
CDC: JAVA™ PLATFORM TECHNOLOGY
FOR CONNECTED DEVICES
Java™ Platform, Micro Edition
White Paper
June 2005

Sun Microsystems, Inc.2 Table of Contents

Table of Contents

Introduction . 3

Enterprise Mobility . 4

Connected Devices in Transition . 5

Connected Devices Today . 5

What Users Want . 5

What Developers Want . 6

What Service Providers Want . 6

What Enterprises Want . 6

Java Technology Leads the Way . 7

From Java Specification Requests… . 7

…to Reference Implementations . 8

…to Technology Compatibility Kits . 8

Java Platform, Micro Edition Technologies . 9

Configurations . 9

CDC . 10

CLDC . 10

Profiles . 11

Optional Packages . 11

A CDC Java Runtime Environment . 12

CDC Technical Overview . 13

CDC Class Library . 13

CDC HotSpot™ Implementation . 13

CDC API Overview . 13

Application Models . 15

Standalone Applications . 16

Managed Applications: Applets . 16

Managed Applications: Xlets . 17

CLDC Compatibility . 18

GUI Options and Tradeoffs . 19

AWT . 19

Lightweight Components . 20

Alternate GUI Interfaces . 20

AGUI Optional Package . 20

Security . 21

Developer Tool Support . 22

Chapter 1

Introduction

From a developer’s perspective, the APIs for desktop PCs and enterprise systems have been a daunting combination of

complexity and confusion. Over the last 10 years, Java™ technology has helped simplify and tame this world for the benefit

of everyone. Developers have benefited by seeing their skills become applicable to more systems. Users have benefited

from consistent interfaces across different platforms. And systems vendors have benefited by reducing and focusing their

R&D investments while attracting more developers. For desktop and enterprise systems, “Write Once, Run Anywhere”™

has been a success.

But if the complexities of the desktop and enterprise world seem, well, complex, then the connected device world is even

scarier. Embedded CPUs vary far more than their cousins in the desktop and enterprise world. Software platforms based on

Linux have tremendous architectural benefits, but they don’t have stable binary interfaces that promote ease of deployment.

User experience models for connected devices vary greatly because their purposes vary more than desktop PCs. Connectivity

mechanisms vary with wireless technologies such as cellular and Bluetooth, and attached technologies like USB and Firewire.

At the same time, the sheer number of products and the rate of innovation dictates lower volumes, which reduces budgets

for system software.

Figure 1 describes the variety of connected devices available today. To provide a software platform for any one of these

device categories would be difficult, but to provide a network-deployable software platform that spans the wide range of

CPUs, operating systems, and GUI user experience models is very demanding.

Figure 1: CDC Target Device Categories

Sun Microsystems, Inc.3 Introduction

set-top
boxes

VOIP
industrial

automation

office
equipment

telematics

personal
mobile devicesfield service

automation

fixed
purpose

general
purpose

mobile

stationary

Developers, device vendors, and service providers all need a stable and flexible software platform. Complex device matrices

represent support nightmares and impede software deployment.

Java technology can provide the same benefits for the connected device world as it has for the desktop and enterprise worlds.

The central question is how to handle the variety and change within this world. The Connected Device Configuration (CDC)

offers a solution: a standards-based framework for supporting a wide variety of connected devices with Java technology.

CDC is based on proven Java technology and is well-equipped to handle the heterogeneous world of embedded processors,

operating systems, and GUIs. This white paper describes CDC’s problem domain and gives a technical overview of its features

and capabilities.

Enterprise Mobility

Connected devices such as PDAs and smart phones have evolved over the last decade from experimental devices to the use-

ful tools they are today. At the core of this evolution is the relationship between the device and the mobile user. Successful

product designers have learned to balance the form-factor requirements of size and battery life with intuitive, user-interface

mechanisms, while providing software that meets the personal needs of mobile users: scheduling, addresses, and other

personal reference information.

The emerging generation of connected devices adds network connectivity to this mix. At Sun, we believe that this addition

will spark a new kind of relationship between mobile users and the agile enterprise. While first-generation connected

devices provided mobile users with information tailored to their personal needs, connected devices allow them to plug into

enterprise applications and Web services to extend the reach of business logic.

With this new relationship come new challenges for software developers to quickly create mobile applications for a variety

of connected devices. As we will see, CDC provides a framework for building and deploying mobile applications that easily

integrate with enterprise systems.

Sun Microsystems, Inc.4 Introduction

Chapter 2

Connected Devices in Transition

CDC spans the needs of many different products, applications, and users. To understand this strategy, it helps to see the

problems CDC was designed to address.

Connected Devices Today

In recent years, we have seen the following trends in product designs for connected devices:

• Form factors. These have remained relatively constant. Hand-held devices such as PDAs and mobile phones are limited

by the physical dimensions of their users. Advances in display technology show up as improvements in color, brightness,

and pixel density, not in displays that expand the size of the commonly accepted form factors. User-input mechanisms

remain simple, usually based on buttons, touchscreens, pen input, and jog dials.

