВсегдаДней(<days>, <con-
dition>)

Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной", только если логическое условие является
"истиной" для всего данного числа предыдущих дней, не включая текущий
день.

ВременнПоследовательнДней
(<minDays>, <days>, <condition>)

Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной", только если логическое условие является
"истиной" по крайней мере для минимального числа последовательных
предыдущих дней в любое время в заданном интервале предыдущих дней,
не включая текущий день.

ВременнИногдаДней(<days>, <con-
dition>)

Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной", только если логическое условие является
"истиной" в какой-то момент в интервале заданного числа предыдущих
дней, не включая текущий день.

ВременнПосле(<date>)
Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной" после date и "ложью" на эту дату и до нее.

ВременнДо(<date>)
Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной" до date и "ложью" на эту дату и после нее.

ВременнВМомент(<date>)
Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной" на дату date и "ложью" после нее.

ВременнВМоментИлиПосле(<date>)
Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной" после date и "ложью" до этой даты.

ВременнВМоментИлиДо(<date>)
Возвращает логическое значение attribute, которое изменяется со
временем и является "истиной" на дату date и до нее и "ложью" после нее.

ВременнСДатыНачала(<relationship>,
<date>, <value>)

Возвращает единый временной ряд attribute (на уровне источника
entity) из relationship и значения attribute на логических объектах, со
значениями, которые действуют с начала date attribute.

ВременнСДатыОкончания(<rela-
tionship>, <date>, <value>)

Возвращает единый временной ряд attribute (на уровне источника
entity) из relationship и значения attribute на логических объектах, со
значениями, которые действуют вплоть до конца date attribute.

ВременнОтДиапазона(<relationship>,
<start-date>, <end-date>, <Value>)

Возвращает единый временной ряд attribute (на уровне источника
entity) из relationship и значения attribute на логических объектах, со
значениями, которые действуют с начала date attribute (включительно)

Синтаксис Описание

до конца date attribute (не включая эту точку). Значение равно uncer-
tain, если оно истекает до следующего начала date.

ВременнВыходные(<startdate>, <end-
date>)

Возвращает значение "истина" на даты, которые являются будними днями,
и "ложь" на даты, которые являются выходными днями, в интервале от
указанного начала date (включительно) до конца date (не включая эту
точку). Возвращает uncertain вне диапазона date.

ВременнСЕжемесячно(<startdate>,
<enddate>, <dayofmonth>)

Возвращает значение "истина", если день равен параметру "день месяца",
и "ложь" во все другие дни месяца от указанного начала date
(включительно) до конца date (не включая эту точку). Возвращает uncer-
tain вне диапазона date. Когда "день месяца" превышает число дней в
текущем месяце, значение является "истиной" в последний день того
месяца, чтобы функция возвращала истинное значение только один раз в
месяц.

Функции события проверки(English)

Синтаксис Описание

Ошибка(<text>)
Событие ошибки используется для передачи пользователю сообщения, после которого тому
запрещается продолжать исследование до устранения условия, вызвавшего ошибку.

Предупреждение
(<text>)

Событие предупреждения используется для передачи пользователю сообщения, после которого
тому разрешается продолжить работу, невзирая на условие, вызвавшее предупреждение.

Функции, не рекомендуемые к использованию(English)

Синтаксис Описание

ВызвНестандФункцию
(<A>,)

Возвращает результат из внешнего вызова в библиотеку кодов. Для успешного вызова
пользовательской функции необходимо предоставить ядру определений библиотеку
кодов.

Conectores lógicos(English)

Sintaxis Descripción

si
Condición que puede aparecer al final de una línea de conclusión que tiene una
prueba siguiente

y Conjunción lógica entre dos attributes

o Disyunción lógica entre dos attributes

Sintaxis Descripción

uno de
una de
o bien
cualquier de los dos
cualquier de las dos
cualquier de los
cualquier de las
cualquier
cualquiera
cualquiera de
cualquiera de estas
cualquiera de las siguientes
por lo menos uno de los siguientes
es verdadero
cualquier de los siguientes ha sido
cumplido

Elemento de agrupación utilizado con disyunciones en las que necesitan agruparse
dos o más attributes

ambos
ambas
todos
todo
tanto
todas
todos los siguientes son verdaderos
todos los siguientes han sido cump-
lidos

Elemento de agrupación utilizado con conjunciones en las que necesitan agruparse
dos o más attributes

de otro modo
Condición que aparece al final de una regla de tabla, para indicar la cláusula "de
otro modo"

es
Condición que se utiliza en una entrada de leyenda, entre la frase abreviada y
attribute text completos.

Funciones lógicas(English)

Sintaxis Descripción

no es verdad que <expr>
Operador utilizado para devolver un valor verdadero, si attribute tiene un valor que es
falso.

<var> es seguro
<var> es segura
es seguro [o no] si <expr>

Operador utilizado para devolver un valor verdadero, si attribute tiene un valor que no es
uncertain

<var> no es seguro Operador utilizado para devolver un valor verdadero, si el valor de attribute es uncertain

Sintaxis Descripción

<var> no es segura
<var> es inseguro
<var> es insegura
es inseguro que <expr>
es inseguro [o no] si <expr>
no es seguro que <expr>
inseguro
insegura

<var> es conocido
<var> es conocida
es conocido [o no] si <expr>

Operador utilizado para devolver un valor verdadero, si attribute tiene algún valor.

<var> es desconocido
<var> es desconocida
es desconocido [o no] si
<expr>
desconocido
desconocida

Operador utilizado para devolver un valor verdadero, si attribute no tiene un valor

Constantes lógicas(English)

Sintaxis Descripción

verdad
verdadero

Valor verdadero de constante utilizado para reglas de tablas.

falso Valor falso de constante utilizado para reglas de tablas.

inseguro
incierto

Valor uncertain de constante utilizado para reglas de tablas.

Operadores de comparación(English)

Sintaxis Descripción

<lhs><<rhs>
<lhs> es menor que <rhs>
<lhs> es antes que <rhs>

Menor que
Nota: no hay una forma de idioma natural cuando este operador se utiliza con valores
numéricos y de moneda.

<lhs> > <rhs>
<lhs> es mayor que <rhs>
<lhs> es después que <rhs>

Mayor que
Nota: no hay una forma de idioma natural cuando este operador se utiliza con valores
numéricos y de moneda.

<lhs><=<rhs>
<lhs> es menor que o igual a Menor o igual que

Sintaxis Descripción

<rhs>

<lhs> >= <rhs>
<lhs> es mayor que o igual a
<rhs>

Mayor o igual que

<lhs>=<rhs>
<lhs> es igual a <rhs>
<lhs> iguala <rhs>

Igual a

<lhs> no es igual a <rhs>
<lhs> no iguala <rhs>
<lhs> <> <rhs>
<lhs> != <rhs>

Distinto de

Funciones numéricas(English)

Sintaxis Descripción

Número(<numText>) Convierte la cadena especificada en un valor numérico

<x> + <y> Suma

<x> - <y> Resta

<x> * <y> Multiplicación

<x> / <y> División

<x> \ <y> División de enteros

<x> modulo <y> El resto tras la división de enteros

Máximo(<x>, <y>)
Máximo(<date/time/datetime1>, <date/time/datetime2>)
el más grande de <val1> y <val2>
el máximo de <val1> y <val2>
el mayor de <val1> y <val2>
el más reciente de <val1> y <val2>
la fecha más reciente de <val1> y <val2>

Devuelve el mayor de dos valores

Mínimo(<x>, <y>)
Mínimo(<date/time/datetime1>, <date/time/datetime2>)
el más pequeño de <val1> y <val2>
el mínimo de <val1> y <val2>
el menor de <val1> y <val2>
el más temprano de <val1> y <val2>
la fecha más temprana de <val1> y <val2>

Devuelve el menor de dos valores

Sintaxis Descripción

Xy(<x>, <y>) x a la potencia de y

Ex(<x>) Constante e a la potencia de x

Abs(<x>) Valor absoluto de x

Ln(<x>) Logaritmo natural de x

Log(<x>) Logaritmo base 10 de x

Sqrt(<x>)
la raíz cuadrada de <val>

Raíz cuadrada de x

Round(<x>, <n>)
<val> redondeado a <num_places> decimal
<val> redondeado a <num_places> decimales

Redondea x a n decimales

Trunc(<x>, <n>) x truncado a n decimales

Sin(<x>) Seno de x

Cos(<x>) Coseno de x

Tan(<x>) Tangente de x

Asin(<x>) Arcoseno de x

Acos(<x>) Arcoseno de x

Atan(<x>) Arcotangente de x

Funciones de fecha(English)

Sintaxis Descripción

FechaActual()
la fecha actual

Devuelve la date actual al inicio de la sesión.

Fecha(<text>) Convierte la cadena especificada en un valor de date

FechaCreación(<year>,
<month>, <day>)

Devuelve una date formada a partir del año, mes y día indicados.

DíaExtracción(<date/datetime>) Devuelve el componente de día de una date/datetime attribute.

MesExtracción
(<date/datetime>)

Devuelve el componente de mes de una date/datetime attribute.

AñoExtracción
(<date/datetime>)

Devuelve el componente de año de una date/datetime attribute.

Sintaxis Descripción

SiguienteDíadelaSemana
(<date/datetime>, <day>)
el [próximo] lunes durante o
después de <from-date>
el [próximo] lunes en o des-
pués de <from-date>
el [próximo] martes durante o
después de <from-date>
el [próximo] martes en o des-
pués de <from-date>
el [próximo] miércoles dur-
ante o después de <from-date>
el [próximo] miércoles en o
después de <from-date>
el [próximo] jueves durante o
después de <from-date>
el [próximo] jueves en o des-
pués de <from-date>
el [próximo] viernes durante o
después de <from-date>
el [próximo] viernes en o des-
pués de <from-date>
el [próximo] sábado durante o
después de <from-date>
el [próximo] sábado en o des-
pués de <from-date>
el [próximo] domingo durante
o después de <from-date>
el [próximo] domingo en o des-
pués de <from-date>

Devuelve la date del siguiente día de la semana antes/después de una date (en función
de la sintaxis que se utilice).

FechaSiguiente(<date>, <day>,
<month>)

Devuelve la siguiente instancia del día y mes indicados, después de date.

AgregarDías(<date/datetime>,
<num_days>)
la fecha <num_days> día des-
pués de <date>
la fecha <num_days> días des-
pués de <date>
el tiempo <num_days> día des-
pués de <date>
el tiempo <num_days> días des-
pués de <date>

Agrega/resta un número de días a una date. Cuando se utiliza una forma sintáctica con-
cisa, el número debe ser un entero positivo, para agregar días a la date de entrada, o un
número negativo, para restar días de la date de entrada.

Sintaxis Descripción

AgregarSemanas(<date/d-
atetime>, <num_weeks>)
la fecha <num_weeks> semana
después de <date>
la fecha <num_weeks> sem-
anas después de <date>
el tiempo <num_weeks> sem-
ana después de <date>
el tiempo <num_weeks> sem-
anas después de <date>

Agrega un número de semanas a una date. Cuando se utiliza una forma sintáctica con-
cisa, el número debe ser un entero positivo, para agregar semanas a la date de entrada.

AgregarMeses(<date/datetime>,
<num_months>)
la fecha <num_months> mes
después de <date>
la fecha <num_months> meses
después de <date>
el tiempo <num_months> mes
después de <date>
el tiempo <num_months>
meses después de <date>

Agrega un número de meses a una date. Cuando se utiliza una forma sintáctica concisa,
el número debe ser un entero positivo, para agregar meses a la date de entrada.

AgregarAños(<date/datetime>,
<num_years>)
la fecha <num_years> año des-
pués de <date>
la fecha <num_years> años des-
pués de <date>
el tiempo <num_years> año
después de <date>
el tiempo <num_years> años
después de <date>

Agrega un número de años a una date. Cuando se utiliza una forma sintáctica concisa, el
número debe ser un entero positivo, para agregar años a la date de entrada.

RecuentodeDíasdelaSemana
(<date1>, <date2>)
el número de días [enteros] de
semana de <date1> a <date2>
el número de días [enteros] de
semana desde <date1> hasta
<date2>
el número de días [enteros] de
semana entre <date1> y
<date2>

Hace un recuento del número de días de la semana entre date1 y date2. Es decir, el
número de días comprendido entre el lunes y el viernes.
Nota: está incluida la date anterior y excluida la date posterior.

IniciodeAño(<date/datetime>) Devuelve la primera date del año en la que queda incluida una date.

Sintaxis Descripción

el primer día del año en el que
<from-date> cae
el primer día del año en el
cual cae <from-date>

FindeAño(<date/datetime>)
el último día del año en el que
<from-date> cae
el último día del año en el cual
cae <from-date>

Devuelve la última date del año en el que queda incluida una date.

DiferenciaDías(<date/d-
atetime1>, <date/datetime2>)
el número de días [enteros] de
<date1> a <date2>
el número de días [enteros]
desde <date1> hasta <date2>
el número de días [enteros]
entre <date1> y <date2>

Devuelve el número de días completos entre date/datetime1 y date/datetime2. El
orden de las dos fechas no afecta al resultado.

DiferenciaDíasIncluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de días [enteros]
(inclusivo) de <date1> a
<date2>
el número de días [enteros]
(inclusivo) desde <date1>
hasta <date2>
el número de días [enteros]
(inclusivo) entre <date1> y
<date2>

Devuelve el número total de días (incluidos) entre date/datetime1 y date/d-
atetime2. Este cálculo excluye ambos extremos. Cuando las fechas son iguales, el res-
ultado es 1. El orden de las dos fechas no afecta al resultado.

DiferenciaDíasExcluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de días [enteros]
(exclusivo) de <date1> a
<date2>
el número de días [enteros]
(exclusivo) desde <date1>
hasta <date2>
el número de días [enteros]
(exclusivo) entre <date1> y
<date2>

Devuelve el número total de días (excluidos) entre date/datetime1 y date/d-
atetime2. Este cálculo excluye ambos extremos. Cuando las fechas son iguales, el res-
ultado es 0. El orden de las dos fechas no afecta al resultado.

Sintaxis Descripción

DiferenciaSemanas(<date/d-
atetime1>, <date/datetime2>)
el número de semanas
[enteras] de <date1> a <date2>
el número de semanas
[enteras] desde <date1> hasta
<date2>
el número de semanas
[enteras] entre <date1> y
<date2>

Devuelve el número total de semanas transcurridas entre date/datetime1 y date/d-
atetime2. El orden de las dos fechas no afecta al resultado.

DiferenciaSemanasIncluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de semanas
[enteras] (inclusivo) de
<date1> a <date2>
el número de semanas
[enteras] (inclusivo) desde
<date1> hasta <date2>
el número de semanas
[enteras] (inclusivo) entre
<date1> y <date2>

Devuelve el número total de semanas incluidas transcurridas entre date/datetime1 y
date/datetime2. El orden de las dos fechas no afecta al resultado.

DiferenciaSemanasExluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de semanas
[enteras] (exclusivo) de
<date1> a <date2>
el número de semanas
[enteras][(exclusivo)] desde
<date1> hasta <date2>
el número de semanas
[enteras] (exclusivo) entre
<date1> y <date2>

Devuelve el número total de semanas transcurridas entre date/datetime1 y date/d-
atetime2. El orden de las dos fechas no afecta al resultado.

DiferenciaMeses(<date/d-
atetime1>, <date/datetime2>)
el número de meses [enteros]
de <date1> a <date2>
el número de meses [enteros]
desde <date1> hasta <date2>
el número de meses [enteros]
entre <date1> y <date2>

Devuelve el número total de meses transcurridos entre date/datetime1 y date/d-
atetime2. El orden de las dos fechas no afecta al resultado.

Sintaxis Descripción

DiferenciaMesesIncluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de meses [enteros]
(inclusivo) de <date1> a
<date2>
el número de meses [enteros]
(inclusivo) desde <date1>
hasta <date2>
el número de meses [enteros]
(inclusivo) entre <date1> y
<date2>

Devuelve el número total de meses transcurridos entre date/datetime1 y date/d-
atetime2. El orden de las dos fechas no afecta al resultado.

DiferenciaMesesExcluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de meses [enteros]
(exclusivo) de <date1> a
<date2>
el número de meses [enteros]
[(exclusivo)] desde <date1>
hasta <date2>
el número de meses [enteros]
(exclusivo) entre <date1> y
<date2>

Devuelve el número total de meses transcurridos entre date/datetime1 y date/d-
atetime2. El orden de las dos fechas no afecta al resultado.

DiferenciaAños(<date/d-
atetime1>, <date/datetime2>)
el número de años [enteros]
de <date1> a <date2>
el número de años [enteros]
desde <date1> hasta <date2>
el número de años [enteros]
entre <date1> y <date2>

Devuelve el número de años entre date/datetime1 y date/datetime2. El orden de
las dos fechas no afecta al resultado.

DiferenciaAñosIncluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de años [enteros]
(inclusivo) de <date1> a
<date2>
el número de años [enteros]
(inclusivo) desde <date1>
hasta <date2>
el número de años [enteros]

Devuelve el número de años incluidos entre date/datetime1 y date/datetime2. El
orden de las dos fechas no afecta al resultado.

Sintaxis Descripción

(inclusivo) entre <date1> y
<date2>

DiferenciaAñosExcluyendo
(<date/datetime1>, <date/d-
atetime2>)
el número de años [enteros]
(exclusivo) de <date1> a
<date2>
el número de años [enteros]
(exclusivo) desde <date1>
hasta <date2>
el número de años [enteros]
(exclusivo) entre <date1> y
<date2>

Devuelve el número de años excluidos entre date/datetime1 y date/datetime2. El
orden de las dos fechas no afecta al resultado.

Funciones de hora del día(English)

Sintaxis Descripción

HoraDelDía(<text>) Convierte la cadena indicada en una hora del día

SegundoExtracción(<time/datetime>) Devuelve el componente de segundos de una timeofday/datetime attribute.

MinutoExtracción(<time/datetime>) Devuelve el componente de minuto de una timeofday/datetime attribute.

HoraExtracción(<time/datetime>) Devuelve el componente de hora de una timeofday/datetime attribute.

Funciones de fecha y hora(English)

Sintaxis Descripción

FechaHoraActual() Devuelve la date y hora actuales al inicio de la sesión.

FechaHora(<text>) Convierte la cadena especificada en un valor de datetime

HoraDíaConcatenar(<date>,
<time>)

Define la hora de una date, mediante la unión de la date y la hora del día.

DiferenciaSegundos(<dat-
etime1>, <datetime2>)
DiferenciaSegundos
(<timeOfDay1>, <timeOfDay2>)
el número de secondes de
<date1> à <date2>
el número de secondes desde

Devuelve el número de segundos entre datetime1 y datetime2.

Sintaxis Descripción

<date1> hasta <date2>
el número de secondes entre
<date1> y <date2>

DiferenciaSegundosIncluyendo
(<datetime1>, <datetime2>)
DiferenciaSegundosIncluyendo
(<timeOfDay1>, <timeOfDay2>)
el número de secondes
(inclusif) de <date1> à <date2>
el número de secondes
(inclusif) desde <date1> hasta
<date2>
el número de secondes
(inclusif) entre <date1> y
<date2>

Devuelve el número de segundos incluidos entre datetime1 y datetime2.

DiferenciaSegundosExcluyendo
(<datetime1>, <datetime2>)
DiferenciaSegundosExcluyendo
(<timeOfDay1>, <timeOfDay2>)
el número de secondes
(exclusif) de <date1> à <date2>
el número de secondes
(exclusif) desde <date1> hasta
<date2>
el número de secondes
(exclusif) entre <date1> y
<date2>

Devuelve el número de segundos excluidos entre datetime1 y datetime2.

DiferenciaMinutos(<datetime1>,
<datetime2>)
DiferenciaMinutos
(<timeOfDay1>, <timeOfDay2>)
el número de minutos de
<date1> à <date2>
el número de minutos desde
<date1> hasta <date2>
el número de minutos entre
<date1> y <date2>

Devuelve el número de minutos entre datetime1 y datetime2.

DiferenciaMinutosIncluyendo
(<datetime1>, <datetime2>)
DiferenciaMinutosIncluyendo
(<timeOfDay1>, <timeOfDay2>)

Devuelve el número de minutos incluidos entre datetime1 y datetime2.

Sintaxis Descripción

el número de minutos
(inclusif) de <date1> à <date2>
el número de minutos
(inclusif) desde <date1> hasta
<date2>
el número de minutos
(inclusif) entre <date1> y
<date2>

DiferenciaMinutosExcluyendo
(<datetime1>, <datetime2>)
DiferenciaMinutosExcluyendo
(<timeOfDay1>, <timeOfDay2>)
el número de minutos
(exclusif) de <date1> à <date2>
el número de minutos
(exclusif) desde <date1> hasta
<date2>
el número de minutos
(exclusif) entre <date1> y
<date2>

Devuelve el número de minutos excluidos entre datetime1 y datetime2.

DiferenciaHoras(<datetime1>,
<datetime2>)
DiferenciaHoras(<timeOfDay1>,
<timeOfDay2>)
el número de horas de <date1>
à <date2>
el número de horas desde
<date1> hasta <date2>
el número de horas entre
<date1> y <date2>

Devuelve el número de horas entre datetime1 y datetime2.

DiferenciaHorasIncluyendo
(<datetime1>, <datetime2>)
DiferenciaHorasIncluyendo
(<timeOfDay1>, <timeOfDay2>)
el número de horas (inclusif)
de <date1> à <date2>
el número de horas (inclusif)
desde <date1> hasta <date2>
el número de horas (inclusif)
entre <date1> y <date2>

Devuelve el número de horas incluidas entre datetime1 y datetime2.

DiferenciaHorasExcluyendo Devuelve el número de horas excluidas entre datetime1 y datetime2.

Sintaxis Descripción

(<datetime1>, <datetime2>)
DiferenciaHorasExcluyendo
(<timeOfDay1>, <timeOfDay2>)
el número de horas (exclusif)
de <date1> à <date2>
el número de horas (exclusif)
desde <date1> hasta <date2>
el número de horas (exclusif)
entre <date1> y <date2>

FechaExtracción(<datetime>) Extrae la date desde una datetime attribute.

HoraDíaExtracción(<datetime>)
Extrae la hora del día desde una datetime attribute. Se puede utilizar para definir el
valor de una timeofday attribute a la hora de ejecución de la regla, mediante la
extracción de la hora y la date actuales.

AgregarHoras(<datetime>,
<num_hours>)
AgregarHoras(<timeOfDay>,
<num_hours>)
el tiempo <num_hours> hora
después de <date>
el tiempo <num_hours> horas
después de <date>
el tiempo de día <num_hours>
hora después de <time-of-day>
el tiempo de día <num_hours>
horas después de <time-of-day>

Agrega un número de horas a la hora de una date.

AgregarMinutos(<datetime>,
<num_minutes>)
AgregarMinutos(<timeOfDay>,
<num_minutes>)
el tiempo <num_minutes>
minuto después de <date>
el tiempo <num_minutes>
minutos después de <date>
el tiempo de día <num_minutes>
minuto después de <time-of-
day>
el tiempo de día <num_minutes>
minutos después de <time-of-
day>

Agrega un número de minutos a la hora de una date.

AgregarSegundos(<datetime>, Agrega un número de segundos a la hora de una date.

Sintaxis Descripción

<num_seconds>)
AgregarSegundos(<timeOfDay>,
<num_seconds>)
el tiempo <num_seconds>
segundo después de <date>
el tiempo <num_seconds> segun-
dos después de <date>
el tiempo de día <num_seconds>
segundo después de <time-of-
day>
el tiempo de día <num_seconds>
segundos después de <time-of-
day>

Funciones de texto(English)

Sintaxis Descripción

<text1> & <text2>
Combina text1 con text2 y así sucesivamente, para formar un valor de text único.
Nota: puede utilizar variables de cualquier tipo. El formato de los valores se aplica con el formateador
instalado en la sesión de regla.

la concatenación
de <text1> &
<text2>

Combina text1 con text2 y así sucesivamente, para formar un valor de text único.
Nota: puede utilizar variables de cualquier tipo. El formato de los valores se aplica con el formateador
instalado en la sesión de regla.

Contiene(<text>,
<substring>)
<text> contiene
<substring>

Devuelve un valor booleano que indica si el valor indicado de text contiene la subcadena de text
indicada. La comparación de text no distingue mayúsculas y minúsculas.

FinalizaCon
(<text>, <sub-
string>)
<text> termina
con <substring>

Devuelve un valor booleano que indica si el valor indicado de text finaliza con la subcadena de text
indicada. La comparación de text no distingue mayúsculas y minúsculas.

EsNúmero(<text>)

<text> es un
número

Devuelve un valor booleano que indica si el valor indicado de text representa un número válido.

Longitud(<text>) Devuelve la longitud de caracteres del valor indicado de text.

ComienzaCon
(<text>, <sub-

Devuelve un valor booleano que indica si el valor indicado de text comienza con la subcadena de text
indicada. La comparación de text no distingue mayúsculas y minúsculas.

Sintaxis Descripción

string>)
<text> comienza
con <substring>

Subcadena
(<text>, <offset>,
<length>)

Devuelve la subcadena del text que comienza en el desfase indicado, que corresponde a la longitud de
caracteres especificada. Si se alcanza el final de la cadena, se devolverá un número menor de cara-
cteres.

Texto(<number>)
Texto(<date>)
Texto(<datetime>)
Texto
(<timeOfDay>)

Convierte el número especificado o el date attribute en un valor de text.

Funciones de entidad y relación(English)

Sintaxis Descripción

Para(<relationship>, <Exp>)
en el caso de <ent>, <attr>
<val>, en el caso de <ent>

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a uno", "Muchos a uno" o "Muchos a muchos", en la que sólo hay una condición.

ParaÁmbito(<relationship>,
<alias>)
ParaÁmbito(<relationship>)
en el caso de <ent>
en el caso de <ent>
(<alias>)

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a uno", "Muchos a uno" o "Muchos a muchos", en la que hay una condición o varias.

ParaTodo(<relationship>,
<Exp>)
para cada uno de <ent>,
<attr>
para cada una de <ent>,
<attr>
para todos <ent>, <attr>
para todas <ent>, <attr>

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a muchos" o de "Muchos a muchos", cuando es necesario determinar si todos los
miembros del grupo de entity de destino deben cumplir la regla.
Esta forma se utiliza cuando en la regla sólo hay una condición.

ParaTodoslosÁmbitos(<rela-
tionship>)
ParaTodoslosÁmbitos(<rela-
tionship>, <alias>)
para todos <ent>
para todas <ent>
[para] cada uno de <ent>

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a muchos" o de "Muchos a muchos", cuando es necesario determinar si todos los
miembros del grupo de entity de destino deben cumplir la regla.
Esta forma se utiliza cuando en la regla hay una condición o varias.

Sintaxis Descripción

[para] cada una de <ent>
[para] todos <ent> (<alias>)
[para] todas <ent> (<alias>)
[para] cada uno de <ent>
(<alias>)
[para] cada una de <ent>
(<alias>)

Existe(<relationship>, <Exp>)
por lo menos uno de <ent>,
<attr>
por lo menos una de <ent>,
<attr>
como mínimo uno de <ent>,
<attr>
como mínimo una de <ent>,
<attr>

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a muchos" o de "Muchos a muchos", cuando es necesario determinar si algúnmiem-
bro del grupo de entity de destino debe cumplir la regla.
Esta forma se utiliza cuando en la regla sólo hay una condición.

ExisteÁmbito(<relationship>)
ExisteÁmbito(<relationship>,
<alias>)
[por] lo menos uno de
<ent>
[por] lo menos una de
<ent>
como mínimo uno de <ent>
como mínimo una de <ent>
[por] lo menos uno de
<ent> (<alias>)
[por] lo menos una de
<ent> (<alias>)
como mínimo uno de <ent>
(<alias>)
como mínimo una de <ent>
(<alias>)

Se utiliza para hacer referencia de una entity a otra entity, en una relación relationship
de "Uno a muchos" o de "Muchos a muchos", cuando es necesario determinar si algúnmiem-
bro del grupo de entity de destino debe cumplir la regla.
Esta forma se utiliza cuando en la regla hay una condición o varias.

EsMiembroDe(<target>,
<relationship>)
EsMiembroDe(<target>,
<alias>, <relationship>)
<ent-target> est un membre
de <ent>
<ent-target> (<alias>) est
un membre de <ent>
IsMemberOf(<ent-target>,

Se utiliza como conclusión para inferir que una instancia de entity es miembro de rela-
tionship. Se utiliza como condición para probar que una instancia de entity es el destino de
una relationship, para el cual una segunda instancia de entity es el origen.

Sintaxis Descripción

<ent>)
IsMemberOf(<ent-target>,
<alias>, <ent>)
<ent-target> es un miembro
de <relationship>
<ent-target> (<alias>) es un
miembro de <relationship>

NoEsMiembroDe(<target>,
<relationship>)

Se utiliza como condición para comprobar que una instancia entity no es un destino de rela-
tionship para el cual una segunda instancia de entity es el origen.

RecuentoInstancia(<rela-
tionship>)
el número de <ent>

Hace un recuento del número de instancias que existen para una entity.

RecuentoInstanciaSi(<rela-
tionship>, <Exp>)
el número de <ent> en el
caso [de] que <condition>

Hace un recuento del número de instancias que existen de una entity, para las que un
entity-level attribute concreto tiene un valor concreto.

MáximoInstancias(<rela-
tionship>, <number-attr>)
MáximoInstancias(<rela-
tionship>, <date-attr>)
MáximoInstancias(<rela-
tionship>, <datetime-attr>)
MáximoInstancias(<rela-
tionship>, <time-attr>)
el más grande de <attr>
para todos <ent>
el más grande de <attr>
para todas <ent>
el máximo de <attr> para
todos <ent>
el máximo de <attr> para
todas <ent>
el mayor de <attr> para
todos <ent>
el mayor de <attr> para
todas <ent>
el más reciente de <attr>
para todos <ent>
el más reciente de <attr>
para todas <ent>

Obtiene el valor superior/más reciente de una variable entity-level para todas las instan-
cias de entity.

Sintaxis Descripción

la fecha más reciente de
<attr> para todos <ent>
la fecha más reciente de
<attr> para todas <ent>
<attr> que sea más reciente
para todos <ent>
<attr> que sea más reciente
para todas <ent>
<attr> que es el más grande
para todos <ent>
<attr> que es la más grande
para todos <ent>
<attr> que es el más grande
para todas <ent>
<attr> que es la más grande
para todas <ent>
<attr> que es el máximo
para todos <ent>
<attr> que es la máxima
para todos <ent>
<attr> que es el máximo
para todas <ent>
<attr> que es la máxima
para todas <ent>
<attr> que es el mayor para
todos <ent>
<attr> que es la mayor para
todos <ent>
<attr> que es el mayor para
todas <ent>
<attr> que es la mayor para
todas <ent>

MáximoInstanciasSi(<rela-
tionship>, <number-attr>, <con-
dition>)
MáximoInstanciasSi(<rela-
tionship>, <date-attr>, <con-
dition>)
MáximoInstanciasSi(<rela-

Obtiene el valor superior/más reciente de una variable de entity-level, para todas las
instancias de entity, para las que un entity-level attribute concreto tiene un valor con-
creto.

Sintaxis Descripción

tionship>, <datetime-attr>,
<condition>)
MáximoInstanciasSi(<rela-
tionship>, <time-attr>, <con-
dition>)
el más grande de <attr>
para todos <ent> en el caso
[de] que <ent-test>
el más grande de <attr>
para todas <ent> en el caso
[de] que <ent-test>
el máximo de <attr> para
todos <ent> en el caso [de]
que <ent-test>
el máximo de <attr> para
todas <ent> en el caso [de]
que <ent-test>
el mayor de <attr> para
todos <ent> en el caso [de]
que <ent-test>
el mayor de <attr> para
todas <ent> en el caso [de]
que <ent-test>
el más reciente de <attr>
para todos <ent> en el caso
[de] que <ent-test>
el más reciente de <attr>
para todas <ent> en el caso
[de] que <ent-test>
la fecha más reciente de
<attr> para todos <ent> en
el caso [de] que <ent-test>
la fecha más reciente de
<attr> para todas <ent> en
el caso [de] que <ent-test>
<attr> que sea más reciente
para todos <ent> en el caso
[de] que <ent-test>
<attr> que sea más reciente
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es el más grande

Sintaxis Descripción

para todos <ent> en el caso
[de] que <ent-test>
<attr> que es la más grande
para todos <ent> en el caso
[de] que <ent-test>
<attr> que es el más grande
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es la más grande
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es el máximo
para todos <ent> en el caso
[de] que <ent-test>
<attr> que es la máxima
para todos <ent> en el caso
[de] que <ent-test>
<attr> que es el máximo
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es la máxima
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es el mayor para
todos <ent> en el caso [de]
que <ent-test>
<attr> que es la mayor para
todos <ent> en el caso [de]
que <ent-test>
<attr> que es el mayor para
todas <ent> en el caso [de]
que <ent-test>
<attr> que es la mayor para
todas <ent> en el caso [de]
que <ent-test>

MínimoInstancias(<rela-
tionship>, <number-attr>)
MínimoInstancias(<rela-
tionship>, <date-attr>)
MínimoInstancias(<rela-

Obtiene el valor inferior/menos reciente de una variable entity-level para todas las instan-
cias de entity.

Sintaxis Descripción

tionship>, <datetime-attr>)
MínimoInstancias(<rela-
tionship>, <time-attr>)
el más pequeño de <attr>
para todos <ent>
el más pequeño de <attr>
para todas <ent>
el mínimo de <attr> para
todos <ent>
el mínimo de <attr> para
todas <ent>
el menor de <attr> para
todos <ent>
el menor de <attr> para
todas <ent>
el más temprano de <attr>
para todos <ent>
el más temprano de <attr>
para todas <ent>
la fecha más temprana de
<attr> para todos <ent>
la fecha más temprana de
<attr> para todas <ent>
<attr> que sea más tem-
prano para todos <ent>
<attr> que sea más tem-
prana para todos <ent>
<attr> que sea más tem-
prano para todas <ent>
<attr> que sea más tem-
prana para todas <ent>
<attr> que es el más
pequeño para todos <ent>
<attr> que es la más
pequeña para todos <ent>
<attr> que es el más
pequeño para todas <ent>
<attr> que es la más
pequeña para todas <ent>
<attr> que es el mínimo
para todos <ent>
<attr> que es la mínima
para todos <ent>

Sintaxis Descripción

<attr> que es el mínimo
para todas <ent>
<attr> que es la mínima
para todas <ent>
<attr> que es el menor para
todos <ent>
<attr> que es la menor para
todos <ent>
<attr> que es el menor para
todas <ent>
<attr> que es la menor para
todas <ent>

MínimoInstanciasSi(<rela-
tionship>, <number-attr>, <con-
dition>)
MínimoInstanciasSi(<rela-
tionship>, <date-attr>, <con-
dition>)
MínimoInstanciasSi(<rela-
tionship>, <datetime-attr>,
<condition>)
MínimoInstanciasSi(<rela-
tionship>, <time-attr>, <con-
dition>)
el más pequeño de <attr>
para todos <ent> en el caso
[de] que <ent-test>
el más pequeño de <attr>
para todas <ent> en el caso
[de] que <ent-test>
el mínimo de <attr> para
todos <ent> en el caso [de]
que <ent-test>
el mínimo de <attr> para
todas <ent> en el caso [de]
que <ent-test>
el menor de <attr> para
todos <ent> en el caso [de]
que <ent-test>
el menor de <attr> para

Obtiene el valor inferior/menos reciente de una variable de entity-level, para todas las
instancias de entity, para las que un entity-level attribute concreto tiene un valor con-
creto.

Sintaxis Descripción

todas <ent> en el caso [de]
que <ent-test>
el más temprano de <attr>
para todos <ent> en el caso
[de] que <ent-test>
el más temprano de <attr>
para todas <ent> en el caso
[de] que <ent-test>
la fecha más temprana de
<attr> para todos <ent> en
el caso [de] que <ent-test>
la fecha más temprana de
<attr> para todas <ent> en
el caso [de] que <ent-test>
<attr> que sea más tem-
prano para todos <ent> en
el caso [de] que <ent-test>
<attr> que sea más tem-
prana para todos <ent> en
el caso [de] que <ent-test>
<attr> que sea más tem-
prano para todas <ent> en
el caso [de] que <ent-test>
<attr> que sea más tem-
prana para todas <ent> en
el caso [de] que <ent-test>
<attr> que es el más
pequeño para todos <ent>
en el caso [de] que <ent-
test>
<attr> que es la más
pequeña para todos <ent>
en el caso [de] que <ent-
test>
<attr> que es el más
pequeño para todas <ent>
en el caso [de] que <ent-
test>
<attr> que es la más
pequeña para todas <ent>
en el caso [de] que <ent-
test>
<attr> que es el mínimo

Sintaxis Descripción

para todos <ent> en el caso
[de] que <ent-test>
<attr> que es la mínima
para todos <ent> en el caso
[de] que <ent-test>
<attr> que es el mínimo
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es la mínima
para todas <ent> en el caso
[de] que <ent-test>
<attr> que es el menor para
todos <ent> en el caso [de]
que <ent-test>
<attr> que es la menor para
todos <ent> en el caso [de]
que <ent-test>
<attr> que es el menor para
todas <ent> en el caso [de]
que <ent-test>
<attr> que es la menor para
todas <ent> en el caso [de]
que <ent-test>

TotalInstancias(<rela-
tionship>, <number-attr>)
el total para todos <ent>,
<attr>
el total para todas <ent>,
<attr>
la cantidad total para todos
<ent>, <attr>
la contidad total para todas
<ent>, <attr>
<attr> sumado para todos
<ent>
<attr> sumada para todos
<ent>
<attr> sumado para todas
<ent>
<attr> sumada para todas
<ent>

Obtiene la suma de todas las instancias de una variable de entity-level.

Sintaxis Descripción

TotalInstanciasSi(<rela-
tionship>, <number-attr>, <con-
dition>)
el total para todos <ent>,
<attr> solo cuando <con-
dition>
el total para todas <ent>,
<attr> solo cuando <con-
dition>
la cantidad total para todos
<ent>, <attr> solo cuando
<condition>
la cantidad total para todas
<ent>, <attr> solo cuando
<condition>
el total para todos <ent>,
<attr> en el caso [de] que
<condition>
el total para todas <ent>,
<attr> en el caso [de] que
<condition>
la cantidad total para todos
<ent>, <attr> en el caso [de]
que <condition>
la cantidad total para todas
<ent>, <attr> en el caso [de]
que <condition>
<attr> sumado para todos
<ent> en el caso [de] que
<condition>
<attr> sumada para todos
<ent> en el caso [de] que
<condition>
<attr> sumado para todas
<ent> en el caso [de] que
<condition>
<attr> sumada para todas
<ent> en el caso [de] que
<condition>

Obtiene la suma de todas las instancias de una variable de entity-level, para el cual es el
caso de la entity que un booleano de entity-level específico attribute es verdadero.

ValorInstanciaSi(<rela-
tionship>, <number-attr>, <con-
dition>)
ValorInstanciaSi(<rela-

Obtiene un valor de una instancia única de entity, identificada desde las instancias de des-
tino entity de relationship, mediante una condición.

l Si la condición identifica una instancia de destino única de entity, el valor será el
valor calculado respecto a esa instancia de entity.

