

 Java Card™
Protection Profile Collection

 Version 1.1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054

May 2006

Java Card Protection Profile Collection Page 2 of 198

Version 1.1 May 2006

Legal Notice
Sun, Sun Microsystems, the Sun logo, Java, and Java Card are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

DOCUMENTATION IS PROVIDED « AS IS » AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Sun, Sun Microsystems, le logo Sun, Java, et Java Card sont des marques déposées de Sun
Microsystems, Inc. aux États-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE « EN L’ETAT » ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DAN LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

This document has been prepared by:

Trusted Logic SA
5, rue du Bailliage
78000 Versailles, France
http://www.trusted-logic.com

 on behalf of Sun Microsystems, Inc.

For any correspondence on this document please contact the following organisations:

 Sun Microsystems, Inc.
 4150 Network Circle

Santa Clara, CA 95054 USA
http://www.sun.com
JC_PP_feedback@sun.com

 Secrétariat Général de la Défense Nationale

Direction Centrale de la Sécurité des Systèmes d’Information (DCSSI)
51, boulevard de Latour-Maubourg
75700 Paris 07 SP, France
http://www.ssi.gouv.fr/fr/dcssi
certification.dcssi@sgdn.pm.gouv.fr

Java Card Protection Profile Collection Page 3 of 198

Version 1.1 May 2006

EXECUTIVE SUMMARY

Java Card™ technology was tailored in order to enable programs written in the Java™
programming language to run on smart cards and other resource–constrained devices. Due to
these constraints, every component of the original Java platform was significantly reduced. On the
other hand, smart cards require specific security features beyond the scope of the standard Java
platform. For instance, even the legitimate holder of a credit card should not be able to tamper with
some of the data contained on the card (for instance, its credit value). Moreover, just like browsers
are to distrust downloaded applets to protect the local resources, the environment of a Java Card
technology-enabled device must prevent the terminal or even the installed applets, which may
come from various sources, from accessing vendor–specific confidential data.

A security evaluation, according to a standard such as the Common Criteria scheme, is an
appropriate answer to meet this need for enhanced security. It provides assurance measures to
gauge risks and induced costs, discover weak points prior their exploitation by hostile agents, and
finally grants a level of certification according to recognized standards of industry for future
reference. It also highlights numerous points that may easily be overlooked although they are
extremely relevant to the security of a Java Card technology-based implementation.

This document presents a set of security requirements for a Java Card system, compliant with Java
Card specifications. These requirements should serve as a template for writing Common Criteria
security targets of specific implementations of Java Card Systems. It therefore almost solely looks
at the Java Card System from the security angle, a viewpoint that somewhat sets it apart from the
usual functional documentation; that is, focused on what can happen rather than what should
happen. It was written with critical real–life applications in mind. Accordingly, some aspects of the
development and life–cycle of the applications are controlled, even though they are out of the
scope of the software embedded on a Java Card platform.

In order to achieve a better understanding of the security issues of the Java Card System, this
document provides a precise description of its background and possible environments, which is
the first step to risk analysis. The division of duties and assignment of responsibilities among the
several involved actors (both physical and IT components) leads to the definition of detailed
security policies. Of course, there are cases where the choice is left to implementers; in all cases,
risks and assets at stake are described to pave the way to security targets (ST).

One of the challenges of writing a Protection Profile for the Java Card technology is to address in a
single description the wide range of choices offered (logical communication channels with the card,
remote invocations of services, object deletion, among others), and the different security
architectures that have been conceived so far (closed platforms, off-card verification of applications
code, embedded verifiers, and so on). The answer to this challenge that is put forward in this
document is the definition of groups of requirements for each of the Java Card platform features
proposed in the specifications. A particular choice of groups and a particular environment
interacting with a Java Card platform give rise to a configuration, and then to the definition of the
corresponding Protection Profile. Each of those Protection Profiles corresponds to a particular
combination of features provided by a Java Card platform and the corresponding security
architecture.

Four Protection Profiles, which define four specific configurations, are presented in this document.
Two of them were chosen because they correspond to standard use-cases. The other two cover the
largest range of features proposed in the latest version of Java Card technology, the difference
being in the way verification of loaded applications is performed. The use of groups enables a
modular construction of each configuration, enhancing the possibility of re-using large parts of it
for the evaluations of other configurations, and simplifying its evolution across the future versions

Java Card Protection Profile Collection Page 4 of 198

Version 1.1 May 2006

of the Java Card technology. A special section with a comprehensive presentation of each
configuration is also included as part of this document.

The emphasis is mainly laid on those issues related to the firewall mechanisms and bytecode
verification, the two cornerstones of the Java Card platform security architecture. The protection
endorsed by the firewall to applications loaded in a multi-application platform as the one provided
by Java Card technology ultimately relies on those applications having passed the checks
performed by a bytecode verifier. Indeed, without bytecode verification, a Java Card technology-
based application (“Java Card application”) may misbehave as any application written in native
code. The mutual support between these components also depends on the contribution provided
by other constituents of the product, such as the underlying platform or the application installer
program. The clarification of the nature of these dependencies, which were implicit in the
functional specification, is the key to achieve a safe and coherent interaction of the components,
that is, to build security interoperability on top of functional interoperability. The already existing
Protection Profiles (such as SCSUG’s “Smart Card PP” and Eurosmart’s “Smart Card IC with Multi-
Application Secure Platform”) for the underlying platform, as well as Global Platform’s “Card
Security Requirements Specification” on card management are also considered, in anticipation of an
evaluation of an integrated product.

Finally, this document proposes some additional security features to identify and deal with
security–sensitive data. That would extend specific protections that are applied to cryptographic
keys or PIN code; for instance, the integrity of the balance in an e–purse application requires
similar “strong” protection. These features should normalize the secure programming of applets
containing sensitive data (such as banking applications).

Java Card Protection Profile Collection Page 5 of 198

Version 1.1 May 2006

Java Card Protection Profile Collection Page 6 of 198

Version 1.1 May 2006

CONTENTS
1 Introduction.. 10

1.1 IDENTIFICATION... 10
1.1.1 IDENTIFICATION OF THE DOCUMENT .. 10
1.1.2 ON THE CONFORMANCE OF SECURITY TARGETS ... 10
1.1.3 IDENTIFICATION OF THE PROTECTION PROFILES... 11

1.2 REVISIONS AND COMMENTS .. 14
1.3 OVERVIEW... 14
1.4 CC CONFORMANCE ... 15
1.5 TYPOGRAPHIC CONVENTIONS .. 16
1.6 ASSOCIATED DOCUMENTS.. 16

1.6.1 REFERENCE DOCUMENTS... 16
1.6.2 RELATED DOCUMENTS.. 17

1.7 CONFIGURATIONS AND GROUPS.. 18
1.7.1 WHAT IS A GROUP?... 18
1.7.2 WHAT IS A CONFIGURATION? ... 19
1.7.3 DEFINITION AND COMPOSITION OF GROUPS .. 19

2 TOE Description.. 21
2.1 PRODUCT TYPE .. 21

2.1.1 BYTECODE VERIFICATION .. 23
2.1.2 INSTALLATION OF APPLETS ... 23
2.1.3 THE CARD MANAGER (CM)... 24
2.1.4 SMART CARD PLATFORM: OPERATING SYSTEM + CHIP + DEDICATED SOFTWARE
 24
2.1.5 NATIVE APPLICATIONS.. 24

2.2 JAVA CARD 2.2 TECHNOLOGY.. 25
2.3 FUNCTIONAL COMPONENTS AND CONFIGURATIONS ... 26

2.3.1 CONFIGURATIONS... 27
2.4 LIMITS OF THE TOE... 31

2.4.1 SCOPE OF EVALUATION .. 31
2.4.2 THE TOE IN THE LIFE CYCLE OF THE SMART CARD .. 34

2.5 TOE INTENDED USAGE ... 36
2.6 PRODUCT RATIONALE .. 38

3 TOE Security Environment ... 39
3.1 SECURITY ASPECTS... 39
3.2 ASSETS .. 46

3.2.1 USER DATA.. 46
3.2.2 TSF DATA ... 47

3.3 USERS & SUBJECTS .. 48
3.4 ASSUMPTIONS.. 49

3.4.1 ALL CONFIGURATIONS .. 49
3.4.2 MINIMAL CONFIGURATION.. 49
3.4.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 49
3.4.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 50
3.4.5 DEFENSIVE CONFIGURATION.. 50

3.5 THREATS .. 50
3.5.1 ALL CONFIGURATIONS .. 50
3.5.2 MINIMAL CONFIGURATION.. 52
3.5.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 52
3.5.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 53
3.5.5 DEFENSIVE CONFIGURATION.. 54

3.6 ORGANIZATIONAL SECURITY POLICIES ... 54
3.6.1 MINIMAL CONFIGURATION.. 54
3.6.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 54
3.6.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 54

Java Card Protection Profile Collection Page 7 of 198

Version 1.1 May 2006

3.6.4 DEFENSIVE CONFIGURATION.. 55
4 Security Objectives ... 56

4.1 SECURITY OBJECTIVES FOR THE TOE.. 56
4.1.1 ALL CONFIGURATIONS .. 56
4.1.2 MINIMAL CONFIGURATION.. 58
4.1.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 58
4.1.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 58
4.1.5 DEFENSIVE CONFIGURATION.. 59

4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT... 59
4.2.1 ALL CONFIGURATIONS .. 59
4.2.2 MINIMAL CONFIGURATION.. 60
4.2.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 61
4.2.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 61
4.2.5 DEFENSIVE CONFIGURATION.. 61

5 IT Security Requirements.. 62
5.1 TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS .. 62

5.1.1 COREG SECURITY FUNCTIONAL REQUIREMENTS... 63
5.1.2 INSTG SECURITY FUNCTIONAL REQUIREMENTS... 81
5.1.3 BCVG SECURITY FUNCTIONAL REQUIREMENTS.. 84
5.1.4 ADELG SECURITY FUNCTIONAL REQUIREMENTS ... 92
5.1.5 RMIG SECURITY FUNCTIONAL REQUIREMENTS .. 98
5.1.6 LCG SECURITY FUNCTIONAL REQUIREMENTS... 104
5.1.7 ODELG SECURITY FUNCTIONAL REQUIREMENTS... 107
5.1.8 CARG SECURITY FUNCTIONAL REQUIREMENTS.. 108
5.1.9 SCPG SECURITY FUNCTIONAL REQUIREMENTS .. 113
5.1.10 CMGRG SECURITY FUNCTIONAL REQUIREMENTS.. 115
5.1.11 EMG SECURITY FUNCTIONAL REQUIREMENTS.. 116

5.2 TOE SECURITY ASSURANCE REQUIREMENTS.. 119
6 Rationale ... 122

6.1 SECURITY OBJECTIVES RATIONALE.. 122
6.1.1 MINIMAL CONFIGURATION.. 122
6.1.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 126
6.1.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 132
6.1.4 DEFENSIVE CONFIGURATION.. 138

6.2 SECURITY REQUIREMENTS RATIONALE ... 143
6.2.1 MINIMAL CONFIGURATION.. 143
6.2.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 153
6.2.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 164
6.2.4 DEFENSIVE CONFIGURATION.. 177

7 Appendix: A Unified View of Configurations .. 189
8 Appendix: Glossary .. 195

Java Card Protection Profile Collection Page 8 of 198

Version 1.1 May 2006

LIST OF FIGURES
Figure 1: Usage environment of the TOE ... 22
Figure 2: TOE Limits for Minimal configuration... 28
Figure 3: TOE Limits for Java Card System Standard 2.1.1 configuration... 29
Figure 4: TOE Limits for Java Card System Standard 2.2 configuration... 30
Figure 5: TOE Limits for Defensive configuration .. 30
Figure 6: Mandatory and optional components of the TOE.. 33
Figure 7: Smart Card Product Life Cycle .. 34

Java Card Protection Profile Collection Page 9 of 198

Version 1.1 May 2006

LIST OF TABLES
Table 1: Relationship between Groups and Configurations .. 32
Table 2: Relationship between Groups and Configurations .. 62
Table 3: Minimal Configuration threats rationale... 125
Table 4: Minimal Configuration assumptions rationale .. 126
Table 5: Java Card System Standard 2.1.1 Configuration threats rationale... 130
Table 6: Java Card System Standard 2.1.1 Configuration assumptions rationale 130
Table 7: Java Card System Standard 2.2 Configuration threats rationale.. 136
Table 8: Java Card System Standard 2.2 Configuration assumptions rationale 137
Table 9: Defensive Configuration threats rationale .. 141
Table 10: Defensive Configuration assumptions rationale.. 142
Table 11: Security requirements rationale for the Minimal Configuration.. 146
Table 12: Security requirements rationale for the group SCPG ... 147
Table 13: Functional Requirement Dependencies (Minimal) ... 149
Table 14: Security requirements rationale for the Java Card System Standard 2.1.1 Configuration 156
Table 15: Security requirements rationale for the group SCPG ... 157
Table 16: Functional Requirement Dependencies (Java Card System Standard 2.1.1) 160
Table 17: Security requirements rationale for the Java Card System Standard 2.2 Configuration... 169
Table 18: Security requirements rationale for the group SCPG ... 170
Table 19: Functional Requirement Dependencies (Java Card System Standard 2.2) 173
Table 20: Security requirements rationale for the Defensive Configuration.. 182
Table 21: Security requirements rationale for the group SCPG ... 183
Table 22: Functional Requirement Dependencies (Defensive) ... 186
Table 23: Assumptions of Configurations.. 189
Table 24: Threats of Configurations .. 190
Table 25: TOE Security Objectives of Configurations .. 191
Table 26: Security objectives for the environment of Configurations ... 191
Table 27: Security Functional Requirements of Configurations... 193
Table 28: Configurations and Roles... 194

Java Card Protection Profile Collection Page 10 of 198

Version 1.1 May 2006

1 INTRODUCTION

This chapter identifies the document and the references it cites, presents its general structure, and
introduces some key notions and notation conventions to be used in the following chapters. In
addition to that, this chapter also gives the precise identification of the Protection Profiles that it
embodies.