• Computing resources. These have grown consistently. While processor speeds have not improved as fast as they have

for desktop and server systems, performance of embedded processors is still increasing. Because battery technology does

not improve as quickly as processor, storage, and display technologies, power management is a key design criteria for

connected devices. Multimedia and time/location-based services add to the core functionality offered by connected devices.

• Network connectivity. This is the most important addition to the emerging generation of products. At the transport

layer, network connectivity can be persistent across a large network (such as a cellular network) or focused on local

connections and transactions (such as a Bluetooth network). Collectively, these network technologies will radically

expand the use and integration of connected devices. Access to consumer-oriented Web content and services may be

experimental, but secure mobile access to enterprise data will provide real value to corporate users.

What Users Want

The relationship between users and their connected devices has created several key user expectations:

• Personalization. The fundamental applications for connected devices help users track personal information such as

schedules, contact lists, and other personal reference information. These are often called personal information manage-

ment (PIM) applications. Over time, as a mobile user interacts with this personal data to modify or add to it, PIM applica-

tions become a part of the user’s daily routine. In addition to adding personal reference information, users want the

ability to configure a device to suit their own tastes and work style. This can range from adding special application software

for personal or work needs, to changing the appearance of the GUI to suit the user’s taste.

• Usability. The software experience for a connected device must be simple and predictable, because users have a low

tolerance for learning how to use these devices. Complex user-interface metaphors borrowed from desktop systems are

often not successful, because connected devices are smaller and their input mechanisms are simpler. Users perform

navigation and selection functions more often than data entry. Single-click navigation techniques are more successful

because they work within the user’s narrower attention span.

• Security. As a mobile user’s experience with a connected device expands, the need for security becomes paramount.

Mobile users need to know that their rapidly accumulating personal information is safe, and corporate IT departments

need assurance that enterprise data is accessed only by trusted users.

Sun Microsystems, Inc.5 Connected Devices in Transition

What Developers Want

To a developer, the range of connected devices looks like a complex group of devices with different processors, operating

systems, and GUI libraries. The effort to learn even a few of the native programming interfaces of these devices is a daunting

task, and device-level programming seems unnecessary because enterprise applications mainly access, display, and manip-

ulate data. Faced with so many different devices and interfaces, how can a developer build portable skills as well as

portable code?

By focusing on APIs that are shared across a range of devices, developers can focus their energies on domain-specific issues

that are important to their customers.

What Service Providers Want

The Java technology experience is not limited to device manufacturers and software developers. Service providers and carriers

want to provide scalable offerings to enterprise customers without a complex device matrix. For example, deploying enter-

prise e-mail services requires the cooperation of device vendors, service providers, and enterprise IT departments. This requires

integrating connected devices into their networks and back-end servers. The Java™ Platform, Micro Edition (Java ME, formerly

J2ME) can help solve the device matrix problem while the Java Platform, Enterprise Edition (Java EE, formerly J2EE) can help

solve the server-side scalability problem.

What Enterprises Want

With the arrival of Web technology, corporate IT departments have gone through several phases:

• Intranets. These allow users within a corporate network to use standard Web browsers to access enterprise services running

on central servers.

• Virtual Private Networks. These allow corporate IT departments to extend the availability of enterprise services to sites

outside of their corporate network firewalls. For example, remote workers can access enterprise services from their home PCs.

• Web services. These and other enterprise application integration (EAI) strategies allow enterprises to export their business

systems to customers and trusted partners. For example, a search engine might allow a licensed partner to integrate

search services into a Web application.

The next stage of this evolutionary process is to provide access to enterprise services for mobile users. This improves collab-

oration and brings up-to-date information into business decisions. But with these rich capabilities come integration chal-

lenges in the form of different kinds of mobile client devices and the enterprise technology for managing them. Connected

devices that can be lost or stolen present important security issues for enterprises. Java technology can be used at each

stage: Java EE technology on the server side, matched with Java ME technology in the client.

Sun Microsystems, Inc.6 Connected Devices in Transition

Chapter 3

Java Technology Leads the Way

Open systems have always been a major focus of Sun’s product strategy. Today, Java technology is built around a set of

standards developed in cooperation with industry leaders. These standards allow both device vendors and software devel-

opers to see what’s coming so they can build products that interoperate, thus protecting customer investment and promoting

vertical integration.

Java technology standards are developed through the Java Community ProcessSM (JCPSM - www.jcp.org) by expert groups drawn

from several industries. The JCP program is an open standards organization that manages the evolution of the Java

Platform. While Java technology was originally created by Sun, the JCP program is a mechanism for third-party developers

and licensees to lend their voices to its continued evolution.