Sintaxis Descripción

tionship>, <text-attr>, <con-
dition>)
ValorInstanciaSi(<rela-
tionship>, <date-attr>, <con-
dition>)
ValorInstanciaSi(<rela-
tionship>, <datetime-attr>,
<condition>)
ValorInstanciaSi(<rela-
tionship>, <time-attr>, <con-
dition>)

l Si varias instancias de destino cumplen la condición, se devuelve uncertain.

l Si ninguna instancia cumple la condición y se conoce relationship, el valor será
uncertain.

InstanciaIgualA
(<instance1>, <instance2>)

Determina si dos instancias de una entity son la misma instancia.

InstancciaNoIgualA
(<instance1>, <instance2>)

Determina si dos instancias de una entity no son la misma instancia.

Inferir instancia(<rela-
tionship>, <identity>)
<rel>(<identity>) (existe |
existen)

Se utiliza como conclusión para inferir que existe una instancia de entity y es miembro de
relationship.

Funciones de razonamiento temporal(English)

Sintaxis Descripción

RecuentoIntervalosDistintoDe
(<start-date>, <end-date>, <variable>)
RecuentoIntervalosDistintoDe
(<start-date>, <end-date>,
<condition>)

Hace un recuento del número de valores distintos conocidos para la variable, en el
intervalo comprendido entre la date de inicio (incluida) y la date de finalización
(excluida).

RecuentoIntervalosDistintoSi
(<start-date>, <end-date>, <variable>,
<condition>)

Hace un recuento del número de valores distintos conocidos para la variable, en el
intervalo comprendido entre la date de inicio (incluida) y la date de finalización
(excluida), y sólo incluye horas cuando un filtro booleano es verdadero.

TotalIntervaloDiario(<start-date>,
<end-date>, <number-attr>)

Calcula la suma de una moneda o variable numérica, en el intervalo comprendido
entre la date de inicio (incluida) y la date de finalización (excluida). Se supone que
attribute es una cantidad diaria.

TotalIntervaloDiarioSi(<start-date>,
<end-date>, <number-attr>, <con-
dition>)

Calcula la suma de todos los valores diarios de una moneda o variable numérica,
comprendido entre la date de inicio (incluida) y la date de finalización (excluida), y
sólo incluye horas cuando una condición es verdadera.

MáximoIntervalos(<start-date>, Selecciona el valor máximo de una variable, en el intervalo comprendido entre la
date de inicio (incluida) y la date de finalización (excluida).

Sintaxis Descripción

<end-date>, <number-attr>)
MáximoIntervalos(<start-date>,
<end-date>, <date-attr>)
MáximoIntervalos(<start-date>,
<end-date>, <datetime-attr>)
MáximoIntervalos(<start-date>,
<end-date>, <time-attr>)

MáximoIntervalosSi(<start-date>,
<end-date>, <number-attr>, <con-
dition>)
MáximoIntervalosSi(<start-date>,
<end-date>, <date-attr>, <condition>)
MáximoIntervalosSi(<start-date>,
<end-date>, <datetime-attr>, <con-
dition>)
MáximoIntervalosSi(<start-date>,
<end-date>, <time-attr>, <condition>)

Selecciona el valor máximo de una variable, en el intervalo comprendido entre la
date de inicio (incluida) y la date de finalización (excluida), y sólo incluye horas
cuando una condición es verdadera.

MínimoIntervalos(<start-date>,
<end-date>, <number-attr>)
MínimoIntervalos(<start-date>,
<end-date>, <date-attr>)
MínimoIntervalos(<start-date>,
<end-date>, <datetime-attr>)
MínimoIntervalos(<start-date>,
<end-date>, <time-attr>)

Selecciona el valor mínimo de una variable, comprendido entre la date de inicio
(incluida) y la date de finalización (excluida).

MínimoIntervalosSi(<start-date>,
<end-date>, <number-attr>, <con-
dition>)
MínimoIntervalosSi(<start-date>,
<end-date>, <date-attr>, <condition>)
MínimoIntervalosSi(<start-date>,
<end-date>, <datetime-attr>, <con-
dition>)
MínimoIntervalosSi(<start-date>,
<end-date>, <time-attr>, <condition>)

Selecciona el valor mínimo de una variable, en el intervalo comprendido entre la
date de inicio (incluida) y la date de finalización (excluida), y sólo incluye horas
cuando una condición es verdadera.

MediaPonderadaIntervalo(<start-
date>, <end-date>, <number-
attribute>)

Calcula el valor medio de una moneda o variable numérica, en el intervalo com-
prendido entre la date de inicio (incluida) y la date de finalización (excluida), pon-
derado por el período de tiempo al que se aplica cada valor.

MediaPonderadaIntervaloSi(<start-
date>, <end-date>, <number-
attribute>, <condition>)

Calcula el valor medio de una moneda o variable numérica, en el intervalo com-
prendido entre la date de inicio (incluida) y la date de finalización (excluida), y sólo
incluye horas cuando una condición booleana es verdadera (ponderada por el per-

Sintaxis Descripción

íodo de tiempo al que se aplica cada valor y donde el filtro es verdadero).

IntervaloSiempre(<start-date>,
<end-date>, <condition>)

Devuelve un valor verdadero, sólo si una condición booleana es verdadera en todas
las horas, en el intervalo comprendido entre la date de inicio (incluida) y la date de
finalización (excluida).

IntervaloAlMenosDías(<start-date>,
<end-date>, <NumDays>, <condition>)

Devuelve un valor verdadero, sólo si una condición booleana es verdadera al menos
para el número de días especificado (no necesariamente consecutivos), en el inter-
valo comprendido entre la date de inicio (incluida) y la date de finalización (exclu-
ida).

DíasConsecutivosIntervalo(<start-
date>, <end-date>, <NumDays>, <con-
dition>)

Devuelve un valor verdadero, sólo si una condición booleana es verdadera al menos
para un número indicado de días consecutivos, en el intervalo comprendido entre la
date de inicio (incluida) y la date de finalización (excluida).

IntervaloAlgunasVeces(<start-
date>, <end-date>, <condition>)

Devuelve un valor verdadero sólo si una condición booleana es siempre verdadera,
en el intervalo comprendido entre la date de inicio (incluida) y la date de final-
ización (excluida).

ValorEn(<date>, <value>) Devuelve el valor del attribute indicado en la date especificada.

AlÚltimo(<date>, <condition>)
Devuelve la date en la que una condición booleana fue verdadera al final, buscan
hacia atrás desde una date especificada (incluida).

AlSiguiente(<date>, <condition>)
Devuelve la date en la que una condición booleana será verdadera, buscando hacia
atrás desde una date especificada (incluida).

Más Reciente()
Devuelve un valor de date equivalente a la más reciente date posible, con el
propósito de garantizar que date sea más reciente que otra date que pueda tener
una date attribute o que una expresión pueda dar como resultado.

Menos Reciente()
Devuelve un valor de date equivalente a la menos reciente posible date, con el
propósito de garantizar que date sea más reciente que otra date que pueda tener
una date attribute o que una expresión pueda dar como resultado.

TemporalDíasDesde(<date>, <end-
date>)

Devuelve una variable numérica que cambia cada día y que corresponde al número
de días completos desde la date.

TemporalSemanasDesde(<date>,
<end-date>)

Devuelve una variable numérica que varía cada semana y que corresponde al
número de semanas completas desde la date.

TemporalMesesDesde(<date>, <end-
date>)

Devuelve una variable numérica que varía cada mes y que corresponde al número
de meses completos desde la date. Nota: Cuando la date indicada es posterior al
día 28 del mes, y el mes posterior tiene menos días que el mes indicado, el punto de
cambio para el mes de aniversario se creará en el último día de ese mes. Por ejem-
plo, si la date indicada es el 28, 29, 30 o 31 de enero de 2007, el primer punto de
cambio será el 28 de febrero de 2007.

TemporalAñosDesde(<date>, <end- Devuelve una variable numérica que varía cada año y que corresponde al número

Sintaxis Descripción

date>) de años completos desde la date.

TemporalDíasSiempre(<days>, <con-
dition>)

Devuelve un attribute booleano que varía con el tiempo y que será verdadero sólo
si una condición booleana es verdadera para todos los días anteriores concretos
indicados, excluido el día actual.

TemporalDíasConsecutivos
(<minDays>, <days>, <condition>)

Devuelve un attribute booleano que varía con el tiempo y que será verdadero sólo
si una condición booleana es verdadera para, al menos, un número mínimo de días
consecutivos, en cualquier momento correspondiente a un número de días anteri-
ores establecido, excluido el día actual.

TemporalDíasAveces(<days>, <con-
dition>)

Devuelve un attribute booleano que varía con el tiempo, que será verdadero sólo
si una condición booleana es siempre verdadera en un número de días anteriores
especificado, sin incluir el día actual.

TemporalDespués(<date>)
Devuelve un attribute booleano que varía con el tiempo y que será verdadero des-
pués de una date y falso en esa fecha y antes de ella.

TemporalAntesDe(<date>)
Devuelve un attribute booleano que varía con el tiempo, que será verdadero
antes de una date y falso en esa fecha y después de ella.

TemporalEn(<date>)
Devuelve un attribute booleano que varía con el tiempo, que será verdadero en
una date y falso tanto antes como después de ella.

TemporalEnODespuésDe(<date>)
Devuelve un attribute booleano que varía con el tiempo, que será verdadero en
una date o después de ella, y falsa antes ella.

TemporalEnOAntesDe(<date>)
Devuelve un attribute booleano que varía con el tiempo, que será verdadero en
una date y antes de ella, y falso después de ella.

TemporalDesdeFechaInicio(<rela-
tionship>, <date>, <value>)

Devuelve un temporal único attribute (en el nivel de entity de origen) desde una
relationship y un valor de attribute en las entidades, con valores que entrarán
en vigor desde una date attribute de inicio.

TemporalDesdeFechadeFinalización
(<relationship>, <date>, <value>)

Devuelve un temporal único attribute (en el nivel de entity de origen) desde una
relationship y un valor de attribute en las entidades, con valores que entrarán
en vigor hasta un final date attribute.

TemporalDesdeRango
(<relationship>, <start-date>, <end-
date>, <Value>)

Devuelve un temporal único attribute (en el nivel de entity de origen) desde una
relationship y un valor de attribute en las entidades, con valores que entrarán
en vigor desde una date attribute de inicio (incluida) hasta un date attribute
de finalización (excluida). El valor será uncertain si caduca antes del comienzo
siguiente date.

TemporalEsDíaSemana(<startdate>,
<enddate>)

Devuelve un valor verdadero en las fechas que son días de la semana, y uno falso
en las fechas que son fines de semana desde la date de inicio especificada (inclu-
ida), hasta la date de finalización (excluida). Devuelve uncertain fuera del rango
de date.

Sintaxis Descripción

TemporalUnaVezPorMes
(<startdate>, <enddate>, <day-
ofmonth>)

Devuelve un valor verdadero, si el día es igual al parámetro de día del mes y falso
en todos los demás días del mes, desde la date de inicio especificada (incluida),
hasta la date de finalización (excluida). Devuelve uncertain fuera del rango de
date. Cuando el día del mes supera el número de días del mes actual, el valor será
verdadero en el último día de ese mes, de modo que la función devuelva un valor
que será verdadero exactamente un día por mes.

Funciones de eventos de validación(English)

Sintaxis Descripción

Error
(<text>)

Un evento de error se utiliza para transferir unmensaje al usuario e impedirle que continúe con una invest-
igación, hasta que deje de aplicarse la condición que ha disparado el error.

Advertencia
(<text>)

Un evento de advertencia se utiliza para transferir unmensaje al usuario, pero permitiéndole continuar, a pesar
de la condición que ha disparado la advertencia.

Funciones anticuadas(English)

Sintaxis Descripción

LlamarFunciónPersonalizada
(<A>,)

Devuelve el resultado de una llamada externa a una biblioteca de códigos. La biblioteca de
códigos debe indicarse al motor de determinaciones, para que la llamada a la función per-
sonalizada sea correcta.

Logiska operatorer(English)

Syntax Beskrivning

om
Valfri term som eventuellt visas i slutet av en slutsatsrad som har ett efterföljande
bevis

och Logisk konjunktionmellan två attributes

eller Logisk disjunktionmellan två attributes

antingen
ett av
en av
någon
något
några
alls
minst en av de följande är kor-

Grupperingselement som används med disjunktioner där två eller fler attributes
måste grupperas

Syntax Beskrivning

rekt
minst ett av de följande är kor-
rekt
ett av de följande är korrekt
någon av de följande är till-
fredsställande
något av de följande är till-
fredsställande
några av de följande är till-
fredsställande
någon av de följande är korrekt
något av de följande är korrekt
några av de följande är korrekt

båda
både
all
allt
alla
allt som följer är korrekt
allt som följer är till-
fredsställande

Grupperingselement som används med konjunktioner där två eller fler attributes
måste grupperas

annars
i annat fall

Term som visas i slutet av en tabellregel för att ange annars-delsatsen

är
Term som används i en förklaringspost mellan den förkortade frasen och den full-
ständiga attribute text

Logiska funktioner(English)

Syntax Beskrivning

det är inte sant att <expr>
Operatorn som används för att returnera sant om attribute har ett värde
som är falskt

<var> är säker
det är säkert antingen [eller inte]<expr>

Operatorn som används för att returnera sant om attribute har ett värde
som inte är uncertain

<var> är osäker
<var> är inte säker
det är osäkert att <expr>
det är osäkert om [eller inte]<expr>
det är inte säkert att <expr>
osäkert

Operatorn som används för att returnera sant om värdet för attribute är
uncertain

Syntax Beskrivning

<var> är bekant
<var> är känd
<var> är känt
<var> är för närvarande bekant
<var> är för närvarande känd
<var> är för närvarande känt
det är bekant antingen [eller
inte]<expr>
det är för närvarande bekant om [eller
inte]<expr>

Operatorn som används för att returnera sant om attribute har något värde

<var> är [för närvarande] obekant
<var> är [för närvarande] okänd
det är [för närvarande] okänd att [eller
inte]<expr>

Operatorn som används för att returnera sant om attribute inte har något
värde

Logiska konstanter(English)

Syntax Beskrivning

sant Värdet sant för konstant som används för tabellregler.

falskt Värdet falskt för konstant som används för tabellregler.

osäkert Värdetuncertain för konstant som används för tabellregler.

Jämförelseoperatorer(English)

Syntax Beskrivning

<lhs><<rhs>
<lhs> är lägre än
<rhs>
<lhs> är tidigare än
<rhs>

Mindre än
Obs! Det finns ingen form för naturligt språk när den här operatorn används med numeriska värden
och valutavärden.

<lhs> > <rhs>
<lhs>är större än
<rhs>
<lhs> är senare än
<rhs>

Större än
Obs! Det finns ingen form för naturligt språk när den här operatorn används med numeriska värden
och valutavärden.

<lhs><=<rhs> Mindre än eller lika med

<lhs> >= <rhs> Större än eller lika med

Syntax Beskrivning

<lhs>=<rhs> Lika med

<lhs> <> <rhs> Inte lika med

Numeriska funktioner(English)

Syntax Beskrivning

Tal(<numText>) Konvertera den angivna strängen till ett talvärde

<x> + <y> Addition

<x> - <y> Subtraktion

<lhs> * <rhs> Multiplikation

<lhs> / <rhs> Division

<lhs> \ <rhs> Heltalsdivision

<lhs> modulo <rhs> Återstod efter heltalsdivision

Max(<x>, <y>)
Max(<date/time/datetime1>, <date/time/datetime2>)
större än <val1> och <val2>
senast av <val1> och <val2>

Returnerar det största värdet av två värden

Min(<x>, <y>)
Min(<date/time/datetime1>, <date/time/datetime2>)
minst av <val1> och <val2>
tidigast av <val1> och <val2>

Returnerar det minsta värdet av två värden

Xy(<x>, <y>) x upphöjt till y

Ex(<x>) Konstanten e upphöjt till x

Abs(<x>) Absolut värde för x

Ln(<x>) Naturlig logaritm för x

Log(<x>) Logaritmbasen 10 för x

Rot(<x>)
kvadratroten av <val>

Kvadratrot ur x

Avrunda(<x>, <n>)
<x> avrunda till <n> decimaler

Avrundar x till n decimaler

Kapa(<x>, <n>) x kapat till n decimaler

Sin(<x>) Sinus för x

Syntax Beskrivning

Cos(<x>) Cosinus för x

Tan(<x>) Tangens för x

Asin(<x>) Arcus sinus för x

Acos(<x>) Arcus cosinus för x

Atan(<x>) Arcus tangens för x

Datumfunktioner(English)

Syntax Beskrivning

AktuelltDatum()
dagens datum

Returnerar aktuell date när sessionen påbörjas.

Datum(<text>) Konverterar den angivna strängen till ett värde för date

SkapaDatum(<year>, <month>,
<day>)

Returnerar ett date som har skapats utifrån året, månaden och dagen som har
angetts.

ExtraheraDag(<date/datetime>)
Returnerar dagkomponenten för ett attribut av typen date/datetime attribute.

ExtraheraMånad(<date/datetime>)
Returnerar månadskomponenten för ett attribut av typen date/datetime attrib-
ute.

ExtraheraÅr(<date/datetime>) Returnerar årkomponenten för ett attribut av typen date/datetime attribute.

NästaDagIVeckan(<date/datetime>,
<day>)
på måndagen eller den närmast
kommande måndagen <from-date>
på tisdagen eller den närmast kom-
mande tisdagen <from-date>
på onsdagen eller den närmast kom-
mande onsdagen <from-date>
på torsdagen eller den närmast kom-
mande torsdagen <from-date>
på fredagen eller den närmast kom-
mande fredagen <from-date>
på lördagen eller den närmast kom-
mande lördagen <from-date>
på söndagen eller den närmast kom-
mande söndagen <from-date>

Returnerar date för nästa veckodag på eller före/efter ett date (beroende på syn-
taxen som används).

NästaDatum(<date>, <day>, Returnerar nästa instans för dagen ochmånaden som angetts efter ett date.

Syntax Beskrivning

<month>)
sista dagen på året då <from-date>
falls
det svenska skatteårets startdatum
för i år om i dag eller det
föregående skatteårets startdatum
<from-date>

LäggtillDagar(<date/datetime>, <num_
days>)
datum <num_days> dagar efter
<date>

Lägger till/tar bort ett antal dagar i/från date. När den kortfattade syntaktiska for-
men används måste antalet vara ett positivt heltal om dagar ska kunna läggas till i
date, eller ett negativt tal om dagar ska kunna tas bort från date.

LäggtillVeckor(<date/datetime>,
<num_weeks>)
datum <num_weeks> veckor efter
<date>

Lägger till ett antal veckor i date. När den kortfattade syntaktiska formen används
måste antalet vara ett positivt heltal om veckor ska kunna läggas till i date.

LäggtillMånader(<date/datetime>,
<num_months>)
datum <num_months> månader efter
<date>

Lägger till ett antal månader i date. När den kortfattade syntaktiska formen
används måste antalet vara ett positivt heltal ommånader ska kunna läggas till i
date.

LäggtillÅr(<date/datetime>, <num_
years>)
datum <num_years> år efter <date>

Lägger till ett antal år i date. När den kortfattade syntaktiska formen används
måste antalet vara ett positivt heltal om år ska kunna läggas till i date.

VeckodagAntal(<date1>, <date2>)
antal veckodagar (inklusive) mellan
<date1> och <date2>

Räknar antalet veckodagar mellan date1 och date2, dvs. antalet dagar som
infaller mellanmåndag och fredag.
Obs! Tidigare date är inklusive och senare date är exklusive.

ÅrStart(<date/datetime>) Returnerar ett första date på året som ett date infaller i.

ÅrSlut(<date/datetime>) Returnerar ett sista date på året som ett date infaller i.

DagSkillnad(<date/datetime1>, <date/d-
atetime2>)
antal dagar från <date1> till <date2>
antal dagar (inklusive) från <date1>
till <date2>
antal dagar (exklusive) från <date1>
till <date2>

Returnerar antalet hela dagar mellan date/datetime1 och date/datetime2.
Ordningen på de två datumen påverkar inte resultatet.

DagSkillnadInklusive(<date/d-
atetime1>, <date/datetime2>)

Returnerar antalet hela dagar (inklusive) mellan date/datetime1 och date/d-
atetime2. I den här beräkningen inkluderas båda slutpunkterna. I de fall datumen
är samma blir resultatet 1. Ordningen på de två datumen påverkar inte resultatet.

DagSkillnadExklusive(<date/d- Returnerar antalet hela dagar (exklusive) mellan date/datetime1 och date/d-

Syntax Beskrivning

atetime1>, <date/datetime2>)
atetime2. I den här beräkningen exkluderas båda slutpunkterna. I de fall
datumen är samma blir resultatet 0. Ordningen på de två datumen påverkar inte
resultatet.

VeckaSkillnad(<date/datetime1>,
<date/datetime2>)
antal veckor från <date1> till
<date2>

Returnerar tidsåtgången i antal hela veckor mellan date/datetime1 och date/d-
atetime2. Ordningen för de två datumen påverkar inte resultatet.

VeckaSkillnadInklusive(<date/d-
atetime1>, <date/datetime2>)

Returnerar tidsåtgången i antal hela veckor inklusive mellan date/datetime1
och date/datetime2. Ordningen för de två datumen påverkar inte resultatet.

VeckaSkillnadExklusive(<date/d-
atetime1>, <date/datetime2>)

Returnerar tidsåtgången i antal hela veckor exklusive mellan date/datetime1
och date/datetime2. Ordningen för de två datumen påverkar inte resultatet.

MånadSkillnad(<date/datetime1>,
<date/datetime2>)
antal månader från <date1> till
<date2>

Returnerar tidsåtgången i antal hela månader mellan date/datetime1 och
date/datetime2. Ordningen för de två datumen påverkar inte resultatet.

MånadSkillnadInklusive(<date/d-
atetime1>, <date/datetime2>)

Returnerar tidsåtgången i antal hela månader inklusive mellan date/datetime1
och date/datetime2. Ordningen för de två datumen påverkar inte resultatet.

MånadSkillnadExklusive(<date/d-
atetime1>, <date/datetime2>)

Returnerar tidsåtgången i antal hela månader exklusive mellan date/datetime1
och date/datetime2. Ordningen för de två datumen påverkar inte resultatet.

ÅrSkillnad(<date/datetime1>, <date/d-
atetime2>)
antal år (inklusive) mellan <date1>
och <date2>
antal hela år vilka <date2>är efter
<date1>

Returnerar antalet år mellan date/datetime1 och date/datetime2. Ordningen
för de två datumen påverkar inte resultatet.

ÅrSkillnadInklusive
(<date/datetime1>, <date/datetime2>)

Returnerar antalet år inklusive mellan date/datetime1 och date/datetime2.
Ordningen för de två datumen påverkar inte resultatet.

ÅrSkillnadExklusive
(<date/datetime1>, <date/datetime2>)

Returnerar antalet år exklusive mellan date/datetime1 och date/datetime2.
Ordningen för de två datumen påverkar inte resultatet.

Funktioner för klockslag(English)

Syntax Beskrivning

Klockslag(<text>) Konverterar den angivna strängen till ett klockslag

ExtraheraSekund(<time/d-
atetime>)

Returnerar sekundkomponenten för ett attribut av typen timeofday/datetime attrib-
ute.

Syntax Beskrivning

ExtraheraMinut
(<time/datetime>)

Returnerar minutkomponenten för ett attribut av typen timeofday/datetime attrib-
ute.

ExtraheraTimme(<time/d-
atetime>)

Returnerar timkomponenten för ett attribut av typen timeofday/datetime
attribute.

Funktioner för datum och tid(English)

Syntax Beskrivning

AktuelltDatumTid() Returnerar aktuell date och tid när sessionen påbörjas.

DatumTid(<text>) Konverterar den angivna strängen till ett värde för datetime

SammanfogaDatumTid
(<date>, <time>)

Ställer in date genom att koppla date och klockslaget.

SekundSkillnad(<dat-
etime1>, <datetime2>)
SekundSkillnad
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet sekunder mellan datetime1 och datetime2.

SekundSkillnadInklusive
(<datetime1>,
<datetime2>)
SekundSkillnadInklusive
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet sekunder inklusive mellan datetime1 och datetime2.

SekundSkillnadExklusive
(<datetime1>,
<datetime2>)
SekundSkillnadExklusive
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet sekunder exklusive mellan datetime1 och datetime2.

MinutSkillnad(<dat-
etime1>, <datetime2>)
MinutSkillnad
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet minuter mellan datetime1 och datetime2.

MinutSkillnadInklusive
(<datetime1>,
<datetime2>)
MinutSkillnadInklusive

Returnerar antalet minuter inklusive mellan datetime1 och datetime2.

Syntax Beskrivning

(<timeOfDay1>,
<timeOfDay2>)

MinutSkillnadExklusive
(<datetime1>,
<datetime2>)
MinutSkillnadExklusive
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet minuter exklusive mellan datetime1 och datetime2.

TimmeSkillnad(<dat-
etime1>, <datetime2>)
TimmeSkillnad
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet timmar mellan datetime1 och datetime2.

TimmeSkillnadInklusive
(<datetime1>,
<datetime2>)
TimmeSkillnadInklusive
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet timmar inklusive mellan datetime1 och datetime2.

TimmeSkillnadExklusive
(<datetime1>,
<datetime2>)
TimmeSkillnadExklusive
(<timeOfDay1>,
<timeOfDay2>)

Returnerar antalet timmar exklusive mellan datetime1 och datetime2.

ExtraheraDatum(<dat-
etime>)

Extraherar date från datetime attribute.

ExtraheraKlockslag(<dat-
etime>)

Extraherar klockslaget från ett attribut av typen datetime attribute. Detta kan användas för
att ställa in värdet för ett attribut av typen timeofday attribute på tiden som regeln utförs
genom att tiden extraheras från aktuellt date och tid.

LäggtillTimmar(<dat-
etime>, <num_hours>)
LäggtillTimmar
(<timeOfDay>, <num_
hours>)

Lägger till ett antal timmar i date.

LäggtillMinuter(<dat-
etime>, <num_minutes>)
LäggtillMinuter
(<timeOfDay>, <num_

Lägger till ett antal minuter i date.

Syntax Beskrivning

minutes>)

LäggtillSekunder(<dat-
etime>, <num_seconds>)
LäggtillSekunder
(<timeOfDay>, <num_
seconds>)

Lägger till ett antal sekunder i date.

Textfunktioner(English)

Syntax Beskrivning

<text1> & <text2>
Kombinerar text1med text2 osv. så att ett enstaka värde för text skapas.
Obs! Du kan använda variabler av valfri typ. Värdena formateras med hjälp av formateraren som är
installerad i regelsessionen.

teckensträng av
<text1> & <text2>

Kombinerar text1med text2 osv. så att ett enstaka värde för text skapas.
Obs! Du kan använda variabler av valfri typ. Värdena formateras med hjälp av formateraren som är
installerad i regelsessionen.

Innehåller(<text>,
<substring>)
<text> innehåller
<substring>

Returnerar ett booleskt värde som anger om det angivna värdet för text innehåller den angivna del-
strängen för text. Jämförelsen för text är skiftlägesokänslig.

SlutarMed(<text>,
<substring>)
<text> slutar med
<substring>

Returnerar ett booleskt värde som anger om det angivna värdet för text slutar med den angivna del-
strängen för text. Jämförelsen för text är skiftlägesokänslig.

ÄrTal(<text>)
<text> är ett tal

Returnerar ett booleskt värde som anger om det angivna värdet för text motsvarar ett giltigt tal.

Längd(<text>) Returnerar teckenlängden för det angivna värdet för text.

BörjarMed(<text>,
<substring>)
<text> startar med
<substring>

Returnerar ett booleskt värde som anger om det angivna värdet för text börjar med den angivna del-
strängen för text. Jämförelsen för text är skiftlägesokänslig.

Delsträng(<text>, <off-
set>, <length>)

Returnerar delsträngen för text som börjar vid den angivna förskjutningen, dvs. den angivna läng-
den i tecken. Färre tecken returneras om slutet på strängen nås.

Text(<number>)
Text(<date>)
Text(<datetime>)
Text(<timeOfDay>)

Konvertera det angivna talet eller date attribute till ett värde för text.

Funktioner för enhet och relation(English)

Syntax Beskrivning

För(<relationship>, <Exp>)
Används för att referera från en entity till en annan entity i en relationship av typen en-
till-en, många-till-en eller många-till-många där det endast finns ett villkor.

FörOmfattning(<rela-
tionship>, <alias>)
FörOmfattning(<rela-
tionship>)

Används för att referera från en entity till en annan entity i en relationship av typen en-
till-en, många-till-en eller många-till-många där det finns ett eller fler villkor.

FörAlla(<relationship>,
<Exp>)

Används för att referera från en entity till en annan entity i en relationship av typen en-
till-många eller många-till-många när dumåste fastställa om alla medlemmar i målgruppen för
entitymåste uppfylla regelvillkoren.
Den här formen används när det endast finns ett villkor i regeln.

FörAllaOmfattning(<rela-
tionship>)
FörAllaOmfattning(<rela-
tionship>, <alias>)

Används för att referera från en entity till en annan entity i en relationship av typen en-
till-många- eller många-till-många när dumåste fastställa om alla medlemmar i målgruppen
för entitymåste uppfylla regelvillkoren.
Den här formen används när det endast finns ett eller fler villkor i regeln.

Befintlig(<relationship>,
<Exp>)

Används för att referera från en entity till en annan entity i en relationship av typen en-
till-många eller många-till-många när dumåste fastställa om några medlemmar i målgruppen
för entitymåste uppfylla regelvillkoren.
Den här formen används när det endast finns ett villkor i regeln.

FinnsOmfattning(<rela-
tionship>)
FinnsOmfattning(<rela-
tionship>, <alias>)

Används för att referera från en entity till en annan entity i en relationship av typen en-
till-många- eller många-till-många när dumåste fastställa om några medlemmar i målgruppen
för entitymåste uppfylla regelvillkoren.
Den här formen används när det finns ett eller fler villkor i regeln.

ÄrMedlemAv(<target>,
<relationship>)
ÄrMedlemAv(<target>,
<alias>, <relationship>)

Används som en slutsats för att härleda att en instans för entity är enmedlem i en rela-
tionship. Används som ett villkor för att testa att en instans för entity är målet för en rela-
tionship där den andra instansen för entity är källan.

ÄrInteMedlemAv(<target>,
<relationship>)

Används som ett villkor för att testa att en instans för entity inte är målet för en relationship
där den andra instansen för entity är källan.

InstansAntal
(<relationship>)
antalet <ent>

Räknar antalet instanser som finns för en entity.

InstansAntalOm(<rela-
tionship>, <Exp>)
antalet <ent> om fallet är
<condition>

Räknar antalet instanser det finns för en entity som ett specifikt entity-level attribute har
ett specifikt värde för.

InstansMax(<relationship>, Hämtar det högsta/senaste värdet för en variabel på entity-level för alla instanser för
entity.

Syntax Beskrivning

<number-attr>)
InstansMax(<relationship>,
<date-attr>)
InstansMax(<relationship>,
<datetime-attr>)
InstansMax(<relationship>,
<time-attr>)
<date-attr> vilket är det
senaste av alla <ent>
<max-attr> vilket är det
högsta av alla <ent>
senast av alla <ent-attr>
högst av alla <ent-attr>
senast av alla <ent-attr>
högst av <attr> för alla
<ent>
högst av alla <attr> för
<ent>
senast av alla <attr> för
<ent>

InstansMaxOm(<rela-
tionship>, <number-attr>,
<condition>)
InstansMaxOm(<rela-
tionship>, <date-attr>, <con-
dition>)
InstansMaxOm(<rela-
tionship>, <datetime-attr>,
<condition>)
InstansMaxOm(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> vilket är det
senaste av alla <ent> om
fallet är <ent-test>
<max-attr>vilket är det
högsta av alla <ent> om
fallet är <ent-test>
senast av alla <ent-attr>
om fallet är <ent-test>
högst av alla <ent-attr> om
fallet är <ent-test>
högst av <attr> för alla

Hämtar det högsta/senaste värdet för en variabel på entity-level för alla instanser för
entity som ett specifikt entity-level attribute har ett specifikt värde för.

Syntax Beskrivning

<ent> om fallet är <ent-
test>

InstansMin(<relationship>,
<number-attr>)
InstansMin(<relationship>,
<date-attr>)
InstansMin(<relationship>,
<datetime-attr>)
InstansMin(<relationship>,
<time-attr>)
<date-attr> vilket är det
tidigaste av alla <ent>
<attr> vilket är det lägsta
av alla <ent>
lägst av alla <ent-attr>
tidigast av alla <ent-attr>
lägst av alla <attr> för
[alla]<ent>
tidigast av alla <attr> för
[alla]<ent>
tidigast av alla <attr> för
<ent>

Hämtar det lägsta/tidigaste värdet för en variabel på entity-level för alla instanser för
entity.

InstansMinOm(<rela-
tionship>, <number-attr>,
<condition>)
InstansMinOm(<rela-
tionship>, <date-attr>, <con-
dition>)
InstansMinOm(<rela-
tionship>, <datetime-attr>,
<condition>)
InstansMinOm(<rela-
tionship>, <time-attr>, <con-
dition>)
<date-attr> vilket är det
tidigaste av alla <ent> om
fallet är <ent-test>
<num-attr> vilket är det läg-
sta av alla <ent> om fallet
är <ent-test>
lägst av alla <ent-attr> om
fallet är <ent-test>

Hämtar det lägsta/tidigaste värdet för en variabel på entity-level för alla instanser för
entity som ett specifikt entity-level attribute har ett specifikt värde för.

Syntax Beskrivning

tidigast av alla <ent-attr>
om fallet är <ent-test>
lägst av alla <attr> för
<ent> om fallet är <ent-
test>
tidigast av alla <attr> för
<ent> om fallet är <ent-
test>

InstansSumma(<rela-
tionship>, <number-attr>)
<num-attr> summan för
alla <ent>
summan av [alla]<ent-attr>
den sammanlagda sum-
man för allt <ent-attr>
totalt för alla <ent>, <attr>

Hämtar summan av alla instanser för en variabel på entity-level.

InstansSummaOm(<rela-
tionship>, <number-attr>,
<condition>)
<num-attr> summman för
alla <ent> om fallet är
<ent-test>
den sammanlagda sum-
man för allt <ent-attr> om
fallet är <condition>
det sammanlagda antalet
av [alla]<ent-attr> om
fallet är <condition>
totalt för alla <ent>, <attr>
om fallet är <condition>

Hämtar summan av alla instanser för en variabel på entity-level som värdet är sant för, för
entity som ett specifikt booleskt attribute på entity-level är sant.

InstansVärdeOm(<rela-
tionship>, <number-attr>,
<condition>)
InstansVärdeOm(<rela-
tionship>, <text-attr>, <con-
dition>)
InstansVärdeOm(<rela-
tionship>, <date-attr>, <con-
dition>)
InstansVärdeOm(<rela-
tionship>, <datetime-attr>,
<condition>)

Hämtar ett värde från en unik instans för entity som har identifierats av ett villkor utifrån
målinstanserna för entity för relationship.

l Om villkoret identifierar en enstaka målinstans för entity används det värde som har
beräknats mot den instansen för entity.

l Om fler än enmålinstans uppfyller villkoret returneras uncertain.

l Om inga målinstanser uppfyller villkoret och relationship är känd är värdetuncer-
tain.

Syntax Beskrivning

InstansVärdeOm(<rela-
tionship>, <time-attr>, <con-
dition>)

InstansLikaMed
(<instance1>, <instance2>)

Fastställer om två instanser för en entity är samma instans.

InstansEjLikaMed
(<instance1>, <instance2>)

Fastställer om två instanser för en entity inte är samma instans.

InferInstance(<rela-
tionship>, <identity>)

Används som en slutsats för att härleda att en instans för entity finns och att den är en
medlem i en relationship.

Tidsbestämda slutledningsfunktioner(English)

Syntax Beskrivning

IntervallAntalUnikt(<start-date>,
<end-date>, <variable>)
IntervallAntalUnikt(<start-date>,
<end-date>, <condition>)

Räknar antalet kända unika värden för variabeln i intervallet från startdatumet date
(inklusive) till slutdatumet date (exklusive).

IntervallAntalUniktOm(<start-
date>, <end-date>, <variable>, <con-
dition>)

Räknar antalet kända unika värden för variabeln i intervallet från startdatumet date
(inklusive) till slutdatumet date (exklusive). Tider inkluderas bara när ett booleskt fil-
ter är sant.

IntervallDagligSumma(<start-
date>, <end-date>, <number-attr>)

Beräknar summan av en valuta- eller talvariabel i intervallet från startdatumet date
(inklusive) till slutdatumet date (exklusive). attribute antas vara en daglig
kvantitet.

IntervallDagligSummaOm(<start-
date>, <end-date>, <number-attr>,
<condition>)

Beräknar summan av alla dagliga värden för en valuta- eller talvariabel i intervallet
från ett startdatum date (inklusive) till ett slutdatum date (exklusive). Tider
inkluderas bara när ett villkor är sant.

IntervallMax(<start-date>, <end-
date>, <number-attr>)
IntervallMax(<start-date>, <end-
date>, <date-attr>)
IntervallMax(<start-date>, <end-
date>, <datetime-attr>)
IntervallMax(<start-date>, <end-
date>, <time-attr>)

Väljer maxvärdet för en variabel i intervallet från ett startdatum date (inklusive) till
ett slutdatum date (exklusive).

IntervallMaxOm(<start-date>,
<end-date>, <number-attr>, <con-
dition>)
IntervallMaxOm(<start-date>,

Väljer maxvärdet för en variabel i intervallet från ett startdatum date (inklusive) till
ett slutdatum date (exklusive). Tider inkluderas bara när ett villkor är sant.

Syntax Beskrivning

<end-date>, <date-attr>, <condition>)
IntervallMaxOm(<start-date>,
<end-date>, <datetime-attr>, <con-
dition>)
IntervallMaxOm(<start-date>,
<end-date>, <time-attr>, <condition>)

IntervallMin(<start-date>, <end-
date>, <number-attr>)
IntervallMin(<start-date>, <end-
date>, <date-attr>)
IntervallMin(<start-date>, <end-
date>, <datetime-attr>)
IntervallMin(<start-date>, <end-
date>, <time-attr>)

Väljer min.värdet för en variabel i intervallet från ett startdatum date (inklusive) till
ett slutdatum date (exklusive).

IntervallMinOm(<start-date>, <end-
date>, <number-attr>, <condition>)
IntervallMinOm(<start-date>, <end-
date>, <date-attr>, <condition>)
IntervallMinOm(<start-date>, <end-
date>, <datetime-attr>, <condition>)
IntervallMinOm(<start-date>, <end-
date>, <time-attr>, <condition>)

Väljer min.värdet för en variabel i intervallet från ett startdatum date (inklusive) till
ett slutdatum date (exklusive). Tider inkluderas bara när ett villkor är sant.

IntervallViktadMedelvärde(<start-
date>, <end-date>, <number-attrib-
ute>)

Beräknar det genomsnittliga värdet för en valuta- eller talvariabel i intervallet från ett
startdatum date (inklusive) till ett slutdatum date (exklusive), viktat utifrån tidsin-
tervallet som varje värde tillämpas på.