1.1 IDENTIFICATION

1.1.1 Identification of the Document

Author: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card Protection Profile Collection

Version: 1.1, May 2006

1.1.2 On the Conformance of Security Targets

A security target that claims conformance with one of the Protection Profiles defined in this Java Card
Protection Profile Collection document must define a compliant TOE and a security environement and
include a unique identification of all their components (underlying smart card platform, bytecode
verifier, card manager, native code, etc.). The TOE of such security target may coincide with or enrich
the Java Card Protection Profile’s TOE (actual TOEs will consist of the Java Card platform, possibly
including native API, together with the chip component, the Dedicated Software and potentially
native applications).

In those cases where the TOE defined in the security target is larger than that of the claimed Java Card
Protection Profile, it is possible that some of Java Card Protection Profile’s assumptions as well as
objectives and security functional requirements for the environment need to be discarded to the
benefit of new assumptions, objectives and security functional requirements, for the environment and
for TOE itself. The security target conformance rationale must provide evidence that the new elements
do not weaken the security with respect to the original Java Card Protection Profilestatements.

The case of the native APIs, excluded from the scope of the Java Card Protection Profile, is
paradigmatic. For those TOEs that do not embody them, the product developer must provide
envidence that the native APIs do fulfil the Java Card Protection Profile assumptions (cf. A.NATIVE),
in other words, that native APIs do not violate the security policies stated fthe TOE. On the contrary,
those TOEs that embody native APIs will probably discard this Java Card Protection Profile
assumption and add specific objectives and security requirements for the TOE itself. In this later case,
the product developer must provide full Common Criteria evidence that the native APIs satisfy all
these new requierements.

Java Card Protection Profile Collection Page 11 of 198

Version 1.1 May 2006

1.1.3 Identification of the Protection Profiles

This section identifies the four Protection Profiles contained in this document. Each Protection Profile
is identified by its unique name and the sections of the document that are listed in the item Protection
Profile organization.

1.1.3.1 Minimal Configuration Protection Profile

Author: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Minimal Configuration Protection Profile

Version: 1.1, May 2006

Registration number: PP/0303

Protection Profile organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.2 and threats in §3.5.1 and §3.5.2.

The TOE security objectives are to be found in §4.1.1, and the IT environment objectives in §4.2.1 and
§4.2.2.

The TOE security requirements are those of the group CoreG (§5.1.1), and the IT environment security
requirements are the ones defined in the groups BCVG (§5.1.3), SCPG (§5.1.9) and CMGRG (§5.1.10).
The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.1.1, the relation between security
objectives and assumptions in §6.1.1.2.

The security requirements rationales are provided in §6.2.1.1 and §6.2.1.2; and the SFRs dependencies
analysis in §6.2.1.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.1.4, §6.2.1.5 and §6.2.1.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara, CA 95054 USA.

1.1.3.2 Java Card System Standard 2.1.1 Configuration Protection
Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Standard 2.1.1 Configuration Protection Profile

Version: 1.1, May 2006

Registration number: PP/0304

Java Card Protection Profile Collection Page 12 of 198

Version 1.1 May 2006

Protection Profile organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.3, threats in §3.5.1 and §3.5.3 and organizational
security policies in §3.6.2.

The TOE security objectives are to be found in §4.1.1 and §4.1.2, and the IT environment objectives in
§4.2.1 and §4.2.3.

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2) and CarG (§5.1.8).
The IT environment security requirements are the ones defined in the groups BCVG (§5.1.3), SCPG
(§5.1.9) and CMGRG (§5.1.10). The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.2.1, the relation between security
objectives and assumptions in §6.1.2.2 and the rationale for the organizational security policies in
§6.1.2.3.

The security requirements rationales are provided in §6.2.2.1 and §6.2.2.2; and the SFRs dependencies
analysis in §6.2.2.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.2.4, §6.2.2.5 and §6.2.2.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara CA 95054 USA.

1.1.3.3 Java Card System Standard 2.2 Configuration Protection
Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Standard 2.2 Configuration Protection Profile

Version: 1.1, May 2006

Registration number: PP/0305

Protection Profile organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.4, threats in §3.5.1, §3.5.3 and §3.5.4; and organizational
security policies in §3.6.2.

The TOE security objectives are to be found in §4.1.1, §4.1.2 and §4.1.4, and the IT environment
objectives in §4.2.1, §4.2.3 and §4.2.4.

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2), ADELG (§5.1.4),
RMIG (§5.1.5), LCG (§5.1.6), ODELG (§5.1.7), CarG (§5.1.8) and EMG(§5.1.11). The IT environment

Java Card Protection Profile Collection Page 13 of 198

Version 1.1 May 2006

security requirements are the ones defined in the groups BCVG (§5.1.3), SCPG (§5.1.9) and CMGRG
(§5.1.10). The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.3.1, the relation between security
objectives and assumptions in §6.1.3.2 and the rationale for the organizational security policies in
§6.1.3.3.

The security requirements rationales are provided in §6.2.3.1 and §6.2.3.2; and the SFRs dependencies
analysis in §6.2.3.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.3.4, §6.2.3.5 and §6.2.3.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, CA 95054 USA.

1.1.3.4 Defensive Configuration Protection Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Defensive Configuration Protection Profile

Version: 1.1, May 2006

Registration number: PP/0306

Protection Profile organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.5, threats in §3.5.1 and §3.5.5. There are no
organizational security policies.

The TOE security objectives are to be found in §4.1.1 and §4.1.5, and the IT environment objectives in
§4.2.1 and §4.2.5.

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2), BCVG (§5.1.3),
ADELG (§5.1.4), RMIG (§5.1.5), LCG (§5.1.6), ODELG (§5.1.7) and EMG(§5.1.11). The IT environment
security requirements are the ones defined in the groups SCPG (§5.1.9) and CMGRG (§5.1.10). The
TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.4.1, the relation between security
objectives and assumptions in §6.1.4.2

The security requirements rationales are provided in §6.2.4.1 and §6.2.4.2; and the SFRs dependencies
analysis in §6.2.4.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.4.4, §6.2.4.5 and §6.2.4.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara, CA 95054 USA.

Java Card Protection Profile Collection Page 14 of 198

Version 1.1 May 2006

1.2 REVISIONS AND COMMENTS

Version Issue date Comments

1.0 July 1999 First version without sharing and post-issuance downloading. Used in
Vocable project.

1.1 July 2001 Java Card System Protection Profile. Based on Java Card System 2.1.1.
Distribution to card issuers and operators for comments.

1.2 November 2001 Integration of comments coming from card issuers and operators.
Available to licensees for comments on Sun Website.

2.0 May 2002 New structure of the protection profile in terms of configurations and
groups of security requirements. Introduction of Java Card System 2.2
features (RMI, logical channels, applet deletion and object deletion).

2.1 October 2002 Integration of comments and remarks coming from Sun and from the
Java Card Forum Security Task Force. First version submitted for
evaluation.

0.1 January 2003 Java Card System Protection Profile Collection. Stand-alone (per
configuration) rationales of Security Objectives and Security Functional
Requirements.

0.2 February 2003 Revised to comply with the request of the evaluator.

1.0 June 2003 Revised to comply with the request of the evaluator.

1.0b August 2003 Final version

1.1Nov05 November 2005 Update for Java Card Platform, version 2.2.1 and Java Card Platform,
version 2.2.2

1.1Dec05 December 2005 Biometry and user remarks

1.1March06 March 2006 Editorial update

1.1May06 May 2006 Inclusion of all CC final interpretations applicable to CCv2.1

Updates according to Java Card Platform licensee comments.

1.3 OVERVIEW

The aim of this document is to describe a unified framework for the definition of a Protection Profile
for a Java Card System compliant with Sun Microsystems Java Card specifications, versions 2.1.1, 2.2,
2.2.1 or 2.2.2. An important issue addressed by this document is the possibility of having different
configurations for a Java Card platform, resulting from the optional features of Java Card technology
and the security architectures for bytecode verification that have been conceived so far. Moreover, this
document includes the definition of four Protection Profiles, one for each of the configurations that

Java Card Protection Profile Collection Page 15 of 198

Version 1.1 May 2006

have been considered. The Protection Profiles should provide a valuable input for the development of
Java Card Platform security targets.

The main security goal of the Java Card platform is to counter the unauthorized disclosure or
modification of the code and data of both the applications and its own, as well as of any other data
that may be sensitive such as application software, keys, PINs, biometric templates, and so on.

In order to achieve these goals, the Java Card platform provides some security features. The most
important are the following mechanisms:

– Logical separation of the data used by different applications (firewall)
– Static analysis of the code before installation (bytecode verification)
– Preservation of the code integrity between static verification and installation on the card.

– Use of security services for applications such as

� Specific management of cryptographic keys and PIN

� Cryptographic authentication and ciphering mechanisms

The structure of the document is very close to the standard one, specified in [CC1], for a Protection
Profile. In addition to the usual sections, the following special ones are also included:

 Section §1.7 explains how this document addresses the possibility of having
different configurations. It presents the general notions of group of
requirements and configuration, which constitute the basis for the definition
and evaluation of use-cases.

 After the general description of all the features offered by a Java Card
System, Section §2.3.1 introduces the ten groups of requirements induced by
those features, and the four particular configurations proposed in this
document, called Minimal, Java Card System Standard 2.1.1, Java Card
System Standard 2.2 and Defensive. When the definition of a CC component
depends on the configuration, the structure of the corresponding section
introduces a new level of sub-sections, one for each of the configurations
aforementioned. For instance, the section Security Objectives for the TOE is
divided into four sub-sections, one containing the objectives of the Minimal
configuration, one with those objectives that are specific to the Java Card
System Standard 2.1.1 configuration, one with those objectives that are
specific to the Java Card System Standard 2.2 configuration and a fourth one
with those specific to the Defensive configuration.

Two appendices are also included:

 Appendix §7 provides a unified view of the configurations defined in the
document.

 Appendix §8 contains a glossary of technical terms used in the document

1.4 CC CONFORMANCE

This document contains four Protection Profiles.

Java Card Protection Profile Collection Page 16 of 198

Version 1.1 May 2006

The Protection Profiles have been built with Common Criteria (CC) Version 2.1 (ISO/IEC 15408
Evaluation Criteria for Information Technology Security; Part 1: Introduction and general model, Part
2: Security functional requirements, and Part 3: Security assurance requirements) and Common
Methodology for Information Technology Security Evaluation (CEM-97/017, Part 1: Introduction and
General Model, Version 0.6, 97/01/11 and CEM-99/045, Part 2: Evaluation Methodology, Version
1.0,August 1999). All final interpretations applicable to CC 2.1 have been incorporated, in particular:
RI#65, RI#103, RI#104, RI#201, RI#220, RI#228 and RI#232.

Each Protection Profile is Part 2 and Part 3 conformant.

The assurance requirement of each Protection Profile is EAL 4 augmented. Augmentation results from
the selection of:

 AVA_VLA.3 Vulnerability Assessment - Vulnerability Analysis - Moderately resistant, and
 ADV_IMP.2 Development – Implementation Representation – Implementation of the TSF.

The minimum strength of function level of each Protection Profile is SOF-medium.

1.5 TYPOGRAPHIC CONVENTIONS

– This typeface is used to highlight those words that appear in the glossary. Example: applet.

– This typeface is used to highlight asset names. Example: D.APP_CODE.

– THIS TYPEFACE is used for those words referring to entities within the TSC or operations of
security policies (Common Criteria terminology). Example: S.APPLET.

– This typeface is used for keywords of the Java programming language, variables, method or field
names, and so on. Example: a public static field.

– THIS TYPEFACE is used for the name of threats, objectives and assumptions. Example: O.TODO.

Finally, the following format of paragraph is used to remind Common Criteria components:

CC_FUNCal_REQt The TSF shall ensure this and that.

1.6 ASSOCIATED DOCUMENTS

1.6.1 Reference Documents

[CC1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction
and general model. Version 2.1. August 1999. CCIMB-99-031.

[CC2] Common Criteria for Information Technology Security Evaluation, Part 2: Security
functional requirements. Version 2.1. August 1999. CCIMB-99-032.

[CC3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
assurance requirements. Version 2.1. August 1999. CCIMB-99-033.

Java Card Protection Profile Collection Page 17 of 198

Version 1.1 May 2006

[CEM] Common Methodology for Information Technology Security Evaluation, Part 2:
Evaluation Methodology. Version 1.0. August 1999. CEM-99/045.

[JCVM21] Java Card Platform, version 2.1.1 Virtual Machine (JCVM) Specification. Revision
1.0. May 18, 2000. Published by Sun Microsystems, Inc.

[JCAPI21] Java Card Platform, version 2.1.1 Application Programming Interface. Revision 1.0.
May 18, 2000. Published by Sun Microsystems, Inc.

[JCRE21] Java Card Platform, version 2.1.1 Runtime Environment (Java Card RE) Specification.
Revision 1.0. May 18, 2000. Published by Sun Microsystems, Inc.

[JCVM22] Java Card Platform, version 2.2 Virtual Machine (Java Card VM) Specification. June
2002. Published by Sun Microsystems, Inc.

[JCAPI22] Java Card Platform, version 2.2 Application Programming Interface. June 2002.
Published by Sun Microsystems, Inc.

[JCRE22] Java Card Platform, version 2.2 Runtime Environment (Java Card RE) Specification.
June 2002. Published by Sun Microsystems, Inc.

[JCVM221] Java Card Platform, version 2.2.1 Virtual Machine (Java Card VM) Specification.
October 2003. Published by Sun Microsystems, Inc.

[JCAPI221] Java Card Platform, version 2.2.1 Application Programming Interface. October 2003.
Published by Sun Microsystems, Inc.

[JCRE221] Java Card Platform, version 2.2.1 Runtime Environment (Java Card RE) Specification.
October 2003. Published by Sun Microsystems, Inc.

[JCVM222] Java Card Platform, version 2.2.2 Virtual Machine (Java Card VM) Specification.
March 2006. Published by Sun Microsystems, Inc.

[JCAPI222] Java Card Platform, version 2.2.2 Application Programming Interface. March 2006.
Published by Sun Microsystems, Inc.

[JCRE222] Java Card Platform, version 2.2.2 Runtime Environment (Java Card RE) Specification.
March 2006. Published by Sun Microsystems, Inc.