The JCP standardization process is built around three interrelated components: the Java Specification Request (JSR), the

Reference Implementation (RI), and the Technology Compatibility Kit (TCK). As Figure 2 suggests, the JCP program requires

an RI and a TCK for each JSR standard.

Figure 2: JCP Standardization Model

From Java Specification Requests ...

The JCP program delivers its Java technology standards in documents called Java Specification Requests (JSRs). These

documents cover a wide range of technical issues across the spectrum of Java technologies. Three JSR categories are

especially relevant to the Java ME platform. These are described in Table 1.

Sun Microsystems, Inc.7 Java Technology Leads the Way

Technology
Compatibility Kit

compliance
testing suite

Reference
Implementation

technology
implementation

Java Specification
Request

standards
document

Table 1. JSR Categories for Java ME Platform

JSR Category Description Examples

Configuration (required) Provides the most basic set of class libraries CDC supports network-connected devices

and virtual machine capabilities for a broad and provides a subset of the APIs in the Java

range of devices. SE, formerly J2SE, platform.

Profile (required) Defines additional APIs that support a Foundation Profile can be used for network

narrower range of devices. A profile is built printers without GUIs, while Personal Profile

on a specific configuration. can be used for high-end PDAs. Both of these

profiles are based on CDC.

Optional package(s) Defines a set of technology-specific APIs. The Java Database Connectivity (JDBC™)

Optional Package provides database access,

while the RMI Optional Package enables

distributed application development. Both of

these optional packages are compatible with

each of the CDC profiles.

By selecting a configuration, a profile, and any number of optional packages, a product designer defines the Java runtime

environment for a given device based on the Java ME technology. This approach has the dual benefits of fitting within a

framework of established industry standards while meeting the performance, footprint, and functionality requirements of

commercial products. The standards developed through the JCP program provide a consistent set of APIs that can be shared

across a broad range of products from different vendors.

... to Reference Implementations

Reference Implementations (RIs) are implementations of JSRs that demonstrate core technology. Sun makes some RIs

available for download for demonstration and testing purposes. Sun has also developed many optimized implementations

of Java ME specifications that are available to licensees for use with their own platform-level products.

... to Technology Compatibility Kits

Technology Compatibility Kits (TCKs) are test suites that ensure an implementation of a JSR is compliant with the requirements

of that specification. The purpose of a TCK is to broadly test the conformance of an implementation to a JSR specification,

ensuring that the Java platform behaves consistently across different implementations.

Like any implementation of a JSR, an RI must also pass the TCK tests prior to being made available. See the JCP program

Web site (www.jcp.org) for information about where to obtain RIs and TCKs for a given JSR.

The CDC technology family is an interrelated group of RIs and TCKs. While RIs are usually based on common development

platforms, Sun also makes available optimized implementations for targeted embedded platforms. In addition, Optimized

Implementations (OIs) of JSRs support strategic platforms and are made available under commercial license.

Sun Microsystems, Inc.8 Java Technology Leads the Way

Chapter 4

Java Platform, Micro Edition Technologies

Java technology is divided into the platforms shown in Figure 3. Like its counterparts Java EE and Java SE (formerly J2SE),

Java ME provides a set of APIs developed through the JCP program.

Figure 3: Java Platform Architecture

Java ME technology is targeted at connected devices ranging from wireless phones to PDAs to set-top boxes. To be relevant

in this product arena, Java technology must be adaptable, because these product categories are constantly evolving as

vendors add new features and identify new product niches.

Java ME supports a much broader range of target devices than Java SE and Java EE technology, and these devices cannot all

be supported with a single set of APIs. The JCP standards process described in the previous section provides a mechanism

for Java technology to grow and adapt to change. Flexibility is needed to address both limited resource issues and product

capabilities. To accomplish this, Java ME allows product designers to choose from a menu of configurations, profiles, and

optional packages to create a product-specific, Java runtime environment.

Configurations

A configuration is a basic set of APIs and virtual machine features needed to support a broad range of devices. The first step

to making Java ME technology relevant to so many different device categories was to organize it into the configurations

described in Table 2.

Sun Microsystems, Inc.9 Java Platform, Micro Edition Technologies

CLDCCDC

MIDPFP

PBP

PP

optional
packages

optional
packages

optional
packages

Java
Platform
Enterprise
Edition

Java
Platform
Standard
Edition

Java
Platform
Micro
Edition

Table 2. Java ME Configurations

Java ME Configuration Device Examples

Connected Device Configuration (CDC) (JSR-218) PDAs, mobile phones, VOIP phones, telematics, set-top

boxes, network printers, routers, residential gateways, and

Embedded Java runtime environments for enterprise-class

server applications.

Connected Limited Device Configuration (CLDC) (JSR-139) Mobile phones and low-end PDAs.