IntervallViktadMedelvärdeOm
(<start-date>, <end-date>, <number-
attribute>, <condition>)

Beräknar det genomsnittliga värdet för en valuta- eller talvariabel i intervallet från ett
startdatum date (inklusive) till ett slutdatum date (exklusive). Tider inkluderas bara
när ett booleskt villkor är sant (viktat utifrån tidsintervallet som varje värde tillämpas
på och där filtret är sant).

IntervallAlltid(<start-date>, <end-
date>, <condition>)

Returnerar sant om, och endast om, ett booleskt villkor alltid är sant i intervallet från
startdatumet date (inklusive) till slutdatumet date (exklusive).

IntervallMinstDagar(<start-date>,
<end-date>, <NumDays>,
<condition>)

Returnerar sant om, och endast om, ett booleskt villkor är sant åtminstone för det
angivna antalet dagar (inte nödvändigtvis på varandra följande) i intervallet från
startdatumet date (inklusive) till slutdatumet date (exklusive).

IntervallPåvarandraföljandeDagar
(<start-date>, <end-date>,
<NumDays>, <condition>)

Returnerar sant om, och endast om, ett booleskt villkor är sant åtminstone för ett
angivet antal på varandra följande dagar i intervallet från startdatumet date (inklus-
ive) till slutdatumet date (exklusive).

IntervallIbland(<start-date>, <end- Returnerar sant om, och endast om, ett booleskt villkor någonsin är sant i intervallet

Syntax Beskrivning

date>, <condition>) från startdatumet date (inklusive) till slutdatumet date (exklusive).

VärdePå(<date>, <value>) Returnerar värdet för det angivna attribute på det angivna date.

NärSenaste(<date>, <condition>)
Returnerar ett date då ett booleskt villkor senast var sant, sett bakåt från (och inklus-
ive) ett angivet date.

NärNästa(<date>, <condition>)
Returnerar ett date då ett booleskt villkor nästa gång är sant, sett framåt från (och
inklusive) ett angivet date.

Senaste()
Returnerar ett värde för date sommotsvarar senast möjliga date - nämligen ett
date som garanterat infaller efter övriga date som ett date attribute eventuellt
använder eller som ett uttryck eventuellt utvärderar till.

Tidigaste()
Returnerar ett värde för date sommotsvarar tidigast möjliga date - nämligen ett
date som garanterat infaller före övriga date som ett date attribute eventuellt
använder eller som ett uttryck eventuellt utvärderar till.

TidDagarSedan(<date>, <end-
date>)

Returnerar en talvariabel som varierar varje dag ochmotsvarar antalet hela dagar
sedan date.

TidVeckorSedan(<date>, <end-
date>)

Returnerar en talvariabel som varierar varje vecka och sommotsvarar antalet hela
veckor sedan date.

TidMånaderSedan(<date>, <end-
date>)

Returnerar en talvariabel som varierar varje månad och sommotsvarar antalet hela
månader sedan date. Obs! När angivet date infaller efter den 28:e dagen i mån-
aden, och en efterföljande månad har färre dagar än den angivna månaden, skapas
ändringspunkten för årsmånaden på den sista dagen i denmånaden. Om angivet
date t.ex. är 28, 29, 30 eller 31 januari 2007 blir den första ändringspunkten 28 feb-
ruari 2007.

TidÅrSedan(<date>, <end-date>)
Returnerar en talvariabel som varierar varje år och sommotsvarar antalet hela år
sedan date.

TidAlltidDagar(<days>, <condition>)
Returnerar ett booleskt attribute som varierar över tiden och är sant om, och
endast om, ett booleskt villkor är sant för alla av de angivna föregående dagarna, inte
inklusive den aktuella dagen.

TidPåvarandraföljandeDagar
(<minDays>, <days>, <condition>)

Returnerar ett booleskt attribute som varierar över tiden och är sant om, och
endast om, ett booleskt villkor är sant för åtminstone ett minsta antal på varandra föl-
jande dagar vid någon tidpunkt inom föregående angivna antal dagar, inte inklusive
den aktuella dagen.

TidIblandDagar(<days>, <con-
dition>)

Returnerar ett booleskt attribute som varierar över tiden och är sant om, och
endast om, ett booleskt villkor någonsin är sant inom ett angivet antal föregående
dagar, inte inklusive den aktuella dagen.

TidEfter(<date>)
Returnerar ett booleskt attribute som varierar över tiden och är sant efter ett date
och falskt på och före.

Syntax Beskrivning

TidFöre(<date>)
Returnerar ett booleskt attribute som varierar över tiden och är sant före ett date
och falskt på och efter.

TidPå(<date>)
Returnerar ett booleskt attribute som varierar över tiden och är sant på ett date
och falskt före och efter.

TidPåEllerEfter(<date>)
Returnerar ett booleskt attribute som varierar över tiden och är sant på eller efter
ett date och falskt före.

TidPåEllerFöre(<date>)
Returnerar ett booleskt attribute som varierar över tiden och är sant på och före ett
date och falskt efter.

TidFrånStartDatum(<relationship>,
<date>, <value>)

Returnerar ett enstaka tidsbestämt attribute (på källnivån för entity) från en rela-
tionship och ett attribute för värde i enheterna, med värden som gäller fr.o.m. ett
startdatum date attribute.

TidFrånSlutDatum(<relationship>,
<date>, <value>)

Returnerar ett enstaka tidsbestämt attribute (på källnivån för entity) från en rela-
tionship och ett attribute för värde i enheterna, med värden som gäller t.o.m. ett
slutdatum date attribute.

TidFrånIntervall(<relationship>,
<start-date>, <end-date>, <Value>)

Returnerar ett enstaka tidsbestämt attribute (på källnivån för entity) från en rela-
tionship och ett attribute för värde i enheterna, med värden som gäller fr.o.m. ett
startdatum date attribute (inklusive) t.o.m. ett slutdatum date attribute (exklus-
ive). Värdet är uncertain om det upphör att gälla före nästa startdatum date.

TidÄrVeckodag(<startdate>, <end-
date>)

Returnerar sant för datumen som är veckodagar och falskt för datumen som är hel-
gdagar fr.o.m. det angivna startdatumet date (inklusive) till slutdatumet date
(exklusive). Returnerar uncertain utanför intervallet för date.

TidEngångPerMånad(<startdate>,
<enddate>, <dayofmonth>)

Returnerar sant om dagen är lika med värdet i parametern dag i månaden och falskt
för alla övriga dagar i månaden fr.o.m. det angivna startdatumet date (inklusive) till
slutdatumet date (exklusive). Returnerar uncertain utanför intervallet för date.
När dagen i månaden överskrider antalet dagar i den aktuella månaden blir värdet
sant på den sista dagen i denmånaden, så att funktionen returnerar ett värde som är
sant exakt en dag per månad.

Funktioner för valideringshändelse(English)

Syntax Beskrivning

Fel
(<text>)

En felhändelse används för att överföra ett meddelande till användaren och därmed förhindra användaren från att
fortsätta undersökningen tills villkoret som utlöste felet inte längre gäller.

Varning
(<text>)

En varningshändelse används för att överföra ett meddelande till användaren. Användaren tillåts fortsätta trots
villkoret som utlöste varningen.

Inaktuella funktioner(English)

Syntax Beskrivning

AnropaAnpassadFunktion
(<A>,)

Returnerar resultatet för ett externt anrop till ett kodbibliotek. Kodbiblioteket måste finnas
tillgängligt för Oracle Determinations Engine om det anpassade funktionsanropet ska kunna
utföras.

ต ั ว เช ื ่ อ ม ต ่ อ เช ิ ง ต ร ร ก ศ า สต ร ์ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

ถ้ า
คำ ที ่ เลื อกได้ ซึ ่ งสามารถปรากฏที ่ ท้ ายบรรทั ดข้ อสรุ ปที ่ มี หลั กฐาน
ต่ อไปนี ้

และ การเชื ่ อมเชิ งตรรกศาสตร์ ระหว่ างสอง attributes

หรื อ การเลื อกเชิ งตรรกศาสตร์ ระหว่ างสอง attributes

รายการใดรายการหนึ ่ ง
รายการหนึ ่ งใน
รายการใดๆ
อย่ างน้ อยหนึ ่ งเงื ่ อนไขต่ อไป
นี ้ เป็ นจริ ง
ตรงตามเงื ่ อนไขใดๆ ต่ อไปนี ้

การจั ดกลุ ่ มอี ลิ เมนต์ ที ่ ใช้ กั บการเลื อกโดยมี สอง attributes หรื อมากก
ว่ าที ่ ต้ องจั ดกลุ ่ ม

ทั ้ งคู ่
ทั ้ งหมด
เงื ่ อนไขทั ้ งหมดเป็ นจริ ง
ตรงตามเงื ่ อนไขทั ้ งหมดต่ อไป
นี ้

การจั ดกลุ ่ มอี ลิ เมนต์ ที ่ ใช้ กั บการเชื ่ อมโดยมี สอง attributes หรื อมากก
ว่ าที ่ ต้ องจั ดกลุ ่ ม

มิ ฉะนั ้ น คำ ที ่ ปรากฏที ่ ท้ ายกฎตารางเพื ่ อแสดงคำ สั ่ งมิ ฉะนั ้ น

เป็ น
คำ ที ่ ใช้ ในรายการบั นทึ กคำ อธิ บายระหว่ างคำ ย่ อและ attribute text เต็ ม

ฟ ั ง ก ์ ช ั น เช ิ ง ต ร ร ก ศ า สต ร ์ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

ไม่ จริ งว่ า <attr> เครื ่ องหมายที ่ ใช้ ส่ งคื นจริ งหาก attribute มี ค่ าซึ ่ งเป็ นเท็ จ

<var> แน่ นอนว่ า
แน่ นอนว่ า <attr>

เครื ่ องหมายที ่ ใช้ ส่ งคื นจริ งหาก attribute มี ค่ าซึ ่ งไม่ ใช่ uncertain

<var> ไม่ แน่ นอนว่ า
ไม่ แน่ นอนว่ า <attr>
ไม่ แน่ นอนว่ า <attr>
ไม่ แน่ นอนว่ า <attr>
ไม่ แน่ นอน

เครื ่ องหมายที ่ ใช้ ส่ งคื นจริ งหากค่ า attribute เป็ น uncertain

ซิ นแท็ กซ์ คำ อธิ บาย

<var> รู ้ ว่ า
รู ้ ว่ า <attr>

เครื ่ องหมายที ่ ใช้ ส่ งคื นจริ งหาก attribute มี ค่ าใดๆ

<var> ไม่ รู ้ ว่ า
ไม่ รู ้ ว่ า <attr>
ไม่ รู ้ จั ก

เครื ่ องหมายที ่ ใช้ ส่ งคื นจริ งหาก attribute ไม่ มี ค่ า

ค ่ า ค ง ท ี ่ เช ิ ง ต ร ร ก ศ า สต ร ์ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

จริ ง ค่ าคงที ่ เป็ นจริ งที ่ ใช้ สำ หรั บกฎของตาราง

เท็ จ ค่ าคงที ่ เป็ นเท็ จที ่ ใช้ สำ หรั บกฎของตาราง

ไม่ แน่ นอน ค่ าคงที ่ uncertain ที ่ ใช้ สำ หรั บกฎของตาราง

เค ร ื ่ อ ง ห ม า ย ก า ร เป ร ี ย บ เท ี ย บ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

<lhs><<rhs>
น้ อยกว่ า
หมายเหตุ : ไม่ มี รู ปแบบภาษากลางเมื ่ อใช้ เครื ่ องหมายนี ้ กั บค่ าตั วเลขและสกุ ลเงิ น

<lhs> > <rhs>
มากกว่ า
หมายเหตุ : ไม่ มี รู ปแบบภาษากลางเมื ่ อใช้ เครื ่ องหมายนี ้ กั บค่ าตั วเลขและสกุ ลเงิ น

<lhs><=<rhs> น้ อยกว่ าหรื อเท่ ากั บ

<lhs> >= <rhs> มากกว่ าหรื อเท่ ากั บ

<lhs>=<rhs> เท่ ากั บ

<lhs> <> <rhs> ไม่ เท่ ากั บ

ฟ ั ง ก ์ ช ั น ต ั ว เล ข (English)

ซิ นแท็ กซ์ คำ อธิ บาย

ตั วเลข(<numText>) แปลงสตริ งที ่ ระบุ เป็ นค่ าตั วเลข

<x> + <y> การบวกทางคณิ ตศาสตร์

<x> - <y> การลบทางคณิ ตศาสตร์

<lhs> * <rhs> การคู ณทางคณิ ตศาสตร์

<lhs> / <rhs> การหารทางคณิ ตศาสตร์

ซิ นแท็ กซ์ คำ อธิ บาย

<lhs> \ <rhs> การหารจำ นวนเต็ ม

<lhs> modulo <rhs> เศษหลั งจากการหารจำ นวนเต็ ม

สู งสุ ด(<x>, <y>)
สู งสุ ด(<date/time/datetime1>, <date/time/datetime2>)

ส่ งคื นค่ าที ่ มากกว่ าของสองค่ า

ต่ ำ สุ ด(<x>, <y>)
ต่ ำ สุ ด(<date/time/datetime1>, <date/time/datetime2>)

ส่ งคื นค่ าที ่ น้ อยกว่ าของสองค่ า

Xy(<x>, <y>) x ยกกำ ลั ง y

เอ็ กซ์ โพเนนเชี ยล(<x>) ค่ าคงที ่ e ยกกำ ลั ง x

ค่ าสั มบู รณ์ (<x>)
|<val>|

ค่ าสั มบู รณ์ ของ x

ลอการิ ธึ มธรรมชาติ (<x>) ลอการิ ธึ มธรรมชาติ ของ x

ลอการิ ธึ ม(<x>) ลอการิ ธึ มฐาน 10 ของ x

รากที ่ สอง(<x>) รากที ่ สองของ x

ปั ดเศษ(<x>, <n>) ปั ดเศษ x เป็ นจุ ดทศนิ ยม n หลั ก

ตั ด(<x>, <n>) ตั ด x เป็ นจุ ดทศนิ ยม n หลั ก

ไซน์ (<x>) ไซน์ ของ x

โคไซน์ (<x>) โคไซน์ ของ x

แทนเจนต์ (<x>) แทนเจนต์ ของ x

อาร์ กไซน์ (<x>) อาร์ กไซน์ ของ x

อาร์ กโคไซน์ (<x>) อาร์ กโคไซน์ ของ x

อาร์ กแทนเจนต์ (<x>) อาร์ กแทนเจนต์ ของ x

ฟ ั ง ก ์ ช ั น เว ล า (English)

ซิ นแท็ กซ์ คำ อธิ บาย

วั นที ่ ปั จจุ บั น() ส่ งคื น date ปั จจุ บั นเมื ่ อเริ ่ มต้ นเซสชั น

วั นที ่ (<text>) แปลงสตริ งที ่ ระบุ เป็ นค่ า date

สร้ างวั นที ่ (<year>,
<month>, <day>)

ส่ งคื น date ที ่ สร้ างจากปี เดื อน และวั นที ่ ระบุ

ดึ งข้ อมู ลวั น(<date/d-
atetime>)

ส่ งคื นส่ วนวั นของ date/datetime attribute

ซิ นแท็ กซ์ คำ อธิ บาย

ดึ งข้ อมู ลเดื อน
(<date/datetime>)

ส่ งคื นส่ วนเดื อนของ date/datetime attribute

ดึ งข้ อมู ลปี (<date/d-
atetime>)

ส่ งคื นส่ วนปี ของ date/datetime attribute

วั นถั ดไป(<date/d-
atetime>, <day>)

ส่ งคื น date ของวั นทำ งานถั ดไปที ่ เป็ นวั นเดี ยวกั บหรื อก่ อนหน้ า/หลั งจาก date
(ขึ ้ นอยู ่ กั บซิ นแท็ กซ์ ที ่ ใช้)

วั นที ่ ถั ดไป(<date>,
<day>, <month>)

ส่ งคื นอิ นสแตนซ์ ถั ดไปของวั นที ่ และเดื อนที ่ ระบุ หลั งจาก date

เพิ ่ มวั น(<date/d-
atetime>, <num_days>)

เพิ ่ ม/ลบจำ นวนวั นใน date เมื ่ อใช้ รู ปแบบซิ นแท็ กซ์ แบบสั ้ น จำ นวนต้ องเป็ นจำ นวน
เต็ มบวกเพื ่ อเพิ ่ มจำ นวนวั นในอิ นพุ ต date หรื อจำ นวนลบเพื ่ อลบจำ นวนวั นออกจากอิ
นพุ ต date

เพิ ่ มสั ปดาห์ (<date/d-
atetime>, <num_weeks>)

เพิ ่ มจำ นวนสั ปดาห์ ใน date เมื ่ อใช้ รู ปแบบซิ นแท็ กซ์ แบบสั ้ นเหล่ านี ้ จำ นวนต้ อง
เป็ นจำ นวนเต็ มบวกเพื ่ อเพิ ่ มจำ นวนสั ปดาห์ ในอิ นพุ ตdate

เพิ ่ มเดื อน(<date/d-
atetime>, <num_
months>)

เพิ ่ มจำ นวนเดื อนใน date เมื ่ อใช้ รู ปแบบซิ นแท็ กซ์ แบบสั ้ นเหล่ านี ้ จำ นวนต้ องเ
ป็ นจำ นวนเต็ มบวกเพื ่ อเพิ ่ มจำ นวนเดื อนในอิ นพุ ตdate

เพิ ่ มปี (<date/d-
atetime>, <num_years>)

เพิ ่ มจำ นวนปี ใน date เมื ่ อใช้ รู ปแบบซิ นแท็ กซ์ แบบสั ้ นเหล่ านี ้ จำ นวนต้ องเป็ นจ
ำ นวนเต็ มบวกเพื ่ อเพิ ่ มจำ นวนปี ในอิ นพุ ตdate

นั บวั นทำ งาน
(<date1>, <date2>)

นั บจำ นวนวั นทำ งานระหว่ าง date1 และ date2 นั ่ นคื อจำ นวนวั นที ่ อยู ่ ระหว่ างวั นจั
นทร์ และวั นศุ กร์
หมายเหตุ : รวม date แรก และไม่ รวม date หลั ง

เริ ่ มต้ นปี (<date/d-
atetime>)

ส่ งคื น date แรกสุ ดในปี ของ date

สิ ้ นสุ ดปี (<date/d-
atetime>)

ส่ งคื น date สุ ดท้ ายในปี ของ date

ส่ วนต่ างวั น(<date/d-
atetime1>, <date/d-
atetime2>)

ส่ งคื นจำ นวนเต็ มของวั นระหว่ าง date/datetime1 และ date/datetime2 ลำ ดั บของสอง
วั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างวั นรวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของวั น (รวม) ระหว่ าง date/datetime1 และ date/datetime2 การคำ นว
ณนี ้ รวมจุ ดสิ ้ นสุ ดทั ้ งสอง หากวั นที ่ เป็ นวั นเดี ยวกั น ผลลั พธ์ จะเป็ น 1 ลำ ดั บของ
สองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างวั นไม่ รวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของวั น (ไม่ รวม) ระหว่ าง date/datetime1 และ date/datetime2 การค
ำ นวณนี ้ ไม่ รวมจุ ดสิ ้ นสุ ดทั ้ งสอง หากวั นที ่ เป็ นวั นเดี ยวกั น ผลลั พธ์ จะเป็ น 0 ล
ำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างสั ปดาห์ ส่ งคื นจำ นวนเต็ มของสั ปดาห์ ที ่ ผ่ านไประหว่ าง date/datetime1 และ date/d-

ซิ นแท็ กซ์ คำ อธิ บาย

(<date/datetime1>,
<date/datetime2>)

atetime2 ลำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างสั ปดาห์ รวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของสั ปดาห์ ที ่ ผ่ านไปรวมระหว่ าง date/datetime1 และ date/d-
atetime2 ลำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างสั ปดาห์ ไม่ ร
วม(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของสั ปดาห์ ที ่ ผ่ านไปไม่ รวมระหว่ าง date/datetime1 และ date/d-
atetime2 ลำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างเดื อน(<date/d-
atetime1>, <date/d-
atetime2>)

ส่ งคื นจำ นวนเต็ มของเดื อนที ่ ผ่ านไประหว่ าง date/datetime1 และ date/datetime2 ล
ำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างเดื อนรวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของเดื อนที ่ ผ่ านไปรวมระหว่ าง date/datetime1 และ date/d-
atetime2 ลำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างเดื อนไม่ รวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนเต็ มของเดื อนที ่ ผ่ านไปไม่ รวมระหว่ าง date/datetime1 และ date/d-
atetime2 ลำ ดั บของสองวั นที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างปี (<date/d-
atetime1>, <date/d-
atetime2>)

ส่ งคื นจำ นวนปี ระหว่ าง date/datetime1 และ date/datetime2 ลำ ดั บของสองวั นที ่ จะ
ไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างปี รวม(<date/d-
atetime1>, <date/d-
atetime2>)

ส่ งคื นจำ นวนปี รวมระหว่ าง date/datetime1 และ date/datetime2 ลำ ดั บของสองวั น
ที ่ จะไม่ มี ผลกั บผลลั พธ์

ส่ วนต่ างปี ไม่ รวม
(<date/datetime1>,
<date/datetime2>)

ส่ งคื นจำ นวนปี ไม่ รวมระหว่ าง date/datetime1 และ date/datetime2 ลำ ดั บของสองวั
นที ่ จะไม่ มี ผลกั บผลลั พธ์

ฟ ั ง ก ์ ช ั น เว ล า ข อง ว ั น (English)

ซิ นแท็ กซ์ คำ อธิ บาย

เวลา(<text>) แปลงสตริ งที ่ ระบุ เป็ นค่ าเวลาของวั น

ดึ งข้ อมู ลวิ นาที (<time/datetime>) ส่ งคื นส่ วนวิ นาที ของ timeofday/datetime attribute

ดึ งข้ อมู ลนาที (<time/datetime>) ส่ งคื นส่ วนนาที ของ timeofday/datetime attribute

ดึ งข้ อมู ลชั ่ วโมง(<time/datetime>) ส่ งคื นส่ วนชั ่ วโมงของ timeofday/datetime attribute

ฟ ั ง ก ์ ช ั น ว ั น ท ี ่ แ ล ะ เว ล า (English)

ซิ นแท็ กซ์ คำ อธิ บาย

วั นที ่ เวลาปั จจุ บั น() ส่ งคื น date และเวลาปั จจุ บั นเมื ่ อเริ ่ มต้ นเซสชั น

วั นที ่ เวลา(<text>) แปลงสตริ งที ่ ระบุ เป็ นค่ า datetime

ต่ อวั นที ่ เวลา(<date>,
<time>)

ตั ้ งค่ า date เวลาโดยการรวม date และเวลาของวั นเข้ าด้ วยกั น

ส่ วนต่ างวิ นาที (<dat-
etime1>, <datetime2>)
ส่ วนต่ างวิ นาที
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนวิ นาที ระหว่ าง datetime1 และ datetime2

ส่ วนต่ างวิ นาที รวม(<dat-
etime1>, <datetime2>)
ส่ วนต่ างวิ นาที รวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนวิ นาที รวมระหว่ าง datetime1 และ datetime2

ส่ วนต่ างวิ นาที ไม่ รวม
(<datetime1>, <datetime2>)
ส่ วนต่ างวิ นาที ไม่ รวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนวิ นาที ไม่ รวมระหว่ าง datetime1 และ datetime2

ส่ วนต่ างนาที
(<datetime1>, <datetime2>)
ส่ วนต่ างนาที
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนนาที ระหว่ าง datetime1 และ datetime2

ส่ วนต่ างนาที รวม(<dat-
etime1>, <datetime2>)
ส่ วนต่ างนาที รวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนนาที รวมระหว่ าง datetime1 และ datetime2

ส่ วนต่ างนาที ไม่ รวม(<dat-
etime1>, <datetime2>)
ส่ วนต่ างนาที ไม่ รวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนนาที ไม่ รวมระหว่ าง datetime1 และ datetime2

ส่ วนต่ างชั ่ วโมง(<dat-
etime1>, <datetime2>)
ส่ วนต่ างชั ่ วโมง
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนชั ่ วโมงระหว่ าง datetime1 และ datetime2

ซิ นแท็ กซ์ คำ อธิ บาย

ส่ วนต่ างชั ่ วโมงรวม(<dat-
etime1>, <datetime2>)
ส่ วนต่ างชั ่ วโมงรวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนชั ่ วโมงรวมระหว่ าง datetime1 และ datetime2

ส่ วนต่ างชั ่ วโมงไม่ รวม
(<datetime1>, <datetime2>)
ส่ วนต่ างชั ่ วโมงไม่ รวม
(<timeOfDay1>,
<timeOfDay2>)

ส่ งคื นจำ นวนชั ่ วโมงไม่ รวมระหว่ าง datetime1 และ datetime2

ดึ งข้ อมู ลวั นที ่ (<dat-
etime>)

ดึ งข้ อมู ล date จาก datetime attribute

ดึ งข้ อมู ลเวลา
(<datetime>)

ดึ งข้ อมู ลเวลาของวั นจาก datetime attribute สามารถใช้ เพื ่ อตั ้ งค่ าของ timeof-
day attribute เป็ นเวลาที ่ รั นกฎได้ โดยการดึ งข้ อมู ลเวลาจาก date และเวลาปั จจุ บั น

เพิ ่ มชั ่ วโมง(<datetime>,
<num_hours>)
เพิ ่ มชั ่ วโมง
(<timeOfDay>, <num_
hours>)

เพิ ่ มจำ นวนชั ่ วโมงใน date เวลา

เพิ ่ มนาที (<datetime>,
<num_minutes>)
เพิ ่ มนาที (<timeOfDay>,
<num_minutes>)

เพิ ่ มจำ นวนนาที ใน date เวลา

เพิ ่ มวิ นาที (<datetime>,
<num_seconds>)
เพิ ่ มวิ นาที (<timeOfDay>,
<num_seconds>)

เพิ ่ มจำ นวนวิ นาที ใน date เวลา

ฟ ั ง ก ์ ช ั น ข ้ อค ว า ม (English)

ซิ นแท็ กซ์ คำ อธิ บาย

<text1> & <text2>
รวม text1 กั บ text2 และอื ่ นๆ เพื ่ อสร้ างค่ า text ค่ าเดี ยว
หมายเหตุ : คุ ณสามารถใช้ ตั วแปรประเภทใดก็ ได้ ค่ าถู กจั ดรู ปแบบโดยตั วจั ดรู ปแบบที ่ ติ
ดตั ้ งในเซสชั นกฎ

รวม text1 กั บ text2 และอื ่ นๆ เพื ่ อสร้ างค่ า text ค่ าเดี ยว
หมายเหตุ : คุ ณสามารถใช้ ตั วแปรประเภทใดก็ ได้ ค่ าถู กจั ดรู ปแบบโดยตั วจั ดรู ปแบบที ่ ติ
ดตั ้ งในเซสชั นกฎ

ซิ นแท็ กซ์ คำ อธิ บาย

มี (<text>, <sub-
string>)

ส่ งคื นค่ าบู ลี นที ่ ระบุ ว่ าค่ า text ที ่ ระบุ มี สตริ งย่ อย text ที ่ ระบุ หรื อไม่ การเปรี ย
บเที ยบ text ต้ องเป็ นตั วพิ มพ์ ที ่ ตรงกั น

ลงท้ ายด้ วย(<text>,
<substring>)

ส่ งคื นค่ าบู ลี นที ่ ระบุ ว่ าค่ า text ที ่ ระบุ ลงท้ ายด้ วยสตริ งย่ อย text ที ่ ระบุ หรื อไ
ม่ การเปรี ยบเที ยบ text ต้ องเป็ นตั วพิ มพ์ ที ่ ตรงกั น

เป็ นตั วเลข(<text>) ส่ งคื นค่ าบู ลี นที ่ ระบุ ว่ าค่ า text ที ่ ระบุ เป็ นค่ าตั วเลขที ่ ถู กต้ องหรื อไม่

ความยาว(<text>) ส่ งคื นความยาวตั วอั กษรของค่ า text ที ่ ระบุ

เริ ่ มต้ นด้ วย
(<text>, <substring>)

ส่ งคื นค่ าบู ลี นที ่ ระบุ ว่ าค่ า text ที ่ ระบุ เริ ่ มต้ นด้ วยสตริ งย่ อย text ที ่ ระบุ หรื อไ
ม่ การเปรี ยบเที ยบ text ต้ องเป็ นตั วพิ มพ์ ที ่ ตรงกั น

สตริ งย่ อย(<text>,
<offset>, <length>)

ส่ งคื นสตริ งย่ อยของ text ที ่ เริ ่ มต้ นตามออฟเซ็ ตที ่ ระบุ ซึ ่ งเป็ นความยาวที ่ ระบุ เป็ น
ตั วอั กษร โดยจะส่ งคื นตั วอั กษรน้ อยกว่ าหากถึ งจุ ดสิ ้ นสุ ดของสตริ ง

ข้ อความ(<number>)
ข้ อความ(<date>)
ข้ อความ
(<datetime>)
ข้ อความ
(<timeOfDay>)

แปลงตั วเลขหรื อ date attribute ที ่ ระบุ เป็ นค่ า text

ฟ ั ง ก ์ ช ั น เอน ท ิ ต ี แ ล ะ ค ว า ม ส ั ม พ ั น ธ ์ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

สำ หรั บ(<relationship>,
<Exp>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหนึ ่ ง" "หลายต่ อหนึ ่ ง" หรื อ "หลายต่ อหลาย" เมื ่ อมี เงื ่ อนไขเพี ยงหนึ ่ งข้
อ

สำ หรั บขอบเขต(<rela-
tionship>, <alias>)
สำ หรั บขอบเขต(<rela-
tionship>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหนึ ่ ง" "หลายต่ อหนึ ่ ง" หรื อ "หลายต่ อหลาย" เมื ่ อมี เงื ่ อนไขอย่ างน้ อยห
นึ ่ งข้ อ

สำ หรั บทั ้ งหมด(<rela-
tionship>, <Exp>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหลาย" หรื อ "หลายต่ อหลาย" เมื ่ อคุ ณต้ องการกำ หนดว่ าสมาชิ กทั ้ งหมดของก
ลุ ่ ม entity เป้ าหมายต้ องตรงตามกฎหรื อไม่
ใช้ รู ปแบบนี ้ เมื ่ อมี เงื ่ อนไขในกฎเพี ยงหนึ ่ งข้ อ

สำ หรั บขอบเขตทั ้ งหมด
(<relationship>)
สำ หรั บขอบเขตทั ้ งหมด
(<relationship>, <alias>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหลาย" หรื อ "หลายต่ อหลาย" เมื ่ อคุ ณต้ องการกำ หนดว่ าสมาชิ กทั ้ งหมดของก
ลุ ่ ม entity เป้ าหมายต้ องตรงตามกฎหรื อไม่
ใช้ รู ปแบบนี ้ เมื ่ อมี เงื ่ อนไขในกฎอย่ างน้ อยหนึ ่ งข้ อ

มี อยู ่ (<relationship>,
<Exp>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหลาย" หรื อ "หลายต่ อหลาย" เมื ่ อคุ ณต้ องการกำ หนดว่ าสมาชิ กคนใดคนหนึ ่ งข

ซิ นแท็ กซ์ คำ อธิ บาย

องกลุ ่ ม entity เป้ าหมายต้ องตรงตามกฎหรื อไม่
ใช้ รู ปแบบนี ้ เมื ่ อมี เงื ่ อนไขในกฎเพี ยงหนึ ่ งข้ อ

ขอบเขตที ่ มี อยู ่ (<rela-
tionship>)
ขอบเขตที ่ มี อยู ่ (<rela-
tionship>, <alias>)

ใช้ เพื ่ ออ้ างอิ งจาก entity ไปยั งอี ก entity ในความสั มพั นธ์ relationship ประเภท "ห
นึ ่ งต่ อหลาย" หรื อ "หลายต่ อหลาย" เมื ่ อคุ ณต้ องการกำ หนดว่ าสมาชิ กคนใดคนหนึ ่ งข
องกลุ ่ ม entity เป้ าหมายต้ องตรงตามกฎหรื อไม่
ใช้ รู ปแบบนี ้ เมื ่ อมี เงื ่ อนไขในกฎอย่ างน้ อยหนึ ่ งข้ อ

เป็ นสมาชิ กของ
(<target>, <relationship>)
เป็ นสมาชิ กของ
(<target>, <alias>, <rela-
tionship>)
<ent-target> เป็ นส่ วนห
นึ ่ งของ <relationship>
<ent-target> (<alias>) เ
ป็ นส่ วนหนึ ่ งของ <rela-
tionship>

ใช้ เป็ นข้ อสรุ ปเพื ่ อระบุ ว่ าอิ นสแตนซ์ entity เป็ นสมาชิ กของ relationship ใช้ เป็ นเ
งื ่ อนไขเพื ่ อทดสอบว่ าอิ นสแตนซ์ entity เป็ นเป้ าหมายของ relationship ซึ ่ งอิ นสแต
นซ์ entity ที ่ สองเป็ นที ่ มา

ไม่ เป็ นสมาชิ กของ(<tar-
get>, <relationship>)

ใช้ เป็ นเงื ่ อนไขเพื ่ อทดสอบว่ าอิ นสแตนซ์ entity ไม่ ใช่ เป้ าหมายของ relationship
ซึ ่ งอิ นสแตนซ์ entity ที ่ สองเป็ นที ่ มา

อิ นสแตนซ์ นั บ(<rela-
tionship>)

นั บจำ นวนของอิ นสแตนซ์ ที ่ มี อยู ่ สำ หรั บ entity

อิ นสแตนซ์ นั บถ้ า(<rela-
tionship>, <Exp>)

นั บจำ นวนอิ นสแตนซ์ ที ่ เป็ นของ entity ซึ ่ ง entity-level attribute นั ้ นมี ค่ าเฉพาะ

อิ นสแตนซ์ สู งสุ ด(<rela-
tionship>, <number-attr>)
อิ นสแตนซ์ สู งสุ ด(<rela-
tionship>, <date-attr>)
อิ นสแตนซ์ สู งสุ ด(<rela-
tionship>, <datetime-attr>)
อิ นสแตนซ์ สู งสุ ด(<rela-
tionship>, <time-attr>)

หาค่ าสู งสุ ด/ใหม่ ที ่ สุ ดของตั วแปร entity-level สำ หรั บอิ นสแตนซ์ ทั ้ งหมดของ
entity

อิ นสแตนซ์ สู งสุ ดถ้ า
(<relationship>, <number-
attr>, <condition>)
อิ นสแตนซ์ สู งสุ ดถ้ า
(<relationship>, <date-
attr>, <condition>)
อิ นสแตนซ์ สู งสุ ดถ้ า
(<relationship>, <datetime-
attr>, <condition>)
อิ นสแตนซ์ สู งสุ ดถ้ า

หาค่ าสู งสุ ด/ใหม่ ที ่ สุ ดของตั วแปร entity-level สำ หรั บอิ นสแตนซ์ ทั ้ งหมดของ
entity ซึ ่ ง entity-level attribute นั ้ นมี ค่ าเฉพาะ

ซิ นแท็ กซ์ คำ อธิ บาย

(<relationship>, <time-
attr>, <condition>)

อิ นสแตนซ์ ต่ ำ สุ ด
(<relationship>, <number-
attr>)
อิ นสแตนซ์ ต่ ำ สุ ด
(<relationship>, <date-
attr>)
อิ นสแตนซ์ ต่ ำ สุ ด
(<relationship>, <datetime-
attr>)
อิ นสแตนซ์ ต่ ำ สุ ด
(<relationship>, <time-
attr>)

หาค่ าต่ ำ สุ ด/เก่ าที ่ สุ ดของตั วแปร entity-level สำ หรั บอิ นสแตนซ์ ทั ้ งหมดของ
entity

อิ นสแตนซ์ ต่ ำ สุ ดถ้ า
(<relationship>, <number-
attr>, <condition>)
อิ นสแตนซ์ ต่ ำ สุ ดถ้ า
(<relationship>, <date-
attr>, <condition>)
อิ นสแตนซ์ ต่ ำ สุ ดถ้ า
(<relationship>, <datetime-
attr>, <condition>)
อิ นสแตนซ์ ต่ ำ สุ ดถ้ า
(<relationship>, <time-
attr>, <condition>)

หาค่ าต่ ำ สุ ด/เก่ าที ่ สุ ดของตั วแปร entity-level สำ หรั บอิ นสแตนซ์ ทั ้ งหมดของ
entity ซึ ่ ง entity-level attribute นั ้ นมี ค่ าเฉพาะ

อิ นสแตนซ์ ผลรวม(<rela-
tionship>, <number-attr>)

หาผลรวมของอิ นสแตนซ์ ทั ้ งหมดของตั วแปร entity-level

อิ นสแตนซ์ ผลรวมถ้ า
(<relationship>, <number-
attr>, <condition>)

หาผลรวมของอิ นสแตนซ์ ทั ้ งหมดของตั วแปร entity-level ที ่ เป็ นจริ งของ entity ที ่
attribute บู ลี น entity-level เป็ นจริ ง

อิ นสแตนซ์ ค่ าถ้ า(<rela-
tionship>, <number-attr>,
<condition>)
อิ นสแตนซ์ ค่ าถ้ า(<rela-
tionship>, <text-attr>, <con-
dition>)
อิ นสแตนซ์ ค่ าถ้ า(<rela-
tionship>, <date-attr>,
<condition>)
อิ นสแตนซ์ ค่ าถ้ า(<rela-

หาค่ าจากอิ นสแตนซ์ entity ที ่ ไม่ ซ้ ำ กั น ซึ ่ งระบุ จากอิ นสแตนซ์ entity เป้ าหมาย
ของ relationship ตามเงื ่ อนไข

l หากเงื ่ อนไขระบุ อิ นสแตนซ์ entity เป้ าหมายเดี ยว ค่ าจะเป็ นค่ าที ่ คำ นวณกั
บอิ นสแตนซ์ entity

l หากอิ นสแตนซ์ เป้ าหมายมากกว่ าหนึ ่ งอิ นสแตนซ์ ตรงตามเงื ่ อนไข จะส่ งคื น
uncertain

l หากไม่ มี อิ นสแตนซ์ เป้ าหมายที ่ ตรงตามเงื ่ อนไข และรู ้ จั ก relationship ค่ า
จะเป็ น uncertain

ซิ นแท็ กซ์ คำ อธิ บาย

tionship>, <datetime-attr>,
<condition>)
อิ นสแตนซ์ ค่ าถ้ า(<rela-
tionship>, <time-attr>,
<condition>)

อิ นสแตนซ์ เท่ า
(<instance1>, <instance2>) พิ จารณาว่ าสองอิ นสแตนซ์ ของ entity เป็ นอิ นสแตนซ์ เดี ยวกั นหรื อไม่

อิ นสแตนซ์ ไม่ เท่ า
(<instance1>, <instance2>) พิ จารณาว่ าสองอิ นสแตนซ์ ของ entity ไม่ ใช่ อิ นสแตนซ์ เดี ยวกั นหรื อไม่

สรุ ปอิ นสแตนซ์ (<rela-
tionship>, <identity>)

ใช้ เป็ นข้ อสรุ ปเพื ่ อระบุ ว่ าอิ นสแตนซ์ entity มี อยู ่ และเป็ นสมาชิ กของ rela-
tionship