[JCBV] Java Card Platform, version 2.1.2 Off-Card Verifier. January 2001. White paper.
Published by Sun Microsystems, Inc.

[JAVASPEC] The Java Language Specification. Gosling, Joy and Steele. ISBN 0-201-63451-1.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.

1.6.2 Related Documents

The following list is in no way exhaustive.

Java Card Protection Profile Collection Page 18 of 198

Version 1.1 May 2006

[SCSUG-3] Smart Card Protection Profile. Smart Card Security User Group. Version 3.0,
September 9, 2001. Registered and Certified by Bundesamt für Sicherheit in der
Informationstechnik (BSI) under the reference BSI-PP-000 3-2001. Registered
and Certified by the French Certification Body under the reference PP/0103.
Registered and Certified by the Canadian Certification Body.

[PP9806] Protection Profile Smart Card IC. Version 2.0, Issue November 1998. Registered
and Certified by the French Certification Body under the reference PP/9806.

[PP0010] Protection Profile Smart Card IC with Multi-Application Secure Platform. Version
2.0, Issue November 2000. Registered and Certified by the French Certification
Body under the reference PP/0010.

[SSVG-1.0] Smartcard IC Platform Protection Profile. Version 1.0, July 2001. Registered and
Certified by Bundesamt für Sicherheit in der Informationstechnik (BSI) under
the reference BSI-PP-0002.

 [GP] Global Platform Card Specification, Version 2.1.1, March 2003.

[CSRS] Global Platform Card Security Requirements Specification, Version 1.0, May 2003.

1.7 CONFIGURATIONS AND GROUPS

The Java Card System is a generic platform that can be used in numerous applications. Smart Card
products have different needs depending, for instance, whether it is a banking card or a pay-TV one.
To retain a high level of flexibility this document introduces the notions of group and configuration.

1.7.1 What is a Group?

CC packages are “A reusable set of either functional or assurance components, combined together to
satisfy a set of identified security objectives” [CC1]. Practically, however, it is common for security
functions to be grouped into functional modules, a fact that is acknowledged by the CC (see for
instance the ADV_FSP and ADV_HLD assurance classes). These modules are usually associated to
specific security aspects that contribute to meet a precise requirement, which in turn induces a similar
division of the Security Functional Requirements (“SFR”). The groups put forward in this document
then are sets of identified security requirements, and they are similar to CC packages.

The association between the objectives and the SFRs, however, is looser than required by the CC
evaluation: the SFRs in a group may not be able to completely meet the objectives to which they are
associated. This is similar to the case where an objective is met by a combination of SFRs for the TOE
and SARs (Security Assurance Requirements), which apply to the environment: a group only
contributes to meet an objective, and may not be sufficient alone. For instance, an access control policy
(FDP_ACF.1) may belong to one group, while the initialization of its related security attributes
(FMT_MSA.3) belongs to another group.

Also, one can consider groups solely as a way to structure the SFRs for a better understanding.

This document introduces, among others, groups of requirements concerning bytecode verification,
installation and deletion of applications, transmission of applications to the card and isolation of
application data during execution.

Java Card Protection Profile Collection Page 19 of 198

Version 1.1 May 2006

1.7.2 What is a Configuration?

Configurations correspond to the use-cases to be evaluated. Such use-cases arise from the choice of the
different optional features proposed by the Java Card technology (like post-issuance application
downloading, 2.2 version features), and the different security architectures that have been conceived
so far for this technology (off-card verification or on-card verification).

Each configuration has its own security objectives, which determine the groups of requirements to be
chosen in order to meet those objectives. Moreover, even if configurations may have the same global
collection of objectives, some of them may be objectives for the TOE in one configuration and
objectives of the environment in another one. A configuration is hence described setting up the precise
limits of the TOE, a definite environment for it, and the groups of requirements to be used (notice that
groups, as packages, do not contain any environmental description). Thereby, an ad-hoc rationale has
to be developed for each configuration too.

From a different perspective, we may also see a configuration as a consistent and complete set of
groups (in an environment) that is suitable for an evaluation and certification.

This document introduces four configurations and the corresponding Protection Profiles to be
evaluated. They are defined in the next chapter.

1.7.3 Definition and Composition of Groups

This section contains some remarks regarding the composition of security requirements into groups,
as well as how those groups can be assembled together in a consistent way.

The Common Criteria scheme defines several formal operations that can be applied to a functional
component: iteration for repeated use, selection, assignment and refinement ([CC1], §2.1.4). The
classification of the SFRs considered in this document into separate groups sometimes led to
unpleasant repetitions. For instance, the FMT_SMR.1 component, which defines the known security
roles for the TOE, should essentially appear once in a security target, but the actual set of security
roles to be considered depends on the configuration. In the same vein, the FMT_MSA.1 component is
repeated in each of the groups that introduce security attributes, although there is no obvious reason
to iterate it, as it has no applicable selection or assignment operation. On the other hand, each group
defines a role that is only meaningful when it is included in the considered configuration, so repeating
it for each group provides a more accurate definition of the group of requirements.

Whereas the choice has been made to repeat the component within each group, the reader shall not
understand such repetition as iteration in the formal CC sense, but shall consider these as a unique
instance. Thus, each configuration really contains one FMT_SMR.1 component, whose list of roles is
given by all the roles appearing in the groups of the configuration.

A similar issue is raised by the components where a security policy (for access control or information
flow) has to be assigned or selected in the component. For instance, the component FMT_MSA.1
restricts the privileges granted to a given role with regard to the security attributes of a given policy.
However, it could be the case that two security functions, one defined in a group, G1, and the other
defined in another group, G2, make both use of a security attribute that is common to two policies,
SP1 and SP2. Moreover, the possibility of modifying the shared security attribute may be restricted in
G1 to the role R1 and in G2 to another role R2. Then, in those configurations including both the groups
G1 and G2, it shall be understood that the modification of the shared attribute is actually restricted to
both R1 and R2 by the enforcement of the policies SP1 and SP2. As no such operation of component
composition is specified in the Common Criteria, and to prevent any possible misunderstanding, an
application note is added to the component of the first group (G1) notifying the ST author that the list
of roles enabled to modify the attribute actually depends on the configuration, and could be
potentially extended by the inclusion of other groups.

Java Card Protection Profile Collection Page 20 of 198

Version 1.1 May 2006

Finally, the security policies included in certain groups of requirements should actually be understood
as a complement to other security policies, in the sense that they extend them with new access control
or information flow rules. This is the case, for instance, of the logical channel group, which extends the
firewall access control policy with new rules concerning logical channels.

Java Card Protection Profile Collection Page 21 of 198

Version 1.1 May 2006

2 TOE DESCRIPTION

This part of the document shall describe the TOE as an aid to the understanding of its security
requirements, and shall address the product type and the general IT features of the TOE.

2.1 PRODUCT TYPE

The Java Card technology combines a subset of the Java programming language with a runtime
environment optimized for smart cards and similar small-memory embedded devices [JCVM21]. The
Java Card platform is a smart card platform enabled with Java Card technology. This technology
allows for multiple applications to run on a single card and provides facilities for secure
interoperability of applications. Applications for the Java Card platform are referred to as Java Card
technology-based applets (“Java Card applets” or “applets”) .

The version 2.1.1 of the Java Card platform is specified in [JCVM21], [JCRE21] and [JCAPI21]. It
consists of the Java Card platform virtual machine (“Java Card virtual machine” or “Java Card VM”), the
Java Card platform runtime environment (“Java Card runtime environment” or “Java Card RE”RE) and
the Java Card Application Programming Interface (API).

As the terminology is sometimes confusing, the term “Java Card System” was introduced to designate
the set made of the Java Card RE, the Java Card VM and the API. The Java Card System provides a layer
between a native platform and an applet space. That layer allows applications written for one smart
card platform (“SCP“) enabled with Java Card technology to run on any other such platform.

The Java Card VM is essentially an abstract machine that specifies the behavior of the bytecode
interpreter to be embedded in the card. The Java Card RE is responsible for card resource management,
communication, applet execution, and on-card system and applet security. The API provides classes
and interfaces for the core functionality of a Java Card applet. It defines the calling conventions by
which an applet may access the Java Card RE and native services such as, I/O management functions,
PIN and cryptographic specific management and the exceptions mechanism. The Java Card API is
compatible with formal international standards, such as ISO7816, and industry specific standards,
such as EMV (Europay/Master Card/Visa).

In certain use-cases, applets can be loaded and installed on a Java Card platform after the card has
been issued. This provides, for instance, card issuers with the ability to dynamically respond to their
customer's changing needs. For example, if a customer decides to change the frequent flyer program
associated with the card, the card issuer can make this change, without having to issue a new card.
Moreover, applets from different vendors can coexist in a single card, and they can even share
information. An applet, however, is usually intended to store highly sensitive information, so the
sharing of that information must be carefully limited. In the Java Card platform, applet isolation is
achieved through the applet firewall mechanism ([JCRE21][JCRE22], §6.1). That mechanism confines
an applet to its own designated memory area, thus each applet is prevented from accessing fields and
operations of objects owned by other applets, unless an interface is explicitly provided (by the applet
who owns it) for allowing access to that information. Java Card VM dynamically enforces the firewall,
that is, at runtime. However applet isolation cannot entirely be granted by the firewall mechanism if
certain integrity conditions are not satisfied by the applications loaded on the card. Those conditions
can be statically verified to hold by a bytecode verifier.

Java Card Protection Profile Collection Page 22 of 198

Version 1.1 May 2006

Figure 1 replaces the different components of the Java Card System in their environment. The
development of the application, as well as the compilation and conversion steps (see below), is not
included in the usage environment of the TOE.

Off-Card VerifierOff-Card Loader

On-Card Loader

Java Card System

On-Card Verifier

Smart Card Platform (OS, Firmware,…)

JCRE

JCVMJCAPI

Card

Manager

Installer

Loading with certification authority

Applet

Loading without certification authority

Applet

New Applet

N
ative A

pplication
s

Figure 1: Usage environment of the TOE

One of the several possible scenarios depicted by Figure 1, concerning the development, loading and
execution lifetime of an applet, is described in what follows. The chosen use-case involves almost all of
the TOE and IT environment components considered in this document:.

The development of the source code of the applet is carried on in a Java programming environment.
The compilation of that code will then produce the corresponding class file. Then, this latter file is
processed by the converter1, which, on the one hand, validates the code and generates a converted
applet (CAP) file, the equivalent of a JavaTM class file for the Java Card platform. A CAP file contains an
executable binary representation of the classes of a package. A package is a name space within the Java
programming language that may contain classes and interfaces, and in the context of Java Card
technology, it defines either a user library, or one or several applets. Then, the (off-card) bytecode
verifier checks the integrity of the CAP file. After the validation is carried out, the CAP file is then
loaded into the card making use of a safe loading mechanism. Once loaded into the card the file is
linked, what makes it possible in turn to install, if defined, instances of any of the applets defined in
the file. During the installation process the applet is registered on the card by using an application
identifier (AID). This AID will allow the identification of unique applet instances within the card. In

1 The converter is defined in the specifications as the off-card component of the Java Card virtual Machine.

Java Card Protection Profile Collection Page 23 of 198

Version 1.1 May 2006

particular, the AID is used for selecting the applet instance for execution. The on-card bytecode
interpreter performs the execution of the applet’s code.

The following sections further describe some of the components involved in the environment of the
Java Card System. Although most of those components are not part of the TOE, a better understanding
of the role they play will help in understanding the importance of the assumptions that will appear
concerning the environment of the TOE.

A brief description of some of the new features introduced in versions 2.2, 2.2.1 and 2.2.2 of the Java
Card platform is also included.

2.1.1 Bytecode Verification

The bytecode verifier is a program that performs static checks on the bytecodes of the methods of a
CAP file. Bytecode verification is a key component of security: applet isolation, for instance, depends
on the file satisfying the properties a verifier checks to hold. A method of a CAP file that has been
verified, shall not contain, for instance, an instruction that allows forging a memory address or an
instruction that makes improper use of a return address as if it were an object reference. In other
words, bytecodes are verified to hold up to the intended use to which they are defined. This document
considers static bytecode verification; it may be performed either on the host (off-card verification) or
on the card (on-card verification), but prior to the installation of the file on the card in any case.
However, part of the verifications on bytecodes might be performed totally or partially dynamically.
No standard procedure in that concern has yet been recognized. Furthermore, different approaches
have been proposed for the implementation of bytecode verifiers, most notably data flow analysis,
model checking and lightweight bytecode verification, this latter being an instance of what is known
as proof carrying code. The actual set of checks performed by the verifier is implementation-
dependent, but it is required that it should at least enforce all the “must clauses” imposed in [JCVM]
on the bytecodes and the correctness of the CAP files’ format.

2.1.2 Installation of applets

The installer is the part of the on-card component of the platform dealing with downloading, linking
and installation of new packages, as described in [JCRE21]. Once selected, it receives the CAP file, stores
the classes of the package on the card, initializes static data, if any, and installs any applets contained
in the package.

In some cases, the actual installation (and registration) of applets is postponed; in the same vein, a
package may contain several applets, and some of them might never be installed. Installation is then
usually separated from the process of loading and linking a CAP file on the card.

When post-issuance installation of applets is supported by a Java Card platform, processes that allow
to load, and also to link, a CAP file, as well as to install applet instances on the card, must also be
provided. If post-issuance installation is supported then the installer is also considered as part of the
Java Card System.

LOADING

The loading of a file into the card embodies two main steps: First an authentication step by which the
card issuer and the card recognize each other, for instance by using a type of cryptographic
certification. Once the identification step is accomplished, the CAP file is transmitted to the card by
some means, which in principle should not be assumed to be secure. Due to resource limitations,
usually the file is split by the card issuer into a list of Application Protocol Data Units (APDUs), which
are in turn sent to the card.

Java Card Protection Profile Collection Page 24 of 198

Version 1.1 May 2006

LINKING

The linking process consists of a rearrangement of the information contained in the CAP file in order to
speed up the execution of the applications. There is a first step where indirect external and internal
references contained in the file are resolved by replacing those references with direct ones. This is
what is referred to as the resolution step. In the next step, called in [JVM] the preparation step, the static
field image2 and the statically initialized arrays defined in the file are allocated. Those arrays in turn
are also initialized, thus giving rise to what shall constitute the initial state of the package for the
embedded interpreter.