CDC

CDC is designed around the two goals of Java SE compatibility and support for resource-constrained devices. Java SE compat-

ibility allows developers to leverage their investments in Java SE technology, including libraries, tools, and skills. Support

for resource-constrained devices allows device vendors to offer a feature-rich Java runtime environment that can support

secure, mobile, enterprise applications.

CDC supports the full Java virtual machine specification, including full class loading and core library features. At the class

library level, CDC uses modified Java SE class libraries whose interfaces have been scaled to meet the needs of resource-

constrained devices and whose implementations have been optimized for small memory environments. In the interest of

resource conservation, some class libraries based on Java SE have modified interfaces, while others have been removed

entirely. The result is a flexible Java runtime environment that fits comfortably within a memory budget of two MB of RAM

and two MB of ROM.

CLDC

CLDC was designed to meet the memory footprint requirements of cellular phones. To meet these requirements, CLDC made

accommodations in both the virtual machine and the class library. The first CLDC virtual machines (CLDC 1.0) omitted certain

virtual machine features, such as floating point. The CLDC class library contains a small subset of core Java SE classes that

are shared between Java SE, CDC, and CLDC. Certain Java SE features such as class reflection, thread groups, and application-

defined class loading are not present in the CLDC class libraries.

The benefits of these differences are significant. The memory footprint for early CLDC implementations achieved the target

memory goal of 128 to 256 KB, well within the memory budgets of low-end to mid-range mobile phones. Recent versions of

CLDC have taken advantage of greater memory footprints by bringing back some virtual machine features and adding features

to the CLDC class library.

In a nutshell, CLDC was designed around limited memory requirements, and CDC was designed to achieve as much Java SE

compatibility as possible within constrained device resources.

Sun Microsystems, Inc.10 Java Platform, Micro Edition Technologies

Profiles

Profiles provide core APIs for connected devices.

A profile is an additional set of APIs that support a narrower range of devices. Profiles provide a product designer with flexi-

bility for supporting different kinds of connected devices with a compatible Java runtime environment. Instead of defining a

single, monolithic API, Java ME gives a designer choices for different device categories. Table 3 describes the various CDC profiles:

Table 3. Java ME Profiles

Profile JSR Description Product Information

Foundation Profile 219 Foundation Profile is the most basic CDC java.sun.com/products/foundation

profile. In combination with the class

library provided by CDC, Foundation Profile

provides basic application-support classes

such as network support and I/O support.

In particular, it does not include any

support for graphics or GUI services.

Personal Basis Profile 217 Personal Basis Profile provides a structure for java.sun.com/products/personalbasis

building lightweight component toolkits based

on a limited GUI toolkit based on AWT, JavaBeans

runtime support, and support for the xlet

application programming model. In addition,

Personal Basis Profile includes all of the

Foundation Profile APIs.

Personal Profile 216 Personal Profile provides full AWT support, java.sun.com/products/personalprofile

applet support, and limited bean support. In

addition, Personal Profile includes all of the

Personal Basis Profile APIs. Personal Profile

also represents the migration path for

PersonalJava™ technology.

Optional Packages

Optional packages provide choices for technology- specific features.

Optional packages give a product designer additional choices for supporting specific technologies. Table 4 describes the

optional packages that are compatible with CDC.

Sun Microsystems, Inc.11 Java Platform, Micro Edition Technologies

Table 4. Java ME Optional Packages for CDC

Optional Package JSR Description

RMI 66 Provides a subset of the Java SE RMI. It exposes distributed application protocols through

Java interfaces, classes, and method invocations and shields the application developer from

the details of network communications.

JDBC 169 Provides a subset of the JDBC 3.0 API that can be used by Java application software to access

tabular data sources including: spreadsheets, flat files, and cross-DBMS connectivity to a

wide range of SQL databases.

AGUI 209 Provides a modified implementation of Swing for providing rich GUIs and Java 2D™

technology for providing advanced graphics and imaging features. The AGUI optional

package is based on both Personal Basis Profile and Personal Profile.

Security 219 Provides a security framework based on Java SE, including SSL, cryptography,

authentication, and authorization features.

Web Services 172 Provides standard data access from Java ME clients to Web services.

A CDC Java Runtime Environment

Putting it all together: A Java ME runtime environment includes a configuration, a profile, and any number of
optional packages.

CDC standards provide a great deal of flexibility for designing a product based on the CDC Java runtime environment. During

the product design phase, a designer can select a configuration, a profile, and any number of optional packages. For example,

a PDA designer might include Personal Profile, Remote Method Invocation (RMI) Optional Package, and Java Database

Connectivity (JDBC™) Optional Package. Application developers can then reference these APIs during software development.

Figure 4: An example Java runtime environment

It is important to understand that different CDC-based products may have different APIs within the CDC standards framework.

Choices made by a CDC product designer determine the API target for a CDC application developer.

Sun Microsystems, Inc.12 Java Platform, Micro Edition Technologies

Foundation Profile

CLDC

Security Optional Packages

other optional packages...