ฟ ั ง ก ์ ช ั น เห ต ุ ผ ล เก ี ่ ย ว ก ั บ เว ล า (English)

ซิ นแท็ กซ์ คำ อธิ บาย

ช่ วงนั บไม่ ซ้ ำ
กั น(<start-date>,
<end-date>, <vari-
able>)
ช่ วงนั บไม่ ซ้ ำ
กั น(<start-date>,
<end-date>, <con-
dition>)

นั บจำ นวนค่ าไม่ ซ้ ำ กั นที ่ รู ้ จั กสำ หรั บตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date
สิ ้ นสุ ด (ไม่ รวม)

ช่ วงนั บไม่ ซ้ ำ
กั นถ้ า(<start-
date>, <end-date>,
<variable>, <con-
dition>)

นั บจำ นวนค่ าไม่ ซ้ ำ กั นที ่ รู ้ จั กสำ หรั บตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date
สิ ้ นสุ ด (ไม่ รวม) รวมเวลาเฉพาะเมื ่ อฟิ ลเตอร์ บู ลี นเป็ นจริ ง

ช่ วงผลรวมรายวั น
(<start-date>, <end-
date>, <number-
attr>)

คำ นวณผลรวมของตั วแปรสกุ ลเงิ นหรื อจำ นวนในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ
ด (ไม่ รวม) attribute ถู กกำ หนดเป็ นปริ มาณรายวั น

ช่ วงผลรวมรายวั น
ถ้ า(<start-date>,
<end-date>, <num-
ber-attr>, <con-
dition>)

คำ นวณผลรวมของค่ ารายวั นสำ หรั บตั วแปรสกุ ลเงิ นหรื อจำ นวนในช่ วงจาก date เริ ่ มต้ น (รว
ม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) รวมเวลาเฉพาะเมื ่ อเงื ่ อนไขเป็ นจริ ง

ซิ นแท็ กซ์ คำ อธิ บาย

ช่ วงสู งสุ ด
(<start-date>, <end-
date>, <number-
attr>)
ช่ วงสู งสุ ด
(<start-date>, <end-
date>, <date-attr>)
ช่ วงสู งสุ ด
(<start-date>, <end-
date>, <datetime-
attr>)
ช่ วงสู งสุ ด
(<start-date>, <end-
date>, <time-attr>)

เลื อกค่ าสู งสุ ดของตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม)

ช่ วงสู งสุ ดถ้ า
(<start-date>, <end-
date>, <number-
attr>, <condition>)
ช่ วงสู งสุ ดถ้ า
(<start-date>, <end-
date>, <date-attr>,
<condition>)
ช่ วงสู งสุ ดถ้ า
(<start-date>, <end-
date>, <datetime-
attr>, <condition>)
ช่ วงสู งสุ ดถ้ า
(<start-date>, <end-
date>, <time-attr>,
<condition>)

เลื อกค่ าสู งสุ ดของตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) รวมเวลาเ
มื ่ อเงื ่ อนไขเป็ นจริ งเท่ านั ้ น

ช่ วงต่ ำ สุ ด
(<start-date>, <end-
date>, <number-
attr>)
ช่ วงต่ ำ สุ ด
(<start-date>, <end-
date>, <date-attr>)
ช่ วงต่ ำ สุ ด
(<start-date>, <end-
date>, <datetime-
attr>)
ช่ วงต่ ำ สุ ด
(<start-date>, <end-

เลื อกค่ าต่ ำ สุ ดของตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม)

ซิ นแท็ กซ์ คำ อธิ บาย

date>, <time-attr>)

ช่ วงต่ ำ สุ ดถ้ า
(<start-date>, <end-
date>, <number-
attr>, <condition>)
ช่ วงต่ ำ สุ ดถ้ า
(<start-date>, <end-
date>, <date-attr>,
<condition>)
ช่ วงต่ ำ สุ ดถ้ า
(<start-date>, <end-
date>, <datetime-
attr>, <condition>)
ช่ วงต่ ำ สุ ดถ้ า
(<start-date>, <end-
date>, <time-attr>,
<condition>)

เลื อกค่ าต่ ำ สุ ดของตั วแปรในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) รวมเวล
าเมื ่ อเงื ่ อนไขเป็ นจริ งเท่ านั ้ น

ช่ วงค่ าเฉลี ่ ยถ่
วงน้ ำ หนั ก(<start-
date>, <end-date>,
<number-attribute>)

คำ นวณค่ าเฉลี ่ ยของตั วแปรสกุ ลเงิ นหรื อจำ นวนในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date
สิ ้ นสุ ด (ไม่ รวม) ถ่ วงน้ ำ หนั กตามช่ วงเวลาที ่ ใช้ แต่ ละค่ า

ช่ วงค่ าเฉลี ่ ยถ่
วงน้ ำ หนั กถ้ า
(<start-date>, <end-
date>, <number-
attribute>, <con-
dition>)

คำ นวณค่ าเฉลี ่ ยของตั วแปรสกุ ลเงิ นหรื อจำ นวนในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date
สิ ้ นสุ ด (ไม่ รวม) รวมเวลาเฉพาะเมื ่ อเงื ่ อนไขบู ลี นเป็ นจริ ง (ถ่ วงน้ ำ หนั กตามช่ วงเวลาที ่
ใช้ แต่ ละค่ าและฟิ ลเตอร์ เป็ นจริ ง)

ช่ วงเสมอ(<start-
date>, <end-date>,
<condition>)

ส่ งคื นจริ งหากเงื ่ อนไขบู ลี นเป็ นจริ งตลอดเวลาในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้
นสุ ด (ไม่ รวม) เท่ านั ้ น

ช่ วงวั นอย่ างน้ อ
ย(<start-date>,
<end-date>,
<NumDays>, <con-
dition>)

ส่ งคื นจริ งหากเงื ่ อนไขบู ลี นเป็ นจริ งอย่ างน้ อยสำ หรั บจำ นวนวั นที ่ ระบุ (ไม่ จำ เป็ น
ต้ องติ ดต่ อกั น) ในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) เท่ านั ้ น

ช่ วงวั นที ่ ติ ดต่
อกั น(<start-date>,
<end-date>,
<NumDays>, <con-
dition>)

ส่ งคื นจริ งถ้ าเงื ่ อนไขบู ลี นเป็ นจริ งอย่ างน้ อยสำ หรั บจำ นวนวั นติ ดต่ อกั นที ่ ระบุ ใน
ช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) เท่ านั ้ น

ซิ นแท็ กซ์ คำ อธิ บาย

ช่ วงบางครั ้ ง
(<start-date>, <end-
date>, <condition>)

ส่ งคื นจริ งถ้ าเงื ่ อนไขบู ลี นเป็ นจริ งในช่ วงจาก date เริ ่ มต้ น (รวม) ถึ ง date สิ ้ นสุ ด (ไ
ม่ รวม) เท่ านั ้ น

ค่ าอยู ่ ที ่
(<date>, <value>)

ส่ งคื นค่ าของ attribute ที ่ ระบุ ใน date ที ่ ระบุ

เมื ่ อสุ ดท้ าย
(<date>, <con-
dition>)

ส่ งคื น date ที ่ เงื ่ อนไขบู ลี นเป็ นจริ งครั ้ งสุ ดท้ าย ค้ นหาย้ อนหลั งจาก (และรวม) date
ที ่ ระบุ

เมื ่ อถั ดไป
(<date>, <con-
dition>)

ส่ งคื น date ที ่ เงื ่ อนไขบู ลี นเป็ นจริ งครั ้ งถั ดไป ค้ นหาไปข้ างหน้ าจาก (และรวม) date
ที ่ ระบุ

ท้ ายสุ ด()
ส่ งคื นค่ า date เที ยบเท่ ากั บ date ที ่ เป็ นไปได้ ล่ าสุ ด - โดย date ต้ องอยู ่ หลั ง date
อื ่ นๆ ที ่ date attribute สามารถใช้ ได้ หรื อหาค่ าจากนิ พจน์ ได้

แรกสุ ด()
ส่ งคื นค่ า date เที ยบเท่ ากั บ date ที ่ เป็ นไปได้ แรกสุ ด - โดย date ต้ องอยู ่ ก่ อน date
อื ่ นๆ ที ่ date attribute สามารถใช้ ได้ หรื อหาค่ าจากนิ พจน์ ได้

เวลาตั ้ งแต่ วั น
(<date>, <end-
date>)

ส่ งคื นตั วแปรจำ นวนที ่ เปลี ่ ยนแปลงทุ กวั น และเป็ นจำ นวนวั นเต็ มนั บตั ้ งแต่ date

เวลาตั ้ งแต่ สั ปดา
ห์ (<date>, <end-
date>)

ส่ งคื นตั วแปรจำ นวนที ่ เปลี ่ ยนแปลงทุ กสั ปดาห์ และเป็ นจำ นวนสั ปดาห์ เต็ มนั บตั ้ งแต่
date

เวลาตั ้ งแต่ เดื อน
(<date>, <end-
date>)

ส่ งคื นตั วแปรจำ นวนที ่ เปลี ่ ยนแปลงทุ กเดื อน และเป็ นจำ นวนเดื อนเต็ มนั บตั ้ งแต่ date
หมายเหตุ : เมื ่ อ date ที ่ ป้ อนอยู ่ หลั งวั นที ่ 28 ของเดื อน และเดื อนต่ อมามี จำ นวนวั นน้
อยกว่ าเดื อนที ่ ป้ อน จุ ดเปลี ่ ยนแปลงของเดื อนครบรอบจะถู กจั ดทำ ขึ ้ นในวั นสุ ดท้ ายของเ
ดื อนนั ้ น ตั วอย่ างเช่ น หาก date ที ่ ป้ อนเป็ น 28, 29, 30 หรื อ 31 มกราคม 2007 จุ ดเปลี ่ ยนแป
ลงครั ้ งแรกสุ ดจะเป็ น 28 กุ มภาพั นธ์ 2007

เวลาตั ้ งแต่ ปี
(<date>, <end-
date>)

ส่ งคื นตั วแปรจำ นวนที ่ เปลี ่ ยนแปลงทุ กปี และเป็ นจำ นวนปี เต็ มนั บตั ้ งแต่ date

เวลาวั นเสมอ
(<days>, <con-
dition>)

ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งหากเงื ่ อนไขบู ลี นเป็ นจริ งส
ำ หรั บจำ นวนก่ อนหน้ าที ่ ระบุ ทั ้ งหมด ไม่ รวมวั นปั จจุ บั นเท่ านั ้ น

เวลาวั นติ ดต่ อกั
น(<minDays>,
<days>,
<condition>)

ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งหากเงื ่ อนไขบู ลี นเป็ นจริ งอ
ย่ างน้ อยสำ หรั บจำ นวนวั นที ่ ติ ดต่ อกั นในระยะเวลาใดๆ ภายในจำ นวนวั นก่ อนหน้ าที ่ ระบุ
ไม่ รวมวั นปั จจุ บั นเท่ านั ้ น

เวลาวั นบางครั ้ ง ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งหากเงื ่ อนไขบู ลี นเป็ นจริ งภา

ซิ นแท็ กซ์ คำ อธิ บาย

(<days>, <con-
dition>)

ยในจำ นวนวั นก่ อนหน้ าที ่ ระบุ ไม่ รวมวั นปั จจุ บั นเท่ านั ้ น

เวลาหลั ง(<date>)
ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งหลั งจาก date และเป็ นเท็ จในวั
นที ่ นั ้ นและก่ อนหน้ านั ้ น

เวลาก่ อน(<date>)
ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งก่ อนหน้ า date และเป็ นเท็ จใน
วั นที ่ นั ้ นและหลั งจากนั ้ น

เวลาเมื ่ อ(<date>)
ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งใน date และเป็ นเท็ จก่ อนหน้ า
หรื อหลั งจากนั ้ น

เวลาเมื ่ อหรื อหลั
ง(<date>)

ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งในวั นเดี ยวกั บหรื อหลั งจาก
date และเป็ นเท็ จก่ อนหน้ านั ้ น

เวลาเมื ่ อหรื อก่ อ
น(<date>)

ส่ งคื น attribute บู ลี นที ่ เปลี ่ ยนแปลงตามเวลา และเป็ นจริ งในวั นเดี ยวกั บและก่ อนหน้ า
date และเป็ นเท็ จหลั งจากนั ้ น

เวลาจากวั นที ่ เ
ริ ่ มต้ น(<rela-
tionship>, <date>,
<value>)

ส่ งคื น attribute เวลาเดี ยว (ที ่ ระดั บ entity ที ่ มา) จาก relationship และค่ า attribute ในเอ
นทิ ตี ซึ ่ งมี ค่ าที ่ ได้ รั บผลจาก date attribute เริ ่ มต้ น

เวลาจากวั นที ่ สิ ้
นสุ ด
(<relationship>,
<date>, <value>)

ส่ งคื น attribute เวลาเดี ยว (ที ่ ระดั บ entity ที ่ มา) จาก relationship และ attribute ค่ าในเอ
นทิ ตี ซึ ่ งมี ค่ าที ่ มี ผลจนถึ ง date attribute สิ ้ นสุ ด

เวลาจากช่ วง(<rela-
tionship>, <start-
date>, <end-date>,
<Value>)

ส่ งคื น attribute เวลาเดี ยว (ที ่ ระดั บ entity ที ่ มา) จาก relationship และ attribute ค่ าในเอ
นทิ ตี ซึ ่ งมี ค่ าที ่ ได้ รั บผลจาก date attribute เริ ่ มต้ น (รวม) ถึ ง date attribute สิ ้ นสุ
ด (ไม่ รวม) ค่ าจะเป็ น uncertain หากหมดอายุ ก่ อน date เริ ่ มต้ นถั ดไป

เวลาวั นทำ งาน
(<startdate>, <end-
date>)

ส่ งคื นจริ งในวั นที ่ ซึ ่ งเป็ นวั นทำ งาน และเท็ จในวั นที ่ ซึ ่ งเป็ นวั นหยุ ดสุ ดสั ปดาห์ จา
ก date เริ ่ มต้ นที ่ ระบุ (รวม) ถึ ง date สิ ้ นสุ ด (ไม่ รวม) ส่ งคื น uncertain นอกช่ วง date

เวลาหนึ ่ งครั ้ งต่
อเดื อน(<startdate>,
<enddate>, <day-
ofmonth>)

ส่ งคื นจริ งหากวั นเท่ ากั บพารามิ เตอร์ วั นของเดื อน และเท็ จในวั นของเดื อนอื ่ นๆ จาก date เ
ริ ่ มต้ นที ่ ระบุ (รวม) ถึ ง date ที ่ สิ ้ นสุ ด (ไม่ รวม) ส่ งคื น uncertain นอกช่ วง date เมื ่ อ
วั นของเดื อนเกิ นจำ นวนวั นในเดื อนปั จจุ บั น ค่ าจะเป็ นจริ งในวั นสุ ดท้ ายของเดื อนนั ้ น เ
พื ่ อให้ ฟั งก์ ชั นส่ งคื นค่ าที ่ เป็ นจริ งหนึ ่ งวั นต่ อเดื อนพอดี

ฟ ั ง ก ์ ช ั น ข อ ง ก ิ จ ก ร ร ม ก า ร ต ร ว จ สอบ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

ข้ อผิ ดพลา
ด(<text>)

กิ จกรรมข้ อผิ ดพลาดจะใช้ เพื ่ อส่ งข้ อความถึ งผู ้ ใช้ และทำ ให้ ผู ้ ใช้ ไม่ สามารถตรวจสอบต่ อ จน
กว่ าเงื ่ อนไขที ่ ทริ กเกอร์ ข้ อผิ ดพลาดนั ้ นไม่ มี ผลอี ก

ซิ นแท็ กซ์ คำ อธิ บาย

คำ เตื อน
(<text>)

กิ จกรรมการเตื อนจะใช้ เพื ่ อส่ งข้ อความถึ งผู ้ ใช้ แต่ ยั งอนุ ญาตให้ ผู ้ ใช้ สามารถดำ เนิ นการต่ อ
ขณะที ่ มี เงื ่ อนไขที ่ ทริ กเกอร์ คำ เตื อนนั ้ น

ฟ ั ง ก ์ ช ั น ท ี ่ เล ิ ก ใ ช ้ (English)

ซิ นแท็ กซ์ คำ อธิ บาย

เรี ยกฟั งก์ ชั นที ่ กำ
หนดเอง(<A>,)

ส่ งคื นผลลั พธ์ ของการเรี ยกภายนอกไปยั งไลบรารี รหั ส ต้ องระบุ ไลบรารี รหั สให้ กั บ
Determinations Engine เพื ่ อให้ เรี ยกฟั งก์ ชั นที ่ กำ หนดเองได้

Mantıksal bağlayıcılar(English)

Sözdizimi Tanımlama

eğer Şu ispata sahip olan bir sonuç satırının sonunda görünmesi olası isteğe bağlı terim

ve İki attributes arasındaki mantıksal bağlaç

veya İki attributes arasındaki mantıksal ayraç

biri ya da öbürü
aralarından biri
herhangi biri
aşağıdakilerden en az biri
doğru
aşağıdakilerin herhangi biri
yerine geldi

İki veya daha fazla attributes özelliğinin gruplanması gerektiğinde ayraçlarla birlikte kul-
lanılan gruplama bileşeni

her ikisi
tümü
aşağıdakilerin tümü doğru
aşağıdakilerin tümü yerine
geldi

İki veya daha çok attributes özelliğinin gruplanması gerektiğinde bağlaçlarla birlikte kul-
lanılan gruplama bileşeni

aksi halde aksi halde tümceciğini göstermek için tablo kuralının sonunda görünen terim

= Kısaltılmış deyim ile tam attribute text arasındaki altyazı girişinde kullanılan terim

Mantıksal fonksiyonlar(English)

Sözdizimi Tanımlama

<attr>(olmaması | önergesinin yanlış olması)
attribute yanlış değerine sahipse doğru değerini döndürmek
için kullanılan işleç

<var> kesinse attribute, uncertain olmayan bir değer içerirse doğru

Sözdizimi Tanımlama

<var>[değeri] kesin [ise]
<var>[değeri] belirli [ise]
<attr>(mu |mi |mü |mı | değil mi) belirli
<attr>(mu |mi |mü |mı | değil mi) belirliyse
<attr>(mu |mi |mü |mı | değil mi) belirli ise

değerini döndürmek için kullanılan işleç

<var> kesin değil [ise]
<var> kesin değilse
<var> belirsizse
<var> belirsiz [ise]
<attr>(mu |mi |mü |mı | değil mi) belirsiz
<attr>(mu |mi |mü |mı | değil mi) belirsizse
<attr>(mu |mi |mü |mı | değil mi) belirsiz ise

İşleç attribute değeri uncertain ise doğru değerini
döndürür

<var>(bilinirse | biliniyor | biliniyor ise | biliniyorsa |
bilinir | bilinir ise)
<attr>(mu |mi |mü |mı | değil mi) biliniyor
<attr>(mu |mi |mü |mı | değil mi) biliniyorsa
<attr>(mu |mi |mü |mı | değil mi) biliniyor ise

attribute özelliği değer içeriyorsa doğru değerini döndürmek
için kullanılan işleç

<var>(bilinmezse | bilinmez | bilinmez ise | bil-
inmiyorsa | bilinmiyor | bilinmiyor ise)
<attr>(mu |mi |mü |mı | değil mi) bilinmiyor
<attr>(mu |mi |mü |mı | değil mi) bilinmiyorsa
<attr>(mu |mi |mü |mı | değil mi) bilinmiyor ise

İşleç attribute, bir değer içermezse doğru değerini döndürür

Mantıksal sabitler(English)

Sözdizimi Tanımlama

doğru Tablo kuralları için sabit doğru değerini kullanılır.

yanlış Tablo kuralları için sabit yanlış değeri kullanılır.

belirsiz Tablo kuralları için sabituncertain değeri kullanılır.

Karşılaştırma işleçleri(English)

Sözdizimi Tanımlama

<lhs><<rhs>
<lhs><rhs>'den daha azsa
<lhs><rhs>'den önceyse

Küçüktür
Not: Bu işleç sayısal değerler veya para birimi değerleriyle birlikte kullanıldığında doğal
dil formu yoktur.

<lhs> > <rhs>
<lhs><rhs>'dan fazlaysa

Büyüktür
Not: Bu işleç sayısal değerler veya para birimi değerleriyle birlikte kullanıldığında doğal

Sözdizimi Tanımlama

<lhs><rhs>'den daha geç oluy-
orsa

dil formu yoktur.

<lhs><=<rhs>
<lhs><rhs>'den daha az veya
eşitse

Küçüktür veya eşittir

<lhs> >= <rhs>
<lhs><rhs>'dan daha büyük
veya eşitse

Büyüktür veya eşittir

<lhs>=<rhs>
<lhs><rhs> eşitse
<lhs><rhs> eşitliyorsa

Eşittir

<lhs><rhs> eşit değilse
<lhs><rhs> eşitlemiyorsa
<lhs> <> <rhs>
<lhs> != <rhs>

Eşit değildir

Sayısal fonksiyonlar(English)

Sözdizimi Tanımlama

Sayı(<numText>) Belirtilen dizeyi sayı değerine dönüştürür

<x> + <y> Toplama işlemi

<x> - <y> Çıkarma işlemi

<x> * <y> Çarpım işlemi

<x> / <y> Bölme işlemi

<x> \ <y> Tam sayı bölme

<x> modulo <y> Tam sayı bölümünde kalan

Maksimum(<x>, <y>)
Maksimum(<date/time/datetime1>, <date/time/datetime2>)
<val1>'nin ve <val2>'nün büyüğü
<val1>'nin ve <val2>'nün en sonu

İki değerden büyük olanı döndürür

Minimum(<x>, <y>)
Minimum(<date/time/datetime1>, <date/time/datetime2>)
<val1>'nin ve <val2>'nün küçüğü
<val1>'nin ve <val2>'nün en erkeni

İki değerden küçük olanı döndürür

Xy(<x>, <y>) x üzeri y

Sözdizimi Tanımlama

<val> yükseltilmiş <power> iktidara

Eks(<x>)
e to the power of <log-val>

Sabit e üzeri x

Mut.(<x>)
<val> mutlak değeri
|<val>|

x değerinin mutlak değeri

Ln(<x>)
<log-val> doğal logaritma

x değerinin doğal logaritması

Log(<x>)
<log-val> logaritmik tabanı 10

Logaritma 10 tabanına göre x

Karekök(<x>)
<val> kare kökü

x değerinin karekökü

Yuvarla(<x>, <n>)
<val><num_places> ondalık yuvarlanır

x değerini n ondalık basamağa yuvarlar

Kes(<x>, <n>)
<val> kesilmiş için <num_places> ondalık

x değeri n sayıda ondalık basamağa kesilir

Sin(<x>) x değerinin sinüsü

Cos(<x>) x değerinin kosinüsü

Tan(<x>) x değerinin tanjantı

Asin(<x>) x değerinin ark sinüsü

Acos(<x>) x değerinin ark kosinüsü

Atan(<x>) x değerinin ark tanjantı

Tarih fonksiyonları(English)

Sözdizimi Tanımlama

GeçerliTarih()
günün tarihi

Oturumun başlangıcında geçerli date öğesini döndürür.

Tarih(<text>) Belirtilen dizeyi date değerine dönüştürür

TarihYap(<year>,
<month>, <day>)

Belirtilen yıl, ay ve günden oluşturulan bir date özelliği değeri döndürür.

GünÇıkar(<date/d-
atetime>)

date/datetime attribute özelliğinin gün bileşenini döndürür.

Sözdizimi Tanımlama

AyÇıkar
(<date/datetime>)

date/datetime attribute özelliğinin ay bileşenini döndürür.

YılÇıkar
(<date/datetime>)

date/datetime attribute özelliğinin yıl bileşenini döndürür.

SonrakiGün(<date/d-
atetime>, <day>)
<from-date>'e denk
gelen yada sonraki Paz-
artesi
<from-date>'e denk
gelen yada önceki Paz-
artesi
<from-date>'e denk
gelen yada sonraki Salı
<from-date>'e denk
gelen yada önceki Salı
<from-date>'e denk
gelen yada sonraki
Çarşamba
<from-date>'e denk
gelen yada önceki
Çarşamba
<from-date>'e denk
gelen yada sonraki Per-
şembe
<from-date>'e denk
gelen yada önceki Per-
şembe
<from-date>'e denk
gelen yada sonraki
Cumartesi
<from-date>'e denk
gelen yada önceki
Cumartesi
<from-date>'e denk
gelen yada sonraki
Cuma
<from-date>'e denk
gelen yada önceki
Cuma
<from-date>'e denk
gelen yada sonraki
Pazar

Sonraki hafta içi günün date değerini, belirli bir date değerine sahip veya bu değerden önce ya da
sonra olacak şekilde döndürür (kullanılan sözdizimine bağlı olarak).

Sözdizimi Tanımlama

<from-date>'e denk
gelen yada önceki
Pazar

SonrakiGün(<date>,
<day>, <month>)

date sonrasında bir sonraki belirtilen gün ve ay örneğini döndürür.

GünEkle(<date/d-
atetime>, <num_days>)
<date><num_days> gün
sonra tarih
<date><num_days> gün
önce tarih
(saat | tarih)<datetime>
('da | 'de | 'ta |
'te)<num_days> günden
sonra

Bir date özellik tipine gün sayısı ekler veya bu değerden gün sayısını çıkarır. Kısa sözdizimsel
biçim kullanıldığında, date girdisine gün sayısını eklemek için bu sayının pozitif bir tamsayı olması
gerekir; date girdisinden gün sayısını çıkarmak içinse bu sayının negatif bir tamsayı olması
gerekir.

HaftaEkle(<date/d-
atetime>, <num_weeks>)
<date><num_weeks>
hafta sonra tarih
<date><num_weeks>
hafta önce tarih
(saat | tarih)<datetime>
('da | 'de | 'ta |
'te)<num_weeks> haf-
tadan sonra

date özellik değerine hafta ekler. Kısa sözdizim formu kullanılırken date girdisine hafta eklenmesi
için sayının pozitif tam sayı olması gerekir.

AyEkle(<date/datetime>,
<num_months>)
<date><num_months>
ay sonra tarih
<date><num_months>
ay önce tarih
(saat | tarih)<datetime>
('da | 'de | 'ta |
'te)<num_months>
aydan sonra

date özellik değerine ay ekler. Kısa sözdizim formu kullanılırken date girdisine ay eklenmesi için
sayının pozitif tam sayı olması gerekir.

YılEkle(<date/datetime>,
<num_years>)
<date><num_years> yıl
sonra tarih
<date><num_years> yıl
önce tarih

date özellik değerine yıl ekler. Kısa sözdizim formu kullanılırken date girdisine yıl eklenmesi için
sayının pozitif tam sayı olması gerekir.

Sözdizimi Tanımlama

(saat | tarih)<datetime>
('da | 'de | 'ta |
'te)<num_years> yıldan
sonra

GünSayısı(<date1>,
<date2>)
<date1>'den <date2>'a
kadar kalan [(içeren)]
[tam] haftalar
<date1> ve <date2>'un
arasında kalan
[(içeren)][tam] hafta
içi günler
<date1>('yla |
'yle)<date2> arasında
kalan [dahil] hafta içi
günlerin sayısı

date1 ile date2 arasındaki hafta içi günleri sayar. Bunlar Pazartesi ile Cuma arasındaki günlerdir.
Not: Önceki date dahil, sonraki date hariçtir.

YılBaşlangıcı(<date/d-
atetime>)
senenin ilk olan <from-
date>'e denk gelen
günü

Yıl içindeki ilk date değerini (date öğesinin içinde bulunduğu) döndürür.

YılSonu
(<date/datetime>)
senenin son olan
<from-date>'e denk
gelen günü

Yıl içindeki son date değerini (date öğesinin içinde bulunduğu) döndürür.

GünFarkı(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>'dan <date2>'a
kadar [(içeren)] kalan
[tam] günler
<date1> ve <date2>'un
arasında kalan [tam]
[(içeren)] günler
gün sayısı <date1>('dan
| 'den)<date2>('a | 'e)
kadar

date/datetime1 ve date/datetime2 arasındaki tam gün sayısını döndürür. İki günün sırası
sonucu etkilemez.

GünFarkıDahil(<date/d-
atetime1>, <date/d-

date/datetime1 ve date/datetime2 dahil, aralarındaki tam gün sayısını döndürür. Bu hes-
aplama her iki ucu da dahil eder. Tarihler aynı olduğunda sonuç 1'dir. İki günün sırası sonucu etkile-

Sözdizimi Tanımlama

atetime2>)
dahil gün sayısı
<date1>('dan |
'den)<date2>('a | 'e)
kadar

mez.

GünFarkıHariç(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>'dan <date2>'a
kadar (dışlayan) kalan
[tam] günler
<date1> ve <date2>'un
arasında kalan
(dışlayan) [tam] günler
hariç gün sayısı
<date1>('dan |
'den)<date2>('a | 'e)
kadar

date/datetime1 ve date/datetime2 hariç, aralarındaki tam gün sayısını döndürür. Bu hes-
aplama her iki ucu da hariç tutar. Tarihler aynı olduğunda sonuç 0'dır. İki günün sırası sonucu etkile-
mez.

HaftaFarkı(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>'den <date2>'a
kadar [(içeren)][tam]
haftalar
<date1> ve <date2>'un
arasında kalan
[(içeren)][tam] haf-
talar
hafta sayısı <date1>
('dan | 'den)<date2>('a |
'e) kadar

date/datetime1 ile date/datetime2 arasındaki geçmiş tam haftaların sayısını döndürür. İki
tarihin sırası sonucu etkilemez.

HaftaFarkıDahil(<date/d-
atetime1>, <date/d-
atetime2>)
dahil hafta sayısı
<date1>('dan |
'den)<date2>('a | 'e)
kadar

date/datetime1 ile date/datetime2 dahil, aralarındaki geçmiş tam haftaların sayısını
döndürür. İki tarihin sırası sonucu etkilemez.

HaftaFarkıHariç(<date/d-
atetime1>, <date/d-
atetime2>)

date/datetime1 ile date/datetime2 hariç, aralarındaki geçmiş tam haftaların sayısını
döndürür. İki tarihin sırası sonucu etkilemez.

Sözdizimi Tanımlama

hariç hafta sayısı
<date1>('dan |
'den)<date2>('a | 'e)
kadar

AyFarkı(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>'den <date2>'a
kadar kalan [(içeren)]
[tam] aylar
<date1> ve <date2>'un
arasında kalan
[(içeren)][tam] ayları
ay sayısı <date1>('dan |
'den)<date2>('a | 'e)
kadar

date/datetime1 ve date/datetime2 arasındaki tam geçmiş ay sayısını döndürür. İki tarihin
sırası sonucu etkilemez.

AyFarkıDahil(<date/d-
atetime1>, <date/d-
atetime2>)
dahil ay sayısı <date1>
('dan | 'den)<date2>('a |
'e) kadar

date/datetime1 ve date/datetime2 dahil, aralarındaki tam geçmiş ay sayısını döndürür. İki
tarihin sırası sonucu etkilemez.

AyFarkıHariç(<date/d-
atetime1>, <date/d-
atetime2>)
hariç ay sayısı <date1>
('dan | 'den)<date2>('a |
'e) kadar

date/datetime1 ve date/datetime2 hariç, aralarındaki tam geçmiş ay sayısını döndürür. İki
tarihin sırası sonucu etkilemez.

YılFarkı(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>'den <date2>'a
kadar kalan [(içeren)]
[tam] yıllar
<date1> ve <date2>'un
arasında kalan
[(içeren)][tam] yıllar
<date1>('yla |
'yle)<date2> arasında
kalan yıl sayısı

date/datetime1 ile date/datetime2 arasındaki yıl sayısını döndürür. İki tarihin sırası sonucu
etkilemez.

YılFarkıDahil(<date/d- date/datetime1 ile date/datetime2 dahil, aralarındaki yıl sayısını döndürür. İki tarihin sırası

Sözdizimi Tanımlama

atetime1>, <date/d-
atetime2>)
<date1>('yla |
'yle)<date2> arasında
kalan dahil yıl sayısı

sonucu etkilemez.

YılFarkıHariç(<date/d-
atetime1>, <date/d-
atetime2>)
<date1>('yla |
'yle)<date2> arasında
kalan hariç yıl sayısı

date/datetime1 ile date/datetime2 hariç, aralarındaki yıl sayısını döndürür. İki tarihin sırası
sonucu etkilemez.

Günün saati fonksiyonları(English)

Sözdizimi Tanımlama

Saat(<text>) Belirtilen dizeyi günün saati değerine dönüştürür

SaniyeAl(<time/datetime>) timeofday/datetime attribute özelliğinin saniye bileşenini döndürür.

DakikaAl(<time/datetime>) timeofday/datetime attribute özelliğinin dakika bileşenini döndürür.

SaatAl(<time/datetime>) timeofday/datetime attribute özelliğinin saat bileşenini döndürür.

Tarih ve saat fonksiyonları(English)

Sözdizimi Tanımlama

GeçerliTarihSaat()
şimdiki zaman

Oturumun başlangıcında geçerli date öğesi ile saati döndürür.

TarihSaat(<text>) Belirtilen dizeyi datetime değerine dönüştürür

TarihSaatiBirleştir(<date>,
<time>)
<date> da <time-of-day>
<time-of-day> da <date>

date özellik değerini, date ve günün saati değerlerini birleştirerek ayarlar.

SaniyeFarkı(<datetime1>,
<datetime2>)
SaniyeFarkı(<timeOfDay1>,
<timeOfDay2>)
saniye sayısı <date1>('dan |
'den)<date2>('a | 'e) kadar

datetime1 ve datetime2 arasındaki saniye sayısını döndürür.

Sözdizimi Tanımlama

SaniyeFarkıDahil(<dat-
etime1>, <datetime2>)
SaniyeFarkıDahil
(<timeOfDay1>,
<timeOfDay2>)
dahil saniye sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 dahil, aralarındaki saniye sayısını döndürür.

SaniyeFarkıHariç(<dat-
etime1>, <datetime2>)
SaniyeFarkıHariç
(<timeOfDay1>,
<timeOfDay2>)
hariç saniye sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 hariç, aralarındaki saniye sayısını döndürür.

DakikaFarkı(<datetime1>,
<datetime2>)
DakikaFarkı(<timeOfDay1>,
<timeOfDay2>)
dakika sayısı <date1>('dan |
'den)<date2>('a | 'e) kadar

datetime1 ve datetime2 arasındaki dakika sayısını döndürür.

DakikaFarkıDahil(<dat-
etime1>, <datetime2>)
DakikaFarkıDahil
(<timeOfDay1>,
<timeOfDay2>)
dahil dakika sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 dahil, aralarındaki dakika sayısını döndürür.

DakikaFarkıHariç(<dat-
etime1>, <datetime2>)
DakikaFarkıHariç
(<timeOfDay1>,
<timeOfDay2>)
hariç dakika sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 hariç, aralarındaki dakika sayısını döndürür.

SaatFarkı(<datetime1>, <dat-
etime2>)
SaatFarkı(<timeOfDay1>,

datetime1 ve datetime2 arasındaki saat sayısını döndürür.

Sözdizimi Tanımlama

<timeOfDay2>)
saat sayısı <date1>('dan |
'den)<date2>('a | 'e) kadar

SaatFarkıDahil(<datetime1>,
<datetime2>)
SaatFarkıDahil
(<timeOfDay1>,
<timeOfDay2>)
dahil saat sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 dahil, aralarındaki saat sayısını döndürür.

SaatFarkıHariç(<datetime1>,
<datetime2>)
SaatFarkıHariç
(<timeOfDay1>,
<timeOfDay2>)
hariç saat sayısı <date1>
('dan | 'den)<date2>('a | 'e)
kadar

datetime1 ve datetime2 hariç, aralarındaki saat sayısını döndürür.

TarihAl(<datetime>) date özelliğini datetime attribute özelliğinden çıkartır.

GünAl(<datetime>)
datetime attribute özelliğinden günün saatini çıkartır. Saati geçerli date ve saat değer-
inden çıkartarak, timeofday attribute özelliğinin değerini kuralın yürütüldüğü saate ayar-
lamak için kullanılabilir.

SaatEkle(<datetime>, <num_
hours>)
SaatEkle(<timeOfDay>,
<num_hours>)
saat <datetime>('da | 'de | 'ta
| 'te)<num_hours> saattan
sonra

date özellik değerine saat ekler.

DakikaEkle(<datetime>,
<num_minutes>)
DakikaEkle(<timeOfDay>,
<num_minutes>)
saat <datetime>('da | 'de | 'ta
| 'te)<num_minutes>
dakikadan sonra

date özellik değerine dakika ekler.

SaniyeEkle(<datetime>,
<num_seconds>)
SaniyeEkle(<timeOfDay>,

date özellik değerine saniye ekler.

Sözdizimi Tanımlama

<num_seconds>)
saat <datetime>('da | 'de | 'ta
| 'te)<num_seconds> san-
iyeden sonra

Metin fonksiyonları(English)

Sözdizimi Tanımlama

<text1> & <text2>

text1metin değerini text2metin değeriyle birleştirip bu şekilde devam ederek tek bir text değeri
oluşturur.
Herhangi bir tipte değişken kullanabilirsiniz. Değerlerin formatı kural oturumunda yüklü olan form-
atlayıcı kullanılarak belirlenir.

bağlaması <text1>
& <text2>

text1metin değerini text2metin değeriyle birleştirip bu şekilde devam ederek tek bir text değeri
oluşturur.
Herhangi bir tipte değişken kullanabilirsiniz. Değerlerin formatı kural oturumunda yüklü olan form-
atlayıcı kullanılarak belirlenir.

İçerir(<text>, <sub-
string>)

Belirtilen text değerinin belirtilen text alt dizesini içerip içermediğini gösteren bir mantıksal değer
döndürür. text karşılaştırması büyük küçük harfe duyarlı değildir.

İleBiter(<text>,
<substring>)

Belirtilen text değerinin belirtilen text alt dize ile sonlanıp sonlanmadığını gösteren bir mantıksal değer
döndürür. text karşılaştırması büyük küçük harfe duyarlı değildir.

Sayıdır(<text>)
Belirtilen text değerinin geçerli bir sayıyı temsil edip etmediğini gösteren bir mantıksal değer döndürür.

Uzunluk(<text>) Belirtilen text değerinin karakter uzunluğunu döndürür.

İleBaşlar(<text>,
<substring>)

Belirtilen text değerinin belirtilen text alt dize ile başlayıp başlamadığını gösteren bir mantıksal değer
döndürür. text karşılaştırması büyük küçük harfe duyarlı değildir.

Altdize(<text>, <off-
set>, <length>)

Belirtilen karakter uzunluğu olan, başlangıç noktasında başlayan text alt dizesini döndürür. Dizenin
sonuna ulaşıldıysa daha az sayıda karakter döndürülür.

Metin(<number>)
Metin(<date>)
Metin(<datetime>)
Metin(<timeOfDay>)

Belirtilen sayısı veya date attribute değerini text değerine dönüştürür.

Öğe ve ilişki fonksiyonları(English)

Sözdizimi Tanımlama

İçin(<relationship>, Sadece bir koşul olduğunda, bir "Tek - Tek" veya "Çok - Tek" relationship ilişkisinde entity

Sözdizimi Tanımlama

<Exp>)
<val>, <ent> durumda

öğesinden başka bir entity öğesine başvuru için kullanılır.