2.1.3 The Card Manager (CM)

The card manager is an application with specific rights, which is responsible for the administration of
the smart card. This component will in practice be tightly connected with the Java Card RE (see below,
§2.4.2.2). The card manager is in charge of the life cycle of the whole card, as well as the installed
applications (applets). It may have other roles (such as the management of security domains and
enforcement of the card issuer security policies) that we do not detail here, as they are not in the scope
of the TOE and are implementation–dependent.

The card manager’s role is also to manage and control the communication between the card and the
card acceptance device (CAD) or the proximity-coupling device (PCD)3. It is the controller of the card,
but relies on the TOE to manage the runtime of client applets. On the other hand, the TOE relies on the
card manager for some of its security functions (§2.4.2.2).

A candidate for this component is the Global Platform card manager ([GP]).

2.1.4 Smart Card Platform: Operating System + Chip + Dedicated
Software

The smart card platform (SCP) is composed of a micro-controller and an operating system. It provides
memory management functions (such as separate interface to RAM and NVRAM), I/O functions that
are compliant with ISO standards, transaction facilities, and secure (shielded, native) implementation
of cryptographic functions. It also contains dedicated software (DS), which provides an interface with
the integrated circuit (IC).

Finally, it is likely that the SCP has to be evaluated along with the TOE in order to claim a good level of
assurance, when needed.

2.1.5 Native Applications

Apart from Java Card applets, the final product may contain native applications as well. Native
applications are outside the scope of the TOE security functions (TSF), and they are usually written in
the assembly language of the platform, hence their name. This term also designates software libraries
providing services to other applications, including applets under the control of the TOE.

2 The memory area containing the static fields of the file.

3 The acronym CAD is used here and throughout this specification to refer to both types of card readers -
the conventional Card Acceptance Device (CAD) for contacted I/O interfaces and the Proximity Coupling
Device (PCD) for contactless interfaces.

Java Card Protection Profile Collection Page 25 of 198

Version 1.1 May 2006

It is obvious that such native code presents a threat to the security of the TOE and to user applets.
Therefore, the Protection Profiles will require for native applications to be conformant with the TOE so
as to ensure that they do not provide a means to circumvent or jeopardize the TSFs.

2.2 JAVA CARD 2.2 TECHNOLOGY

This document is also concerned with the new features included in the Java Card System 2.2 platform
specification ([JCVM22], [JCRE22], [JCAPI22], [JCVM222], [JCRE222], [JCAPI221], [JCAPI222],
[JCVM221], [JCVM222]), namely, the support of logical channels, applet and package deletion, object
deletion, remote method invocation, external memory facilities and contactless I/O interface

Any of the four components described below, when included in a configuration, is to be considered as
part of theJava Card System.

JAVA CARD REMOTE METHOD INVOCATION (JAVA CARD RMI)

Java Card platform Remote Method Invocation (Java Card RMI) provides a mechanism for a client
application running on the CAD platform to invoke a method on a remote object on the card. The CAD
issues commands to the card, which in turn dispatches them to the appropriate object. The Java Card
RMI facilities are introduced as part of an extended framework aimed at improving the productivity
of application developers for the Java Card platform, on the one hand, promoting a technology that is
used today in many client-server applications, and, on the other hand, freeing the task of application
developing of having to deal directly with the card-specific programming model. Moreover, Java Card
RMI enables the use of the Java technology for both the card and the terminal.

The applet owner of those objects controls the access to exported objects and the Java Card RE ensures
coherence and synchronization of the remote object with its on-card representative.

APPLET DELETION MANAGER (ADEL)

The applet deletion manager is the on-card component that embodies the mechanisms necessary to
delete an applet on smart cards using Java Card technology. If the implementation of the Java Card
System includes a post-issuance installer, then an applet deletion manager that supports the behavior
specified in [JCRE22],§11.3, is also required. The applet deletion manager must appear as an applet to
the CAD. Therefore, it has an AID, and it must be selected for execution. There are three categories of
applet deletion requirements in Java Card System, version 2.2 ([JCRE22],§11.3.4):

 Applet instance deletion, which is the removal of the applet instance and the
objects owned by the applet instance.

 Applet /library package deletion, which entails the removal of all the card
resident components of the CAP file, including code and any associated Java Card
RE management structures.

 Deletion of an applet package and contained instances, which is the removal of
the card resident code and Java Card RE structures associated with the applet
package, and all the applet instances in the context of the package.

LOGICAL CHANNELS

The Java Card platform, version 2.2, provides support for logical channels, that is, the ability to allow
a terminal to open up multiple sessions into the smart card for each I/O interface (contacted and

Java Card Protection Profile Collection Page 26 of 198

Version 1.1 May 2006

contactless), one session per logical channel ([JCRE22],§4 and [JCRE222],§4). Commands may be
issued on a logical channel over an I/O interface to instruct the card either to open or to close a logical
channel on the same I/O interface. An applet instance that is selected to be active on a channel shall
process all the commands issued to that channel. The platform also introduces the possibility for an
applet instance to be selected on multiple logical channels at the same time, or accepting other applets
belonging to the same package to be selected simultaneously. These applets are referred to as
multiselectable. A non-multiselectable applet can be active at most on one channel. Applets within a
package are either all multiselectable or all non-multiselectable.

OBJECT DELETION

The Java Card platform, version 2.2, offers an (optional) object deletion mechanism. This mechanism is
requested by an applet instance, and the Java Card RE must ensure that any unreferenced object owned
by that instance is deleted and the associated space must be recovered for reuse. Applications
designed to run on a platform providing this facility can make use of it by invoking the method
requestObjectDeletion()[JCAPI22].

EXTERNAL MEMORY

The Java Card platform, version 2.2.2, provides an API-based mechanism to access the external
memory outside the addressable Java Card VM space. An applet instance reads from/writes to the
external memory through the methods of the MemoryAccess interface. It is up to the implementation
to ensure that no instance of this interface can ever be created or used to access memory that is directly
accessed and managed by the Java Card RE for code, heap and other data structures [JCAPI222].

2.3 FUNCTIONAL COMPONENTS AND CONFIGURATIONS

In §1.7.1 the concept of group of SFRs was introduced and the role they play in the Protection Profiles
is defined in this document. The following list describes the groups of security requirements that have
been used in those Protection Profiles. The definition of each of those groups is strongly influenced by
the behavior of the functional components described in the previous section:

SCP group The SCPG contains the security requirements for the smart card platform,
that is, operating system and chip that the Java Card System is
implemented upon. It does not define requirements for the TOE but for
its IT environment.

Core group The CoreG contains the basic requirements concerning the runtime
environment of the Java Card System, such as the firewall policy and the
requirements related to the Java Card API.

Bytecode verification
group

The BCVG contains the security requirements concerning the bytecode
verification of the application code to be loaded on the card. This group
of SFRs may apply to the TOE or to its IT environment depending on the
configuration.

Installation group The InstG contains the security requirements concerning the installation
of post-issuance applications. It does not address card management
issues in the broad sense, but only those security aspects of the
installation procedure that are related to applet execution. Those aspects
are described in [JCRE21]§11.1.5 Installer behavior.

Java Card Protection Profile Collection Page 27 of 198

Version 1.1 May 2006

Applet deletion group The ADELG contains the security requirements for erasing installed
applets from the card, a new feature introduced in Java Card System 2.2.
It can also be used as a basis for any other application deletion
requirements.

Remote Method
Invocation (RMI) group

The RMIG contains the security requirements for the remote method
invocation features, which provides a new protocol of communication
between the terminal and the applets. This was introduced in Java Card
System 2.2.

Logical channels group The LCG contains the security requirements for the logical channels,
which provide a runtime environment where several applets can be
simultaneously selected or a single one can be selected more than once.
This is a Java Card System 2.2 feature.

Object deletion group The ODELG contains the security requirements for the object deletion
capability. This provides a safe memory recovering mechanism. This is a
Java Card System 2.2 feature.

Secure carrier group The CarG group contains minimal requirements for secure downloading
of applications on the card. This group contains the security requirements
for preventing, in those configurations that do not support on-card static
or dynamic bytecodesverification, the installation of a package that has
not been bytecode verified, or that has been modified after bytecode
verification.

Card manager group The CMGRG contains the minimal requirements that allow defining a
policy for controlling access to card content management operations and
for expressing card issuer security concerns.

Extended Memory group The EMG contains the requirements for a secure management of the
external memory accessible to applet instances. This is a Java Card
System 2.2.2 feature.

2.3.1 Configurations

The following are the configurations, among the several ones that can be defined, which are addressed
in this document. They have been chosen either because they correspond to existing use-cases, or
because they cover the largest range of features of the Java Card platform.

Java Card Protection Profile Collection Page 28 of 198

Version 1.1 May 2006

2.3.1.1 Minimal Configuration

The minimal configuration corresponds to a multi-application card where no downloading of post-
issuance applications is allowed. The TOE is the simplest Java Card RE and its IT environment is the
smart card platform, the bytecode verifier and the card manager. Only the groups SCPG, CoreG, BCVG
and CMGRG are included in this configuration.

SCP=IC + OS + DS

JCRE

N
ative A

pplications

Java
Card
API

Applet 1 Applet 2

Package A

Applet 1

Package B

Minimal configuration

TOE IT
environment

TOE limits

JCVM

Card
Manager

Bytecode
Verification

Figure 2: TOE Limits for Minimal configuration

Java Card Protection Profile Collection Page 29 of 198

Version 1.1 May 2006

2.3.1.2 Java Card System Standard 2.1.1 Configuration

The Java Card System Standard 2.1.1 configuration corresponds to a platform that includes all the
functionalities described in Java Card specifications, version 2.1.1. It extends the Minimal
configuration with the security requirements for downloading post-issuance applications4 that have
been previously verified by an off-card remote trusted IT component. The loader and the installer
form part of the TOE, and therefore the groups CarG and InstG are included. The Java Card System
Standard 2.1.1 configuration however does not provide functionalities for deletion of applets.
Bytecode verification and card management applies to the TOE IT environment.

SCP=IC + OS + DS

Card
Manager

JCRE

N
ative A

pplications

Java
Card
API

Installer

Applet 1 Applet 2

Package A

Applet 1

Package B

Java Card System Standard 2.1.1 configuration

TOE IT environment

TOE limits

Bytecode
Verification

JCVMLoader

Figure 3: TOE Limits for Java Card System Standard 2.1.1 configuration

2.3.1.3 Java Card System Standard 2.2 Configuration

This configuration extends the Java Card System Standard 2.1.1 configuration with all the features
introduced in the Java Card specifications, version 2.2 (Java Card RMI, logical channels, applet
deletion and object deletion). Therefore, the groups CarG, InstG, RMIG, LCG, ADELG and ODELG are
included. Group EMG is also included, but it is only relevant if the TOE implements the External
Memory API of the Java Card System 2.2.2. Bytecode verification and card management apply to the
TOE IT environment.

4 The applet Installer is an optional feature of Java Card System, version 2.1.1.

Java Card Protection Profile Collection Page 30 of 198

Version 1.1 May 2006

SC P=IC + O S + D S

C ard
M anager

J CR E

N
ative A

pplications
Java
C ard
A P I

Insta ller

A pp let 1 A pp let 2

P ack a ge A

A pp let 1

P ack age B

J a v a C a rd S y ste m S ta n da rd 2 .2
c o nfig u ra t io n

T O E IT e nv iro n m e nt

TO E lim its

B yte code
Ve rificat io n

J C V M

L ogi cal ch an n e l s

O b je ct de le t ion

A p ple t D e letion Man age r

R e m ote Me th od I n vocation

Figure 4: TOE Limits for Java Card System Standard 2.2 configuration

2.3.1.4 Defensive Configuration

This configuration, like the Java Card System Standard 2.2 configuration, also includes all the features
considered in version 2.2 of the Java Card specifications. In addition to that, bytecode verification is
performed on-card and the bytecode verifier is then a component of the TOE. The BCVG group is
therefore also included, not being the case of the group CarG since installation of malicious applets is
prevented independently from the origin of the application and the way it has been downloaded on
the card. Card management applies to the TOE IT environment.

SCP=IC + OS + DS

Card
Manager

JCRE

N
ative A

pplications

Java
Card
API

Installer

Applet 1 Applet 2

Package A

Applet 1

Package B

Defensive configuration

TOE IT environment

TOE limits

Bytecode
Verification

Applet Deletion Manager

Object deletion

Remote Method Invocation

Logical channels

JCVM

Figure 5: TOE Limits for Defensive configuration

Java Card Protection Profile Collection Page 31 of 198

Version 1.1 May 2006

2.4 LIMITS OF THE TOE

2.4.1 Scope of Evaluation

The scope of the TOE is the Java Card System. The integrated circuit, the operating system and the
dedicated software of the smart card are not part of the TOE. Neither is part of the TOE any piece of
native code that does not contribute to its implementation, like a native application embedded
together with Java Card applets. However, the Java Card System is used by the applets and interacts
with the SCP, the card manager and other components of the smart card. All of them are thus part of
the TOE IT environment, and are included in the scope of evaluation of the Protection Profiles.

Regarding the code of the TOE, one may distinguish the Java Card System as a “pure software
component” from the actual product, which is the very same software running on a smart card, as a
part of an ST (see §2.4.2). While the scope of the Protection Profiles does not include the development
cycle of the smart card, the good working order of the TOE much depends on the way the TOE is
handled during the manufacturing process of the card (for instance, how it is embedded into the
card). Thus the scope of evaluation actually includes more than the TOE itself. The Common Criteria
acknowledges this situation, allowing security requirements applying to the development and
construction of the TOE, stated in several SARs (security assurance requirements), particularly those
from the ADO (delivery) and ACM (configuration) classes [CC3].

Let us also remark that the code of the applets is not part of the code of the TOE, but just data
managed by the TOE. Moreover, the scope of the Protection Profiles does not include all the stages in
the development cycle of a Java Card applet described in §2.1. Applets are only considered in their
CAP format, and the process of compiling the source code of an application and converting it into the
CAP format does not regard the TOE or its environment. On the contrary, the process of verifying
applications in its CAP format and loading it on the card is a crucial part of the TOE environment and
plays an important role as a complement of the TSFs included in the configuration. The Protection
Profiles assume that the loading of applications pre-issuance is made in a secure environment. For
post-issuance phases, the card will need to protect itself so that applets can only be loaded within a
secured environment5.