Personal Basis Profile JRE

profile optional packages compliant JRE+ + =configuration

RMI Optional Package

JDBC Optional Package

Personal Profile

CDC

Chapter 5

CDC Technical Overview

The preceding chapters describe the technology landscape that connected devices occupy, the JCP standards model, and

the CDC technology family. This chapter introduces the organization and structure of CDC technology, including its public

APIs and application models.

CDC Class Library

CDC contains a Java class library derived from Java SE technology, but crafted to the needs of connected devices.

The CDC class library includes a number of application support classes that software developers have been using for years to

develop countless applications for desktop and server systems. CDC leverages this broad experience with standard Java SE

APIs in the connected device space. While most CDC APIs are identical to their Java SE counterparts, some interfaces have

changed, and the implementations of others have been tuned to the needs of resource-constrained devices. The result is a

Java class library that allows developers to quickly migrate their code and skills from Java SE to CDC.

CDC HotSpot™ Implementation

CDC HotSpot Implementation is an optimized Java virtual machine designed specifically for connected devices.

Sun has developed the CDC HotSpot™ Implementation, a Java virtual machine that is highly optimized for use with connected

devices. CDC HotSpot Implementation adheres to the same Java virtual machine specifications required by Java SE technology-

based Java virtual machines, but its performance, device support, resource footprint, and reliability characteristics are

designed around the needs of consumer products and embedded devices. For more information about the CDC HotSpot

Implementation, see: java.sun.com/products/cdc-hi/.

CDC API Overview

It’s helpful to examine how the CDC APIs are organized by comparing Foundation Profile, Personal Basis Profile, and Personal

Profile. Understanding these differences is an important part of CDC application development. As the name suggests, Found-

ation Profile provides a basic set of application support classes. The other profiles build on this by adding specific functionality.

Sun Microsystems, Inc.13 CDC Technical Overview

Table 5: Comparison of Foundation Profile, Personal Basis Profile, and Personal Profile

Relationship Package/Class Description

Foundation Profile java.io Full J2SE 1.4.2 support for most core packages and classes.

Some enterprise-level APIs have been removed to save space.

java.lang

java.lang.ref

java.lang.reflect

java.math

java.net

java.security

java.security.acl

java.security.cert

java.security.interfaces

java.security.spec

java.text

java.util

java.util.jar

java.util.zip

javax.microedition.io The Generic Connection Framework (GCF) provides an abstraction

of various communication technologies so that applications can

make network connections and perform I/O without referring to a

specific connection type.

Added by Personal java.awt Support for lightweight components and some Java 2D graphics classes.

Basis Profile

java.awt.color

java.awt.event

java.awt.image

java.beans Limited to runtime support. Design time manipulation of Java Beans

must be managed by an external bean editor like an integrated

development environment (IDE) based on Java SE technology.

java.rmi Limited RMI support for xlets, not intended for general-purpose use.

java.rmi.registry

javax.microedition.xlet Xlet support.

javax.microedition.xlet.ixc

java.applet Applet support.

Added by Personal java.awt Support for heavyweight components and 2D graphics.

Profile

java.awt.datatransfer

From a developer’s perspective, CDC 1.1 and its profiles look like a modified J2SE™ 1.4.2 runtime environment. Table 6

compares the packages in CDC 1.1 and its profiles with the packages in J2SE 1.4.2.

Sun Microsystems, Inc.14 CDC Technical Overview

Table 6: Package Comparison of J2SE 1.4.2, FP 1.1, PBP 1.1, and PP 1.1

Package1 J2SE 1.4.2 FP 1.1 PBP 1.1 PP 1.1

java.applet • — — P2

java.awt.* • — P3 P3

java.beans.* • — P4 P4

java.io • • • •

java.lang.* • • • •

java.math • • • •

java.net • • • •

java.rmi.* • OP5 OP5 OP5

java.security.* • • • •

java.sql • OP5 OP5 OP5

java.text • • • •

java.util* • • • •

javax.accessibility • — — —

javax.naming.* • — — —

javax.rmi.* • — — —

javax.sound.* • — — —

javax.swing.* • — OP6 OP6

javax.transaction • — — —

org.xml • OP7 OP7 OP7

org.omg.* • — — —

javax.microedition.io.* — •8 •8 •8

javax.microedition.xlet.* — — •9 •9

•: full support, P: partial support, —: not supported, OP: replaced by an optional package

Application Models

CDC supports several application models that allow developers to handle different user needs and deployment scenarios.

These range from the basic standalone application model that is similar to a conventional native application, to managed

application models that offload the tasks of deployment and resource management to application management systems.