Kapsamİçin(<rela-
tionship>, <alias>)
Kapsamİçin(<rela-
tionship>)

Bir veya daha çok koşul olduğunda, bir "Tek - Tek", "Çok - Tek" veya "Çok - Çok" relationship
ilişkisinde entity öğesinden başka bir entity öğesine başvuru için kullanılır.

Tümüİçin(<relationship>,
<Exp>)

Bir "Tek - Tek" veya "Çok - Çok" relationship ilişkisinde bir entity öğesinden başka bir entity
öğesine başvuru için kullanılır (hedef entity grubunun tüm üyelerinin ilgili kuralı karşılaması
gerekip gerekmediğini belirlemeniz gerektiğinde).
Bu form, kuralda sadece tek bir koşul olduğunda kullanılır.

TümKapsamİçin(<rela-
tionship>)
TümKapsamİçin(<rela-
tionship>, <alias>)

Bir "Tek - Çok" veya "Çok - Çok" relationship ilişkisinde bir entity öğesinden başka bir entity
öğesine başvuru için kullanılır (hedef entity grubunun tüm üyelerinin ilgili kuralı karşılaması
gerekip gerekmediğini belirlemeniz gerektiğinde).
Bu form, kuralda bir veya birden fazla koşul olduğunda kullanılır.

Var(<relationship>,
<Exp>)

Bir "Tek - Çok" veya "Çok - Çok" relationship ilişkisinde bir entity öğesinden başka bir entity
öğesine başvuru için kullanılır (hedef entity grubunun herhangi bir üyesinin ilgili kuralı
karşılaması gerekip gerekmediğini belirlemeniz gerektiğinde).
Bu form, kuralda sadece tek bir koşul olduğunda kullanılır.

KapsamVar(<rela-
tionship>)
KapsamVar(<rela-
tionship>, <alias>)

Bir "Tek - Çok" veya "Çok - Çok" relationship ilişkisinde bir entity öğesinden başka bir entity
öğesine başvuru için kullanılır (hedef entity grubunun herhangi bir üyesinin ilgili kuralı
karşılaması gerekip gerekmediğini belirlemeniz gerektiğinde).
Bu form, kuralda bir veya birden fazla koşul olduğunda kullanılır.

Üyesi:(<target>, <rela-
tionship>)
Üyesi:(<target>, <alias>,
<relationship>)

Bir entity örneğinin relationship üyesi olduğu anlamına ulaşmak için sonuç olarak kullanılır.
entity örneğinin relationship öğesinin bir hedefi olduğunu test etmek için kullanılır (bu öğede
ikinci bir entity örneği kaynak durumundadır).

ÜyesiDeğil:(<target>,
<relationship>)

Bir entity örneğinin, ikinci bir entity örneğinin kaynak olduğu relationship ilişkisinde hedef
olmadığını test etmede koşul olarak kullanılır.

KopyaSay(<relationship>)

<ent>(sayısı | sayısının
ortalaması)
sayisi <relationship>

entity için mevcut örnek sayısını sayar.

KopyaSayEğer(<rela-
tionship>, <Exp>)
sayisi <relationship>
durum böyle olduğu
için <condition>

Belirli bir entity-level attribute özelliğinin belirli bir değere sahip olduğu entity öğesinin
örnek sayısını sayar.

Sözdizimi Tanımlama

MaksimumKopya(<rela-
tionship>, <number-attr>)
MaksimumKopya(<rela-
tionship>, <date-attr>)
MaksimumKopya(<rela-
tionship>, <datetime-attr>)
MaksimumKopya(<rela-
tionship>, <time-attr>)
<ent> için en kücük
<date-attr>
bütün <ent> için en
yaşlı <attr>
bütün <ent> için en geç
<attr>
bütün <ent> için en
büyük <attr>

Tüm entity örnekleri için entity-level değişkeninin en yüksek/en son değerini alır.

KopyaMaksimumEğer
(<relationship>, <number-
attr>, <condition>)
KopyaMaksimumEğer
(<relationship>, <date-
attr>, <condition>)
KopyaMaksimumEğer
(<relationship>, <dat-
etime-attr>, <condition>)
KopyaMaksimumEğer
(<relationship>, <time-
attr>, <condition>)

Belirli bir entity-level attribute özelliğinin belirli bir değere sahip olduğu tüm entity örnekleri
için entity-level değişkeninin en yüksek/en son değerini alır.

MinimumKopya(<rela-
tionship>, <number-attr>)
MinimumKopya(<rela-
tionship>, <date-attr>)
MinimumKopya(<rela-
tionship>, <datetime-attr>)
MinimumKopya(<rela-
tionship>, <time-attr>)
bütün <ent> için en
küçük <attr>
bütün <ent> için en
erken <attr>

Tüm entity örnekleri için entity-level değişkeninin en düşük/en eski değerini alır.

KopyaMinimumEğer Belirli bir entity-level attribute özelliğinin belirli bir değere sahip olduğu tüm entity örnekleri
için entity-level değişkeninin en düşük/en eski değerini alır.

Sözdizimi Tanımlama

(<relationship>, <number-
attr>, <condition>)
KopyaMinimumEğer
(<relationship>, <date-
attr>, <condition>)
KopyaMinimumEğer
(<relationship>, <dat-
etime-attr>, <condition>)
KopyaMinimumEğer
(<relationship>, <time-
attr>, <condition>)
eğer <ent-test>bütün
<ent> için en küçük
<attr>

KopyaToplam(<rela-
tionship>, <number-attr>)
bütün <ent> toplam
<num-attr>
bütün <ent> toplam
<attr>

entity-level değişkeninin tüm örneklerinin toplamını alır.

KopyaToplamEğer(<rela-
tionship>, <number-attr>,
<condition>)

Belirli bir entity-levelMantıksal değer attribute özelliği değerinin doğru olduğu entity öğesi
için entity-level değişkeninin tüm örneklerinin toplamını alır.

KopyaDeğeriEğer(<rela-
tionship>, <number-attr>,
<condition>)
KopyaDeğeriEğer(<rela-
tionship>, <text-attr>,
<condition>)
KopyaDeğeriEğer(<rela-
tionship>, <date-attr>,
<condition>)
KopyaDeğeriEğer(<rela-
tionship>, <datetime-attr>,
<condition>)
KopyaDeğeriEğer(<rela-
tionship>, <time-attr>,
<condition>)

Koşul bazında relationship ile ilişkili hedef entity örneklerinden belirlenen benzersiz bir entity
örneğinden değer alır.

l Koşul tek hedef entity örneğini tanımlıyorsa değer, söz konusu entity örneğine göre
hesaplanan değerdir.

l Koşulu karşılayan birden fazla hedef örnek varsa, uncertain değeri döndürülür.

l Koşulu karşılayan herhangi bir hedef örnek yoksa ve relationship biliniyorsa, değer
uncertain olur.

KopyaEşittir
(<instance1>,
<instance2>)

İki entity örneğinin aynı örnek olup olmadığını belirler.

Sözdizimi Tanımlama

KopyaEşitDeğildir
(<instance1>,
<instance2>)

İki entity örneğinin aynı örnek olmadığını belirler.

AnlamKopya(<rela-
tionship>, <identity>)
<rel>(<identity>)
(şeklindedir | olarak
tanımlıdır)
<rel> içinde (<identity>)
(bulunmaktadır |
mevcuttur)

Bir entity örneğinin mevcut olduğu ve bir relationship üyesi olduğu anlamına ulaşmak için
sonuç olarak kullanılır.

Zamana dayalı mantık fonksiyonları(English)

Sözdizimi Tanımlama

AralıkSayıAyrı(<start-date>, <end-date>,
<variable>)
AralıkSayıAyrı(<start-date>, <end-date>,
<condition>)

Başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
değişken ile ilgili bilinen ayrı değer sayısını sayar.

AralıkSayıAyrıEğer(<start-date>, <end-
date>, <variable>, <condition>)

Sadece mantıksal değer filtresi değerinin doğru olduğu zamanları dahil ederek,
başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
değişken ile ilgili bilinen ayrı değer sayısını sayar.

AralıkGünlükToplam(<start-date>, <end-
date>, <number-attr>)

Başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
para birimi veya sayı değişkeninin toplamını hesaplar. attribute değerinin gün-
lük miktar olduğu varsayılır.

AralıkGünlükToplamEğer(<start-date>,
<end-date>, <number-attr>, <condition>)

Sadece koşul değerinin doğru olduğu zamanları dahil ederek, başlangıç date
değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki para birimi veya
sayı değişkeninin tüm günlük değerlerinin toplamını hesaplar.

AralıkMaksimum(<start-date>, <end-
date>, <number-attr>)
AralıkMaksimum(<start-date>, <end-
date>, <date-attr>)
AralıkMaksimum(<start-date>, <end-
date>, <datetime-attr>)
AralıkMaksimum(<start-date>, <end-
date>, <time-attr>)

Başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
değişkeninmaksimum değerini seçer.

AralıkMaksimumEğer(<start-date>,
<end-date>, <number-attr>, <condition>)
AralıkMaksimumEğer(<start-date>,

Sadece koşul değerinin doğru olduğu zamanları dahil ederek, başlangıç date
değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki değişkeninmak-
simum değerini seçer.

Sözdizimi Tanımlama

<end-date>, <date-attr>, <condition>)
AralıkMaksimumEğer(<start-date>,
<end-date>, <datetime-attr>, <condition>)
AralıkMaksimumEğer(<start-date>,
<end-date>, <time-attr>, <condition>)

AralıkMinimum(<start-date>, <end-
date>, <number-attr>)
AralıkMinimum(<start-date>, <end-
date>, <date-attr>)
AralıkMinimum(<start-date>, <end-
date>, <datetime-attr>)
AralıkMinimum(<start-date>, <end-
date>, <time-attr>)

Başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
değişkeninminimum değerini seçer.

AralıkMinimumEğer(<start-date>, <end-
date>, <number-attr>, <condition>)
AralıkMinimumEğer(<start-date>, <end-
date>, <date-attr>, <condition>)
AralıkMinimumEğer(<start-date>, <end-
date>, <datetime-attr>, <condition>)
AralıkMinimumEğer(<start-date>, <end-
date>, <time-attr>, <condition>)

Sadece koşul değerinin doğru olduğu zamanları dahil ederek, başlangıç date
değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki değişkeninmin-
imum değerini seçer.

AralıkAğırlıklıOrtalama(<start-date>,
<end-date>, <number-attribute>)

Başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan aralıktaki
para birimi veya sayı değişkeninin ortalama değerini her değerin geçerli olduğu
zaman aralığına göre hesaplar.

AralıkAğırlıklıOrtalamaEğer(<start-
date>, <end-date>, <number-attribute>,
<condition>)

Sadece mantıksal değer koşulunun doğru olduğu (her değerin geçerli olduğu
zaman aralığına göre) zamanları dahil ederek, başlangıç date değerinden
(dahil) bitiş date değerine (hariç) olan aralıktaki para birimi veya sayı değişken-
inin ortalama değerini hesaplar.

ZamanaDayalıHerZaman(<start-date>,
<end-date>, <condition>)

Sadece mantıksal değer başlangıç date değerinden (dahil) bitiş date değerine
(hariç) olan aralıktaki tüm zamanlar için doğru ise, doğru değerini döndürür.

ZamanaDayalıEnAzGünler(<start-date>,
<end-date>, <NumDays>, <condition>)

Sadece mantıksal değer başlangıç date değerinden (dahil) bitiş date değerine
(hariç) olan aralıktaki en azından belirlenen gün sayısı kadar bir süre için (sıralı
olması gerekmez) doğru ise, doğru değerini döndürür.

ZamanaDayalıTakipEdenGünler(<start-
date>, <end-date>, <NumDays>, <con-
dition>)

Sadece mantıksal değer başlangıç date değerinden (dahil) bitiş date değerine
(hariç) olan aralıktaki en azından belirlenen sıralı gün sayısı kadar bir süre için
doğru ise, doğru değerini döndürür.

ZamanaDayalıBazen(<start-date>, <end-
date>, <condition>)

Sadece başlangıç date değerinden (dahil) bitiş date değerine (hariç) olan
aralıkta mantıksal değer koşulu doğru ise, doğru değerini döndürür.

BuradaDeğer(<date>, <value>) Belirtilen attribute için belirtilen date öğesindeki değeri döndürür.

Sözdizimi Tanımlama

NezamanEnson(<date>, <condition>)
Mantıksal değer koşulunun en son kez için doğru olduğu date değerini döndürür.
Belirtilen bir date değerinden geriye dönüktür ve bu değeri de içerir.

NezamanSonraki(<date>, <condition>)
Mantıksal değer koşulunun bir sonraki kez için doğru olacağı date değerini
döndürür. Belirtilen bir date değerinden ileriye dönüktür ve bu değeri de içerir.

EnGeç()

date değerini en geç date değerine eşdeğer olacak şekilde döndürür, yani
date değerinin herhangi başka bir date değerinden sonra olacak ve bir date
attribute değerinin alınabileceği veya bir ifadenin değerlendirilebileceği
şekilde.

EnErken()

date değerini en erken date değerine eşdeğer olacak şekilde döndürür, yani
date değerinin herhangi başka bir date değerinden önce olacak ve bir date
attribute değerinin alınabileceği veya bir ifadenin değerlendirilebileceği
şekilde.

ZamanaDayalıİtibarenGün(<date>,
<end-date>)

Her gün değişen bir sayı değişkeni döndürür ve date sonrasındaki tam gün
sayısıdır.

ZamanaDayalıİtibarenHafta(<date>,
<end-date>)

Her hafta değişen bir sayı değişkeni döndürür ve date sonrasındaki tam hafta
sayısıdır.

ZamanaDayalıİtibarenAy(<date>, <end-
date>)

Her ay değişen bir sayı değişkeni döndürür ve bu date sonrasındaki tam ay
sayısıdır. Not: Belirtilen date, ayın 28. gününden sonra olduğunda ve bir sonraki
ay belirtilen aydan daha az gün içerdiğinde ayın son gününde yıldönümü ay için
değişiklik noktası oluşturulur. Örneğin belirtilen date 28, 29, 30 veya 31 Ocak
2007 ise ilk değişiklik noktası 28 Şubat 2007 olur.

ZamanaDayalıİtibarenYıl(<date>, <end-
date>)

Her yıl değişen bir sayı değişkeni döndürür ve date sonrasındaki tam yıl
sayısıdır.

ZamanaDayalıHerzamanGünler
(<days>, <condition>)

Zaman içinde değişen ve sadece geçerli gün hariç olmak üzere belirtilen gün
sayısı kadar geçmiş günlerin tümünde mantıksal değer koşulu doğru ise doğru
değerini veren attributemantıksal değerini döndürür.

ZamanaDayalıİzleyenGünler
(<minDays>, <days>, <condition>)

Zaman içinde değişen ve sadece geçerli gün hariç olmak üzere, önceki gün sayısı
içinde herhangi bir aralıkta, en az belirli bir sayıda sıralı gün için mantıksal değer
koşulu doğru ise doğru değerini veren attributemantıksal değerini döndürür.

ZamanaDayalıBazenGünler(<days>,
<condition>)

Zaman içinde değişen ve geçerli gün hariç olmak üzere, belirtilen sayıda geçmiş
gün içinde sadece mantıksal değer koşulu bir kez doğru ise, doğru olan attrib-
utemantıksal değerini döndürür.

ZamanaDayalıSonra(<date>)
Zaman içinde değişen ve date tarihinde veya öncesinde yanlış olan sonrasında
ise doğru olan attributemantıksal değerini döndürür.

ZamanaDayalıÖnce(<date>)
Zaman içinde değişen ve date değerinde veya sonrasında yanlış olan öncesinde
ise doğru olan attributemantıksal değerini döndürür.

Sözdizimi Tanımlama

ZamanaDayalıSırasında(<date>)
Zaman içinde değişen ve date öncesinde veya sonrasında yanlış olan tam
değerde ise doğru olan attributemantıksal değerini döndürür.

ZamanaDayalıSırasındaVeyaSonra
(<date>)

Zaman içinde değişen ve date değerinde veya sonrasında doğru, öncesinde yan-
lış olan attributemantıksal değerini döndürür.

ZamanaDayalıSırasındaVeyaÖncesinde
(<date>)

Zaman içinde değişen ve date değerinde veya öncesinde doğru olan, son-
rasında ise yanlış olan attributemantıksal değerini döndürür.

ZamanaDayalıBaşlangıçTarihinden
(<relationship>, <date>, <value>)

relationship öğesinden tek zamana dayalı attribute (kaynak entity düzey-
inde) ve öğelerde değer attribute döndürür; başlangıç date attributeson-
rasında etkin olan değerler içerir.

ZamanaDayalıBitişTarihinden(<rela-
tionship>, <date>, <value>)

relationship öğesinden tek zamana dayalı attribute (kaynak entity düzey-
inde) ve öğelerde değer attribute döndürür; son date attribute öncesine
kadar etkin olan değerler içerir.

ZamanaDayalıAralıktan(<relationship>,
<start-date>, <end-date>, <Value>)

relationship öğesinden tek zamana dayalı attribute (kaynak entity düzey-
inde) ve öğelerde değer attribute döndürür; başlangıç date attribute (dahil)
ile bitiş date attribute (hariç) arasında etkin olan değerler içerir. Bir sonraki
başlangıç date öncesinde süresi dolarsa değer uncertain olur.

ZamanaDayalıHaftaGünü(<startdate>,
<enddate>)

Belirtilen başlangıç date (dahil) ile bitiş date (hariç) arasında hafta içi gün-
lerinde doğru ve haftasonu günlerinde yanlış değerini döndürür. Aralık date
dışında uncertain döndürür.

ZamanaDayalıAydaBir(<startdate>,
<enddate>, <dayofmonth>)

Belirtilen başlangıç date (dahil) ile bitiş date (hariç) arasında gün, ayın günü
parametresi ile aynı ise doğru diğer tüm günlerde yanlış değerini döndürür.
Aralık date dışında uncertain döndürür. Ayın günü parametresi geçerli aydaki
gün sayısını aşarsa değer, her ay mutlaka en az bir gün doğru değeri olabilmesi
için o ayın son gününde doğru olur.

Doğrulama etkinliği fonksiyonları(English)

Sözdizimi Tanımlama

Hata
(<text>)

Kullanıcıya mesaj aktarmak ve hatayı tetikleyen koşul ortadan kalkana kadar kullanıcıların araştırmaya devam
etmesini önlemek amacıyla bir hata olayı kullanıldı.

Uyarı
(<text>)

Kullanıcıya mesaj aktarmak ve uyarıyı tetikleyen koşula rağmen kullanıcıların ilerlemesini önlemek amacıyla bir
uyarı olayı kullanıldı.

Kullanımdan kalkmış fonksiyonlar(English)

Sözdizimi Tanımlama

ÖzelFonksiyonÇağır Dış çağrı sonucunu kod kitaplığına döndürür. Özel fonksiyon çağrısının başarılı olması için belir-

Sözdizimi Tanımlama

(<A>,) lenimler altyapısına kod kitaplığı sağlanmalıdır.

Structural configuration settings
The following settings are used for modeling the structure of legislation. These elements must be formatted
using the Configuration style on the Oracle Policy Modeling toolbar.
Be sure to use the exact syntax for these functions including spacing and brackets as specified below.

Element Syntax Description

Default_structural_element Default_structural_element[<replacement structural text>]

Used to bypass the default
text ("section ") generated
for structural elements.

Youmay specify multiple
Default_structural_element
entries in a single rule doc-
ument to apply to all rules
following each entry.

Note that this is space-sens-
itive. If you want to have a
space between the element
and the element number,
youmust include a space in
the Configuration entry.

Default_structural_globalproof
Default_structural_globalproof[<replacement structural text
including structural element ^x>]

Used to bypass the default
text ("^x is satisfied") gen-
erated for structural ele-
ments.

Youmay specify multiple
Default_structural_glob-
alproof entries in a single
rule document to apply to
all rules following each
entry.

Note that this works in con-
junction with Default_struc-
tural_element, which is
used to define the ^x form.

Default_structural_entityproof
Default_structural_entityproof[<replacement structural text
including structural elements ^x and ^entity>]

Used to bypass the default
text ("^entity satisfies ^x
") generated for entity-
level structural elements.

Element Syntax Description

Youmay specify multiple
Default_structural_enti-
typroof entries in a single
rule document to apply to
all rules following each
entry.

Note that this works in con-
junction with Default_struc-
tural_element and the
entity defined in the prop-
erties file, which are used
to define both ^x and
^entity forms.

Ignore Ignore[<text to be ignored>]

Defines a string to be
ignored by Oracle Policy
Modeling when generating
boolean attributes from a
rule document, allowing
more meaningful gen-
eration of structural ele-
ments.

Replace
Replace[<text to be replaced>, <replacement text including
structural element ^x>]

Replaces generic text with
predefined text for auto-
matic structural element
generation. This is used in
conjunction with the sub-
stitution token "^x".

Replace_entity
Replace_entity[<text to be replaced>, <replacement struc-
tural text including structural elements ^x and ^entity>]

Replaces generic entity-
level text with predefined
text for automatic struc-
tural element generation.
This is used in conjunction
with the substitution tokens
"^x" and "^entity".

See also:

l Use keywords to customize automatic structural attributes

Rule function examples
Topics in "Rule function examples"

l Comparison operator rule examples

l Date function rule examples

l Time of day function rule examples

l Date and time function rule examples

l Numerical function rule examples

l Text function rule examples

l Entity and relationship function rule examples

l Temporal reasoning function rule examples

l Certain and known operator rule examples

Comparison operator rule examples
When using variables in rules you must state the value, or range of acceptable values, that are sufficient to sat-
isfy the rule. To do this, you must use one of the logical operators.

Operator Example

Less than
the pre-2007 rules apply if

the date of claim < 2007-01-01

Greater than
the new rates apply if

the date of investigation > 2007-06-30

Less than or equal to
the person can apply for Immunization Allowance for the child if

the date of claim <= the child's second birthday

Greater than or equal to
the individual qualifies for age pension if

the individual's age >= 65

Equals
the person is 18 if

the person's age = 18

Not equal to
the person's salary has been adjusted if

the new salary <> the old salary

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Use variables in rules

Date function rule examples
Date functions are used to perform a number of common calculations which frequently appear in rules.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below. Date
and number inputs may be either constant values or variables.
Note that in date calculations attempting to exceed the allowable date range with a date too far in the past or
future will lead to the Earliest or Latest value as appropriate.

Rule examples

Function Example rule Inputs Outputs
Further
information

CurrentDate

today = the current date

the date of the investigation =
CurrentDate()

today's date:
2005-04-15

today's date:
2009-08-31

today =
2005-04-15

the date of
the invest-
igation =
2009-08-31

Get today's
date

Date the date of effect =Date
("2012-01-01") 2012-01-01

the date of
effect =
2012-01-01

Convert a text
string into a
number or
date

MakeDate the calculation date
=MakeDate(2006, 10, 19)

yyyy: 2006;
mm: 10; dd: 19

the cal-
culation date
= 2006-10-
19

Get a date
formed from
a specified
year, month
and day

ExtractDay
the day of expiry = ExtractDay
(the use-by date on the
packet)

the use-by date
on the packet:
2008-06-12

the day of
expiry = 12

Get the day
component of
an input date

ExtractMonth
the month of expiry =
ExtractMonth(the use-by date
on the packet)

the use-by date
on the packet:
2007-04-16

the month of
expiry = 04

Get the month
component of
an input date

ExtractYear
the year of expiry =
ExtractYear(the use-by date on
the packet)

the use-by date
on the packet:
2009-02-21

the year of
expiry =
2009

Get the year
component of
an input date

NextDayOfTheWeek
next Monday = Nex-
tDayOfTheWeek(the current
date,"Monday")

the current date:
2009-08-09

next
Monday =
10 August

Get the date
of the next or
previous spe-

Function Example rule Inputs Outputs
Further
information

next Tuesday = the next Tues-
day on or after the current
date

last Thursday = the Thursday
on or before the current date

2009

next Tues-
day = 11
August 2009

last
Thursday =
6 August
2009

cified day

AddDays

the date that the library book
must be returned by =
AddDays(the date of loan,21)

the date that the library book
must be returned by = the date
21 days after the date of loan

the closing date for the entry
= AddDays(the date of the
show,-10)

the date of loan:
2006-01-04

the date of the
show: 2007-05-
15

the date that
the library
book must
be returned
by = 25

the closing
date for the
entry =
2007-05-05

Add or sub-
tract a spe-
cified number
of days to an
input date

AddWeeks

the date that the event fin-
ishes = AddWeeks(the date
that the event begins,the num-
ber of weeks in the event)

the date that the event fin-
ishes = the date the number of
weeks in the event weeks after
the date that the event begins

the start date of the 5 week
promotion = AddWeeks(the
end date of the promotion,-5)

the start date of the 5 week
promotion = the date 5 weeks
before the end date of the pro-
motion

the date that the
event begins:
2001-08-13

the number of
weeks in the
event: 12

the end date of
the promotion:
2008-12-24

the date that
the event fin-
ishes =
2001-11-05

the start
date of the 5
week pro-
motion =
2008-11-19

Add or sub-
tract a spe-
cified number
of weeks to
an input date

AddMonths

the date that the player can
return from suspension =
AddMonths(the date of the sus-
pension,3)

the date that the player can
return from suspension = the
date 3 months after the date
of the suspension

the date of the
suspension:
2005-12-12

the end date of
the player's con-
tract: 2006-06-

the date that
the player
can return
from sus-
pension =
2006-03-12

Add or sub-
tract a spe-
cified number
of months to
an input date

Function Example rule Inputs Outputs
Further
information

the start date of the player's
12 month contract =
AddWeeks(the end date of the
player's contract,-12)

the start date of the player's
12 month contract = the date
12 months before the end date
of the player's contract

30

the start
date of the
player's 12
month con-
tract =
2005-06-30

AddYears

the date of the trial =
AddYears(the date of the
crime,3)

the date of the trial = the date
3 years after the date of the
crime

the date that the prison sen-
tence starts = AddYears(the
date that the prison sentence
ends,-20)

the date that the prison sen-
tence starts = the date 20
years before the date that the
prison sentence ends

the date of the
crime: 2002-01-
01

the date that the
prison sentence
ends: 1980-03-
16

the date of
the trial =
2005-01-01

the date that
the prison
sentence
starts =
1960-03-16

Add or sub-
tract a spe-
cified number
of years to an
input date

YearStart

the start of the first relevant
year = YearStart(2009-09-09)

the start of the second rel-
evant year = the first day of
the year in which the date of
the grand occasion falls

the date of the
grand occasion:
2007-09-09

the start of
the first rel-
evant year
= 2009-01-
01

the start of
the second
relevant
year =
2007-01-01

Find the first
date in the
year

YearEnd

the end of the relevant year =
YearEnd(the relevant date)

the end of the relevant year =
the last day of the year in
which the relevant date falls

the relevant
date: 2005-10-
15

the end of
the relevant
year =
2005-12-31

Find the last
date in the
year

NextDate
the end of the Australian tax
year = NextDate(the test date,
30, 6)

the test date:
2005-07-02

the end of
the Aus-
tralian tax

Find the next
instance of
the given

Function Example rule Inputs Outputs
Further
information

year =
2006-06-30

day/month

UKTaxYearDates

the date of effect = the next
UK tax year end date on or
after the test date

the assessment date = the pre-
vious UK tax year start date on
or before the test date

the test date:
2003-09-21

the date of
effect =
2004-04-05

the assess-
ment date =
2003-04-06

Find the start
or the end
date for the
previous or
next UK tax
year

WeekdayCount

the number of working days
until my holiday = Week-
dayCount(2007-12-03, 2007-
12-13)

the number of business days in
the specified period = the num-
ber of weekdays (inclusive)
between 2007-10-15 and
2007-10-31

date1: 2007-12-
03; date2: 2007-
12-13

date1: 2007-10-
15; date2: 2007-
10-31

the number
of working
days until
my holiday
= 8

the number
of business
days in the
specified
period = 12

Count the
number of
weekdays
between two
dates

DayDifference

the number of days in the
assessment period = DayDif-
ference(2006-10-01,2006-10-
14)

date1: 2006-10-
01

date2: 2006-10-
14

the number
of days in
the assess-
ment period
= 13

Count the
number of
whole days
between two
dates

DayDifferenceInclusive

the number of days in the
assessment period = DayDif-
ferenceInclusive(2006-10-
01,2006-10-14)

date1: 2006-10-
01

date2: 2006-10-
14

the number
of days in
the assess-
ment period
= 14

DayDifferenceExclusive

the number of days in the
assessment period = DayDif-
ferenceExclusive(2006-10-
01,2006-10-14)

date1: 2006-10-
01

date2: 2006-10-
14

the number
of days in
the assess-
ment period
= 12

WeekDifference
the number of weeks until
Christmas = WeekDifference
(the current date,2011-12-25)

the current date:
2011-11-25

the number
of weeks
remaining =
4

Count the
number of
whole weeks
between two
dates

Function Example rule Inputs Outputs
Further
information

WeekDifferenceInclusive

the number of weeks until
Christmas = WeekDif-
ferenceInclusive(the current
date,2011-12-25)

the current date:
2011-11-25

the number
of weeks
remaining =
5

WeekDifferenceExclusive

the number of weeks until
Christmas = WeekDif-
ferenceExclusive(the current
date,2011-12-25)

the current date:
2011-11-25

the number
of weeks
remaining =
3

MonthDifference

the number of months remain-
ing in the phone contract =
MonthDifference(the current
date,the expiry date of the con-
tract)

the current date:
2011-11-28

the expiry date
of the contract:
2013-03-24

the number
of months
remaining =
15

Count the
number of
whole months
between two
dates

MonthDifferenceInclusive

the number of months remain-
ing in the phone contract =
MonthDifferenceInclusive(the
current date,the expiry date of
the contract)

the current date:
2011-11-28

the expiry date
of the contract:
2013-03-24

the number
of months
remaining =
16

MonthDifferenceExclusive

the number of months remain-
ing in the phone contract =
MonthDifferenceExclusive(the
current date,the expiry date of
the contract)

the current date:
2011-11-28

the expiry date
of the contract:
2013-03-24

the number
of months
remaining =
14

YearDifference

the age of the tree in years =
YearDifference(the date the
tree was planted, the date the
tree was assessed)

the age of the tree in years =
the number of years between
the date the tree was planted
and the date the tree was
assessed

the date the tree
was planted:
2000-03-12

the date the tree
was assessed:
2003-12-12

the age of
the tree in
years = 3 Count the

number of
whole years
between two
dates

YearDifferenceInclusive
the age of the tree in years =
YearDifferenceInclusive(the
date the tree was planted, the
date the tree was assessed)

the date the tree
was planted:
2000-03-12

the date the tree
was assessed:

the age of
the tree in
years = 4

Function Example rule Inputs Outputs
Further
information

the age of the tree in years =
the number of years (inclus-
ive) between the date the tree
was planted and the date the
tree was assessed

2003-12-12

YearDifferenceExclusive

the age of the tree in years =
YearDifferenceExclusive(the
date the tree was planted, the
date the tree was assessed)

the age of the tree in years =
the number of years (exclus-
ive) between the date the tree
was planted and the date the
tree was assessed

the date the tree
was planted:
2000-03-12

the date the tree
was assessed:
2003-12-12

the age of
the tree in
years = 2

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Get the latest or earliest date or time

l Find the day from a date

Time of day function rule examples
Time of day functions are used with time of day variables to set the time of day and to extract the
second/minute/hour from a time of day.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below.

Rule examples

Function Example rule Inputs Outputs
Further
information

TimeOfDay the latest submission time =
TimeOfDay("12:30:00") 12:30:00

the latest
submission
time =
12:30:00

Get the time
of day from a
text string

ExtractSecond
the second component of
the submission time =
ExtractSecond(the sub-

the submission time:
14:42:32

the second
component

Get the
second com-

Function Example rule Inputs Outputs
Further
information

mission time)
of the sub-
mission
time = 32

ponent of an
input time

ExtractMinute

the minute component of
the submission time =
ExtractSecond(the sub-
mission time)

the submission time:
14:42:32

the minute
component
of the sub-
mission
time = 42

Get the
minute com-
ponent of an
input time

ExtractHour

the hour component of the
submission time =
ExtractHour(the submission
time)

the submission time:
14:42:32

the hour
component
of the sub-
mission
time = 14

Get the hour
component of
an input time

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Get the latest or earliest date or time

Date and time function rule examples
Date and time functions are used with date and time variables to express the current date and time (at the start
of the session), to set the date and time, to calculate the difference in units between two dates, to extract a unit
from a date and time and to extract a time of day.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below.

Rule examples

Function Example rule Inputs Outputs
Further
information

CurrentDateTime
the date and time of the
investigation = Cur-
rentDateTime()

the current date
time: 2009-09-15
03:24:12

the date and
time of the
investigation
= 2009-09-
15 03:24:12

Get the cur-
rent date and
time

DateTime
the latest submission date
and time= DateTime(the sub-
mission date and time spe-

the submission
date and time spe-

the latest
submission

Get a date
and time from

Function Example rule Inputs Outputs
Further
information

cified on the application
form)

cified on the applic-
ation form: 2012-
12-31 18:00:00

date and
time= 2012-
12-31
18:00:00

a text string

ConcatenateDateTime

the latest submission time =
ConcatenateDateTime(the
submission date, the sub-
mission closing time)

the submission
date: 2010-01-15

the submission
closing time:
17:00:00

the latest
submission
time =
2010-01-15
17:00:00

Get a date
and time by
joining
together a
separate date
and time

SecondDifference

the number of seconds
between first place and
second place = Secon-
dDifference(the first place
time, the second place time)

the first place
time: 2008-06-30
09:31:05

the second place
time: 2008-06-30
09:31:10

the number
of seconds
between
first place
and second
place = 5

Count the
number of
seconds
between two
times

SecondDifferenceInclusive

the number of seconds
between first place and
second place = Secon-
dDifferenceInclusive(the
first place time, the second
place time)

the first place
time: 2008-06-30
09:31:05

the second place
time: 2008-06-30
09:31:10

the number
of seconds
between
first place
and second
place = 6

SecondDifferenceExclusive

the number of seconds
between first place and
second place = Secon-
dDifferenceExclusive(the
first place time, the second
place time)

the first place
time: 2008-06-30
09:31:05

the second place
time: 2008-06-30
09:31:10

the number
of seconds
between
first place
and second
place = 4

MinuteDifference

the number of minutes late
the plumber is = MinuteDif-
ference(the time the
plumber was meant to
arrive, the time that the
plumber actually arrived)

the time the
plumber was
meant to arrive:
2009-10-18
08:30:00

the time that the
plumber actually
arrived: 2009-10-
18 09:00:40

the number
of minutes
late the
plumber is =
30

Count the
number of
whole
minutes
between two
times

MinuteDifferenceInclusive the number of minutes late the time the the number

Function Example rule Inputs Outputs
Further
information

the plumber is = MinuteDif-
ferenceInclusive(the time
the plumber was meant to
arrive, the time that the
plumber actually arrived)

plumber was
meant to arrive:
2009-10-18
08:30:00

the time that the
plumber actually
arrived: 2009-10-
18 09:00:40

of minutes
late the
plumber is =
31

MinuteDifferenceExclusive

the number of minutes late
the plumber is = MinuteDif-
ferenceExclusive(the time
the plumber was meant to
arrive, the time that the
plumber actually arrived)

the time the
plumber was
meant to arrive:
2009-10-18
08:30:00

the time that the
plumber actually
arrived: 2009-10-
18 09:00:40

the number
of minutes
late the
plumber is =
29

HourDifference

the number of hours the
plane was delayed by =
HourDifference(the sched-
uled arrival time of the
flight, the arrival time of the
delayed flight)

the scheduled
arrival time of the
flight: 2006-10-13
09:50:00

the arrival time of
the delayed flight:
2006-10-13
11:00:00

the number
of hours the
plane was
delayed by
= 1

Count the
number of
whole hours
between two
times

HourDifferenceInclusive

the number of hours the
plane was delayed by =
HourDifferenceInclusive(the
scheduled arrival time of the
flight, the arrival time of the
delayed flight)

the scheduled
arrival time of the
flight: 2006-10-13
09:50:00

the arrival time of
the delayed flight:
2006-10-13
11:00:00

the number
of hours the
plane was
delayed by
= 2

HourDifferenceExclusive

the number of hours the
plane was delayed by =
HourDifferenceExclusive(the
scheduled arrival time of the
flight, the arrival time of the
delayed flight)

the scheduled
arrival time of the
flight: 2006-10-13
09:50:00

the arrival time of
the delayed flight:

the number
of hours the
plane was
delayed by
= 0

Function Example rule Inputs Outputs
Further
information

2006-10-13
11:00:00

ExtractDate
the password expiry date =
ExtractDate(the password
expiry date time)

the password
expiry date time:
2009-09-11
00:00:00

the pass-
word expiry
date =
2009-09-11

Get the date
from a date
and time

ExtractTimeOfDay
the time of the assessment
= ExtractTimeOfDay(the cur-
rent date time)

the current date
time: 2009-09-04
10:46:12

the time of
the assess-
ment =
10:46:12

Get the time
of day from a
date and time

AddHours

the date time that the offer
expires = AddHours(the date
time that the offer starts,
48)

the date time that
the offer starts:
2010-10-08
12:00:00

the date
time that the
offer expires
= 2010-10-
10 12:00:00

Get a date
and time by
adding or sub-
tracting a spe-
cified number
of hours to
another date
and time

AddMinutes

the date time that the train
is due = the time 25
minutes after the date time
that the train departed

the date time that
the train departed:
2005-01-16
22:50:00

the date
time that the
train is due
= 2005-01-
16 23:15:00

Get a date
and time by
adding or sub-
tracting a spe-
cified number
of minutes to
another date
and time

AddSeconds

the date time at the start of
the recording = the time 40
seconds before the date time
at the end of the recording

the date time at
the end of the
recording: 2008-
01-01 14:27:52

the date
time at the
start of the
recording =
2008-01-01
14:27:12

Get a date
and time by
adding or sub-
tracting a spe-
cified number
of seconds to
another date
and time

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Get the latest or earliest date or time

Numerical function rule examples
Numerical functions are used with number and currency variables to perform basic and complex arithmetic cal-
culations, trigonometric calculations and maximum/minimum calculations.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below.