Native applications (see §2.1.5) may be placed into the card not through the installer component of the
Java Card System, but by directly embedding them into the IC during the fabrication of the smart card,
along with that of the Java Card System. This is the usual way to have native methods installed, but the
process is not limited to them, and applets and API packages may also be installed at a time where the
TOE is not yet operational. This also advocates for including several security assurance requirements
on the life cycle of the smart card, since native applications are not under the control of the Java Card
System.

It is also important to notice that the actual definition of the Java Card System (and thus the limits of
the TOE) varies in accordance with the configuration under consideration. Figure 6 illustrates the
components that are always inside the perimeter of the Java Card System, and the different optional
components that may be also included.

5 This protection is likely to be on the behalf of the card manager.

Java Card Protection Profile Collection Page 32 of 198

Version 1.1 May 2006

2.4.1.1 Relationship between Configurations and Groups

The following table illustrates the relationship between the chosen configurations and the groups
described in §2.3. For each configuration, if a group is included it can be either part of the TOE or part
of the IT environment. This holds, for instance, for the bytecode verification: when not performed on-
card, it is part of the IT environment.

Group (group name) Minimal Java Card
System
Standard 2.1.1

Java Card
System
Standard 2.2

Defensive

Core (CoreG) TOE TOE TOE TOE

Smart card platform (SCPG) IT IT IT IT

Installer (InstG) -- TOE TOE TOE

RMI (RMIG) -- -- TOE TOE

Logical channels (LCG) -- -- TOE TOE

Object deletion (ODELG) -- -- TOE TOE

Bytecode verification (BCVG) IT IT IT TOE

Applet deletion (ADELG) -- -- TOE TOE

Secure carrier (CarG) -- TOE TOE --

Card manager (CMGRG) IT IT IT IT

External Memory (EMG) -- -- TOE TOE

Table 1: Relationship between Groups and Configurations

Java Card Protection Profile Collection Page 33 of 198

Version 1.1 May 2006

SCP=IC + OS + DS

Card
Manager

Java Card RE
N

ative A
pplications

Java
Card
API

Bytecode
Verification

Optional
TOE components

Applet Deletion Manager

Object deletion

Java Card VM

Remote Method Invocation

Applet 1 Applet 2

Package A

Applet 1

Package B

Logical channels

Loader
Installer

TOE limits

Figure 6: Mandatory and optional components of the TOE

Java Card Protection Profile Collection Page 34 of 198

Version 1.1 May 2006

2.4.2 The TOE in the Life Cycle of the Smart Card

Following the CC, we separate the TOE environment into two parts: the IT environment and the non-
IT environment. As seen in the preceding sections, the TOE is intended to be part of an IT product
embedded in a smart card; due to specific development and installation processes of the smart card
industry, these (the TOE’s development and installation) are not separable from that of the other IT
components of the smart card. This development phase constitutes the main part of the non-IT
environment of the TOE.

The rest of this section is inspired by [PP0010], as we assume that Java Card RE is part of the
embedded software (ES), so the same development rules shall apply. Note that [SCSUG-2] also
presents an alternative (but less detailed) view of the development and production of smart card
products.

The life cycle of the TOE, which is only a part of the smart card life cycle, can be reduced to the three
stages pictured in Figure 7, called Development, Production & Personalization, and Usage.

IC Development Applet
Development

TOE Development

Production &personalization

Usage

VMspec.

Applets and sensitive data

IC and dedicated
platformdesign

Platform initialization

Additional
platform software
(OS, RTE, CM

components, native
applications)

Administration

End-usage

flowof assetsIC fabrication Platform testing & production

Loading &
installation

Configuration

Testing &
Validation

Figure 7: Smart Card Product Life Cycle

Java Card Protection Profile Collection Page 35 of 198

Version 1.1 May 2006

2.4.2.1 TOE Development & Production Environments

The development and production of the TOE is carried out during the first and second stages. To
ensure security, the environment in which the development takes place must be made secure with
controllable accesses and traceability. Furthermore, it is important that every authorized personnel
involved fully understands the importance and the rigid implementation of defined security
procedures.

The development begins with the TOE specification. All parties in contact with sensitive information
are required to abide by Non-Disclosure Agreements.

Development of the TOE then follows. The engineers use a secure computer system (preventing
unauthorized access) to make their specifications, design, development and generation of the product.
Storage of sensitive documents, databases on tapes, diskettes are in appropriately locked
cupboards/safe. The disposal of unwanted data (complete electronic erasures) and documents (like
shredding) is also of great importance. Testing, integration and validation of TOE components then
take place. This phase consists in the collection of all software modules and the execution/test of this
software on an emulator or on a simulator of the (DS & IC) layer.

When these are done offsite, they must be transported and worked out in a secure environment with
accountability and traceability of all components. During the electronic transfer of sensitive data,
procedures must be established to ensure that the data and programs reach the expected destination
and are not accessible at intermediate stages (stored on a buffer server where system administrators
make backup copies). Should the integration tests be successful, the ROM code is delivered to the IC
manufacturer.

During the production stage the TOE is used in the IC Packaging, smart card Finishing process and
the test environments. Everyone involved in such operations shall fully understand the importance of
security procedures. Moreover, the environment in which these operations take place must be
secured. Sensitive information (on tapes, disks or diskettes) is stored in an appropriately locked
cupboard/safe. Also of paramount importance is the disposal of unwanted data (like complete
electronic erasures) and documents (for instance, shredding). During production, the TOE is protected
just like any other component of the smart card (SCP, test samples) and the smart card itself.

Personalization then occurs that is, the embedder introduces data for configuration and initialization
of software components, namely the OS, the Java Card System, the SCP, and applications. At the end of
the second stage, the TOE is fully functional.

Adequate control procedures are necessary to account for all products at all stages. These must be
transported and manipulated in a secure environment with accountability and traceability of all (good
and bad) products.

2.4.2.2 TOE Final Environment

The third stage is the end usage time of the TOE.

Once the previous stage is over, the loading and installation of applications, and configuration
(initialization) of user data (like user PIN) is done. The card is finally issued to the end user (card
holder).

The main users of the TOE at this time are the applications, either pre-installed or loaded. The end
user environment thus covers a wide spectrum of very different functions.

Java Card Protection Profile Collection Page 36 of 198

Version 1.1 May 2006

However, we can define the IT environment during this phase: first, the TOE obviously runs on top of
what we called the SCP, and is itself part of the underlying platform for the card manager6. The
underlying smart card platform has been described in §2.1.4 above. The TOE takes advantage of the
features it provides for its own management needs, such as transaction facilities, memory
management and safe cryptographic operations. At a lower level, the hardware provides physical
protection of the TOE.

On the other side, the TOE communicates with the CAD through the card manager. The triumvirate
made up of the Java Card RE, the installer and the CM is likely to be merged into one entity in actual
implementations. However, each one is in charge of a distinct security role on which the separation is
grounded.

During normal usage, the card is inserted in a CAD or placed near a PCD, starting up the CM and Java
Card RE. The session is an exchange of APDU commands between the CAD/PCD and the CM, the CM
and the Java Card RE and, ultimately, the Java Card RE and some applet.

Loading of an applet post-issuance follows the same pattern, with the exception that the Java Card RE
hands over the reins to the installer for the duration of the procedure. It will get the control back when
the newly loaded applet will need to be installed (that is, on the invocation of its install() method).

Finally, that loading issue leads us to another entity, which appears in Figure 1, the CAP file verifier
(also known as “bytecode verifier”, or, shortly, the BCV). The verifier can either be located off–card or
on–card without loss of generality, although this choice is not necessarily innocuous to security issues
(for instance, the integrity of the loaded file is important for off–card verification).

2.5 TOE INTENDED USAGE

Smart cards are mainly used as data carriers that are secure against forgery and tampering. More
recent uses also propose them as personal, highly reliable, small size devices capable of replacing
paper transactions by electronic data processing. Data processing is performed by a piece of software
embedded in the smart card chip, usually called an application.

The Java Card System is intended to transform a smart card into a platform capable of executing
applications written in a subset of the Java programming language. The intended use of a Java Card
platform is to provide a framework for implementing IC independent applications conceived to safely
coexist and interact with other applications into a single smart card.

Applications installed on a Java Card platform can be selected for execution when the card is inserted
into a card reader. In some configurations of the TOE, the CAD may also be used to enlarge or restrict
the set of applications that can be executed on the Java Card platform according to a well-defined card
management policy.

Notice that these applications may contain other confidentiality (or integrity) sensitive data than usual
cryptographic keys and PINs; for instance, passwords or pass-phrases are as confidential as the PIN,
and the balance of an electronic purse is highly sensitive with regard to arbitrary modification
(because it represents real money).

6 The card manager may also directly rely upon the SCP to access some of its low-level services.

Java Card Protection Profile Collection Page 37 of 198

Version 1.1 May 2006

So far, the most important applications are:

– Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.

– Transport and ticketing, granting pre-paid access to a transport system like the
metro and bus lines of a city.

– Telephony, through the subscriber identification module (SIM) for digital mobile
telephones.

– Personal identification, for granting access to secured sites or providing
identification credentials to participants of an event.

– Electronic passports and identity cards.
– Secure information storage, like health records, or health insurance cards.
– Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are

added and deleted from the card memory in accordance with program rules. The
total value of these points may be quite high and they must be protected against
improper alteration in the same way that currency value is protected.

The version 2.2 of the Java Card platform (“Java Card System 2.2”) introduces several novelties that
extend the domain of applications of the Java Card platform and ensures its compatibility with the
industrial state-of-art standards. One of those features is the possibility of having more than one
applet selected for execution at a time, which is intensively used in identity modules of mobile phone
applications. A Java Card platform implementing this feature is said to support “logical channels”.

Java Card System 2.2 also provides applet deletion, which enables the fine tuning of open card
management. This typically impacts the loyalty applications, which are obvious candidates for post-
issuance downloading and removal of applications. Version 2.2.1 further restricts applet deletion rules
and introduces a new optional method “uninstall” that is invoked by the Java Card RE before deleting
the applet, provided the method is actually implemented.

Java Card System 2.2 also provides support for object deletion and remote method invocation. Such
features do not target any particular kind of applications. Object deletion enables the reallocation of
memory blocks, while Java Card RMI services are intended to shrink the size of the applet code in
charge of dispatching the commands received from the card host.

Lastly, Java Card System 2.2.2 also provides support for biometric templates management, external
memory access and contactless I/O interface.

Java Card Protection Profile Collection Page 38 of 198

Version 1.1 May 2006

2.6 PRODUCT RATIONALE

While the Java Card virtual machine (Java Card VM) is responsible for ensuring language-level
security, the Java Card RE provides additional security features for Java Card technology-enabled
devices.

The basic runtime security feature imposed by the Java Card RE enforces isolation of applets using an
applet firewall. It prevents objects created by one applet from being used by another applet without
explicit sharing. This prevents unauthorized access to the fields and methods of class instances, as
well as the length and contents of arrays.

The applet firewall is considered as the most important security feature. It enables complete isolation
between applets or controlled communication through additional mechanisms that allow them to
share objects when needed. The Java Card RE allows such sharing using the concept of “shareable
interface objects” (SIO) and static public variables. The Java Card VM should ensure that the only
way for applets to access any resources are either through the Java Card RE or through the Java Card
platform API (or other vendor-specific APIs). This objective can only be guaranteed if applets are
correctly typed (all the “must clauses” imposed in chapter 7 of [JCVM21] on the bytecodes and the
correctness of the CAP file format are satisfied).

Java Card Protection Profile Collection Page 39 of 198

Version 1.1 May 2006

3 TOE Security Environment

This chapter describes the security aspects of the environment in which the TOE is used. The first
section describes some general security, and is intended to ease the comprehension of the security
objectives and requirements, especially the access control policies. Sections §3.2 and §3.3 introduce the
assets to be protected, the users of the TOE, and their software counterparts. Section §3.4 describes the
assumptions made on the environment. Section §3.5 describes the threats menacing the assets of the
TOE. Finally, the organizational policies that shall be imposed on the environment of the TOE are
presented in Section §3.6.

All the sections in this chapter contain specific sub-sections for each of the TOE configurations
introduced in Section §2.3.1.

3.1 SECURITY ASPECTS

Security aspects are intended to define the main security issues that are to be addressed in the
Protection Profile, in a CC-independent way. In addition to this, they also give a semi-formal
framework to express the CC security environment and objectives of the TOE. They can be
instantiated as assumptions, threats, objectives (for the TOE and the environment), or organizational
security policies. For instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2) The TOE must also
return to a well-defined valid state before a service request in case of failure during its operation.

The meaning of this paragraph is to state that the TSFs must be continuously active in one way or
another, and that aspect is termed “OPERATE”. Depending on the configuration, the Protection
Profile may include an assumption, termed “A.OPERATE”, stating that it is assumed that the TOE
ensures continued correct operation of its security functions, and so on. But it may also include a
threat, termed “T.OPERATE”, to be interpreted as the negation of the statement #.OPERATE. In this
example, this amounts to state that an attacker may try to circumvent some specific TSF by
temporarily shutting it down. The use of a common name intends to ease the global understanding of
the document.

This section presents several security aspects that will appear below in the configurations of the
Protection Profile. Some being quite general, we give further details, which are numbered for easier
cross-reference within the document. For instance, the two parts of #.OPERATE, when instantiated
with an objective “O.OPERATE”, may be met by separate SFRs in the rationale. The numbering then
adds further details on the relationship between the objective and those SFRs.

CONFIDENTIALITY

#.CONFID-APPLI-DATA Application data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain read access to other
application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized disclosure.
Knowledge of the Java Card System code may allow bypassing the TSF.

Java Card Protection Profile Collection Page 40 of 198

Version 1.1 May 2006

This concerns logical attacks at runtime in order to gain a read access to
executable code, typically by executing an application that tries to read the
memory area where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain a read access to
Java Card System data. Java Card System data includes the data managed
by the Java Card RE, the Java Card VM and the internal data of Java Card
API classes as well.

INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to the
memory zone where executable code is stored. If the configuration allows
post-issuance application loading, this threat also concerns the
modification of application code in transit to the card.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain unauthorized
write access to application data. If the configuration allows post-issuance
application loading, this threat also concerns the modification of
application data contained in a package in transit to the card. For instance,
a package contains the values to be used for initializing the static fields of
the package.

#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write
access to executable code.

#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write
access to Java Card System data. Java Card System data includes the data
managed by the Java Card RE, the Java Card VM and the internal data of
Java Card API classes as well.

UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte)code must be protected against unauthorized execution.
This concerns (1) invoking a method outside the scope of the visibility
rules provided by the public/private access modifiers of the Java
programming language ([JAVASPEC]§6.6); (2) jumping inside a method
fragment or interpreting the contents of a data memory area as if it was
executable code; (3) unauthorized execution of a remote method from the
CAD.

#.EXE-JCS-CODE Java Card System (byte)code must be protected against unauthorized
execution. Java Card System (byte)code includes any code of the Java Card
RE or API. This concerns (1) invoking a method outside the scope of the

Java Card Protection Profile Collection Page 41 of 198

Version 1.1 May 2006

visibility rules provided by the public/private access modifiers of the Java
programming language ([JAVASPEC]§6.6); (2) jumping inside a method
fragment or interpreting the contents of a data memory area as if it was
executable code. Note that execute access to native code of the Java Card
System and applications is the concern of #.NATIVE.

#.FIREWALL The Java Card System shall ensure controlled sharing of class instances7,
and isolation of their data and code between packages (that is, controlled
execution contexts). (1) An applet shall neither read, write nor compare a
piece of data belonging to an applet that is not in the same context, nor
execute one of the methods of an applet in another context without its
authorization.

#.NATIVE Because the execution of native code is outside of the TOE Scope Control
(TSC), it must be secured so as to not provide ways to bypass the TSFs. No
untrusted native code may reside on the card. Loading of native code,
which is as well outside the TSC, is submitted to the same requirements.
Should native software be privileged in this respect, exceptions to the
policies must include a rationale for the new security framework they
introduce.

BYTECODE VERIFICATION

#.VERIFICATION All bytecode must be verified prior to being executed. Bytecode
verification includes (1) how well-formed CAP file is and the verification of
the typing constraints on the bytecode, (2) binary compatibility with
installed CAP files and the assurance that the export files used to check the
CAP file correspond to those that will be present on the card when loading
occurs.

CAP File Verification

Bytecode verification includes checking at least the following properties: (3) bytecode instructions
represent a legal set of instructions used on the Java Card platform; (4) adequacy of bytecode
operands to bytecode semantics; (5) absence of operand stack overflow/underflow; (6) control flow
confinement to the current method (that is, no control jumps to outside the method); (7) absence of
illegal data conversion and reference forging; (8) enforcement of the private/public access modifiers
for class and class members; (9) validity of any kind of reference used in the bytecodes (that is, any
pointer to a bytecode, class, method, object, local variable, etc actually points to the beginning of piece
of data of the expected kind); (10) enforcement of rules for binary compatibility (full details are given
in [JCVM], [JVM], [BCVWP]). The actual set of checks performed by the verifier is implementation-
dependent, but shall at least enforce all the “must clauses” imposed in [JCVM] on the bytecodes
and the correctness of the CAP files’ format.

As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly because
smart cards lack memory and CPU resources, CAP file verification prior to execution is mandatory.
On the other hand, there is no requirement on the precise moment when the verification shall actually
take place, as far as it can be ensured that the verified file is not modified thereafter. Therefore, the
bytecodes can be verified either before the loading of the file on to the card or before the installation of

7 This concerns in particular the arrays, which are considered as instances of the Object class in the Java programming language.

Java Card Protection Profile Collection Page 42 of 198

Version 1.1 May 2006

the file in the card or before the execution, depending on the card capabilities, in order to ensure that
each bytecode is valid at execution time.

Another important aspect to be considered about bytecode verification and application downloading
is, first, the assurance that every package required by the loaded applet is indeed on the card, in a
binary-compatible version (binary compatibility is explained in [JCVM] §4.4), second, that the export
files used to check and link the loaded applet have the corresponding correct counterpart on the card.

Integrity and Authentication

Verification off-card is useless if the application package is modified afterwards. The usage of
cryptographic certifications coupled with the verifier in a secure module is a simple means to prevent
any attempt of modification between package verification and package installation. Once a verification
authority has verified the package, it signs it and sends it to the card. Prior to the installation of the
package, the card verifies the signature of the package, which authenticates the fact that it has been
successfully verified. In addition to this, a secured communication channel is used to communicate it
to the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective
installation of the applet or provide means for the bytecodes to be verified dynamically.

Linking and Verification

Beyond functional issues, the installer ensures at least a property that matters for security: the loading
order shall guarantee that each newly loaded package references only packages that have been already
loaded on the card. The linker can ensure this property because the Java Card platform does not
support dynamic downloading of classes.

CARD MANAGEMENT

#.CARD-MANAGEMENT (1) The card manager (CM) shall control the access to card management
functions such as the installation, update or deletion of applets. (2) The
card manager shall implement the card issuer ’s policy on the card.

#.INSTALL (1) The TOE must be able to return to a safe and consistent state should
the installation of a package or an applet fail or be cancelled (whatever the
reasons). (2) Installing an applet must have no effect on the code and data
of already installed applets. The installation procedure should not be used
to bypass the TSFs. In short, it is an atomic operation, free of harmful
effects on the state of the other applets. (3) The procedure of loading and
installing a package shall ensure its integrity and authenticity.

#.SID (1) Users and subjects of the TOE must be identified. (2) The identity of
sensitive users and subjects associated with administrative and privileged
roles must be particularly protected; this concerns the Java Card RE, the
applets registered on the card, and especially the default applet and the
currently selected applet (and all other active applets in Java Card System
2.2). A change of identity, especially standing for an administrative role
(like an applet impersonating the Java Card RE), is a severe violation of the
TOE Security Policy (TSP). Selection controls the access to any data
exchange between the TOE and the CAD and therefore, must be protected
as well. The loading of a package or any exchange of data through the

Java Card Protection Profile Collection Page 43 of 198

Version 1.1 May 2006

APDU buffer (which can be accessed by any applet) can lead to disclosure
of keys, application code or data, and so on.

#OBJ-DELETION (1) Deallocation of objects should not introduce security holes in the form
of references pointing to memory zones that are not longer in use, or have
been reused for other purposes. Deletion of collection of objects should not
be maliciously used to circumvent the TSFs. (2) Erasure, if deemed
successful, shall ensure that the deleted class instance is no longer
accessible.

#DELETION (1) Deletion of installed applets (or packages) should not introduce security
holes in the form of broken references to garbage collected code or data,
nor should they alter integrity or confidentiality of remaining applets. The
deletion procedure should not be maliciously used to bypass the TSFs.
(2) Erasure, if deemed successful, shall ensure that any data owned by the
deleted applet is no longer accessible (shared objects shall either prevent
deletion or be made inaccessible). A deleted applet cannot be selected or
receive APDU commands. Package deletion shall make the code of the
package no longer available for execution. (3) Power failure or other
failures during the process shall be taken into account in the
implementation so as to preserve the TSPs. This does not mandate,
however, the process to be atomic. For instance, an interrupted deletion
may result in the loss of user data, as long as it does not violate the TSPs.

The deletion procedure and its characteristics (whether deletion is either
physical or logical, what happens if the deleted application was the default
applet, the order to be observed on the deletion steps) are implementation-
dependent. The only commitment is that deletion shall not jeopardize the
TOE (or its assets) in case of failure (such as power shortage).

Deletion of a single applet instance and deletion of a whole package are
functionally different operations and may obey different security rules. For
instance, specific packages can be declared to be undeletable (for instance,
the Java Card API packages), or the dependency between installed packages
may forbid the deletion (like a package using super classes or super
interfaces declared in another package).

SERVICES

#.ALARM The TOE shall provide appropriate feedback upon detection of a potential
security violation. This particularly concerns the type errors detected by
the bytecode verifier, the security exceptions thrown by the Java Card VM,
or any other security-related event occurring during the execution of a TSF.

#.OPERATE (1) The TOE must ensure continued correct operation of its security
functions. (2) In case of failure during its operation, the TOE must also
return to a well-defined valid state before the next service request.

 #.RESOURCES The TOE controls the availability of resources for the applications and
enforces quotas and limitations in order to prevent unauthorized denial of
service or malfunction of the TSFs. This concerns both execution (dynamic

Java Card Protection Profile Collection Page 44 of 198

Version 1.1 May 2006

memory allocation) and installation (static memory allocation) of
applications and packages.

#.CIPHER The TOE shall provide a means to the applications for ciphering sensitive
data, for instance, through a programming interface to low-level, highly
secure cryptographic services. In particular, those services must support
cryptographic algorithms consistent with cryptographic usage policies and
standards.

#.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys.
This includes: (1) Keys shall be generated in accordance with specified
cryptographic key generation algorithms and specified cryptographic key
sizes, (2) Keys must be distributed in accordance with specified
cryptographic key distribution methods, (3) Keys must be initialized before
being used, (4) Keys shall be destroyed in accordance with specified
cryptographic key destruction methods.

#.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. This
includes: (1) Atomic update of PIN value and try counter, (2) No rollback
on the PIN-checking function, (3) Keeping the PIN value (once initialized)
secret (for instance, no clear-PIN-reading function), (4) Enhanced
protection of PIN’s security attributes (state, try counter…) in
confidentiality and integrity.

#.BIO-MNGT The TOE shall provide a means to securely manage biometric templates.
This includes: (1) Atomic update of biometric reference templates and try
counter, (2) No rollback on the biometric-checking function,(3) Keeping the
reference template (once initialized) secret (for instance, no clear-biometric-
reading function), (4) Enhanced protection of biometric template’s security
attributes (state, try counter…) in confidentiality and integrity. This
concerns version 2.2.2 of the Java Card platform.

#.SCP The smart card platform must be secure with respect to the TSP. Then:
(1) After a power loss, RF signal loss or sudden card removal prior to
completion of some communication protocol, the SCP will allow the TOE
on the next power up to either complete the interrupted operation or revert
to a secure state. (2) It does not allow the TSFs to be bypassed or altered
and does not allow access to other low-level functions than those made
available by the packages of the API. That includes the protection of its
private data and code (against disclosure or modification) from the Java
Card System. (3) It provides secure low-level cryptographic processing to
the Java Card System. (4) It supports the needs for any update to a single
persistent object or class field to be atomic, and possibly a low-level
transaction mechanism. (5) It allows the Java Card System to store data in
“persistent technology memory” or in volatile memory, depending on its
needs (for instance, transient objects must not be stored in non-volatile
memory). The memory model is structured and allows for low–level
control accesses (segmentation fault detection). (6) It safely transmits low–
level exceptions to the TOE (arithmetic exceptions, checksum errors), when
applicable. We finally require that (7) the IC is designed in accordance with
a well-defined set of policies and standards (likely specified in another
protection profile), and will be tamper resistant to actually prevent an
attacker from extracting or altering security data (like cryptographic keys)
by using commonly employed techniques (physical probing and

Java Card Protection Profile Collection Page 45 of 198

Version 1.1 May 2006

sophisticated analysis of the chip). This especially matters to the
management (storage and operation) of cryptographic keys.

#.TRANSACTION The TOE must provide a means to execute a set of operations atomically.
This mechanism must not endanger the execution of the user applications.
The transaction status at the beginning of an applet session must be closed
(no pending updates).

Java Card Protection Profile Collection Page 46 of 198

Version 1.1 May 2006

3.2 ASSETS

Assets are security–relevant elements to be directly protected by the TOE. Confidentiality of assets is
always intended with respect to un-trusted people or software, as various parties are involved during
the first stages; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece
of information or data. For example, “a piece of software” may be either a piece of source code (one
asset) or a piece of compiled code (another asset), and may exist in various formats at different stages
of its development (digital supports, printed paper). This separation is motivated by the fact that a
threat may concern one form at one stage, but be meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is
data created by and for the user (User data) or data created by and for the TOE (TSF data). For each
asset it is specified the kind of dangers that weigh on it.

3.2.1 User data

D.APP_CODE The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA Confidential sensitive data of the applications, like the data contained in an
object, a static field of a package, a local variable of the currently executed
method, or a position of the operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA Integrity sensitive data of the applications, like the data contained in an
object, a static field of a package, a local variable of the currently executed
method, or a position of the operand stack.

To be protected from unauthorized modification.

D.PIN Any end-user’s PIN.

To be protected from unauthorized disclosure and modification.

D.BIO Any biometric template (this concerns version 2.2.2 of Java Card platform).

 To be protected from unauthorized disclosure and modification.

D.APP_KEYs Cryptographic keys owned by the applets.

To be protected from unauthorized disclosure and modification.

Java Card Protection Profile Collection Page 47 of 198

Version 1.1 May 2006

3.2.2 TSF data

D.JCS_CODE The code of the Java Card System.

To be protected from unauthorized disclosure and modification.

D.JCS_DATA The internal runtime data areas necessary for the execution of the Java
Card VM, such as, for instance, the frame stack, the program counter, the
class of an object, the length allocated for an array, any pointer used to
chain data-structures.

To be protected from monopolization and unauthorized disclosure or
modification.

D.SEC_DATA The runtime security data of the Java Card RE, like, for instance, the AIDs
used to identify the installed applets, the Currently selected applet, the
current context of execution and the owner of each object.

To be protected from unauthorized disclosure and modification.

D.API_DATA Private data of the API, like the contents of its private fields

To be protected from unauthorized disclosure and modification.

D.JCS_KEYs Cryptographic keys used when loading a file into the card.

To be protected from unauthorized disclosure and modification.

D.CRYPTO Cryptographic data used in runtime cryptographic computations, like a
seed used to generate a key.

To be protected from unauthorized disclosure and modification.