Sun Microsystems, Inc.15 CDC Technical Overview

1 Methods deprecated in J2SE have been removed from CDC and its related profiles and optional packages.
2 In PP, java.applet is very similar to J2SE 1.4.2 except that getAccessibleContext() is not supported.
3 In PBP, java.awt supports lightweight components and some Java 2D classes. PP includes full AWT support.
4 PP and PBP include only runtime support for the java.beans package. PBP and PP support external IDEs based on J2SE, but not bean editors running directly

on a CDC Java environment.
5 java.rmi.* and java.sql have been replaced by optional packages. PBP and PP include a subset of java.rmi to support xlet communication, but these

classes should not be used directly.
6 The AGUI Optional Package (JSR 209) contains a subset of the Swing and Java 2D packages.
7 The Web Services Optional Package (JSR 172) includes a programming model that is consistent with the J2SE platform.
8 FP, PBP and PP include the Generic Connection Framework with extensions that include serial port connections.
9 The xlet support packages javax.microedition.xlet.* have been added to PBP and PP.

Standalone Applications

The most basic application model is the standalone application model, which dates back to the beginning of Java technology.

Developers use standalone applications for fixed-purpose designs such as utilities and productivity applications.

When the Java virtual machine is launched, it is given the name of the main application class for loading. This class must

include a method named main() that handles the rest of the application’s class loading, object creation, and method exe-

cution. Figure 5 illustrates this process. The standalone application interacts directly with the Java runtime environment to

manages its own life cycle and system resource needs. When the main() method exits, the standalone application terminates.

Figure 5: Standalone Application

Standalone applications serve a variety of purposes. For example, a bundled application such as a calculator could be a

permanent part of a device-resident application suite. A vertical market application, such as a prescription drug compatibility

database, might be installed separately by a customer or systems integrator.

Managed Applications: Applets

One of the first success stories of Java technology is the browser-based applet model, which allows a user to view and

interact with dynamic Web content through a Web browser that contains an embedded Java runtime environment. When a

user loads a Web page containing an applet, she can interact with the applet in ways not possible with static Web content.

To enable this capability, the Web browser uses its embedded Java runtime environment to load and run the applet. The

browser interacts with the Java runtime environment to manage the applet’s life cycle and provide system-level services,

such as a security sandbox and GUI system. Because java.applet.Applet is a subclass of java.awt.Panel, applets are GUI-

based, which allows them to use some of the Abstract Windowing Toolkit (AWT) graphics and layout capabilities.

Sun Microsystems, Inc.16 CDC Technical Overview

App2Class

class MainAppClass {
public static void main (String[] args) {
new App1Class();
new App2Class();

}
}

Java Virtual Machine

App1Class

Figure 6: Applet Interface

In the example in Figure 6, the Java runtime environment is embedded into a Web browser. When the browser loads a Web

page, it receives an HTTP stream that contains both the HTML content for the Web page and its applet classes. It renders

the HTML content and hands off the applet classes to the Java runtime environment. The Java runtime environment then

loads the main applet class, which includes methods for the major events in an applet’s life cycle: initialization, starting,

stopping, and destruction. This abstraction allows developers to avoid much of the system-related code normally associated

with a standalone application, while protecting the client system from insecure Web content.

The main benefits of applets are a streamlined development model coupled with a deployment model that fits well with

the dynamic nature of the Web. Personal Profile includes full applet support, so that it can be used with embedded Web

browsers.

Managed Applications: Xlets

Both Personal Basis Profile and Personal Profile include support for the new xlet application model, which is similar in

purpose to the applet application model, but different in design. The main differences are that xlets have no dependency

on AWT, and they have a cleaner life cycle model. An xlet is loaded into an xlet manager, which manages its life cycle and

provides it with system services through an XletContext. An xlet manager can handle multiple, dynamically loaded xlets

that can communicate with each other through an RMI mechanism.

Figure 7: Xlet Interface

Sun Microsystems, Inc.17 CDC Technical Overview

Web browser

Java
runtime

environment

HTTPMainAppletClass

Web page

Applet1Class
Applet2Class

MainAppletClass

Java runtime
environment

xlet
manager

transport
protocol

MainAppletClass

dynamic content

Xlet1Class
Xlet2Class

MainXletClass

Because the xlet application model does not depend on AWT, xlets can be used in both GUI and non-GUI scenarios ranging

from smart phones to set-top boxes.

CLDC Compatibility

The migration path from CLDC to CDC technology is based on compatibility packages and common APIs:

Core CLDC (JSR 139) support. The core CLDC packages (java.io, java.lang, java.lang.ref and java.util) are subsets

of their corresponding CDC and Java SE packages. Migrating non-GUI CLDC applications to CDC is straightforward, because

CDC shares these same core APIs. CDC includes xlet support in the in the javax.microedition.xlet.* packages.

Generic Connection Framework (GCF, JSR 30) support. CLDC introduced GCF as a generic approach to connectivity, so that

applications could avoid the API details of different networking technologies, while CLDC implementations could avoid the

resource requirements of more feature-rich networking technologies. GCF provides broad support for different kinds of

connection types and I/O mechanisms ranging from packet-based HTTP connections to video streams. CDC includes a GCF

class library in the javax.microedition.io package.