Rule examples

Function Example rule Inputs Outputs

Number the number =Number(the
number text)

the number text:
15

the number = 15

Addition
the total = the first
amount + the second
amount

the first amount: 2;
the second
amount: 3

the total = 5

Subtraction
the total = the first
amount - the second
amount

the first amount:
100; the second
amount: 5

the total = 95

Multiplication
the total = the first
amount * the second
amount

the first amount: 7;
the second
amount: 2

the total = 14

Division
the total = the first
amount / the second
amount

the first amount:
10; the second
amount: 5

the total = 2

Integer Division the result = the value \ 5 the value: 54.25 the result = 10

Remainder after
Integer Division

the total = the first
amount modulo the
second amount

the first amount: 9;
the second
amount: 3

the result = 0

Maximum

the highest number of
fish caught = Maximum
(the number of fish
caught by Bob, the num-
ber of fish caught by
Mary)

the number of fish
caught by Bob: 8;
the number of fish
caught by Mary: 7

the highest number of fish caught
=8

Minimum

the score for the better
round of golf = the lesser
of the score of the round
of golf for James and the
score of the round of golf
for Simon

the score of the
round of golf for
James: 75; the
score of the round
of golf for Simon:
80

the score for the better round of
golf = 75

Function Example rule Inputs Outputs

Exponentiation (xy) the result = Xy(the
value,3) the value: 5 the result = 125

Mathematical Constant
(ex)

the result = Ex(the
value) the value: 0.3527 the result = 1.42290420813407

Absolute value the result = Abs(the
value) the value: -80 the result = 80

Natural Logarithm the result = Ln(the
value) the value: 0.3527 the result = -1.04213744174013

Logarithm Base the result = Log(the
value) the value: 0.3527 the result = -0.45259454033251

Square Root the result = Sqrt(the
value) the value: 64 the result = 8

Round the result = Round(the
value,3) the value: 2.45678 the result = 2.457

Truncation the result = Trunc(the
value,1) the value: 64.4657 the result = 64.4

Sine the result = Sin(the
value) the value: 0.3527 the result = 0.345432860836779

Cosine the result = Cos(the
value) the value: 0.3527 the result = 0.938443465880667

Tangent the result = Tan(the
value) the value: 0.3527 the result = 0.368091284553421

Inverse Sine the result = Asin(the
value) the value: 0.3527 the result = 0.360454968099581

Inverse Cosine the result = Acos(the
value) the value: 0.3527 the result = 1.21034135869532

Inverse Tangent the result = Atan(the
value) the value: 0.3527 the result = 0.339078136684554

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Use a variable in a mathematical calculation in a rule conclusion

l Convert a text string into a number or date

Text function rule examples
Text functions are used with text variables to combine text strings and to extract parts of text strings.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below. Note
that text functions are case-insensitive.

Rule examples

Function Example rule Inputs Outputs
Further
information

Contains

the account may be a benefit
account if

Contains(the account
name, "benefit")

the account name: "Special
Benefits"

the account
may be a
benefit
account =
true

Check if a text
string con-
tains a par-
ticular
substring

StartsWith

the person should be rep-
resented if

StartsWith(the person's
name, "Sir")

the person's name: "Sir
Lancelot"

the person
should be
represented
= true

Check if a text
string con-
tains a par-
ticular
substring at
the start of
the string

EndsWith

the product uses the ascend-
ing sort code if

EndsWith(the product
code, "-ASC")

the product code: "B421-
A3N-ASC"

the product
uses the
ascending
sort code =
true

Check if a text
string con-
tains a par-
ticular
substring at
the end of the
string

IsNumber

the postcode is a valid Aus-
tralian postcode if

IsNumber(the postcode)
and Length(the postcode)
= 4

the postcode: "2612"

the post-
code is a
valid Aus-
tralian post-
code = true

Check if a text
string is a
number

Length
the product code is valid if

Length(the product code)
> 8

the product code:
"123456789"

the product
code is valid
= true

Find the
length of a
text string

Concatenation
the screen heading variable
for the person = the con-
catenation of the person's

the person's first name: Wil-
liam

the screen
heading

Combine mul-
tiple text
strings into a

Function Example rule Inputs Outputs
Further
information

first name & ", " & the per-
son's age & ", " & the per-
son's occupation

the person's age: 20

the person's occupation: Stu-
dent

variable for
the person
= "William,
20, Student"

single text
variable

Substring customer reference = Sub-
string(customer name, 4, 4) customer name: "maryjane"

customer
reference =
"jane"

Extract part of
a text string

Text the customer's age text =
Text(the customer's age) the customer's age: 25

the cus-
tomer's age
text = "25"

Convert a
number or
date into a
text string

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

Entity and relationship function rule examples
Entity functions are used to perform operations on entity-specific data to produce global results, such as count-
ing the number of instances of an entity, obtaining the highest/most recent or lowest/least recent value of an
entity-level variable, and adding up numerical values gathered from each instance of the entity.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below.

Rule examples

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

For

Source
entity: the
child

Target
entity: the
school

Rela-
tionship
type:
Many-to-
one

the child may apply for a scholarship
if

For(the child's
school, the school
has a scholarship pro-
gram)

the child does not have to go to school
if

in the case of the

the child's
school: St
Mary's;
the school
has a
schol-
arship pro-
gram:
false

the child's

the child
may apply
for a schol-
arship =
false

the child
does not
have to go
to school
= true

Refer to
entities
connected
by a to-
one rela-
tionship

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

Rela-
tionship
text: the
child's
school

child's school, the
school is closed for a
pupil free day

the child's school name = the school
name, in the case of the child's school

school: St
Joseph's;
the school
is closed
for a pupil
free day:
true

the child's
school: St
Clare's
Public
School;
the school
name: St
Clare's
Public
School

the child's
school
name = St
Clare's
Public
School

ForScope

Source
entity: the
person

Target
entity: the
car

Rela-
tionship
type: One-
to-one

Rela-
tionship
text: the
person's
car

the person has a reliable car if

in the case of the per-
son's car

t-
h-
e

n-
u-
m-
b-
e-
r

o-
f
t-
i-
m-
e-
s

t-
h-
e

the car:
NSW001;
the num-
ber of
times the
car has
broken
down: 4

the person
has a reli-
able car =
false

Extend the
For, For All
and Exists
functions

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

c-
a-
r

h-
a-
s

b-
r-
o-
k-
e-
n

d-
o-
w-
n

=

0

ForScope
(Alias)

Source
entity: the
person

Target
entity: the
person

Rela-
tionship
type: One-
to-one

Rela-
tionship
text: the
person's
spouse

the person has the highest taxable
income if

ForScope(the per-
son’s spouse, the
spouse)

t-
h-
e

p-
e-
r-
s-
o-
n-
’-
s

i-
n-
c-
o-
m-
e

the per-
son: Fran;
the per-
son’s
income:
500

the per-
son: Seb;
the per-
son’s
income:
250

the person
has the
highest
taxable
income-
e=true
(Fran)

the person
has the
highest
taxable
income-
e=false
(Seb)

Remove
ambiguity
when reas-
oning
about
more than
one
instance of
the same
entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

>

t-
h-
e

s-
p-
o-
u-
s-
e-
’-
s

i-
n-
c-
o-
m-
e

ForAll

Source
entity:
Global

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
children

the playground is empty if

ForAll(the children,
the child is at home)

the playground is empty if

ForAll(the children,
the child's location =
"home")

the playground is empty if

each of the children
is at home

the child:
Sally; the
child is at
home:
true; the
child's loc-
ation:
home

the child:
Molly; the
child is at
home:
true; the
child's loc-
ation:
home

the child:
Elizabeth;
the child is
at home:
false; the
child's loc-
ation:
play-

the play-
ground is
empty =
false

Check that
a condition
returns
true for
every
instance of
an entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

ground

ForAllScope

Source
entity: the
person

Target
entity: the
cat

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
person's
cats

the person is happy if

for all of the person's
cats

t-
h-
e

c-
a-
t
i-
s

h-
a-
p-
p-
y

the cat:
Tiger; the
cat is
happy:
false

the cat:
Kit; the
cat is
happy:
true

the cat:
Patch; the
cat is
happy:
true

the person
is happy =
false

Extend the
For, For All
and Exists
functions

ForAllScope
(Alias)

Source
entity: the
person

Target
entity: the
person

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
person's
dependents

the person has one large party if

for all of the person's
dependents (the
dependent)

t-
h-
e

p-
e-
r-
s-
o-
n-
'-
s

b-
i-
rthday

=

t-
h-
e

d-

the per-
son:
Tobias;
the per-
son's birth-
day: 3
May

the per-
son: Alex-
andra; the
person's
birthday:
3 May

the per-
son: Vict-
oria; the
person's
birthday:
5 May

the person
has one
large
party =
false

Remove
ambiguity
when reas-
oning
about
more than
one
instance of
the same
entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

e-
p-
e-
n-
d-
e-
n-
t-
'-
s

b-
i-
rthday

Exists

Source
entity:
Global

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
children

the playground has good equipment if

Exists(the children,
the child is happy)

the playground has good equipment if

at least one of the
children is happy

the child:
Isabelle ;
the child is
happy:
false

the child:
Xavier;
the child is
happy:
true

the child:
Phoebe;
the child is
happy:
false

the child:
Rachel;
the child is
happy:
false

the play-
ground
has good
equipment
= true

Check that
a condition
returns
true for at
least one
instance of
an entity

ExistsScope

Source
entity: the
plan

Target
entity: the
product

Rela-
tionship

the plan has incompatible products if

ExistsScope(the
plan's products)

t-
h-
e

the plan:
Plan 1;
the plan's
network:
Vodafone

the plan:
Plan 2;
the plan's
network:

the plan
has incom-
patible
products
= true

Extend the
For, For All
and Exists
functions

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

type:
Many-to-
many

Rela-
tionship
text: the
plan's
products

p-
l-
a-
n-
'-
s

n-
e-
t-
w-
o-
r-
k

<-
>

t-
h-
e

p-
r-
o-
d-
u-
c-
t-
'-
s

n-
e-
t-
w-
o-
r-
k

Telstra

the
product:
Product 1;
the
product's
network:
Optus

the
product:
Product 2;
the
product's
network:
Vodafone

ExistsScope
(Alias)

Source
entity:
Global

Target
entity: the
child

Rela-
tionship
type: One-

the child is a twin if

ExistsScope(the chil-
dren, the other child)

t-
h-

the child:
Kenneth;
the child’s
date of
birth:
2007-10-
15; the
child's
mother:

the child is
a twin =
true (Ken-
neth)

the child is
a twin =
true
(Benny)

the child is

Remove
ambiguity
when reas-
oning
about
more than
one
instance of
the same

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

to-many

Rela-
tionship
text: the
children

e

c-
h-
i-
l-
d-
’-
s

d-
a-
t-
e

o-
f
b-
i-
r-
t-
h

=

t-
h-
e

o-
t-
h-
e-
r

c-
h-
i-
l-
d-
’-
s

d-
a-
t-
e

o-
f
b-
i-
r-
t-

Samantha
Jane
Smith

the child:
Benny;
the child’s
date of
birth:
2007-10-
15; the
child's
mother:
Samantha
Jane
Smith

the child:
Jenny;
the child’s
date of
birth:
2006-01-
02; the
child's
mother:
Samantha
Jane
Smith

a twin =
false
(Jenny)

entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

a-
n-
d

t-
h-
e

c-
h-
i-
l-
d-
'-
s

m-
o-
t-
h-
e-
r

<-
>

t-
h-
e

o-
t-
h-
e-
r

c-
h-
i-
l-
d-
'-
s

m-
o-
t-
h-
e-
r

IsMemberOf
Source
entity: the

the child is a member of the person's
household if

the child:
Sam; the

the child
(Sam) is a

Use rela-
tionship

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

person

Target
entity: the
child

Rela-
tionship
type:
Many-to-
many

Rela-
tionship
text: the
person's
household

the child's address =
the person's address

child's
address:
15 Mel-
bourne
Avenue
Canberra

the per-
son:
James;
the per-
son's
address:
21 Sydney
Avenue
Canberra

member
of the per-
son's
(James)
household
= false

mem-
bership as
a rule input

Infer mem-
bership of
a rela-
tionship

IsNotMem-
berOf

Source
entity: the
person

Target
entity: the
bird

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
person's
hated birds

Reverse
relationship
text: the
bird's
owner

the bird is happy if

in the case of the
bird's owner

I-
s-
NotMemberOf
(-
t-
h-
e

c-
a-
t-
,
t-
h-
e

p-
e-
r-
s-
o-
n-
'-
s

h-
a-
t-

the bird:
Chirpy;
the bird is
a member
of the per-
son's
hated
birds: true

the bird
(Chirpy) is
happy =
false

Use rela-
tionship
mem-
bership as
a rule input

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

e-
d

b-
i-
r-
d-
s-
)

InferInstance

Source
entity: the
employee

Target
entity: the
location

Rela-
tionship
type:
Many-to-
one

Rela-
tionship
text: the
location in
which the
employee
works

Reverse
relationship
text: the
employees
at the loc-
ation

the location in which the employee
works (the employee’s local office)
exists

InferInstance(the location in which
the employee works, the employee’s
local office)

the
employe-
e: Gor-
don; the
employee’-
s local
office:
"London"

the
employe-
e: Brit-
ney; the
employee’-
s local
office:
"London"

the
employe-
e: Domi-
nique; the
employee’-
s local
office:
"Paris"

new
inferred
location:
London;
the loc-
ation =
"London",
the
employee
(Gordon)
is a mem-
ber of the
employ-
ees at the
location
(London)
= true, the
employee
(Britney)
is a mem-
ber of the
employ-
ees at the
location
(London)
= true, the
employee
(Domi-
nique) is a
member
of the
employ-
ees at the

Infer exist-
ence of
entities to
satisfy the
rela-
tionship

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

location
(London)
= false

new
inferred
location:
Paris; the
location =
"Paris",
the
employee
(Gordon)
is a mem-
ber of the
employ-
ees at the
location
(Paris) =
false, the
employee
(Britney)
is a mem-
ber of the
employ-
ees at the
location
(Paris) =
false, the
employee
(Domi-
nique) is a
member
of the
employ-
ees at the
location
(Paris) =
true

InstanceCount
Source
entity: the

the number of children that the
claimant has = InstanceCount(the

the child:
Anthony

the num-
ber of chil-

Count the
number of

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

claimant

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
claimant's
children

claimant's children)

the child:
Peter

the child:
Rebecca

the child:
Fiona

dren that
the
claimant
has = 4

instances
of an entity

InstanceCoun-
tIf

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
claimant's
children

the number of school students that
the claimant has = InstanceCountIf
(the claimant's children, the child is a
school student)

the child:
Anthony;
the child is
a school
student:
false

the child:
Peter; the
child is a
school stu-
dent:
false

the child:
Rebecca;
the child is
a school
student:
true

the num-
ber of
school stu-
dents that
the
claimant
has = 1

Count the
number of
instances
of an entity
for which a
particular
attribute is
true

InstanceMax-
imum

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship

the highest bank balance for a child of
the claimant = InstanceMaximum(the
claimant's children, the child's bank
balance)

the child:
Max; the
child's
bank bal-
ance: $50

the child:
Sophie;
the child's

the
highest
bank bal-
ance for a
child of the
claimant =
$175

Get the
highest/-
most
recent
value of an
entity-
level vari-
able

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

type: One-
to-many

Rela-
tionship
text: the
claimant's
children

bank bal-
ance:
$175

the child:
Katie; the
child's
bank bal-
ance:
$120

InstanceMax-
imumIf

Source
entity: the
company

Target
entity: the
employee

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
company's
employees

the most recent date of employment
of a permanent employee by the com-
pany = InstanceMaximumIf(the com-
pany's employees, the employee's
date of employment, the employee is a
permanent employee)

the
employe-
e: David;
the
employee'-
s date of
employ-
ment:
01/01/200-
6; the
employee
is a per-
manent
employe-
e: true

the
employe-
e: Shaun;
the
employee'-
s date of
employ-
ment:
24/08/200-
6; the
employee
is a per-
manent
employe-
e: false

the

the most
recent
date of
employ-
ment of a
per-
manent
employee
by the
company
= 2006-
05-15

Get the
highest/-
most
recent
value of an
entity-
level vari-
able for
which a
particular
attribute is
true

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

employe-
e: Anita;
the
employee'-
s date of
employ-
ment:
15/05/200-
6; the
employee
is a per-
manent
employe-
e: true

InstanceMin-
imum

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
claimant's
children

the lightest weight for a child of the
claimant = InstanceMinimum(the
claimant's children, the child's weight
in kilograms)

the child:
Harry; the
child's
weight in
kilo-
grams: 15

the child:
Sharon;
the child's
weight in
kilo-
grams: 30

the child:
Fran; the
child's
weight in
kilo-
grams: 45

the light-
est weight
for a child
of the
claimant =
15

Get the
lowest-
/least
recent
value of an
entity-
level vari-
able

InstanceMin-
imumIf

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship

the youngest of the claimant's female
children = InstanceMinimumIf(the
claimant's children, the child's age,
the child is female)

the child:
Sam; the
child's
age: 3;
the child is
female:
false

the child:

the young-
est of the
claimant's
female
children =
4

Get the
lowest-
/least
recent
value of an
entity-
level vari-
able for

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

type: One-
to-many

Rela-
tionship
text: the
claimant's
children

Alex; the
child's
age: 4;
the child is
female:
true

the child:
Sharon;
the child's
age: 6;
the child is
female:
false

the child:
Paris; the
child's
age: 8;
the child is
female:
true

which a
particular
attribute is
true

InstanceSum

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
claimant's
children

the total Child Care Benefit payable to
the claimant = InstanceSum(the
claimant's children, the Child Care
Benefit amount for the child)

the child:
Mary; the
Child Care
Benefit
amount
for the
child:
$500

the child:
Sam; the
Child Care
Benefit
amount
for the
child:
$250

the child:
Lizzie; the
Child Care
Benefit

the total
Child Care
Benefit
payable to
the
claimant =
$900

Add up
numerical
values
gathered
from each
instance of
an entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

amount
for the
child:
$150

InstanceSumIf

Source
entity: the
claimant

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
claimant's
children

the total cost of boarding school fees
for the claimant = InstanceSumIf(the
claimant's children, the annual school
fees for the child, the child attends a
boarding school)

the child:
Sally; the
annual
school
fees for
the child:
$18000;
the child
attends a
boarding
school:
true

the child:
James;
the annual
school
fees for
the child:
$15000;
the child
attends a
boarding
school:
true

the child:
Bob; the
annual
school
fees for
the child:
$10000;
the child
attends a
boarding
school:
false

the total
cost of
boarding
school
fees for
the
claimant =
$33000

Add up
numerical
values
gathered
from each
instance of
an entity
for which a
particular
attribute is
true

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

InstanceValueIf

Source
entity:
Global

Target
entity: the
child

Rela-
tionship
type: One-
to-many

Rela-
tionship
text: the
children

the name of the oldest child =
InstanceValueIf(the children, the
child's name, the child's age = the age
of the oldest child)

the age of
the oldest
child = 8

the child:
Sam; the
child's
age: 3

the child:
Alex; the
child's
age: 4

the child:
Sharon;
the child's
age: 6

the child:
Paris; the
child's
age: 8

the name
of the old-
est child =
Paris

Get a
value from
a unique
entity
instance

InstanceEquals

Source
entity: the
product

Target
entity: the
product

Rela-
tionship
type:
Many-to-
many

Rela-
tionship
text: the
products

the product is a duplicate if

ExistsScope(the products, the other
product)

the product's code = the other
product's code and

InstanceEquals(the product,
the other product)

the
product:
Product A;
the
product's
code:
TD2010

the
product:
Product B;
the
product's
code:
SM2031

the
product:
Product A;
the
product's
code:
TD2010

the
product
(Product
A) is a
duplicate
= true

the
product
(Product
B) is a
duplicate
= false

Compare
instances
of the
same
entity

Function
Declar-
ations

Example rule Inputs Outputs
Further
inform-
ation

InstanceNotEq-
uals

Source
entity: the
employee

Target
entity: the
employee

Rela-
tionship
type:
Many-to-
many

Rela-
tionship
text: the
employees

the employee has a conflicting ID if

ExistsScope(the employees, the
other employee)

the employee's ID = the other
employee's ID and

InstanceNotEquals(the
employee, the other employee)

the
employe-
e: Harry;
the
employee'-
s ID:
RN6710

the
employe-
e: Will;
the
employee'-
s ID:
RN5812

the
employe-
e: Kate;
the
employee'-
s ID:
RN5812

the
employee
(Harry)
has a con-
flicting ID
= false

the
employee
(Will) has
a con-
flicting ID
= true

the
employee
(Kate) has
a con-
flicting ID
= true

Compare
instances
of the
same
entity

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

Temporal reasoning function rule examples
Temporal reasoning functions are used in rules to compute results for, and express relationships that involve,
attributes over multiple periods.
Be sure to use the exact syntax for these functions including spacing and parentheses as specified below.

Rule examples

Function Example
Further
information

IntervalCountDistinct the client's distinct address count = IntervalCountDistinct
(2005-07-01,2006-07-01,the client's address)

Calculate the
number of dis-
tinct values
for a variable
in a time

Function Example
Further
information

period

IntervalCountDistinctIf
the client's distinct address count = IntervalCountDistinctIf
(2000-01-01,2007-01-01,the client's address,the client is
aged over 18)

Calculate the
number of dis-
tinct values
for a variable
in a time
period only
when a con-
dition is true

IntervalDailySum
the amount of benefit payable for the assessment period =
IntervalDailySum(2006-07-05,2006-08-01,the daily rate of
benefit)

Calculate the
sum of a vari-
able in a time
period

IntervalDailySumIf
the total amount spent on weekends in December = Inter-
valDailySumIf(2006-12-01,2007-01-01,the daily amount
spent,the day is a weekend)

Calculate the
sum of a vari-
able in a time
period only
when a con-
dition is true

IntervalMaximum
the maximum rate of benefit during the assessment period
= IntervalMaximum(2006-07-05,2006-08-01,the daily rate
of benefit)

Find the max-
imum amount
in a period

IntervalMaximumIf

the maximum rate of benefit payable during the assessment
period = IntervalMaximumIf(2006-07-05,2006-08-01,the
maximum daily rate of benefit,the client is eligible for the
benefit)

Find the max-
imum amount
in a period
when a
boolean attrib-
ute is true

IntervalMinimum
the minimum rate of benefit during the assessment period =
IntervalMinimum(2006-07-05,2006-08-01,the daily rate of
benefit)

Find the min-
imum amount
in a period

IntervalMinimumIf

the minimum rate of benefit payable during the assessment
period = IntervalMinimumIf(2006-07-05,2006-08-01,the
minimum daily rate of benefit,the client is eligible for the
benefit)

Find the min-
imum amount
in a period
when a
boolean attrib-
ute is true

IntervalWeightedAverage the average number of children in care = Inter- Calculate the

Function Example
Further
information

valWeightedAverage(2007-01-22,2007-01-29,the number
of children in care)

average
value of a vari-
able in a time
period

IntervalWeightedAverageIf

the average number of children in care for the weekdays in
the assessment period = IntervalWeightedAverageIf(2007-
01-22,2007-01-29,the number of children in care,the day is
a weekday)

Calculate the
average
value of a vari-
able in a time
period when a
condition is
true

IntervalAlways

the client was in jail at all times during the assessment
period if

IntervalAlways(2006-07-10,2006-07-21,the
client was in jail)

Check if a con-
dition is true
at all times in
the time
period

IntervalAtLeastDays

the employee has been at work for at least 5 days during
the assessment period if

IntervalAtLeastDays(2007-07-01,2007-07-
08,5,the employee was working)

Check if a con-
dition is true
for at least
the specified
number of
days in the
time period

IntervalConsecutiveDays

the employee has been at work for at least 5 consecutive
days during the assessment period if

IntervalConsecutiveDays(2007-07-01,2007-
07-08,5,the employee was working)

Check if a con-
dition is true
for at least
the specified
number of
consecutive
days in the
time period

IntervalSometimes

the client has been in Australia if

IntervalSometimes(2007-01-08,2007-01-
23,the client was in Australia)

Check if a con-
dition is ever
true in the
time period

ValueAt the rate of benefit payable on the date of claim = ValueAt
(the date of claim,the rate of benefit)

Determine a
rule attribute
on a given
date

Function Example
Further
information

WhenLast
the date the customer's bank balance was last over $100 =
WhenLast(the current date,the customer's bank balance >
100)

Find the
closest date
when an
attribute was
true

WhenNext
the date the customer's bank balance was over $100 for the
first time in 2007= WhenNext(2007-01-01,the customer's
bank balance > 100)

Find the
closest date
when an
attribute was
true

Latest
the amount of benefit paid to the applicant since 1/7/2007
= IntervalDailySum(2007-07-01,Latest(),the amount of the
monthly payment)

Get a date
value equi-
valent to the
latest possible
date

Earliest
the amount of benefit paid to the applicant up until
1/7/2007 = IntervalDailySum(Earliest(),2007-07-01,the
amount of the monthly payment)

Get a date
value equi-
valent to the
earliest pos-
sible date

TemporalIsWeekday

the applicant receives money if

TemporalIsWeekday(2006-07-01,2006-07-
15)

Calculate the
weekdays in
a given time
period

TemporalOncePerMonth

the applicant receives an allowance if

TemporalOncePerMonth(2006-07-01,2006-
08-31,15)

Calculate a
specific day in
a month for a
given time
period

TemporalDaysSince the number of days since it has rained = TemporalDaysSince
(the date of the most recent rainfall,the current date)

Calculate the
number of
days since a
given date

TemporalWeeksSince the number of weeks in the assessment period = Tem-
poralWeeksSince(2007-03-12,2007-04-11)

Calculate the
number of
weeks since a
given date

TemporalMonthsSince the number of months the mobile phone contract has been Calculate the

Function Example
Further
information

in effect = TemporalMonthsSince(the start date of the
mobile phone contract,the current date)

number of
months since
a given date

TemporalYearsSince the child's age = TemporalYearsSince(the child's date of
birth,the child’s fifth birthday)

Calculate the
number of
years since a
given date

TemporalAlwaysDays

the employee has been at work for the last 4 days if

TemporalAlwaysDays(4,the employee was
working)

Check if a con-
dition is true
for all of a spe-
cified number
of preceding
days

TemporalConsecutiveDays

the customer's bank balance has exceeded $50 for at least 2
consecutive days in the last 5 days if

TemporalConsecutiveDays(2,5,the customer's
bank balance exceeds $50)

Check if a con-
dition is true
for at least
the specified
number of
consecutive
preceding
days

TemporalSometimesDays

the customer's bank balance has exceeded $100 in the last
4 days if

TemporalSometimesDays(4,the customer's
bank balance exceeds $100)

Check if a con-
dition is ever
true within a
specified num-
ber of pre-
ceding days

TemporalAfter
the July 2005 rate changes apply if

TemporalAfter(2005-06-30)

Check if a con-
dition is true
after a given
date and false
on and before

TemporalBefore
the pre-2007 Ministerial Determination is in force if

TemporalBefore(2007-01-01)

Check if a con-
dition is true
before a
given date
and false on
and after-
wards

Function Example
Further
information

TemporalOn
the New Millennium Promotion is available to customers if

TemporalOn(2000-01-01)

Check if a con-
dition is true
on a given
date and false
before and
afterwards

TemporalOnOrAfter
the 2007 Ministerial Determination is in force if

TemporalOnOrAfter(2007-01-01)

Check if a con-
dition is true
on or after a
given date
and false
before

TemporalOnOrBefore
the pre-Christmas price list applies if

TemporalOnOrBefore(2007-12-24)

Check if a con-
dition is true
on and before
a given date
and false
afterwards

TemporalFromStartDate
the person's most recent employer = Tem-
poralFromStartDate(the person's jobs, the job's start date,
the job's employer)

Get a tem-
poral attribute
from entity
instances with
values from
the start date

TemporalFromEndDate
the person's effective first aid certificate ID = Tem-
poralFromEndDate(the person's first aid certificates, the
first aid certificate's expiry date, the first aid certificate ID)

Get a tem-
poral attribute
from entity
instances with
values up
until the end
date

TemporalFromRange

the person's effective security clearance = Tem-
poralFromRange(the person's security clearances, the secur-
ity clearance's start date, the security clearance's expiry
date, the security clearance)

Get a tem-
poral attribute
from entity
instances with
values from
the start date
until the end
date

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

Certain and known operator rule examples
The known and certain operators are used on rule conditions and cause the condition to evaluate a predictable
way when the underlying attribute in the condition has a particular value.

Operator Example

certain

the applicant is eligible for the benefit if

it is certain whether or not the applicant is entitled to a
payment or

the applicant's eligibility status is certain

uncertain

the outcome is unclear if

it is uncertain whether or not the means have been
achieved or

the status of the investigation is uncertain

known

the interview has been completed if

it is known whether or not the applicant is eligible for a
payment or

the applicant's rate of benefit is known

unknown

the generic heading should be shown if

it is unknown whether or not the applicant is eligible or

the applicant's rate of entitlement in unknown

currently known
the income details are available if

the applicant's income is currently known

The known operator is used to ascertain whether an issue has been addressed by the user. The known operator
creates a condition that evaluates to true when the attribute used by the condition has a value, no matter what
that value is. It is commonly used in procedural rules that drive an investigation. For example, forcing attrib-
utes to be known in a particular order before determining a goal (eg forcing a particular screen flow rather than
letting the rulebase dictate the screen display order).
The currently known operator is used to test whether an attribute is known, without causing it to be brought
up in the question search and asked of the user, ie it will test the current state of the attribute. In the example
above, if the applicant's income is unknown, the conclusion will be inferred to false.
The unknown operator is most commonly used for defaulting values in the rulebase where the user has the
option of providing an overriding value (either directly or through an inferred attribute). For example:

the team's game point total = the team's points from round 1 + the team's points from round 2 + the
team's points from round 3

the team's points from round 1

0 the team's points from round 1 (as recorded by the team) is
unknown

the team's points from round 1 (as recorded by the
team) otherwise

the team's points from round 2

0 the team's points from round 2 (as recorded by the team) is
unknown

the team's points from round 2 (as recorded by the
team) otherwise

the team's points from round 3

0 the team's points from round 3 (as recorded by the team) is
unknown

the team's points from round 3 (as recorded by the
team) otherwise

These operators can be used to control the visibility of attributes and text on screens and in generated doc-
umentation.

TIP: The localized syntax for these functions may be viewed:

l by clicking here for US English and other languages; or

l atHelp | Function Reference in Oracle Policy Modeling, in the rule language set for the rulebase project.

See also:

l Truth tables

l Decide whether to allow uncertainty in user answers

File extensions
Oracle Policy Modeling projects contain the following types of files:

File type
File exten-
sion

Description
Location in
Development
folder

Project .xprj The master project file records the file and folder structure of the project. \

Microsoft
Word

.doc Microsoft Word files contain rules. \Rules

Microsoft
Excel

.xls
Microsoft Excel files contain rules. XLS files are also used for translationmap-
pings.

\Rules or
\Translations

Generated
rule format

.xgen

An XGEN file contains the generated rule format for a rule document. These
XGEN files are used to build rulebase files for use with the Oracle Determin-
ations Engine. Each time a Word or Excel rule file is compiled, the XGEN file cor-
responding to that file is overwritten with a new one containing the updated set
of rules. Each translation document also has an associated XGEN file. XGEN files
are in XML format.

\Rules or
\Translations

Screens .xint Screens files contain screen definitions. \Interviews

Properties .xsrc Properties files contain attribute, entity and relationship properties. \Properties

External data
model

.xsrc
Source files contain data models compiled from an external application such as
Siebel.

\

Visualization .dml Visualization files contain visualizations of the rules in the form of tree diagrams. \Visualizations

Test script .tsc
Test script files are XML files which contain test cases and the set of outcome
attributes that will be used by the test cases.

\Test Scripts

PDF .pdf
PDF files, such as policy documents, can be included as necessary in the pro-
ject.

\Documents

Screens .exs

The EXS file is an XML file which contains information relating to the screen
definition in the rulebase (ie the data about question screens, summary screens,
screen orders and screen flows). The EXS file only provides deployment inform-
ation for Oracle Web Determinations investigations.

\output

Language .stxt
The STXT file is the XML language file which contains information on the
presentation form to be used for all attributes. (For boolean attributes, this is the
positive, negative, question and uncertain forms.)

\output

Flows .flows The flows file is an XML file which describes any flows defined for the project. \output

Metadata .metadata
The metadata file contains any metadata which has been defined about the pro-
ject or attributes. This is an XML file. (Metadata information about screens or
controls is contained in the EXS file.)

\output

Rulebase .xml
The rulebase file is the compiled rulebase file created in Oracle Policy Modeling.
It is an xml file describing the rules and is required by the Oracle Determinations \output

File type
File exten-
sion

Description
Location in
Development
folder

Engine. This file contains a definition for all attributes and rules (only basic attrib-
ute identifiers are available) and as such is the primary file which acts as an
anchor for any other required files.

Interface .xrbd
The XRBD file is the automatically generated interface file that is loaded when
you link a module to a project. It is included in the .RMOD file when you build it.

\output

Module .rmod
The RMOD file is a ZIP file of the project that contains the external data model
(ie all entities and relationships, and attributes that have public names). This
module file allows the rulebase to be shared with other rulebases.

\output

Compressed
(zipped)
folder

.zip

Building a project in Oracle Policy Modeling will automatically build a <pro-
ject>.zip file in the output folder. This package of all of the individual output
components of a rulebase is the preferredmethod of deploying rulebases rather
than as individual files.

Additionally, any files in the include folder will be added to the rulebase zip. See
Include extra files in the build.

\output

Truth tables

AND truth table
The conjunction and produces the following set of possible outcomes:

P Q P AND Q

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

As you can see from the truth table, it is only if both conditions are true that the conjunction will equate to true.
If one or other or both of the conditions in the conjunction are false, then the conjunction equates to false.
Also notice that when conditions are connected by AND that a single condition being false is sufficient for the con-
clusion to be false, but a single condition being true is not sufficient for the conclusion to be true (you would
need to know the value of the other conditions).
In this way, the conjunction itself has its own truth value which is distinct from each of the conditions contained
within (ie one of the conditions may be true, but the value of the conjunction is false).

OR truth table
The disjunction or produces the following set of possible outcomes:

P Q P OR Q

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

As you can see, if one or other of the conditions is true, the disjunction will equate to true. It is only if both con-
ditions are false that the entire collection equates to false.
Also notice that when conditions are connected by OR that a single condition being true is sufficient for the con-
clusion to be true, but a single condition being false is not sufficient for the conclusion to be false (you would
need to know the value of the other conditions).
A disjunction also has its own truth value distinct from its conditions (ie one of the conditions may be false, but
the value of the disjunction is true).

Uncertain truth tables
The following truth tables show how uncertainty works:

P Q P AND Q

TRUE UNCERTAIN UNCERTAIN

UNCERTAIN TRUE UNCERTAIN

FALSE UNCERTAIN FALSE

UNCERTAIN FALSE FALSE

UNCERTAIN UNCERTAIN UNCERTAIN

P Q P OR Q

TRUE UNCERTAIN TRUE

UNCERTAIN TRUE TRUE

FALSE UNCERTAIN UNCERTAIN

UNCERTAIN FALSE UNCERTAIN

P Q P OR Q

UNCERTAIN UNCERTAIN UNCERTAIN

The uncertain operator causes the condition to return true only if its value is uncertain. A condition using the
uncertain operator returns false if the underlying value is not uncertain.

Basic English grammar

Parts of speech
The parts of speech that are relevant to the writing of attribute text for use in Oracle Policy Modeling rules are
listed below.

For example:

Apostrophes
Many people are confused about when to use the apostrophe. It is important that you understand how to use apo-
strophes correctly when writing Oracle Policy Modeling attribute text.
There are two main uses of the apostrophe:

1. to form the possessives of nouns

2. to show omission of letters

Apostrophes are not used:

l for possessive pronouns

l for noun plurals

Forming the possessives of nouns
Apostrophes are used when indicating the possession or ownership of nouns. Follow the rules below when mak-
ing the possessive of a noun:

l add 's to singular forms of the noun
the girl's coat
James's house

l add 's to plural forms of the noun that do not end in –s
the children's toys
the geese's feathers

l add ' to plural forms of the noun that end in –s
five days' work
houses' fences

l add 's to the last noun to show joint possession of an object
Sally and John's dog
the individual and the company's agreement

Showing omission of letters
Contractions are formed by combining one or more words into a new word, usually by omitting one or more let-
ters. The apostrophe is used to indicate this omission.
Examples of contractions are:

l it's = it is

l you'll = you will

l who's = who is

l shouldn't = should not

l let's = let us

Note that contractions are used in more informal styles of writing and speech and should not be used in Oracle
Policy Modeling attributes.

Rule principles for Oracle Policy Modeling
There are several principles that must be followed when writing rules using Oracle Policy Modeling. There are
also five axioms that apply to the operation of rules in the Oracle Determinations Engine.

Principles for rule authoring in Oracle Policy Modeling
In order to ensure the quality of rules created, Oracle Policy Modeling enforces a number of principles in rule
authoring. The most important of these are:

1. Each conclusionmust only be stated once. This is to avoid conflicting logic, for example if Rule 1 stated A is true if B is
true, and Rule 2 stated A is false if C is true, if both B and C were true it would be impossible to determine the outcome of
A.

2. Each rule must have a comprehensive statement of conditions (including any reliance on other rules).

3. Each component of the rule must be clearly identifiable. The conclusion, conditions and any logical operators (and/or etc)
must be separated for clarity.

4. Each conditionmust itself be logically complete in order to determine the value of the condition. This also means that
each boolean attribute must be worded as a complete sentence.

5. Every rule must be knowable. It should not be possible for the rulebase not to know the outcome if all data has been
provided. The rulebase should be a complete statement of the rules.

6. The order in which information is presented should not change the outcome of the rules. The rulebase will always give
the same outcome in the same situation regardless of the order in which the information is collected.

7. Addition of new data should not change the outcome. If data is relevant to making a decision or could alter the outcome
of a decision, the Oracle Determinations Engine will require that data to be provided before making the decision.

Axioms for the operation of rules in Oracle Determinations Engine
There are five axioms that need to be observed for correct rules system operation. While it may certainly be
possible to construct a functioning rulebase by violating one or more of these axioms, the resulting rulebase will
be hard to maintain, hard to test, fragile and unreliable. These axioms have guided Oracle Policy Modeling
product development and can be recognized in the types of rules that can be created using Oracle Policy Model-
ing and the error messages that appear if one of these axioms is violated.
The five axioms are:

Axiom 1: Order independence
Any conclusions reached by the business rules management system must be independent of the order in which
information is provided.
This is reasonably self-evident, but many business rules management systems fail this basic test. By providing
order independence, a safe contract is provided between the rulebase and the user interface designer (the
screen designer can order attributes on screens however they desire), as well as the persistence layer (the
order of attributes do not have to be preserved).

Axiom 2: No memory
If the input attributes are changed, no influence caused by the previous values may persist.

To put it another way, changing a value of an attribute within a session should be equivalent to inputting the
entire set of attributes into a new session. This axiom provides both for Oracle Determinations Server (which
relies on this axiom), as well as load-balancing web servers that support session failover. Event rules in the cur-
rent system can violate this axiom (worst offenders are warning events), and should be used (and handled) with
care.

Axiom 3: Reverse entropy
Adding new information can only lead to conclusions being reached, not forgotten or changed.
If the rulebase has concluded something, then the introduction of new information cannot result in a new con-
clusion – only by changing existing information can a conclusion be changed or forgotten.
One construct that this axiom forbids is the "not known" operator in a condition of a rule – evaluating to true if
the attribute has not been collected yet, and false if it has. This is a dangerous construct, as it involves reas-
oning on the basis of the order that information is presented (a clear violation of Axiom 1), as well as violating
this principle that underlies every other operator.

Axiom 4: Every conclusion must be knowable
Every rule must be able to conclude a result given sufficient information.
Axiom 3 introduces the concept that a business rules management system proceeds from conclusions being
unknown to known. This axiom requires that they can actually get to the known state. A business rules engine
that cannot conclude a value is incomplete – its inability to conclude a value results in rulebase looping or "goal
exhaustion", the equivalent of a software crash. If a rule set has insufficient specification to cover every pos-
sibility, then it must at least return "uncertain" indicating the engine's uncertainty as to what the result should
be.