Java Card Protection Profile Collection Page 48 of 198

Version 1.1 May 2006

3.3 USERS & SUBJECTS

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the
TOE include people or institutions (like the applet developer, the card issuer, the verification
authority), hardware (like the CAD where the card is inserted or the PCD) and software components
(like the application packages installed on the card). Some of the users may just be aliases for other
users. For instance, the verification authority in charge of the bytecode verification of the applications
may be just an alias for the card issuer.

The main subjects of the TOE considered in this document are the following ones:

 Packages used on the Java Card platform that act on behalf of the applet developer.
These subjects are involved in the FIREWALL security policy defined in §5.1.1.1 and
they should be understood as instances of the subject S.PACKAGE.

 The Java Card RE, which acts on behalf of the card issuer. This subject is involved in
several of the security policies defined in this document and is always represented by
the subject S.JCRE.

 The bytecode verifier (BCV), which acts on behalf of the verification authority. This
subject is involved in the PACKAGE LOADING security policy defined in §5.1.8 and
is represented by the subject S.BCV.

 The installer, which acts on behalf of the card issuer. This subject is involved in the
loading of packages and installation of applets. It could play the role of the on-card
entity in charge of package loading, which is involved in the PACKAGE LOADING
security policy defined in §5.1.8 and is represented by the subject S.CRD.

 The applet deletion manager, if the configuration contains such components, which also
acts on behalf of the card issuer. This subject is involved in the ADEL security policy
defined in §5.1.4.1 and is represented by the subject S.ADEL.

 The CAD is involved in the Java Card RMI security policy defined in §5.1.5.1 and is
represented by the subject S.CAD. It stands for both contacted and contacless devices.

With the exception of packages, the other subjects have special privileges and play key roles in the
security policies of the TOE.

A special subject is involved in the PACKAGE LOADING security policy, which acts as the entity that
may potentially intercept, modify, or permute the messages exchanged between the verification
authority and the on-card entity in charge of package loading.

Java Card Protection Profile Collection Page 49 of 198

Version 1.1 May 2006

3.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE for each of the
configurations considered in this document.

3.4.1 All Configurations

The following is an assumption for all the configurations:

A.NATIVE Those parts of the APIs written in native code as well as any pre-issuance
native application on the card are assumed to be conformant with the TOE
so as to ensure that security policies and objectives described herein are not
violated. See #.NATIVE (p.41) for details.

3.4.2 Minimal Configuration

The assumptions of this configuration are the one defined in 3.4.1 plus the following ones:

A.NO-DELETION No deletion of installed applets (or packages) is possible.

A.NO-INSTALL There is no post-issuance installation of applets. Installation of applets is
secure and occurs only in a controlled environment in the pre-issuance
phase. See #.INSTALL (p.42) for details.

A.VERIFICATION All the bytecodes are verified at least once, before the loading, before the
installation or before the execution, depending on the card capabilities, in
order to ensure that each bytecode is valid at execution time.

3.4.3 Java Card System Standard 2.1.1 Configuration

The assumptions of the Java Card System Standard 2.1.1 configuration are the one defined in 3.4.1
plus the following ones:

A.VERIFICATION As in the Minimal configuration.

A.APPLET applets loaded post-issuance do not contain native methods. The Java Card
specifications explicitly “do not include support for native methods”
([JCVM21], §3.3) outside the API.

A.DELETION Deletion of applets, if available through the card manager, is secure. Refer
to #.DELETION for details on this assumption.

Java Card Protection Profile Collection Page 50 of 198

Version 1.1 May 2006

The rationale for this latter assumption is that even a Java Card System 2.1.1 TOE could be installed on
a product that includes applet deletion features. This assumes that these functions are secure with
respect to the TSPs herein.

3.4.4 Java Card System Standard 2.2 Configuration

The assumptions of this configuration are the one defined in §3.4.1 plus the following ones:

A.VERIFICATION As in the Minimal configuration.

A.APPLET As in the Java Card System Standard 2.1.1 configuration.

3.4.5 Defensive Configuration

The assumption of this configuration is the one defined in 3.4.1.

3.5 THREATS

This section introduces the threats to the assets against which specific protection within the TOE or its
environment is required. Several groups of threats are distinguished according to the configuration
chosen for the TOE and the means used in the attack. The classification is also inspired by the
components of the TOE that are supposed to counter each threat.

3.5.1 All Configurations

The following threats concern all the configurations considered in this document.

T.PHYSICAL The attacker discloses or modifies the design of the TOE, its sensitive data
or application code by physical (opposed to logical) tampering means. This
threat includes IC failure analysis, electrical probing, unexpected tearing,
and DP analysis. That also includes the modification of the runtime
execution of Java Card System or SCP software through alteration of the
intended execution order of (set of) instructions through physical
tampering techniques.

This threatens all the identified assets.

This threat refers to #.SCP.7, and all aspects related to confidentiality and
integrity of code and data.

CONFIDENTIALITY

T.CONFID-JCS-CODE The attacker executes an application without authorization to disclose the
Java Card System code. See #.CONFID-JCS-CODE (p. 39) for details.

Directly threatened asset(s): D.JCS_CODE.

Java Card Protection Profile Collection Page 51 of 198

Version 1.1 May 2006

T.CONFID-APPLI-DATA The attacker executes an application without authorization to disclose data
belonging to another application. See #.CONFID-APPLI-DATA (p. 39) for
details.

Directly threatened asset(s): D.APP_C_DATA, D.PIN, D.BIO, and
D.APP_KEYs.

T.CONFID-JCS-DATA The attacker executes an application without authorization to disclose data
belonging to the Java Card System. See #.CONFID-JCS-DATA (p. 40) for
details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA
D.JCS_KEYs and D.CRYPTO.

INTEGRITY

T.INTEG-APPLI-CODE The attacker executes an application to alter (part of) its own or another
application’s code. See #.INTEG-APPLI-CODE (p. 40) for details.

Directly threatened asset(s): D.APP_CODE

T.INTEG-JCS-CODE The attacker executes an application to alter (part of) the Java Card System
code. See #.INTEG-JCS-CODE (p. 40) for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-APPLI-DATA The attacker executes an application to alter (part of) another application’s
data. See #.INTEG-APPLI-DATA (p. 40) for details.

 Directly threatened asset(s): D.APP_I_DATA, D.PIN, D.BIO, and
D.APP_KEYs.

T.INTEG-JCS-DATA The attacker executes an application to alter (part of) Java Card System or
API data. See #.INTEG-JCS-DATA (p. 40) for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA,
D.JCS_KEYs and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-card
information. Nevertheless, they vary greatly on the employed means and threatened assets, and are
thus covered by quite different objectives in the sequel. That is why a more detailed list is given
hereafter.

IDENTITY USURPATION

T.SID.1 An applet impersonates another application, or even the Java Card RE, in
order to gain illegal access to some resources of the card or with respect to
the end user or the terminal. See #.SID (p. 42) for details.

Directly threatened asset(s): D.SEC_DATA (other assets may be
jeopardized should this attack succeed, for instance, if the identity of the
Java Card RE is usurped), D.PIN, D.APP_KEYs and D.JCS_KEYs

Java Card Protection Profile Collection Page 52 of 198

Version 1.1 May 2006

T.SID.2 The attacker modifies the TOE’s attribution of a privileged
role (e.g. default applet and currently selected applet), which allows illegal
impersonation of this role.See #.SID (p. 42) for further details. Directly
threatened asset(s): D.SEC_DATA (any other asset may be jeopardized
should this attack succeed, depending on whose identity was forged).

UNAUTHORIZED EXECUTION

T.EXE-CODE.1 An applet performs an unauthorized execution of a method. See #.EXE-
JCS-CODE (p. 40) and #.EXE-APPLI-CODE (p. 40) for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2 An applet performs an execution of a method fragment or arbitrary data.
See #.EXE-JCS-CODE (p. 40) and #.EXE-APPLI-CODE (p. 40) for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE An applet executes a native method to bypass a security function such as
the firewall. See #.NATIVE (p. 41) for details.

Directly threatened asset(s): D.JCS_DATA.

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card: RAM or NVRAM.

Directly threatened asset(s): D.JCS_DATA.

3.5.2 Minimal Configuration

The threats of this configuration are the ones defined in §3.5.1.

3.5.3 Java Card System Standard 2.1.1 Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

INTEGRITY

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. See
#.INTEG-APPLI-CODE (p. 40) for details.

Directly threatened asset(s): D.APP_CODE.

Java Card Protection Profile Collection Page 53 of 198

Version 1.1 May 2006

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for
installation. See #.INTEG-APPLI-DATA (p. 40) for details.

Directly threatened asset(s): D.APP_I_DATA, D_APP_KEYs and
D.JCS_KEYs.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs post-issuance of an applet on the card.
This concerns either the installation of an unverified applet or an attempt
to induce a malfunction in the TOE through the installation process. See
#.INSTALL (p 42) for details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be
jeopardized should this attack succeed, depending on the virulence of the
installed application).

3.5.4 Java Card System Standard 2.2 Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

T.INTEG-APPLI-CODE.2 As in the Java Card System Standard 2.1.1 configuration.

T.INTEG-APPLI-DATA.2 As in the Java Card System Standard 2.1.1 configuration.

 T.INSTALL As in the Java Card System Standard 2.1.1 configuration.

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The attacker performs an unauthorized remote execution of a method
from the CAD. See #.EXE-JCS-CODE (p. 40) and #.EXE-APPLI-CODE
(p. 40) for details.

Directly threatened asset(s): D.APP_CODE.

This threat concerns version 2.2 of the Java Card RMI, which allow external users (that is, other than
on-card applets) to trigger the execution of code belonging to an on-card applet. On the contrary,
T.EXE-CODE.1 is restricted to the applets under the TSC.

CARD MANAGEMENT

T.DELETION The attacker deletes an applet or a package already in use on the card, or
uses the deletion functions to pave the way for further attacks (putting the
TOE in an insecure state). See #.DELETION (p 43) for details).

Directly threatened asset(s): D.SEC_DATA and D.APP_CODE .

Java Card Protection Profile Collection Page 54 of 198

Version 1.1 May 2006

SERVICES

T.OBJ-DELETION The attacker keeps a reference to a garbage collected object in order to
force the TOE to execute an unavailable method, to make it to crash, or to
gain access to a memory containing data that is now being used by another
application. See #.OBJ-DELETION (p. 43) for further details.

 Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA &
D.APP_KEYs .

3.5.5 Defensive Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

T.INSTALL As in the Java Card System Standard 2.1.1 configuration.

T.EXE-CODE-REMOTE As in the Java Card System Standard 2.2 configuration.

T.DELETION As in the Java Card System Standard 2.2 configuration.

T.OBJ-DELETION As in the Java Card System Standard 2.2 configuration.

3.6 ORGANIZATIONAL SECURITY POLICIES

This section describes the organizational security policies to be enforced with respect to the TOE
environment.

3.6.1 Minimal Configuration

There is no organizational security policy for this configuration.

3.6.2 Java Card System Standard 2.1.1 Configuration

This configuration has only one organizational security policy:

OSP.VERIFICATION This policy shall ensure the consistency between the export files used in
the verification and those used for installing the verified file. The policy
must also ensure that no modification of the file is performed in between
its verification and the signing by the verification authority. See
#.VERIFICATION (p.41) for details.

3.6.3 Java Card System Standard 2.2 Configuration

This configuration has only one organizational security policy:

Java Card Protection Profile Collection Page 55 of 198

Version 1.1 May 2006

OSP.VERIFICATION As in the Java Card System Standard 2.1.1 configuration.

3.6.4 Defensive Configuration

There is no organizational security policy for this configuration.

Java Card Protection Profile Collection Page 56 of 198

Version 1.1 May 2006

4 SECURITY OBJECTIVES

This section defines the security objectives to be achieved by each of the TOE configurations
considered in this document and their respective environments.

4.1 SECURITY OBJECTIVES FOR THE TOE

4.1.1 All Configurations

The following are security objectives of all the configurations considered in this document.

IDENTIFICATION

O.SID The TOE shall uniquely identify every subject (applet, or package) before
granting him access to any service.

EXECUTION

O.OPERATE The TOE must ensure continued correct operation of its security functions.
See #.OPERATE (p 43) for details.

O.RESOURCES The TOE shall control the availability of resources for the applications. See
#.RESOURCES (p 43) for details.

O.FIREWALL The TOE shall ensure controlled sharing of data containers owned by
applets of different packages, and between applets and the TSFs. See
#.FIREWALL (p 41) for details.

O.NATIVE The only means that the Java Card VM shall provide for an application to
execute native code is the invocation of a method of the Java Card API, or
any additional API. See #.NATIVE (p 41) for details.

O.REALLOCATION The TOE shall ensure that the re-allocation of a memory block for the
runtime areas of the Java Card VM does not disclose any information that
was previously stored in that block.

Application note: To be made unavailable means to be physically erased with a
default value. Except for local variables that do not correspond to method
parameters, the default values to be used are specified in [JCVM21].

Java Card Protection Profile Collection Page 57 of 198

Version 1.1 May 2006

O.SHRD_VAR_CONFID The TOE shall ensure that any data container that is shared by all
applications is always cleaned after the execution of an application.
Examples of such shared containers are the APDU buffer, the byte array
used for the invocation of the process method of the selected applet, or
any public global variable exported by the API.

O.SHRD_VAR_INTEG The TOE shall ensure that only the currently selected application may
grant write access to a data memory area that is shared by all applications,
like the APDU buffer, the byte array used for the invocation of the
process method of the selected applet, or any public global variable
exported by the API. Even though the memory area is shared by all
applications, the TOE shall restrict the possibility of getting a reference to
such memory area to the application that has been selected for execution.
The selected application may decide to temporarily hand over the
reference to other applications at its own risk, but the TOE shall prevent
those applications from storing the reference as part of their persistent
states.

SERVICES

O.ALARM The TOE shall provide appropriate feedback information upon detection of
a potential security violation. See #.ALARM (p. 43) for details.

O.TRANSACTION The TOE must provide a means to execute a set of operations atomically.
See #.TRANSACTION (p. 45) for details.

O.CIPHER The TOE shall provide a means to cipher sensitive data for applications in
a secure way. In particular, the TOE must support cryptographic
algorithms consistent with cryptographic usage policies and standards. See
#.CIPHER (p. 44) for details.