MIDP (JSR 118) support. The MIDP GUI framework provided by CLDC is designed around the needs of mobile phones and

low-end PDAs, and is very different from the GUI frameworks based on Java SE that are provided by Personal Basis Profile

and Personal Profile.

Sun Microsystems, Inc.18 CDC Technical Overview

Chapter 6

GUI Options and Tradeoffs

CDC offers several GUI options that allow designers to handle different product scenarios. Table 7 describes the main scenarios

for CDC-based devices. It shows how the different CDC profiles and optional packages match up with different design scenarios.

Table 7: GUI Scenarios

Scenario Description Specification

No GUI The target device does not have a GUI. For example, a network printer Foundation Profile

might have an embedded server that exports a Web-based interface.

Proprietary GUI The target device has a simple native GUI that may display text or buttons. Foundation Profile

For example, a pager may only have a simple alphanumeric display.

Raw graphics device The target device includes a raw graphics device but lacks a native GUI toolkit. Personal Basis Profile or

In this case, a portable GUI toolkit like Qt or GTK can be used. Personal Profile

Minimal GUI toolkit The target device has a minimal GUI toolkit and does not require full AWT Personal Basis Profile

compatibility. Instead, the target device needs support for a technology-

specific lightweight toolkit.

Native GUI toolkit The target device already has a native GUI toolkit that can be used by both Personal Profile

native applications and for AWT widget peer functionality.

Applet support for The target device has Web browser functionality that also needs applet Personal Profile

Web browsing runtime support.

Rich GUI toolkit The target device may have a basic graphics interface, but needs a rich GUI AGUI Optional Package

toolkit as well as sophisticated graphics and imaging features.

From a developer’s perspective, Personal Basis Profile and Personal Profile offer AWT APIs that are similar to their Java SE

counterparts, with the addition of some low-level Java 2D™ APIs. From a device designer’s perspective, two issues need

more explanation: AWT compatibility and lightweight components. Understanding these concepts will make the purposes

of the Personal Profile and Personal Basis Profile more clear.

AWT

The Abstract Window Toolkit (AWT) dates back to the original Java technology release. It is a basic GUI toolkit that provides

an API for common GUI widgets like buttons and dialogs. AWT widgets can handle most of the GUI needs for the kinds of

applications developed for connected devices. Because native platforms supply similar GUI widgets, the AWT performs an

intermediary role by using these native widgets to supply a similar user experience on different platforms.

Sun Microsystems, Inc.19 GUI Options and Tradeoffs

Figure 8: AWT and Native Toolkits

The AWT divides the task of supplying GUI services between high-level API classes and low-level implementation classes.

Java application software interacts only with the high-level API classes, while the low-level “peer” classes create and manage

the native widgets with which a user actually interacts. This architecture allows Java application software to use a single

GUI API that runs without modification on different target platforms.

Lightweight Components

The core AWT system presents two problems: limited widget selection and portability. Thus, early in the evolution of Java

technology, its architects identified the need for greater flexibility in GUI design and developed a mechanism for building

widgets entirely with Java technology. These Java technology-based widgets are sometimes called lightweight components

because they are rendered and managed entirely by the Java runtime environment.

Figure 9: Lightweight Components

Sun Microsystems, Inc.20 GUI Options and Tradeoffs

Dialog

native dialognative button

Java application

(Qt, Win32, Cocoa)

AWT API classes

native GUI widgets

application classes

native GUI toolkit

AWTButton

JDialog

JComponent

Java application

(Qt, Win32, Cocoa)

lightweight
GUI components

application classes

native GUI toolkit

JButton

Developers can build their own special-purpose components and include them in applications or component libraries that

can be shared by multiple applications. The best example of a large collection of lightweight components is Swing, which

includes sophisticated table layout, pluggable look and feel, and accessibility features.

Alternate GUI Interfaces

By itself, Personal Basis Profile does not provide a complete GUI library. Instead, it is meant as a basis for building alternate

GUI libraries for market and product-specific purposes. Table 8 describes several industry specifications that are compatible

with Personal Basis Profile.

Table 8: Alternate GUI Interfaces

Specification URL Description

Home Audio-Video www.havi.org A specification for networking digital home entertainment products used in

interoperability (HAVi) MHP and OCAP.

Multimedia Home www.mhp.org A specification for enhanced broadcast interactive services. It defines an interface

Platform (MHP) between interactive applications and the devices on which they run.

OpenCable www.opencable.com A middleware specification for interactive services and MHP-based applications.

Application

Profile (OCAP)

Advanced Graphics and JSR-209 See below.

User Interface (AGUI)

Optional Package

AGUI Optional Package

Java SE includes Swing, a sophisticated user interface toolkit for desktop applications. Not all of Swing’s feature set is

appropriate for CDC class products. Therefore, the Advanced Graphics and User Interface (AGUI) Optional Package represents

a subset of Swing for connected devices.