Axiom 5: No multiply proven attributes
An attribute cannot have multiple proofs. An attribute with multiple proofs causes a number of violations of pre-
vious axioms, as well as introducing some new problems.
Firstly, unless the two proofs are completely distinct (and open-ended), there will be a race condition that viol-
ates Axiom 1 (ie they will race to see which one fires first, and the outcome can change depending on which rule
fires first). Trying to band-aid this is impossible – for example if you allow one rule to have priority over the
other, such that even if the other rule has already fired first, the primary rule can override it, then you fail
Axiom 3.
If the rules are completely disjunctive, but do not cover every possibility, then you violate Axiom 4. If the rules
are completely disjunctive, and cover every possibility, you still run into trouble because it is non-determinative
which rule will be asked first by the GetNextQuestion runtime mechanism. Furthermore, this could change
between different compiles of the rulebase, different versions of Oracle Policy Modeling, and so forth.
The other problem is that completely disjunctive rules are hard to maintain – if you make modifications to any
of the rules, you have to update the other rules to maintain the strict disjunction, otherwise the rulebase will
violate one of the other axioms.
All in all, multiply proven attributes will end up creating a broken rulebase unless you use rule fragments to spe-
cify the order in which the rules should apply. For more information see Prove an attribute using multiple rules.
This axiom also applies to shortcut rules. Using a shortcut rule to prove an intermediate attribute is a violation
for the same reasons as presented above. A regular shortcut rule – ie one that proves a base attribute – is an
interesting side issue to explore. Firstly, multiple shortcut rules proving a base level attribute can cause Axiom

1 violations. Secondly, a user-provided value for a base level attribute should have higher priority than a short-
cut rule concluding the same attribute – otherwise there would be a violation of Axiom 3. In other words, intro-
ducing a new attribute could fire the shortcut rule, overriding an existing user answer, possibly causing an
existing conclusion to change. Logically, the result from a shortcut rule should be treated as though it were a
base level attribute – just merely having provided a shortcut for setting it. The user is then free to override this
value when appropriate.

Text substitution principles
The substitution of text in attributes and on screens follows the principles below.

1. Text substitutions for attributes use the largest possible match
For example, if we had two substitution variables:

l the child = Bart , and

l the child’s pet = Santa’s little helper

then the attribute "the child’s pet’s is a dog" will be substituted as " Santa’s little helper is a dog".

2. Text substitution for attributes are bywhole word only
For example, if we have the substitution variable:

l the person = Bob

then:

l "the personality disorder" remains "the personality disorder"

l "in respect of the person, the eligibility criteria has beenmet" becomes "in respect of Bob, the eligibility criteria has been
met"

l "the person’s car" becomes "Bob’s car"

3. Text substitutions are case sensitive
If you have a substitution variable:

l the person = Sam

then:

l "the person’s dog" becomes "Sam’s dog", but

l "The person’s dog" remains "The person’s dog"

4. Text substitution is conditional on the substitution variable’s value being known
For example, if we had the substitution variable

l the person = unknown

then "the person’s dog" remains "the person’s dog"
Note, however, that variables in captions, labels, screen titles etc will always be substituted even if the value is
unknown.

5. Substitution variables must be in the same entity as the attribute being substituted
For example, if we had an entity 'the child' and a substitution variable 'the condition' in the global entity, then
the following attribute won’t substitute:

l "the condition the child is suffering from"

You can work around this by inferring the value of the condition’s name down to the child entity. For example,

l the child’s condition = the condition (ie " the child’s condition the child is suffering from")

This restriction also applies to text substitutions on screens – they all must be in the same entity as the screen
itself.

Value conditions for screen flow connections
The allowable values for screen flow connections are specified below. These conditions are validated at compile
for correctness.

For booleans:

[true|false|yes|no|y|n|unknown|uncertain]
For example, true

For dates:

[(>|>=|=|<=|<|<>|!)yyyy-MM-dd]
For example, >= 2005-06-12

For date-times:

[(>|>=|=|<=|<|<>|!)yyyy-MM-dd hh:mm:ss]
For example, 2010-03-26 22:04:12

For time of days:

[(>|>=|=|<=|<|<>|!)hh:mm:ss]
For example, 19:00:00

For numbers:

[(>|>=|=|<=|<|<>|!)any number]
For example, = 50000

For text comparisons:

[(=|!|<>|not)"any text"]
For example, the text value is case specific.

NOTES:

a. ! means not equal to (the equivalent of <>)

b. You can join comparisons together using 'and'. This allows you to test ranges, for example:

>1000 and <=2000

>2006-06-30 AND <=2007-07-30

c. You can also join comparisons together using 'or'. For example,
<1000 or uncertain
"unemployed" or "student"
This is necessary because you can't have two connections from a decision shape to the same shape.

d. When using both 'and' and 'or' there are no parenthesis, so conditions are evaluated using an order of operations similar
to addition/multiplication inmaths. In this case, 'AND' has a higher precedence than 'OR', for example:

"A and B or C and D" is evaluated as "(A and B) or (B and C)"
"A or B and C" is evaluated as "A or (B and C)"
The priority of OR versus AND means that you can always replace two separate connections with a single connection
using the word OR.

BI Publisher code for Oracle Policy Modeling
This topic shows the format that is required when using BI Publisher with Oracle Policy Modeling in order to dis-
play attributes (global and entity-level), conditional text and decision reports in an interview document.
For more information on using BI Publisher with Oracle Policy Modeling see Develop a template for an interview
document.

Values and properties of global attributes
The table below shows the BI Publisher format (defined as Code in the Advanced tab) needed for the fields to dis-
play various values and properties of global attributes. "attribute_id" is the public name of the global attribute.

To display
BI Publisher
format

Example Output Notes

Attribute value
(formatted)

<?attribute_id_
value?>

<?assessment_date_value?> 3/06/11

Formatted for the region spe-
cified in the OPM project (in this
example, Australia). Formatted
attribute value fields do not need
the default BI Publisher code
modified. These fields can simply
be dragged and dropped into
your template from the Field dia-
log box and require no further
modification.

Attribute text
<?attribute_id_
text?>

<?improvements_text?>

There are
improvements
that the customer
could make to the
children's diet.

Attribute text fields do not need
the default BI Publisher code
modified. These fields can simply
be dragged and dropped into
your template from the Field dia-
log box and require no further

To display
BI Publisher
format

Example Output Notes

modification.

Attribute value
(unformatted)

<?attribute_id/-
value?>

<?assessment_date/value?> 2011-06-03

BI Publisher provides a range of
functions for working with
unformatted data, including date
settings. To use BI Publishers
formatting features, select the
Type and Format that you want
for the value in the Properties tab
for the field.

Attribute ques-
tion text

<?attribute_
id/@question?>

<?improvements/@question?>

Are there
improvements
that the customer
could make to the
children's diet?

Attribute type
<?attribute_id/@-
type?>

<?improvements/@type?> boolean

This will return the attribute type
(ie Boolean, text, currency, num-
ber, date, date and time, time of
day).

Inferred status
<?attribute_
id/@inferred?>

<?improvements/@inferred?> true
This indicates whether the attrib-
ute is inferred (ie true) or not (ie
false).

Conditional text and formatting
The table below shows the BI Publisher format needed to display conditional text or formatting. Each element
enclosed in brackets (<>) is a separate BI Publisher field. Each of these fields must have the specified code set
in the Advanced tab for the field. "attribute_id" is the public name of the global attribute. "Display text" is the
text that you want to have shown when the specified condition is met.

To display BI Publisher format Example Notes

Text when a
boolean attrib-
ute has a par-
ticular value

<?if:attribute_id/-
value='unformatted attribute
value'?>Display text<?end if?>

<?if:improvements/value='true'?>Please
make an appointment with one of our
friendly dieticians to discuss how you could
improve your family's health.<?end if?>

Text when a
number attrib-
ute has a par-
ticular value

<?if:number(attribute_id/-
value)>unformatted attribute
value?>Display text<?end if?>

<?if:number(cars_owned/value)>2?>As
you have more than two cars, a double gar-
age may not be suitable.<?end if?>

This format/example
uses the greater than
operator (>) but any of
the comparison oper-
ators can be used here.

Text when a <?if:number(attribute_id/- <?if:number(total_reim- This format/example

To display BI Publisher format Example Notes

currency attrib-
ute has a par-
ticular value

value)<unformatted attribute
value?>Display text<?end if?>

bursement/value)<9?> You have been
reimbursed less than the full amoun-
t.<?end if?>

uses the less than oper-
ator (<) but any of the
comparison operators
can be used here.

Text when a
date attribute
has a particular
value

<?if:date(attribute_id/value)<date
('unformatted attribute
value')?>Display text<?end if?>

<?if:date(date_of_birth/value)<date
('2000-01-01')?>Youwere born last cen-
tury.<?end if?>

This format/example
uses the less than oper-
ator (<) but any of the
comparison operators
can be used here.

Certain text
when a format-
ted attribute
has a particular
value, oth-
erwise dis-
playing
alternate text

<?choose:?><?when:attribute_id_
value='formatted attribute
value'?>Display text when condition
met<?end when?><?other-
wise:?>Alternate display text<?end
otherwise?><?end choose?>

<?choose:?><?when:overall_rating_
value='Excellent'?>Your children's diet is
very well-balanced. Keep up the good
work!<?end when?><?other-
wise:?>There are improvements that you
canmake to your children's diets.<?end
otherwise?><?end choose?>

Displays the text "Your
children's diet is very
well-balanced. Keep up
the good work!" when
the family's overall
health assessment is
Excellent. Otherwise dis-
plays the text "There are
improvements that you
canmake to your chil-
dren's diets."

This format/example
uses equals (=) in the
condition element but
you can use other com-
parison operators, in
which case, use the
formatting described
above.

Attribute value
formatted a cer-
tain way when
a formatted
attribute has a
particular value

<?choose:?><?when:attribute_id_
value>'formatted attribute
value'?><?attribute_id_
value?><?end when?><?other-
wise:?> <?attribute_id_value?>
<?end otherwise?><?end choose?>

<?choose:?><?when:total_sweets_
value>'4'?><?total_sweets_value?>
<?end when?><?otherwise:?><?total_
sweets_value?><?end otherwise?><?end
choose?>

Displays the total number
of sweets consumed by
the children in bold red
format if that number is
greater than 4. Other-
wise displays the total
number of sweets con-
sumed by the children in
black non-bold format.

This can also be achieved
by implementing con-
ditional formatting. See
the BI Publisher Users
Guide for more inform-

To display BI Publisher format Example Notes

ation.

Values and properties of entity-level attributes
The table below shows the BI Publisher format needed to display entity-level attributes in various layouts. Each
element enclosed in brackets (<>) is a separate BI Publisher field. Each of these fields must have the specified
code set in the Advanced tab for the field. "entity_id" is the public name of the entity. <entity_level_attribute_
element> is a field that takes the same format as those used to display global attributes (see above) but using
entity-level attribute values and properties instead.

To display BI Publisher format Example Output Notes

Entity-level
attributes
grouped by
entity

<?for-each:entity_id?>

<entity_level_attribute_
element>

<entity_level_attribute_
element>

<entity_level_attribute_
element> ...

<?end for-each?>

<?for-each:child?>

<?child_name_text?>

<?child_rating_overall_
text?>

<?child_rating_over-
all/@question?> <?child_rat-
ing_overall_value?>

<?end for-each?>

The child is Hay-
den.

Hayden's overall
star rating is 4.

What is Hayden's
overall star rating?
4

The child is Court-
ney.

Courtney's overall
star rating is 2.

What is Courtney's
overall star rating?
2

This format is also used
when displaying entity
level attributes in a native
Microsoft Word table. That
is, the first cell in the row
needs to start with the
<?for-each:entity_id?>
field, and the last cell in the
same row needs to end
with the <?end for-each?>
field (with the entity-level
attribute fields in
between).

Entity-level
attributes
grouped by
attribute

<?for-each:entity_
id?><entity_level_attrib-
ute_element><?end for-
each?>

<?for-each:entity_
id?><entity_level_attrib-
ute_element><?end for-
each?>

<?for-each:entity_
id?><entity_level_attrib-
ute_element><?end for-
each?> ...

<?for-each:child?><?child_
name_text?><?end for-
each?>

<?for-each:child?><?child_
rating_overall_text?><?end
for-each?>

<?for-each:child?><?child_
rating_overall/@question?>
<?child_rating_overall_
value?><?end for-each?>

The child is Hay-
den.

The child is Court-
ney.

Hayden's overall
star rating is 4.

Courtney's overall
star rating is 2.

What is Hayden's
overall star rating?
4

What is Courtney's
overall star rating?
2

Entity-level
attributes sorted

<?for-each:entity_id?>

<?sort:entity_name_id_
<?for- Courtney:

The number of
This format can be used in

To display BI Publisher format Example Output Notes

alphabetically by
entity name

value;'ascending';data-
type='text'?>

<entity_level_attribute_
element>

<entity_level_attribute_
element>

<entity_level_attribute_
element> ...

<?end for-each?>

each:child?><?sort:child_
name_
value;'ascending';data-type-
='text'?> <?child_name_
value?>:
<?child_servings_sweets_
text?>
<?child_servings_fruit_
text?>
<?child_servings_dairy_
text?> <?end for-each?>

servings of sweets
Courtney eats per
day is 5.

The number of
servings of fruit
Courtney eats per
day is 2.

The number of
servings of dairy
food Courtney eats
per day is 3.

Hayden:

The number of
servings of sweets
Hayden eats per
day is 0.

The number of
servings of fruit
Hayden eats per
day is 3.

The number of
servings of dairy
food Hayden eats
per day is 2.

native Microsoft Word
tables too. That is, the first
cell in the row needs to
start with the <?for-
each:entity_
id?><?sort:entity_name_
id_value;'ascending';data-
type='text'?> fields, and
the last cell in the same
row needs to end with the
<?end for-each?> field
(with the entity-level attrib-
ute fields in between).

Decision reports
To display a decision report you need to:

l have the attribute selected in the Decision Reports available for the document, and

l have a field ("decision-report template") in your template which defines the structure and format of the decision report, and

l have a field ("call decision report template") in your template which specifies the attribute ("attribute_id") to give the
decision report on.

The table below specifies the BI Publisher code needed to define the two fields described above.

Field BI Publisher code Example Notes

decision-report
template

<?template@inlines:decision-
report?>
<?if@inlines:"attribute-
node"?>
<fo:list-block start-indent="
{count(ancestor::attribute-

n/a

This field only needs
to appear in a tem-
plate document
once.

Field BI Publisher code Example Notes

node) * 7}mm">
<fo:list-item>
<fo:list-item-label>
<fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block><xsl:value-of
select="@text"/></fo:block>
</fo:list-item-body>
</fo:list-item>
</fo:list-block>
<?for-each@in-
lines:./attribute-node?><?c-
all-template:decision-
report?><?end for-each?>
<?end if?>
<?end template?>

call decision
report tem-
plate

<?for-each:/global-
instance/attribute_id/-
decision-report/*?><?call-tem-
plate:decision-report?><?end

for-each?>

<?for-each:/global-instance/im-
provements/decision-
report/*?><?call-
template:decision-report?><?end
for-each?>

Download BI Publisher
To download and install BI Publisher for use with Oracle Policy Automation (OPA):

l Go to the Oracle BI Publisher Downloads page on the Oracle Technology Network.

l Scroll until you can see the download links for the relevant version of BI Publisher. Note: The version of BI Publisher cur-
rently supported for use with OPA is 11.1.1.9. Ensure the BI Publisher Desktop package you select for download has a ver-
sion number of 11.1.1.9 or later.

l Download the relevantBI Publisher Desktop package for your version of Microsoft Office (32 bit or 64 bit).

If you experience problems installing or using BI Publisher, try one of the following:

l The BI Publisher forum, or

l Troubleshooting guide for using BI Publisher with Policy Modeling

See also:

l Overview: The process of creating an interview document

l Create, update or delete an interview document

l Develop a template for an interview document

l Add a document link to the summary screen

l BI Publisher code for Policy Modeling

http://www.oracle.com/technetwork/middleware/bi-publisher/downloads/index.html
https://community.oracle.com/community/developer/english/business_intelligence/business_intelligence_foundation/bi_publisher

Troubleshooting guide for using BI Publisher with Oracle Policy Modeling
This topic explains some problems that might be encountered when using BI Publisher with Oracle Policy Model-
ing and what to do about them.

BI Publisher ribbon not visible in Microsoft Word

If you cannot see the BI Publisher Ribbon in your Microsoft Word document after you open it from Policy Model-
ing, it means you do not yet have the BI Publisher Add-in for Microsoft Word installed. For information on how
to do this, see Download BI Publisher.

Document will not generate
Check the template size. Large file sizes (eg due to images within the document) require more memory alloc-
ation. If in doubt, remove images and re-try.
Check all fields have the correct syntax. If in doubt, delete any area that you are concerned about then re-gen-
erate the document.
If deploying to an external version of Web Determinations (ie using Build and Run), check that the document
generation server is correctly configured/started (refer to installation instructions for more information). If in
doubt, try to Build and Debug within OPM to determine whether it is an issue with the document template or the
external configuration.

Normal text does not appear
If the text follows a conditional or entity-level region, check the previous region has the appropriate end fields.

Font does not display correctly
Check the font is a predefined font for BI Publisher. If not, you will need to define a font mapping from a base
font in the RTF or PDF template to a target font to be used in the published document. More information is avail-
able in the BI Publisher documentation/forums.

Field values and/or conditional text do not appear
Check the syntax matches the recommended syntax (see BI Publisher code for Oracle Policy Modeling).
If using conditional text, check that the output value in the generated XML matches the value in the condition,
including any formatting if using the formatted value.
If the text follows a conditional or entity-level region, check the previous region has the appropriate end fields.
If using an entity-level attribute:

l ensure that the appropriate entity tags are in place before and after the field, and

l ensure that the entity public name is unique (ie check you do not have an entity and an attribute with the same public
name).

Check the font is a standard font. Some fonts are only supported by some outputs (eg Wingdings will not appear
in a pdf output). More information on supported fonts is available in the BI Publisher documentation/forums.

Headings/images do not appear
If using an image, shape, text box or similar:

l check whether the object is grouped (grouped objects will not appear in some outputs), and

l try changing the TextWrapping setting (depending on the context of how the image is used, some text layout options may
impede the display of the image in the generated document).

Check the font is a standard font. Some fonts are only supported by some outputs (eg Wingdings will not appear
in a pdf output). More information on supported fonts is available in the BI Publisher documentation/forums.
See also, "Field values and/or conditional text does not appear" troubleshooting section above.

Text appears on a new line
See the BI Publisher documentation for how to include fields and conditional formatting in-line. Including the
text within a table (even a 1x1 table) is a simple way to work around most line break issues (see sample OPM
projects for examples).

Error when clicking on document link
If you encounter an error when clicking on the document link on the summary screen, the BI Publisher tem-
plate's Conditional Region settings may have not been correctly defined (for example, if an incorrect data type
has been used). If this occurs, you should open the BI Publisher template and make the appropriate adjust-
ments (see insert conditional text for more information).

See also:

l the Template Builder for Word Help file (available under \Program Files\Oracle\BI Publisher\BI Publisher Desktop\Tem-
plate Builder for Word) and/or

l the BI Publisher Users Guide (available under \Program Files\Oracle\BI Publisher\BI Publisher Desktop\Template Builder
for Word\doc).

Seeded data in imported projects
An Oracle Policy Modeling project created by importing an existing project will be seeded with the various pro-
ject folders and documents based on the data in the project interchange file. These will include:

A project file
An Oracle Policy Modeling project file (.xprj) is created when a project interchange file is imported. The project
file name will be based on the project interchange file name. Project custom properties and templates for cus-
tom properties for other project items will be included in the project file. The project file will be automatically
saved on completion of the import.

A master data model file
A master data model file, datamodel.xsrc, is created and inserted in the project's root folder. For each entity,
attribute and relationship in the interchange file's <model> section, a corresponding declaration will be added
to the master data model XSRC file.
NOTE: While all data model elements defined in a module are exported, only those elements that were defined
within the actual project itself are re-imported.

Project folders
For each ruleset, a project folder is created and assigned the properties associated with that ruleset in the inter-
change file.

Rules documents
A "starter" Microsoft Word or Excel rule document will be created for each unique rule file name (as specified by
the /rules/*/rule/document element) in a ruleset and allocated to the ruleset's corresponding folder. Each rule
in the interchange file will be allocated to a starter rule document (as specified by the rule's ruleset mem-
bership and its document element).

Rules
For each rule, appropriate content will be added to the rule document for each non-empty attribute and sub-ele-
ment specified in the interchange file. This includes:

l Name (this element is mandatory on import)

l Source

l Definition

l Effective date range

l Custom properties

l Rule text

If a rule has a non-empty rule-text element, the importer will use the contained XHTML to recreate the original
rule text. The rule/rule-text/@format attribute, and the rule/document/@document-type attribute, governs
whether the rule text is represented as a table or regular paragraphs rule, and whether it is included in a Word
or an Excel rule document.
NOTE: Rules defined in a module are not exported and therefore are not re-imported.

Definition of 'relevant' in decision reports
Decision reports show every value that is relevant to the result of a rule. This topic describes the definition of
what constitutes a 'relevant' value.

Rule 1: A value is relevant if changing it could cause the conclusion of the rule to change
Example 1:

A if

B and
C

If B is true and C is false, then A is false. In the decision report:

l B is not shown because no matter what you change it to, C's value of false keeps A false.

l C is shown because you could change it to true, and A would become true .

Example 2:

Result = InstanceSumIf(Relationship, Condition, Value)

With the following sets of conditions and values, the result is 50.

l Condition1 = true

l Value1 = 50

l Condition2 = false

l Value2 = 100

Condition1, Value1, and Condition2 are all relevant due to Rule 1. Value2 is not relevant because no matter what
it is set to, the false of Condition2 stops it from having any effect.

Rule 2: Where a set of values are not relevant individually (via Rule 1) but could cause the con-
clusion to change if they change together, then all values in the set are considered relevant
This is intended to cover situations where attributes are equally relevant to the conclusion, with neither one
being enough to actually have an effect if it changes. Using Example 1 above, if B and C are both false, then A is
false. Changing either B or C independently does not change the conclusion, so Rule 1 does not apply. However,
you could change both of them to true, and it would change the conclusion, so because of Rule 2, they are both
considered relevant.

Rule 3: Where the result is unknown, all values that could be relevant if unknown values became
known, are considered relevant
Example 1:

A = B + C

If B is unknown and C is 5, then the result is unknown. In the decision report:

l B is relevant because if it changed (to become known), it would affect the outcome (Rule 1)

l C is relevant because if B became known, it would be relevant to the outcome (Rule 3)

No special consideration of uncertainty is required - handling for uncertainty falls naturally out of the above
rules.

Example 2:

A = B + C

If B is uncertain and C is unknown, then the conclusion is uncertain. No matter what value C becomes, A will
always be uncertain. In the decision report:

l B is relevant, because if B changed to be unknown, then A would become unknown (Rule 1).

l C is not relevant, because even if it becomes known, it cannot become relevant.

Keyboard shortcuts for Oracle Policy Modeling
Shortcut keys are keys or key combinations that are provided as a quick and alternative way to access fre-
quently performed actions. The following shortcut keys can be used in Oracle Policy Modeling to insert styles or
perform functions:

l Shortcut keys for Oracle Policy Modeling

l Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word

l Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel

l Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

Shortcut keys for Oracle Policy Modeling

Shortcut Key Function/Navigation

Ctrl+N New Project

Ctrl+O Open Project

Ctrl+S Save Selected Item

Ctrl+Shift+S Save All

Ctrl+F Find Model Attribute

Ctrl+Shift+F Find Document Attribute

Ctrl+Shift+B Build

F5 Build and Debug

Ctrl+F5 Build and Run

Ctrl+Alt+B Build Module

Ctrl+F4 In the top right hand pane, closes the open tab

Ctrl+>
In the top right hand pane, cycles forwards between the open
tabs

Ctrl+<
In the top right hand pane, cycles backwards between the open
tabs

Ctrl+Tab

In the Attribute Editor, toggles between Common, Custom Prop-
erties and Decision Reports tabs. In the Summary Screen Editor
and Question Screen Editor, toggles between Common and Cus-
tom Properties tabs.

Shortcut Key Function/Navigation

Ctrl+F2
In the Project Explorer, toggles between the Project Explorer tab
and the Attribute Usage tab

Ctrl+F3
In the Project Explorer, toggles between displaying the active tab
(Project Explorer or Attribute Usage) and hiding the tab

Access menu items in Oracle Policy Modeling
Access keys are provided for all menu items in Oracle Policy Modeling. Access keys are alphanumeric keys that
are used with the Alt key to activate the menu controls. The access key is shown by the underlined character in
the text label of the menu item. If the access keys are hidden by default, pressing the Alt key will activate
them.

Access shortcut menus in Oracle Policy Modeling
The application key is used to display the shortcut menu for the selected object in Oracle Policy Modeling. The
application key is located between the Windows key and the Ctrl key on a standard keyboard. (If your keyboard
does not have an application key, you can use Shift+F10 instead.)

Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word

Shortcut key Style/Function

Alt+R Compiles the Oracle Policy Modeling document

Alt+1 Heading style

Alt+2 Heading 2 style

Alt+3 Heading 3 style

Alt+B Blank Line style

Alt+C Conclusion style

Alt+F Configuration style

Alt+L Legend style

Alt+N Rule Name style

Alt+F1 Level 1 style

F2 Level 2 style

F3 Level 3 style

F4 Level 4 style

F5 Level 5 style

Shortcut key Style/Function

F9 Ignore style

F10 Commentary style

F7 Inserts a shortcut rule

F11 Decreases indent

F12 Increases indent

Alt+D Opens the Data Model Browser

Alt+G Adds a variable attribute definition to the rulebase

Alt+I Inserts an invisible operator

Alt+J Opens the Attribute Editor

Alt+K Strips hidden text

Alt+P Opens the Rule Properties editor

Alt+S Inserts a silent operator

Alt+Y Show Oracle Policy Modeling styles in style area (Word 2003 and later)

Alt+Z Inserts a rule table

Alt+F12 Toggles comment

Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel

Shortcut key Style/Function

Ctrl+Shift+C Compiles the Oracle Policy Modeling document

Ctrl+Shift+W Attribute Type Heading style

Ctrl+Shift+E Attribute Text Heading style

Ctrl+Shift+T Legend Key Heading style

Ctrl+Shift+S Attribute Type style

Ctrl+Shift+D Attribute Text style

Ctrl+Shift+G Legend Key style

Ctrl+Shift+I Conclusion Heading style

Ctrl+Shift+K Conclusion style

Shortcut key Style/Function

Ctrl+Shift+Y Condition Heading style

Ctrl+Shift+H Condition style

Ctrl+Shift+L Else style

Ctrl+Shift+M Commentary style

Ctrl+Shift+V Opens the Attribute Editor

Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

Shortcut key Style/Function

Arrow keys
Moves the cursor, if there are no selected shapes;

Moves selected shapes

Shift+Arrow keys Jumps the cursor towards the next shape in that direction

Space

Selects the shape/connection under the cursor;

Clears the selection of shapes;

In the Screens/Decisions/Flows tab, adds the selected screen/-
decision/flow to the screen flow

Ctrl+Arrow keys Moves the cursor without moving any selected shapes

Alt+Arrow keys Resizes the selected shape

Ctrl-Space Toggles the selection of the shape/connection under the cursor

C
Starts or finishes drawing a connector from/to the shape under the
cursor

Enter
Finishes drawing a connector to the shape under the cursor;

In the Screens/Decisions/Flows tab, adds the selected screen/-
decision/flow to the screen flow

/
Cycles the selection through the outgoing connectors of the shape
under the cursor

F2 Edits the condition text of the selected connector

Alt+R Errors list

Formatting of attribute values
Attribute values throughout Oracle Policy Modeling and Oracle Policy Automation are either unformatted (ie
using an internal data format), or formatted (ie using the format specified by the rulebase Region settings).

Unformatted attribute values
Unformatted attribute values are used:

l In Oracle Policy Modeling itself, wherever data values are entered while creating the rulebase (eg default values on screen
controls, maximum or minimum allowed values for variables, etc).

l For any date, date/time or time values used whenwriting rules inWord or Excel (eg constants, values used in com-
parisons).

l In the debugger and test case editor, where data values are entered directly (ie not using drop down lists or other pre-
defined options for data entry) in the Data and Decision tabs.

l In document templates using BI Publisher, to control the display of images and text.

l For number variables flagged in the Attribute Editor as "Unformatted", where formatted values would normally be used
when displaying those variable's values.

Unformatted values take the following forms:

Attribute type Unformatted value form Example

Boolean true/false true

Number x.x (always has at least one decimal place) 3.0

Currency
x.x (always has at least one decimal place, no cur-
rency symbol, no comma)

5.0

Text
Any text (with the text surrounded by quotationmarks
where referenced in rules)

yellow

Date yyyy-MM-dd 2007-10-25

Time of day hh:mm:ss 07:47:31

Date and time yyyy-MM-dd hh:mm:ss 2009-08-12 17:30:00

Where the formatting of dates and times are referred to the following conventions are used:

yyyy four-digit year

MM two-digit month (01 through 12)

dd two-digit day of month (0 through 31)

hh two-digits of hour (00 through 23)

mm two-digits of minute (00 through 59)

ss two-digits of seconds (00 through 59)

Formatted attribute values
Formatted attribute values based on rulebase region are used:

l In the debugger and the test case editor, when displaying data in the Decision tab and in the Text column of the Data tab.

l For any number or currency values used whenwriting rules inWord or Excel (eg constants, values used in comparisons).

l In Oracle Web Determinations, when entering and displaying data.

l When displaying information in generated documents.

For example, if your region was set to the United States you would see the following:

Attribute type
Formatted value form (English - United
States)

Example

Boolean Yes/No/Unknown Yes

Number x 15

Currency $x.xx (two decimal places) $123.00

Text Any text submarine

Date MM-dd-yy 6/17/11

Time of day hh:mm:ss (24 hour clock) 15:21:45

Date and time MM-dd-yy hh:mm:ss AM/PM (12 hour clock) 6/17/11 3:21:45 PM

Other examples of how this formatting could apply include:

Variable type Data format specified by rulebase region Example

Number
Region set to France, which includes the comma as
the decimal separator

a Word rule conclusion setting a number variable:

the threshold interest rate for savings accounts =
7,75

Currency
Region set to United Kingdom (English), which
includes £ currency symbol, comma as thousand sep-
arator and full stop as decimal separator

the value for a currency variable "the balance of the
applicant's savings account" is set in Oracle Web
Determinations to: £25,524.50

Text
Region set to Germany, which accepts any text
formatting

the value of a text variable "the person's name" is
set in Oracle Web Determinations to: Karla

Date
Region set to Australia, which includes the date format
dd/MM/yy

the value of a date variable "the applicant's date of
birth" is displayed in the debugger Decision tab as:
25/10/90

Time of day

Region set to Brazil, which includes the time format
hh:mm:ss

NOTE: The seconds component is optional when
entering data in Oracle Web Determinations and the
debugger, and will be set to ":00" if omitted.

the value of a time variable "the weekday closing
time" is set in Oracle Web Determinations to: 16:45

Variable type Data format specified by rulebase region Example

Date and time

Region set to Japan, which includes the date format
yy/MM/dd and time format hh:mm:ss

NOTES: If the regional format settings specify an out-
put format for datetimes, all datetimes will be dis-
played with that format regardless of whether the
'Display seconds' option was ticked for that variable in
the Attribute Editor.

Also , the seconds componentmay be optional when
entering data in Oracle Web Determinations and the
debugger, depending on the regional format settings.
If so, it is set to ":00" if omitted.

the value of a date/time variable "the application
lodgment time" is set in Oracle Web Determinations
to: 09/07/29 10:15:30

Where the formatting of dates and times are referred to the following conventions are used:

yy two-digit year

MM two-digit month (01 through 12)

dd two-digit day of month (0 through 31)

hh two-digits of hour (00 through 23)

mm two-digits of minute (00 through 59)

ss two-digits of seconds (00 through 59)

Note that to find the exact formatting of data values for your rulebase region, Oracle Policy Modeling will check
the relevant settings for that region within your system. You may override these individual system settings for a
region if required - see the Oracle Policy Automation Developer's Guide for further details.

TIP: When using BI Publisher to develop a template for an interview document, you can see the formatted and
unformatted attribute values in the XML sample data file:

See also:

l Use constant values in rules

l Oracle Policy Automation Developer's Guide - for the format used in Oracle Determinations Server

Command line tools
The following table lists the Oracle Policy Modeling command-line tools.

Command line tool Description

Build
Provides a means of building a rulebase from an Oracle Policy Modeling project using the com-
mand line

Regression tester Provides a means of executing a rulebase project's text scripts using the command line

Batch processor Provides a means of processing a large number of cases in batch using the command line

	Oracle® Policy Modeling User's Guide
	What's new in Oracle Policy Modeling V10
	Version 10.4
	Modules
	See also:

	Entity and relationship creation changes
	See also:

	Inferred entity instances
	See also:

	Batch processor
	See also:

	Testing coverage
	See also:

	Other changes
	Version 10.3.0

	BI Publisher integration
	See also:

	Language support
	See also:
	Version 10.2.0

	Entity-level summary screen goals and other screen authoring changes
	See also:

	Language support
	See also:

	Containment
	See also:

	Updated Excel functionality
	See also:

	Rule looping
	See also:

	New functions
	See also:

	Preview screen
	See also:

	Custom function definition
	See also:

	'Currently known' operator
	See also:

	Native Subversion support
	See also:

	Persist temporal visualization view
	See also:

	Configure attribute validation messages
	See also:

	Configure add/remove entity instance buttons
	See also:

	Locate in Explorer option
	See also:
	Version 10.1

	Build and continue in Debugger
	See also:

	Access to localized function references
	See also:

	Command-line support for regression tester
	See also:

	InstanceValueIf function
	See also:

	Auto-include additional files at build time into rulebase .zip
	See also:
	Version 10.0

	Inferred relationships
	See also:

	Reasoning with partial knowledge
	Time of day and data and time data types
	See also:

	Screen flow functionality
	See also:

	Updated commentary generation
	See also:

	Other changes:

	Quick links
	Getting assistance
	How to use Oracle Policy Modeling User's Guide
	What do you want to do?
	Find information using the Contents
	Find information using the Search
	Find information using the Glossary
	Access the Oracle Policy Modeling User's Guide in another language
	Function references

	Create and deploy a rulebase
	Example rulebases
	Open an example rulebase

	Get trained in Oracle Policy Modeling
	Access further resources on Oracle Policy Automation
	Oracle Policy Automation Developer's Guide
	Oracle Policy Automation Discussion Forum
	Oracle Policy Automation Knowledge Base

	Introducing Policy Modeling
	Oracle Determinations Engine and the Inference Cycle
	The Inference Cycle

	Projects and files
	Create, modify or delete a project
	What do you want to do?
	Create a new project
	Open an existing project
	Add existing files to a project
	Add new files to a project
	Delete a project

	Upgrade a project
	What do you want to do?
	Upgrade a project using the Upgrade Project wizard
	Principles for the upgrading of entities and their containment relationships

	Understand changes in the behavior of Oracle Policy Modeling
	Radio buttons for booleans
	Output folder
	Time/date difference functions
	Missing values in Excel
	Functions in Excel
	Text attributes in Excel
	Text values in Excel
	Unknown relationship reasoning
	Warning shown when the Oracle Web Determinations template version does not ma...
	Document controls
	Unformatted text in translation documents

	Update Oracle Policy Modeling Templates
	Manage legislation and other source material
	Add a source document to a project
	Exclude a source file from the build

	Organize project files
	What do you want to do?
	Decide whether or not to use the default project folder structure
	Create a new project folder
	Add an existing folder
	Rename a project folder
	Remove a project folder
	Move files between folders
	Sort folders and files
	Locate a rulebase file in Windows Explorer

	Add, rename or remove a rule document
	What do you want to do?
	Add a new rule document
	Rename a rule document
	Remove a rule document

	Save changes to a project
	Save changes to an individual file
	Save all changes to the project

	Get project statistics
	Edit a rule document

	Writing rules
	What is a rule?
	What do you want to learn about?
	What is a rule?
	What is a rulebase?
	Conclusions and conditions
	What is an attribute?
	Attribute levels
	Connecting conditions using and/or
	Grouping conditions using both/all and either/any
	Alternative conclusions
	Rule types

	Decide whether to write rules in Word or Excel
	Is the rule logic appropriate to convert to a decision table?
	Example A (multiple conclusions set from the same logic)
	Example B (multiple conclusions set from different values of one attribute)

	Write rules in Word
	What do you want to do?
	Prepare Word for writing rules
	AutoCorrect
	AutoFormat As You Type
	Measurement Units and Style Area

	Understand Oracle Policy Modeling format and structure
	Write a rule in Word

	Define rule tables in Word documents
	Add a rule table in Word

	Define decision tables in Excel workbooks
	What do you want to do?
	Understand the styles used for rule tables
	Create a rule table in Excel
	Prove multiple attributes for the same set of conditions
	Prove the same set of conclusions using multiple conditions
	Allow rule conditions to evaluate in any order and handle missing values
	Write a comparison type rule where a decision applies to a range of numbers o...
	Split rule tables according to the date they apply from
	Use entity attributes in an Excel rule table
	Prove a text attribute in an Excel rule

	Make your Excel rules easier to understand
	What do you want to do?
	Shorten attribute names in Excel workbooks
	Simplify rule table layout by merging cells
	Change rule table orientation

	Capture implicit logic in rules
	What do you want to do?
	Understand how shortcut rules work
	Write a shortcut rule

	Write rules in the negative
	Avoid multiple conclusions when writing negative rules

	Prove an attribute using multiple rules
	What do you want to do?
	Intentionally prove an attribute using multiple rules
	Check my rules for multiply proven attributes

	Model loops in rule logic
	Include an existing attribute in a rule
	Choose a function to include in a rule
	Nested functions
	Examples

	Add rule metadata
	Validate user input using errors and warnings
	What do you want to do?
	Write an error event rule
	Write a warning event rule
	Specify minimum and maximum values
	Use regular expressions

	Use rules to trigger external software applications

	Designing and maintaining rule documents
	Identify what rules are needed
	Identifying source rules
	Identifying business rules
	Identifying system rules
	Compare the rules document with the source material

	Model the structure of legislation
	What do you want to do?
	Use the Ignore and Commentary styles to identify parts of the legislation tha...
	Use structural elements to model legislative structure
	Use keywords to customize automatic structural attributes
	Default Structural Element
	Default Structural Global Proof
	Default Structural Entity Proof
	Ignore
	Replace
	Replace Entity

	Model conditions without structural rule elements
	Use Heading styles to organize rules

	Split a rule across documents
	Improve the wording of a rule
	Using variable comparisons to infer boolean attributes
	Replacing grouping operators with new attributes

	Split and link rules
	What do you want to do?
	Understand how rules link together
	Rule 1
	Rule 2

	Link rules together
	Split large rules into smaller rules

	Model discretion within rules

	Languages
	Write rules in other languages
	What do you want to do?
	Specify the rule language
	Creating a new language parser
	Syntactic and non-syntactic parsers

	Specify the rulebase region
	Change the rule language or region
	View the function syntax for the rule language
	See which version of a language parser a rulebase is using

	Create a new language translation for a rulebase
	What do you want to do?
	Add a translation of an existing rulebase
	Run a translation of a rulebase
	Set up a new locale in Oracle Web Determinations

	Check for untranslated text in a rulebase
	Update a translation file

	Localize interview help
	Localize interview document templates
	Select the user interface language for rule authoring
	Configure the list of recognized verbs
	What do you want to do?
	Create a new verb file
	Add a new verb
	Modify existing verb forms
	Delete a verb
	Delete a verbs file

	Format a numeric constant for the correct region
	Language specific considerations
	Write rules in Arabic
	Supported sentence structures
	Supported verb forms
	Limitations
	Vocalizations
	Hamza on Alef
	No demonstratives
	Attached pronouns

	Write rules in Finnish
	Supported sentence structures
	Supported verb forms
	Limitations
	Object case transformation in SVO sentences
	Pronoun possessives

	Write rules in French
	Limitations
	Contractions

	Write rules in Hebrew
	Verbs list
	Negation
	Parsing
	Excel rule tables

	Write rules in Italian
	Supported sentence structures
	Supported verb forms
	Limitations
	Substitutions

	Write rules in Japanese
	Supported sentence structures
	Supported verb forms
	Verb recognition

	Adjectives
	Limitations
	Example 1 - Conditional mood
	Example 2 - Clauses
	Example 3 - Necessity

	Write rules in Korean
	Supported sentence structures
	Supported verb forms
	Adjectives
	Sentence parsing
	Limitations
	Example 1 - Conditional mood
	Example 2 - Clauses

	Variable sentence generation

	Write rules in Portuguese
	Supported sentence structures
	Supported verb forms
	Limitations
	Substitutions

	Write rules in Russian
	Supported sentence structures
	Supported verb forms
	Limitations
	Substitutions
	Gender of non-Boolean attributes

	Write rules in Spanish
	Limitations
	Contractions

	Write rules in Turkish
	Verb editor

	Variables and constant values
	Define an attribute to use in a rule
	What do you want to do?
	Create a new attribute from within a Word document
	Create a new attribute in an Excel document
	Create a new attribute in a properties file
	Check attribute entity levels

	Choose a name for an entity, relationship or attribute
	What do you want to do?
	Choose a name for an entity
	Choose a name for a relationship
	Examples of relationship names

	Choose attribute text
	Choose boolean attribute text
	Choose non-boolean attribute text

	Document the naming convention for a project

	Choose a data type for an attribute
	Use variables in rules
	What do you want to do?
	Specify the value for a variable in a rule
	Use a variable in a condition
	Use a variable in a mathematical calculation in a rule conclusion
	Use a variable in a straight calculation in a rule conclusion

	Walkthrough: Creating and using a variable in a rule
	Source material
	Creating the variable
	Using the variable in a Word rule

	Use constant values in rules
	Check if a value is within a certain range
	Create a synonym for a variable
	Example

	Convert a text string into a number or date
	Convert a number or date into a text string
	See also:

	Combine multiple text strings into a single text variable
	Extract part of a text string
	Check if a text string contains a given substring
	What do you want to do?
	Check if a text string contains a particular substring
	Check if a text string contains a particular substring at the start of the st...
	Check if a text string contains a particular substring at the end of the string

	Check if a text string is a number
	Find the length of a text string
	Get a date, day, month or year
	What do you want to do?
	Get today's date
	Get the day component of an input date
	Get the month component of an input date
	Get the year component of an input date
	Get the date from a date and time
	Get a date formed from a specified year, month and day

	Get a time, second, minute or hour
	What do you want to do?
	Get the second component of an input time
	Get the minute component of an input time
	Get the hour component of an input time
	Get the time of day from a date and time
	Get the time of day from a text string

	Get a date and time
	What do you want to do?
	Get the current date and time
	Get a date and time by joining together a separate date and time
	Get a date and time from a text string
	Get a date and time by adding or subtracting a specified number of hours to a...
	Get a date and time by adding or subtracting a specified number of minutes to...
	Get a date and time by adding or subtracting a specified number of seconds to...