Describing all the differences between the AGUI Optional Package and its Java SE counterpart is beyond the scope of this

white paper. Table 9 describes the important differences to show that Swing features have been retained, modified, or

removed to provide features relevant to connected devices.

Table 9: AGUI Feature Comparison

Feature AGUI Optional Package Swing

Swing, a rich set of GUI components subset supported

Java 2D, a graphics and imaging toolkit subset supported

Image I/O subset supported

Pluggable look and feel modified supported

Accessibility toolkit not supported supported

Drag-and-drop toolkit not supported supported

Input method framework modified supported

Sun Microsystems, Inc.21 GUI Options and Tradeoffs

Chapter 7

Security

Security is a principal feature of Java technology and has guided the evolution of the Java platform from its beginning. CDC

includes different levels of security that give users, developers, service providers, and enterprises an application framework

with a powerful security architecture.

• Virtual machine security includes runtime features such as class verification, and language features such as the omission

of pointers. These security features have removed an entire class of security threats called buffer stack overflow. Early

Java technology releases used these features to build a simple but powerful “sandbox” security model that allows Web

browsers to download Java applets without exposing the user’s system to extra risk.

• Signed classes extend the sandbox security model and verify the integrity and origin of a Java class file to the Java virtual

machine that attempts to load it.

• Policy-based security was introduced in J2SE 1.2. Security policies give application developers fine-grained control over

who can access the data and interfaces of an application’s objects. A security policy file is a set of permissions and policies

specified that can be modified by system administrators during deployment.

• Cryptography provides a standard way to encode software and data for secure transfer or archival. The Java security

framework includes the Java Cryptography Architecture (JCA), which is a standards-based framework for providing, selecting,

and using cryptographic functionality.

CDC includes the Java security framework included in the Java SE. This security framework is extensible, in that it is based

on algorithm-independence, and interoperable, in that it can use different implementations of security services. Foundation

Profile (JSR 219) includes three optional packages that use this framework to add security features:

• Java Authentication and Authorization Service (JAAS). Optional Package provides a pluggable framework for authenti-

cation and authorization. The authorization component allows the specification of access controls based on code location,

code signers, and code executors in separate policy files that can be maintained by a system administrator. At runtime, a

Java runtime environment can provide different login modules, such as keystore, without requiring application modifica-

tion. Alternate login modules can be integrated at runtime to support systems like biometric or Kerberos authentication.

• Java Cryptography Extension (JCE). Optional Package extends the Java Cryptography Architecture to include encryption,

key generation, key agreement, and message authentication code (MAC) generation services.

• Java Secure Socket Extension (JSSE). Optional Package provides services for using Secure Socket Layer (SSL) to encrypt

data and authenticate communicating peers.

Sun Microsystems, Inc.22 Security

Chapter 8

Developer Tool Support

Developers invest their resources in more than just their source code. They develop reusable skills by using tools that

increase their productivity and allow them to focus their efforts on adding domain-specific value. To help achieve these

goals, CDC maintains compatibility with the Java SE developer tool interfaces described in Table 10.

Table 10: Developer Tool Interfaces

Category Interface Description

compiler Java Virtual Machine Application developers can use the same compilers that are available for

Specification J2SE development. These can be command-line based tools such as javac,

or part of an IDE.

debugger Java Virtual Machine The CDC HotSpot Implementation Java virtual machine supports remote

Debugger Interface debugging through the Java Virtual Machine Debugger Interface (JVMDI).

profiler Java Virtual Machine The CDC HotSpot Implementation Java virtual machine supports application

Profiler Interface profiling through the Java Virtual Machine Profiler Interface (JVMPI).

GUI development JavaBeans™ Components Though Personal Profile and Personal Basis Profile do not support the

entire java.beans package, they do contain runtime support for

java.beans technology-based components.

IDE integration Unified Emulator Defines an interface that allows an external developer tool to control a

Interface (UEI) Java ME emulator. The Java ME Wireless Toolkit is an example of a UEI-

based emulator that developer tools like the NetBeans™IDE and the Sun

Java Studio line of IDEs.

CDC support of these developer tool interfaces allows developers to leverage their investments in conventional Java SE

software, tools, and skills.

Sun Microsystems, Inc.23 Developer Tool Support

©2005 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Java, NetBeans, PersonalJava, Java 2D, JavaBeans, Write Once, Run Anywhere, Java Community Process, Hotspot, J2SE, J2ME,
J2EE, JCP, and JDBC are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.co

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part

of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,

including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Java, NetBeans, PersonalJava, Java 2D, JavaBeans, Write Once, Run Anywhere, Java Community Process, Hotspot, J2SE, J2ME, J2EE,

JCP, and JDBC are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under

license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of

Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the

Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),

or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE

EXTENT THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Document Title sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