	Get the latest or earliest date or time
	Calculate a relative date
	What do you want to do?
	Get the date of the next or previous specified day
	Add or subtract a specified number of days to an input date
	Add or subtract a specified number of weeks to an input date
	Add or subtract a specified number of months to an input date
	Add or subtract a specified number of years to an input date

	Find a date in a year
	What do you want to do?
	Find the first date in the year
	Find the last date in the year
	Find the next instance of the given day/month
	Find the start or the end date for the previous or next UK tax year

	Count periods between two dates or times
	What do you want to do?
	Count the number of weekdays between two dates
	Count the number of whole days between two dates
	Count the number of whole weeks between two dates
	Count the number of whole months between two dates
	Count the number of whole years between two dates
	Count the number of seconds between two times
	Count the number of whole minutes between two times
	Count the number of whole hours between two times

	Calculate the number of days in a month
	Find the day from a date

	Data model
	Define a data model
	Entities
	Relationships
	Attributes
	An example of a data model
	Choose entities
	Choose relationships
	Choose relationship types

	Create, modify or delete a properties file
	What do you want to do?
	Create a properties file
	Modify a properties file
	Delete a properties file

	Define an entity
	What do you want to do?
	Understand the different types of entities
	Entities
	Global Entities

	Create an entity
	Identifying attributes

	Give an entity a public name

	Define a relationship
	What do you want to do?
	Understand the different types of relationships
	One-to-One
	One-to-Many
	Many-to-Many
	Many-to-One
	Reverse Relationships
	Primary Direction

	Self-Referential Relationships
	Containment Relationships
	Reference Relationships
	Inferred Relationships

	Create a relationship in a properties file
	Create a containment relationship
	Create a reference relationship
	Flip the direction of a relationship

	Choose a name for an entity, relationship or attribute
	What do you want to do?
	Choose a name for an entity
	Choose a name for a relationship
	Examples of relationship names

	Choose attribute text
	Choose boolean attribute text
	Choose non-boolean attribute text

	Document the naming convention for a project

	Choose a data type for an attribute
	Use an attribute in a rule
	Use an entity or relationship in a rule
	What do you want to do?
	Refer to entities connected by a to-many relationship
	Check that a condition returns true for every instance of an entity
	Check that a condition returns true for at least one instance of an entity

	Refer to entities connected by a to-one relationship
	Compare entities within the same relationship
	Count the number of instances of an entity
	Get the highest/most recent value of an entity-level variable
	Get the lowest/least recent value of an entity-level variable
	Add up numerical values gathered from each instance of an entity

	Rename an entity, attribute or relationship
	Rename an attribute
	Rename an entity
	Rename a relationship

	Remove an entity, attribute or relationship
	Remove an attribute
	Remove an entity
	Remove a relationship

	Visualize the data model
	See also:

	Export or import a data model
	What do you want to do?
	Export the data model to XML
	Import an existing project using XML
	Import and export a project to and from an external rules repository
	Export a project to an external rules repository

	Check the rulebase against the data model
	What do you want to do?
	Check the rulebase against an external data model
	Create an external data model file for use with Oracle Policy Modeling
	View the data model

	Understand partial knowledge of relationships
	What do you want to do?
	Understand how partial knowledge reasoning works
	Partial knowledge of inferred relationships
	Entity completion status and inferred relationships
	Partially known inferred relationships in the debugger

	Partial knowledge of static relationships
	Static relationships and entity completion status
	Partially known static relationships in the debugger

	Make a partially known relationship known in the debugger
	Make a partially known inferred relationship known in the debugger
	Make a partially known static relationship known in the debugger

	Understand containment relationships and entity completion

	Rules using entity instances
	Use an entity or relationship in a rule
	What do you want to do?
	Refer to entities connected by a to-many relationship
	Check that a condition returns true for every instance of an entity
	Check that a condition returns true for at least one instance of an entity

	Refer to entities connected by a to-one relationship
	Compare entities within the same relationship
	Count the number of instances of an entity
	Get the highest/most recent value of an entity-level variable
	Get the lowest/least recent value of an entity-level variable
	Add up numerical values gathered from each instance of an entity

	Check whether entity instances match a condition
	What do you want to do?
	Count the number of instances of an entity for which a particular attribute i...
	Get the highest/most recent value of an entity-level variable for which a par...
	Get the lowest/least recent value of an entity-level variable for which a par...
	Add up numerical values gathered from each instance of an entity for which a ...

	Reason across multiple entities
	What do you want to do?
	Extend the For, For All and Exists functions
	The concept of scope in rules
	An example of cross entity reasoning

	Use relationship membership as a rule input
	Remove ambiguity when reasoning about more than one instance of the same entity
	Using an alias in a scoped entity function
	Using an alias in a relationship conclusion

	Compare instances of the same entity

	Write rules that infer relationships and entities
	What do you want to do?
	Infer membership of a relationship
	Notes /Limitations

	Infer existence of entities to satisfy the relationship
	Example 1: Creating a single instance
	Example 2: Creating multiple instances using a rule table
	Example 3: Creating multiple instances from a single entity level-attribute
	Notes /Limitations

	See worked examples

	View and amend the data model while writing rules
	What do you want to do?
	View the attributes, entities and relationships
	View the project attributes
	View the project entities
	View the entity attributes
	View the entity relationships

	Edit an attribute from within Word
	Edit an entity from within Word
	Edit a relationship from within Word

	Temporal reasoning
	Decide if temporal reasoning is needed
	What do you want to learn about?
	How conclusions can change over time
	What drives changes in rulebase conclusions?

	What kinds of temporal variation can Oracle Policy Modeling deal with?
	Temporal reasoning and areas of change
	Changes in policy and rules
	Changes in rates and other reference data
	Changes in circumstances

	What does temporal reasoning offer?
	When to use temporal reasoning
	A worked example of temporal reasoning
	Pension calculation rules
	Oracle Policy Modeling rules
	Total entitlement
	Daily entitlement
	Standard daily rate
	Age requirements
	Person's age

	Simple scenario
	Input timeline
	Output timeline

	Set the date a rule comes into effect
	Calculate an amount in a time period
	What do you want to do?
	Calculate the number of distinct values for a variable in a time period
	Calculate the number of distinct values for a variable in a time period only ...
	Calculate the sum of a variable in a time period
	Calculate the sum of a variable in a time period only when a condition is true
	Calculate the average value of a variable in a time period
	Calculate the average value of a variable in a time period when a condition i...

	Calculate a monthly amount
	Find the maximum or minimum amount in a period
	What do you want to do?
	Find the maximum amount in a period
	Find the minimum amount in a period
	Find the maximum amount in a period when a boolean attribute is true
	Find the minimum amount in a period when a boolean attribute is true

	Check if a condition is true within a time period
	What do you want to do?
	Check if a condition is true at all times in the time period
	Check if a condition is ever true in the time period
	Check if a condition is true for at least the specified number of days in the...
	Check if a condition is true for at least the specified number of consecutive...
	Check if a condition is true for all of a specified number of preceding days
	Check if a condition is true for at least the specified number of consecutive...
	Check if a condition is ever true within a specified number of preceding days

	Build a temporal value from entity instances
	What do you want to do?
	Get a temporal attribute from entity instances with values from the start date
	Get a temporal attribute from entity instances with values up until the end date
	Example 1: All end dates are specified
	Example 2: One end date is open
	Example 3: Two end dates are equal (an error)

	Get a temporal attribute from entity instances with values from the start dat...

	Set the time period to use for calculations
	What do you want to do?
	Get a date value equivalent to the earliest possible date
	Get a date value equivalent to the latest possible date

	Determine a rule attribute on a given date
	Find the closest date when an attribute was true
	Find the date on which a boolean attribute was last true
	Find the date on which a boolean attribute will next be true

	Calculate the number of days/weeks/months/years since a given date
	What do you want to do?
	Calculate the number of days since a given date
	Calculate the number of weeks since a given date
	Calculate the number of months since a given date
	Calculate the number of years since a given date
	Calculate the weekdays in a given time period
	Calculate a specific day in a month for a given time period

	Check if a condition is true relative to a given date
	What do you want to do?
	Check if a condition is true before a given date and false on and afterwards
	Check if a condition is true after a given date and false on and before
	Check if a condition is true on a given date and false before and afterwards
	Check if a condition is true on and before a given date and false afterwards
	Check if a condition is true on or after a given date and false before

	Interviews and flows
	Design an interview
	Interview features

	Create, modify or delete a screens file
	What do you want to do?
	Create a screens file
	Modify a screens file
	Organize a screens file
	Edit a screens file

	Delete a screens file

	Create, modify or delete a question screen
	What do you want to do?
	Create a question screens folder
	Create a question screen
	Add questions to screens
	Add labels to question screens
	Create a screen attribute
	Preview a question screen in Oracle Web Determinations
	Modify a question screen
	Find a question screen
	Delete a question screen
	Organize question screens within a folder

	Collect information about entity instances
	What do you want to do?
	Define a screen for collecting entity instances
	Collect attributes for the entity
	Create entity question screens
	Control the order of entity question screens

	Use substitution on entity screens to identify the entity instance
	Associate an entity instance with another set of entity instances via a refer...
	Filter the list of available target entities

	Customize interview user input options
	What do you want to do?
	Specify the type of input
	Specify individual date and time edits
	Specify the values for a restrictive input control
	Source list contents from an external file
	Specify a dynamic default for an input
	Specify a default value for an input
	Make an input mandatory

	Decide whether to allow uncertainty in user answers
	Uncertainty and rulebase inheritance

	Hide, display and disable an interview screen element
	What do you want to do?
	Control the visibility of questions, labels and relationships
	Control the visibility of restricted input options
	Control the visibility of summary screen elements
	Make an input read-only

	Tutorial: Hiding and displaying summary screen elements
	Example
	Step 1. Write the rules to control the display of the summary screen elements
	Step 2. Add the procedural goal and visibility attribute to the summary screen
	Step 3. Add the eligibility goal and visibility attribute to the summary screen

	Change the text of an interview question or sentence
	What do you want to do?
	Customize sentence text
	Customize question text
	Tips for question wording

	Substitute the actual value of a variable for its text
	Substitute a gender pronoun for a text variable
	Set up substitution
	Collect the gender of a person
	Substitute an attribute value into the text on screens
	Handling unknown and uncertain values
	Substituting gender pronoun attributes

	Display interview questions in second person form

	Change the layout or appearance of interview screens
	What do you want to do?
	Change the appearance of text
	Allowable HTML tags

	Change the appearance of a control
	Change the size of a text box
	Add an image to a screen
	Show/hide features used for debugging
	Attribute question identifiers
	Status bar

	Improve the appearance and layout of screens
	Limit the number of questions per screen
	Use headings to convey meaning about the screen
	Group related questions together
	Use visibility attributes on controls on the summary screen
	Use visibility attributes to hide mutually exclusive attributes
	Use visibility attributes to hide attributes proven by shortcut rules
	Default questions following an if so… or if not… label to uncertain
	Put questions linked by shortcut rules on separate screens

	Customize Oracle Web Determinations
	What do you want to do?
	Change the Oracle Web Determinations banner
	Change the image in the Oracle Web Determinations banner
	Change the text in the Oracle Web Determinations banner

	Configure the Oracle Web Determinations labels
	Change the appearance of a drop down list in Oracle Web Determinations
	Change the locale list in Oracle Web Determinations

	Define interview screen order
	What do you want to do?
	Use the order of screens in the Question Screens folder to define the intervi...
	Create a new screen order
	Edit a screen order

	Define interview screen flow
	What do you want to do?
	Create a new screen flow
	Name the flow
	Add screens to the screen flow
	Add decision points to the screen flow
	Choose the entity that the screen flow operates within
	Add subflows to the screen flow

	Edit a screen flow
	Move a shape
	Change the size of a shape
	Delete a shape

	Change how interview data is summarized and reviewed
	What do you want to do?
	Create a summary screen
	Add a label to the summary screen
	Add a goal to the summary screen
	Add a screen flow to the summary screen
	Add entity-level items to the summary screen
	Add a document link to the summary screen
	Additional settings

	Change the order of screens on the data review screen
	Change the title of the data review screen

	Check attribute inclusion on interview screens
	What do you want to do?
	View a list of attributes that are not collected on any interview screens
	View a list of inferred attributes that are collected on interview screens
	Find and fix any broken attribute references on screens
	Collect an attribute on multiple screens

	Create, update or delete interview help
	What do you want to do?
	Generate commentary files for attributes and screens
	Create commentary for a word in a label or question
	Make the commentary open in a new window
	Update a commentary file
	Delete a commentary file
	Localize a commentary file

	Overview: The process of creating an interview document
	Create, update or delete an interview document
	What do you want to do?
	Create a documents folder
	Create a new interview document
	Modify an interview document
	Delete an interview document

	Develop a template for an interview document
	Create a template file
	Open a template file

	Load the XML data
	Load the XML schema

	Design the template
	Insert a field
	Customize a BI Publisher field
	Insert a decision report
	Insert conditional text
	Insert entity-level attributes

	Insert a table
	Insert a chart
	Insert a repeating picture

	Preview the document
	Generate the sample data
	Load the sample data
	Preview the output

	Test an interview or screen flow
	What do you want to do?
	Use Oracle Web Determinations in the debugger
	Enable debugging in a deployed instance of Oracle Web Determinations

	Use Oracle Web Determinations externally
	Start an interview in Web Determinations
	Open a saved investigation

	Investigate a goal in Web Determinations
	Questions
	Progress stages
	Progress bar
	Help text
	Conclusions

	Create entity instances in Web Determinations
	Review the reason for a decision in Web Determinations
	Review a document generated from the interview
	Review the data collected in Web Determinations
	Save an interview in Web Determinations
	Know what to test for

	Decision reports
	Design a decision report
	Hide information in a decision report
	What do you want to do?
	Hide all attributes in the decision report below a particular attribute
	Hide a particular attribute in the decision report
	Cut off a decision report above a particular attribute
	Hide a relationship in the decision report

	Add more information to decision report
	What do you want to do?
	Add intermediate rules
	Remove existing silent and invisible operators
	Substitute the value of an attribute for its text
	Show the names of entity instances

	Compiling and building
	Compile rules and correct errors
	What do you want to do?
	Correct rule errors
	Understand what parsing means
	Review the attribute parses
	Review the attribute parses in a rules document
	Review the attribute parses in a properties file

	Identify the operative verb
	Select an alternate parse
	Delete unused attributes
	Understand attribute IDs
	Customize document IDs

	Compile rules from within Oracle Policy Modeling

	Include extra files in the build
	Build a rulebase
	Create rules that can be shared with another project
	Define what can be used by other projects
	Build a module
	Deploy changes to a single module

	See the results of a recent build or deploy operation
	Define attribute names for use by external applications
	What do you want to do?
	Automatically generate public names for base and top level attributes
	Replace auto-generated public names with meaningful ones
	Choose a meaningful public name

	Check that all base level attributes have public names
	Maintain public names

	Check that a rule references the right data elements
	Fix a build error
	Exclude a rule file from the build
	Build the rulebase from the command line
	Syntax
	Parameters
	Example

	Finding and reporting
	Find your way around the Oracle Policy Modeling user interface
	Oracle Policy Modeling menu bar and commands
	File menu
	Edit menu
	View menu
	Reports menu
	Build menu
	Tools menu
	Help menu

	View list of entities and attributes
	What do you want to do?
	View the entities and attributes in the build model
	Find an attribute in the build model
	Find where an attribute is used in the rulebase

	Find the entity for an attribute
	Check attribute entity levels
	Why attribute scope is important

	Find rules that use an attribute or relationship
	Find rules that use an attribute
	Find rules that use a relationship

	Find dependent rules
	Find dependent rules using the Rule Browser
	Find dependent rules using a rulebase visualization

	See the structure of a rule
	Check rule structure and dependencies
	What do you want to do?
	Check connections between rules
	Check structural connectivity with the base level attributes report
	Check connections between rules using the dependent base level attributes report

	Check the structure of a rule

	Find input data needed to reach a conclusion
	Get a list of all attributes proving a goal

	Spell-check all interview screens
	Create, modify or delete a rulebase visualization
	What do you want to do?
	Create a new visual browser file
	Create a rulebase visualization
	Modify a rulebase visualization
	Move the nodes
	Change the formatting of nodes
	Delete nodes
	Hide relationships
	Regenerate the rule structure
	Adding labels and boxes to the diagram

	Print a rulebase visualization
	Export a rulebase visualization
	Delete a rulebase visualization

	Analysis
	Conduct what-if analysis using an Excel workbook
	What do you want to do?
	Create a what-if analysis document
	Populate the what-if analysis document with input data
	Add a worksheet (for entities and many-to-many relationships)
	Add a column (for attributes and other relationships)
	Enter data for global entities
	Enter data for non-global entities:
	Enter data for many-to-many relationships

	Analyze the results of the policy model
	Export the what-if analysis to CSV files
	Export the what-if analysis to a test script file

	Analyze the outcomes of a large number of test cases
	Identify the frequency of each outcome
	Identify conflicting outcomes
	Identify used and unused rules and conditions

	Use the batch processor

	Test cases
	Define, modify or remove test scripts
	What do you want to do?
	Create a new test script file
	Create new test cases
	Copy an existing test case
	Create input data
	Investigate a goal
	Investigate an inferred relationship
	Set the value for an attribute
	Create input data in an interview

	Specify expected results
	Create an outcome set
	Add outcomes in the outcome set editor
	Add outcomes in the test case editor
	Specify threshold values
	Ignore results
	Delete invalid outcomes

	Modify a test script
	Validate a test script
	View the details of a test script
	Remove a test script
	Change the platform that the regression tester runs on

	Create a test case from within an interview
	What do you want to do?
	Export interview data directly into a new test case from the debugger
	Export interview data to an XDS file and import into a new test case
	Export the interview data from the debugger
	Export the interview data from Oracle Web Determinations
	Import the data into a new test case

	Import test cases from another project
	Create test scripts from existing data
	Ensure data is in appropriate format for the batch processor
	Format CSV files
	Convert Excel data to CSV format

	Run the batch processor to generate the test script
	Add the test script file to OPM

	Compare test case results with expected results
	What do you want to do?
	Run a single test script
	Run multiple test scripts
	View the test results
	Customize the test report
	Save the test report

	Debug a failing test case
	Create test cases with temporal data or outcomes
	What do you want to do?
	Create change points in input data
	Create change points in expected results
	Create change points in outcome data

	Measure the coverage of a test suite
	What do you want to do?
	Generate a Test Script Coverage report
	View the report organized by document
	View the report organized by goal

	View the coverage for a rule
	Change the coverage threshold
	Change the goals used in the analysis
	Save the coverage report as an XML file
	Understand how coverage is measured
	Analyze an existing coverage file
	Coverage of projects that include modules

	Change the platform used by the analyzer
	Analyze test script coverage using the command line tools

	Improve test script coverage
	Use the regression tester from the command line
	Syntax
	Options
	Formatting

	Debugging
	Debug a rulebase
	What do you want to do?
	Use the integrated debugger to test the rules
	Using the standalone debugger to test the rules

	Define data to use in a test case or a debug session
	What do you want to do?
	Set the value for a base level attribute
	Set up entities and containment relationships
	Add entity instances
	Delete entity instances

	Set reference relationships
	Set reference relationships between entity instances
	Remove the association between a target instance and the relationship
	Navigate reverse relationships

	Test a portion of a rulebase
	What do you want to do?
	Test a portion of a rulebase
	Set the value for a base level attribute
	Investigate a goal
	Investigate an inferred relationship

	Test data validations
	Test minimum and maximum values
	Test regular expressions
	Test errors and warnings

	View the attributes inferred in a test case or debug session
	What do you want to do?
	View the inferred attributes
	View the decision for a known attribute

	Debug temporal rules and data
	What do you want to do?
	Enter temporal data in the debugger
	Visualize temporal data
	Understand temporal outcomes
	Understand why an inferred attribute has a particular value on a particular date
	Limit the display range of attribute value

	Find the cause of a logic error
	Change a rule while debugging
	Save or reload a debugger session
	Save a debugger session
	Reload a debugger session

	Deployment
	Deploy an interview to Web Determinations
	Deploy a rulebase or interview to Determinations Server
	Deploy a rulebase to a custom application or mobile device
	Polish a rulebase for deployment
	What do you want to do?
	Personalize an interview
	Using name substitution
	Using gender pronoun substitution
	Substituting names in headings and labels on screens
	Using second person sentence generation

	Configure the screens
	Using screen labels
	Hiding and displaying summary screen elements

	Add default values and validate user input
	Defaulting values on Oracle Web Determinations screens
	Validating user input on Oracle Web Determinations screens

	Improve decision reports
	Automatically generating structural elements
	Using grouping connectors and intermediate attributes
	Trimming the decision report

	Customize Oracle Web Determinations
	Defining a data review screen
	Showing the progress stages
	Configuring the Oracle Web Determinations labels
	Changing the Oracle Web Determinations banner
	Providing commentary/help text

	Custom functions and programming
	Install a custom function
	Debug with a custom function
	Write a rule that uses a custom function
	What is a Custom Function?
	What can a Custom Function do?
	Call a Custom Function

	Collaborating
	Work collaboratively on rule projects
	Include rules defined in a separate project
	What do you want to do?
	Add a link to a module
	Validation of a module upon linking

	Use entities, attributes and relationships imported from a module
	Text substitution
	Define attributes, entities and relationships in multiple modules

	Include the rules from an imported module
	Use the translations provided in an imported module
	Build and load a rulebase containing modules
	Validation at runtime of a rulebase containing modules
	Data matching at runtime
	Redeployment

	Debug a rulebase containing modules

	Share rule documents across projects
	Multiple projects in folder structure
	Share files in source control
	Duplicate files in source control

	Use multiple properties files on a multi-developer project
	Import a data model from another rule project
	Track rulebase changes on multi-developer projects
	Subversion and other source control programs
	Install Microsoft Team Foundation Server

	Open a rulebase project from source control
	Connect or disconnect a project with source control
	Connect a project
	Disconnect a project

	Track versions of rulebase documents
	What do you want to do?
	Check out a document from source control
	Check in a document to source control
	See whether a document is checked in or out
	View the version history of a document
	Ensure all documents are checked in when the project is closed
	See which documents have not been added to source control

	Get updates to rule documents from source control
	Get updates to a single file
	Get updates to all files in a project
	Get updates to the project file
	Get updates to a file already checked out to you

	Retrieve a specific document version
	What do you want to do?
	View historical versions of Word rule documents
	Compare versions of Word rule documents
	Retrieve versions of other rulebase documents

	Create multiple rulebase versions

	Integrating
	Set public identifiers for entities and attributes
	Augment the rulebase with metadata
	What do you want to do?
	Specify a custom property definition
	Assign a custom property to an attribute
	Assign a custom property to an entity
	Assign a custom property to a relationship
	Assign a custom property to a rule
	Assign a custom property to a screen
	Assign a custom property to a control
	Assign a custom property to an interview document
	Assign a custom property to a folder
	Assign a custom property to the project
	Implement a custom property using application support
	Generate a report of custom properties in a project

	Build the rulebase from the command line
	Syntax
	Parameters
	Example

	Write rules to use in Siebel
	Import a Data Mapping from Siebel
	Export a Data Mapping from Siebel to an XML File
	Import the Data Mapping into an Oracle Policy Modeling Project:

	Accessibility
	Keyboard shortcuts for Oracle Policy Modeling
	Shortcut keys for Oracle Policy Modeling
	Access menu items in Oracle Policy Modeling
	Access shortcut menus in Oracle Policy Modeling

	Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word
	Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel
	Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

	Modify the appearance or layout of Oracle Policy Modeling
	What do you want to do?
	Dock/undock the panes
	Pin/unpin the panes
	Resize the panes
	Move the tabs around
	Change the color scheme
	Change the number of items in the recent projects list

	Modify the appearance of rules in Word
	Accessibility features in Oracle Web Determinations
	Keyboard-only navigation
	General principles
	Interview screens with input controls
	Decision Report screens
	Data Review screens

	Reference
	Rule syntax reference
	Logical connectors
	Logical functions
	Logical constants
	Comparison operators
	Numerical functions
	Date functions
	Time of day functions
	Date and time functions
	Text functions
	Entity and relationship functions
	Temporal reasoning functions
	Validation event functions
	Deprecated functions
	Localized function references (all languages)
	الروابط المنطقية
	الدوال المنطقية
	الثوابت المنطقية
	معاملات المقارنة
	الدوال الرقمية
	دوال التاريخ
	دوال الوقت من اليوم
	دوال التاريخ والوقت
	دوال النص
	دوال الكيان والعلاقة
	الدوال التحليلية المؤقتة
	دوال حدث المراجعة
	الدوال المهملة
	Conectores lógicos
	Funções lógicas
	Constantes lógicas
	Operadores de comparação
	Funções numéricas
	Funções de data
	Funções de hora do dia
	Funções de data e hora
	Funções de texto
	Funções de entidade e relação
	Funções de argumentos temporais
	Funções de evento de validação
	Funções em remoção gradual
	逻辑连接词
	逻辑函数
	逻辑常数
	比较运算符
	数值函数
	日期函数
	当天的时间函数
	日期和时间函数
	文本函数
	实体和关系函数
	时间推理函数
	验证事件功能
	已过时的函数
	邏輯連接器
	邏輯函數
	邏輯常數
	比較運算子
	數值函數
	日期函數
	當日時間函數
	日期與時間函數
	文字函數
	實體與關係函數
	暫時推斷函數
	驗證事件函數
	已過時函數
	Logické spojky
	Logické funkce
	Logické konstanty
	Porovnávací operátory
	Číselné funkce
	Funkce data
	Funkce času
	Funkce data a času
	Textové funkce
	Funkce entity a vztahu
	Funkce časové logiky
	Funkce události ověření
	Odmítnuté funkce
	Logiske connectors
	Logiske funktioner
	Logiske konstanter
	Sammenligningsoperatorer
	Numeriske funktioner
	Datofunktioner
	Klokkeslætsfunktioner
	Dato- og klokkeslætsfunktioner
	Tekstfunktioner
	Entitets- og relationsfunktioner
	Tidsmæssige ræsonneringsfunktioner
	Funktioner til valideringsbegivenhed
	Forældede funktioner
	Logische connectors
	Logische functies
	Logische constanten
	Vergelijkingsoperatoren
	Numerieke functies
	Datumfuncties
	Tijd-van-de-dagfuncties
	Datum- en tijdfuncties
	Tekstfuncties
	Entiteits- en relatiefuncties
	Temporele-redeneringsfuncties
	Validatiegebeurtenisfuncties
	Verouderde functies
	Logical connectors
	Logical functions
	Logical constants
	Comparison operators
	Numerical functions
	Date functions
	Time of day functions
	Date and time functions
	Text functions
	Entity and relationship functions
	Temporal reasoning functions
	Validation event functions
	Deprecated functions
	Conectores lógicos
	Funções lógicas
	Constantes lógicas
	Operadores de comparação
	Funções numéricas
	Funções de data
	Funções de hora do dia
	Funções de data e hora
	Funções de texto
	Funções de entidade e relação
	Funções de raciocínio temporal
	Funções do evento de validação
	Funções recusadas
	Loogiset operaattorit
	Loogiset funktiot
	Loogiset vakiot
	Vertailuoperaattorit
	Numeeriset funktiot
	Päivämäärän funktiot
	Kellonajan funktiot
	Päivämäärän ja kellonajan funktiot
	Tekstin funktiot
	Yksikön ja suhteen funktiot
	Ajallisen perustelun funktiot
	Tarkistustapahtuman toiminnot
	Hylätyt funktiot
	Connecteurs logiques
	Fonctions logiques
	Constantes logiques
	Opérateurs de comparaison
	Fonctions numériques
	Fonctions de date
	Fonctions d'heure du jour
	Fonctions de date et heure
	Fonctions de texte
	Fonctions d'entité et de relation
	Fonctions de raisonnement temporel
	Fonctions de l'événement de validation
	Fonctions en phase d'abandon
	Logische Connectors
	Logische Funktionen
	Logische Konstanten
	Vergleichsoperatoren
	Numerische Funktionen
	Datumsfunktionen
	Uhrzeitfunktionen
	Datums- und Uhrzeitfunktionen
	Textfunktionen
	Entity- und Beziehungsfunktionen
	Zeitbasierte Funktionen
	Funktionen für Validierungsereignis
	Verworfene Funktionen
	מחברים לוגיים
	פונקציות לוגיות
	קבועים לוגיים
	מפעילי השוואה
	פונקציות מספריות
	פונקציות של תאריך
	פונקציות של השעה ביום
	פונקציות של תאריך ושעה
	פונקציות של טקסט
	פונקציות של ישות וקשר
	פונקציות של הנמקה זמנית
	פונקציות אירוע אימות
	פונקציות מוחלפות
	Connettori logici
	Funzioni logiche
	Costanti logiche
	Operatori di confronto
	Funzioni numeriche
	Funzioni data
	Funzioni ora del giorno
	Funzioni data e ora
	Funzioni testo
	Funzioni entità e relazione
	Funzioni ragionamento temporale
	Funzioni evento di convalida
	Funzioni obsolete
	論理コネクタ
	論理関数
	論理定数
	比較演算子
	数値関数
	日付関数
	時刻関数
	日時関数
	テキスト関数
	エンティティおよび関係関数
	時間推論関数
	検証イベント関数
	非推奨関数
	논리적 연결자
	논리적 함수
	논리적 상수
	비교 연산자
	숫자 함수
	날짜 함수
	시간 함수
	날짜 및 시간 함수
	텍스트 함수
	개체 및 관계 함수
	시간 기준 추론 기능
	검증 이벤트 함수
	사용되지 않는 함수
	Logiske koblinger
	Logiske funksjoner
	Logiske konstanter
	Sammenligningsoperatorer
	Numeriske funksjoner
	Datofunksjoner
	Klokkeslettfunksjoner
	Dato- og tidsfunksjoner
	Tekstfunksjoner
	Entitets- og relasjonsfunksjoner
	Funksjoner for tidsbestemt resonnering
	Funksjoner for valideringshendelser
	Frarådede funksjoner
	Łączniki logiczne
	Funkcje logiczne
	Stałe logiczne
	Operatory porównania
	Funkcje liczbowe
	Funkcje dotyczące daty
	Funkcje dotyczące pory dnia
	Funkcje dotyczące daty i godziny
	Funkcje tekstowe
	Funkcje dotyczące encji i relacji
	Funkcje dotyczące relacji okresowych
	Funkcje zdarzeń sprawdzania
	Funkcje odrzucone
	Логические соединители
	Логические функции
	Логические константы
	Операторы сравнения
	Числовые функции
	Функции даты
	Функции времени суток
	Функции дат и времени
	Текстовые функции
	Функции логических объектов и отношений
	Функции временного вывода заключений
	Функции события проверки
	Функции, не рекомендуемые к использованию
	Conectores lógicos
	Funciones lógicas
	Constantes lógicas
	Operadores de comparación
	Funciones numéricas
	Funciones de fecha
	Funciones de hora del día
	Funciones de fecha y hora
	Funciones de texto
	Funciones de entidad y relación
	Funciones de razonamiento temporal
	Funciones de eventos de validación
	Funciones anticuadas
	Logiska operatorer
	Logiska funktioner
	Logiska konstanter
	Jämförelseoperatorer
	Numeriska funktioner
	Datumfunktioner
	Funktioner för klockslag
	Funktioner för datum och tid
	Textfunktioner
	Funktioner för enhet och relation
	Tidsbestämda slutledningsfunktioner
	Funktioner för valideringshändelse
	Inaktuella funktioner
	ตัวเชื่อมต่อเชิงตรรกศาสตร์
	ฟังก์ชันเชิงตรรกศาสตร์
	ค่าคงที่เชิงตรรกศาสตร์
	เครื่องหมายการเปรียบเทียบ
	ฟังก์ชันตัวเลข
	ฟังก์ชันเวลา
	ฟังก์ชันเวลาของวัน
	ฟังก์ชันวันที่และเวลา
	ฟังก์ชันข้อความ
	ฟังก์ชันเอนทิตีและความสัมพันธ์
	ฟังก์ชันเหตุผลเกี่ยวกับเวลา
	ฟังก์ชันของกิจกรรมการตรวจสอบ
	ฟังก์ชันที่เลิกใช้
	Mantıksal bağlayıcılar
	Mantıksal fonksiyonlar
	Mantıksal sabitler
	Karşılaştırma işleçleri
	Sayısal fonksiyonlar
	Tarih fonksiyonları
	Günün saati fonksiyonları
	Tarih ve saat fonksiyonları
	Metin fonksiyonları
	Öğe ve ilişki fonksiyonları
	Zamana dayalı mantık fonksiyonları
	Doğrulama etkinliği fonksiyonları
	Kullanımdan kalkmış fonksiyonlar
	Structural configuration settings

	Rule function examples
	Comparison operator rule examples
	Date function rule examples
	Rule examples

	Time of day function rule examples
	Rule examples

	Date and time function rule examples
	Rule examples

	Numerical function rule examples
	Rule examples

	Text function rule examples
	Rule examples

	Entity and relationship function rule examples
	Rule examples

	Temporal reasoning function rule examples
	Rule examples

	Certain and known operator rule examples

	File extensions
	Truth tables
	AND truth table
	OR truth table
	Uncertain truth tables

	Basic English grammar
	Parts of speech
	Apostrophes
	Forming the possessives of nouns
	Showing omission of letters

	Rule principles for Oracle Policy Modeling
	Principles for rule authoring in Oracle Policy Modeling
	Axioms for the operation of rules in Oracle Determinations Engine
	Axiom 1: Order independence
	Axiom 2: No memory
	Axiom 3: Reverse entropy
	Axiom 4: Every conclusion must be knowable
	Axiom 5: No multiply proven attributes

	Text substitution principles
	1. Text substitutions for attributes use the largest possible match
	2. Text substitution for attributes are by whole word only
	3. Text substitutions are case sensitive
	4. Text substitution is conditional on the substitution variable’s value bein...
	5. Substitution variables must be in the same entity as the attribute being s...

	Value conditions for screen flow connections
	BI Publisher code for Oracle Policy Modeling
	Values and properties of global attributes
	Conditional text and formatting
	Values and properties of entity-level attributes
	Decision reports

	Download BI Publisher
	Troubleshooting guide for using BI Publisher with Oracle Policy Modeling
	BI Publisher ribbon not visible in Microsoft Word
	Document will not generate
	Normal text does not appear
	Font does not display correctly
	Field values and/or conditional text do not appear
	Headings/images do not appear
	Text appears on a new line
	Error when clicking on document link

	Seeded data in imported projects
	A project file
	A master data model file
	Project folders
	Rules documents
	Rules

	Definition of 'relevant' in decision reports
	Rule 1: A value is relevant if changing it could cause the conclusion of the ...
	Rule 2: Where a set of values are not relevant individually (via Rule 1) but ...
	Rule 3: Where the result is unknown, all values that could be relevant if unk...

	Keyboard shortcuts for Oracle Policy Modeling
	Shortcut keys for Oracle Policy Modeling
	Access menu items in Oracle Policy Modeling
	Access shortcut menus in Oracle Policy Modeling

	Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Word
	Shortcut keys for Oracle Policy Modeling styles and functions in Microsoft Excel
	Shortcut keys for the Screen Flow Editor in Oracle Policy Modeling

	Formatting of attribute values
	Unformatted attribute values
	Formatted attribute values

	Command line tools