O.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. See #.PIN-
MNGT (p. 44) for details.

Application note: PIN objects may play key roles in the security architecture of client
applications. The way they are stored and managed in the memory of the
smart card must be carefully considered, and this applies to the whole
object rather than the sole value of the PIN. For instance, the try counter’s
value is as sensitive as that of the PIN.

O.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys.
This concerns the correct generation, distribution, access and destruction of
cryptographic keys. See #.KEY-MNGT (p. 44).

Application note: O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER
are actually provided to applets in the form of Java Card APIs. Vendor-
specific libraries can also be present on the card and made available to
applets; those may be built on top of the Java Card API or independently.
Depending on whether they contain native code or not, these proprietary
libraries will need to be evaluated together with the TOE or not

Java Card Protection Profile Collection Page 58 of 198

Version 1.1 May 2006

(see #.NATIVE, p.41). In any case, they are not included in the Java Card
System for the purpose of the present document.

4.1.2 Minimal Configuration

The security objectives of this configuration are the ones defined in §4.1.1.

4.1.3 Java Card System Standard 2.1.1 Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

APPLET MANAGEMENT

O.INSTALL The TOE shall ensure that the installation of an applet performs as
expected. See #.INSTALL (p 42 for details).

O.LOAD The TOE shall ensure that the loading of a package into the card is safe.

Application note: Usurpation of identity resulting from a malicious installation of an
applet on the card may also be the result of perturbing the communication
channel linking the CAD and the card. Even if the CAD is placed in a secure
environment, the attacker may try to capture, duplicate, permute or modify
the packages sent to the card. He may also try to send one of its own
applications as if it came from the card issuer. Thus, this objective is
intended to ensure the integrity and authenticity of loaded CAP files.

4.1.4 Java Card System Standard 2.2 Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

O.INSTALL As in the Java Card System Standard 2.1.1 configuration

O.LOAD As in the Java Card System Standard 2.1.1 configuration

APPLET MANAGEMENT

O.DELETION The TOE shall ensure that both applet and package deletion perform as
expected. See #.DELETION (p 43) for details.

OBJECT DELETION

O.OBJ-DELETION The TOE shall ensure the object deletion shall not break references to objects.
See #.OBJ-DELETION (p. 43) for further details.

Java Card Protection Profile Collection Page 59 of 198

Version 1.1 May 2006

SERVICES

O.REMOTE The TOE shall provide restricted remote access from the CAD to the services
implemented by the applets on the card. This particularly concerns the Java
Card RMI services introduced in version 2.2 of the Java Card platform.

O.BIO-MNGT The TOE shall provide a means to securely manage biometric templates. This
concerns the optional package javacardx.biometry of version 2.2.2 of the Java
Card platform. See #.BIO-MNGT for details.

O.EXT_MEM The TOE shall provide controlled access means to the external memory and
ensure that the external memory does not address Java Card System memory
(containing User Data and TSF Data). This concerns the optional package
javacardx.external of version 2.2.2 of the Java Card platform.

4.1.5 Defensive Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

O.INSTALL As in the Java Card System Standard 2.1.1 Configuration.

O.1186HDELETION As in the Java Card System Standard 2.2 configuration.

O.OBJ-DELETION As in the Java Card System Standard 2.2 configuration.

O.REMOTE As in the Java Card System Standard 2.2 configuration.

O.BIO-MNGT As in the Java Card System Standard 2.2 configuration.O.EXT_MEM
 As in the Java Card System Standard 2.2 configuration.

INTEGRITY, CONFIDENTIALITY AND CORRECT EXECUTION

O.VERIFICATION The TOE shall ensure that any bytecode is verified prior to being executed.
See #.VERIFICATION (p.41) for details.

4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT

This section introduces the security objectives to be achieved by the environment associated to each
TOE configuration.

4.2.1 All Configurations

The following objectives are common to all the configurations considered in this document.

Java Card Protection Profile Collection Page 60 of 198

Version 1.1 May 2006

OE.NATIVE Those parts of the APIs written in native code as well as any pre-issuance
native application on the card shall be conformant with the TOE so as to
ensure that security policies and objectives described herein are not
violated. See #.NATIVE (p.41) for details.

OE.SCP.RECOVERY If there is a loss of power, a loss of RF signal or if the smart card is
withdrawn from the CAD while an operation is in progress, the SCP must
allow the TOE to eventually complete the interrupted operation
successfully, or recover to a consistent and secure state (#.SCP.1).

OE.SCP.SUPPORT The SCP shall provide functionalities that support the well-functioning of
the TSFs of the TOE (avoiding they are bypassed or altered) and by
controlling the access to information proper of the TSFs. In addition, the
smart card platform should also provide basic services which are required
by the runtime environment to implement security mechanisms such as
atomic transactions, management of persistent and transient objects and
cryptographic functions. These mechanisms are likely to be used by
security functions implementing the security requirements defined for the
TOE. See #.SCP.2-5 (p.44).

OE.SCP.IC The SCP shall possess IC security features. See #.SCP.7 (p.44).

OE.CARD-MANAGEMENT The card manager shall control the access to card management
functions such as the installation, update or deletion of applets. It shall also
implement the card issuer’s policy on the card.

As already mentioned in §2.1.3 the card manager is an application with specific rights, which is
responsible for the administration of the smart card. This component will in practice be tightly
connected with the TOE, which in turn shall very likely rely on the card manager for the effective
enforcing of some of its security functions. Typically the card manager shall be in charge of the life
cycle of the whole card, as well as that of the installed applications (applets). The card manager should
prevent card content management (loading, installation, deletion) at invalid states of the card or
carried out by non-authorized actors. It shall also enforce security policies established by the card
issuer.

These environmental objectives shall be met by IT security requirements.

4.2.2 Minimal Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.NO-DELETION No installed applets (or packages) shall be deleted from the card.

OE.NO-INSTALL There is no post-issuance installation of applets. Installation of applets is
secure and shall occur only in a controlled environment in the pre-issuance
phase.

The objectives OE.NO-INSTALL and OE.NO-DELETION have been included so as to describe
procedures that shall contribute to ensure that the TOE will be used in a secure manner. Moreover,
they have been defined in accordance with the environmental assumptions they uphold (actually,
they are just a reformulation of the corresponding assumptions). The NO-DELETION and NO-
INSTALL (assumptions and objectives) constitute the explicit statement that the Minimal

Java Card Protection Profile Collection Page 61 of 198

Version 1.1 May 2006

configuration corresponds to that of a closed card (no code can be loaded or deleted once the card has
been issued). It is not evident that IT means should be used to carry out these objectives.

OE.VERIFICATION All the bytecodes shall be verified at least once, before the loading, before
the installation or before the execution, depending on the card capabilities,
in order to ensure that each bytecode is valid at execution time. See
#.VERIFICATION (p.41) for details.

4.2.3 Java Card System Standard 2.1.1 Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.APPLET No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION As in the Minimal Configuration.

4.2.4 Java Card System Standard 2.2 Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.APPLET As in the Java Card System Standard 2.1.1 Configuration.

OE.VERIFICATION As in the Minimal Configuration.

4.2.5 Defensive Configuration

The objectives for the environment in this configuration are those defined in §4.2.1.

Java Card Protection Profile Collection Page 62 of 198

Version 1.1 May 2006

5 IT SECURITY REQUIREMENTS

This section defines the detailed security requirements that shall be satisfied by each configuration of
the TOE and its respective IT environment. As explained in Section §1.7.1, they are arranged into
several groups, which are then composed to form the different configurations of the TOE. Depending
on the configuration, the groups of SFRs are either TOE SFRs or SFRs on the IT environment (see
Table 2 below).

The minimum strength level for the TOE security functions is SOF-medium.

5.1 TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS

The following table (already presented and described in §2.4.1.1) displays the relationship between the
chosen configurations and the groups that shall be defined in the sections that follow.

Group (group name) Minimal Java Card
System
Standard 2.1.1

Java Card
System
Standard 2.2

Defensive

Core (CoreG) TOE TOE TOE TOE

Smart card platform (SCPG) IT IT IT IT

Installer (InstG) -- TOE TOE TOE

RMI (RMIG) -- -- TOE TOE

Logical channels (LCG) -- -- TOE TOE

Object deletion (ODELG) -- -- TOE TOE

Bytecode verification (BCVG) IT IT IT TOE

Applet deletion (ADELG) -- -- TOE TOE

Secure carrier (CarG) -- TOE TOE --

Card manager (CMGRG) IT IT IT IT

External Memory (EMG) -- -- TOE TOE

Table 2: Relationship between Groups and Configurations

Java Card Protection Profile Collection Page 63 of 198

Version 1.1 May 2006

5.1.1 CoreG Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the firewall. This
policy essentially concerns the security of installed applets. The policy focuses on the execution of
bytecodes.

5.1.1.1 Firewall Policy

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1 The TSF shall enforce the [assignment: access control SFP] on
[assignment: list of subjects and objects] and all operations among
subjects and objects covered by the SFP.

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,
S.JCRE, O.JAVAOBJECT and all operations among subjects and objects
covered by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

Subject/Object Description

S.PACKAGE Any package, which is the security unit of the firewall policy.

S.JCRE The Java Card RE. This is the process that manages applet selection and de-
selection, along with the delivery of APDUs from and to the smart card device.

This subject is unique.

O.JAVAOBJECT Any object. Note that KEYS, PIN, arrays and applet instances are specific
objects in the Java programming language.

Operations (prefixed with “OP”) of this policy are described in the
following table. Each operation has a specific number of parameters given
between brackets, among which there is the “accessed object”, the first
one, when applicable. Parameters may be seen as security attributes that
are under the control of the subject performing the operation. Operations
stand for bytecodes supported by the Java Card platform.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT, field) Read/Write an array component.

OP.INSTANCE_FIELD(O.JAVAOBJECT, field)
Read/Write a field of an instance of a
class in the Java programming
language

Java Card Protection Profile Collection Page 64 of 198

Version 1.1 May 2006

Operation Description

OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1,…) Invoke a virtual method (either on a
class instance or an array object)

OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1,…) Invoke an interface method.

OP.THROW(O.JAVAOBJECT) Throwing of an object (athrow).

OP.TYPE_ACCESS(O.JAVAOBJECT, class) Invoke checkcast or instanceof
on an object.

OP.JAVA(…)
Any access in the sense of
[JCRE21], §6.2.8. In our formalization,
this is one of the preceding operations.

OP.CREATE(Sharing, LifeTime) Creation of an object (new or
makeTransient call).

Note that accessing array’s components of a static array, and more
generally fields and methods of static objects, is an access to the
corresponding O.JAVAOBJECT.

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

See FMT_MSA.1 for more information about security attributes.

FDP_ACF.1.1 The TSF shall enforce the [assignment: access control SFP] to objects
based on the following: [assignment: list of subjects and objects
controlled under the indicated SFP, and for each, the SFP-relevant security
attributes, or named groups of SFP-relevant security attributes].

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based on
the following: subjects, objects and their security attributes, described
hereafter.

The following table describes which security attributes are attached to which
subject/object..

Subject/Object Attributes

S.PACKAGE Context, Selected, Active

S.JCRE Active

Java Card Protection Profile Collection Page 65 of 198

Version 1.1 May 2006

Subject/Object Attributes

O.JAVAOBJECT Sharing, Context, LifeTime

The following table describes the possible values for each security attribute.

Name Description

Context Package AID, or “Java Card RE”

Sharing Standard, SIO, Java Card RE entry point, or global array

LifeTime CLEAR_ON_DESELECT or PERSISTENT.8

Selected, Active Boolean value: true or false

In the case of an array type, we state that fields are components of the
array ([JVM], §2.14, §2.7.7), as well as the length; the only methods of an
array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:
– Standard ones, whose both fields and methods are under the firewall

policy,
– Shareable interface Objects (SIO), which provide a secure mechanism for

inter-applet communication,
– Java Card RE entry points (Temporary or Permanent), who have freely

accessible methods but protected fields,
– Global arrays, having both unprotected fields (including components;

refer to JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the currently active
context. But the object is owned by the applet instance within the currently
active context when the object is instantiated ([JCRE21], §6.1.2). An object is
owned by an applet instance, by the Java Card RE or by the package library
where it has been defined (these latter objects can only be arrays that
initialize static fields of packages).

Finally both “the currently active context” and “the SELECTed applet context”
are security attributes internal to the Java Card VM.

([JCRE21], Glossary) Currently selected applet. The Java Card RE keeps
track of the currently selected Java Card applet. Upon receiving a SELECT
command with this applet’s AID, the Java Card RE makes this applet the
currently selected applet. The Java Card RE sends all APDU commands to the
currently selected applet.

8 Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed only when the currently
active context is the object’s context.

Java Card Protection Profile Collection Page 66 of 198

Version 1.1 May 2006

While the expression “selected applet” refers to a specific installed applet, the
relevant aspect to the policy is the context (package AID) of the selectedapplet.
In this policy, the “selected applet context” is the AID of the package whose
Selected attribute holds true.

 ([JCRE21] §6.1.1) At any point in time, there is only one active context
within the Java Card VM (this is called the currently active context).

In this policy, the “active context” is the package or Java Card RE whose
Active security attribute holds true.

The reader should note that the invocation of static methods (or access to
a static field) is not considered by this policy, as there are no firewall
rules. They have no effect on the active context as well and the “acting
package” is not the one to which the static method belongs to in this case.

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: [assignment:
rules governing access among controlled subjects and controlled objects using
controlled operations on controlled objects].

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed by the FIREWALL SFP:

R.JAVA.1 ([JCRE21]§6.2.8) The currently active S.PACKAGE may
freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS
upon any O.JAVAOBJECT whose Sharing attribute has value “Java
Card RE entry point” or “global array”.

R.JAVA.2 ([JCRE21]§6.2.8) The currently active S.PACKAGE may
freely perform any of
OP.ARRAY_ACCESS,OP.INSTANCE_FIELD,
OP.TYPE_ACCESS, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any
O.JAVAOBJECT whose Sharing attribute has value “Standard” and
whose Lifetime attribute has value “PERSISTENT” only if
O.JAVAOBJECT’s Context attribute has the same value as the active
context.

R.JAVA.3 ([JCRE21]§6.2.8.10) The currently active S.PACKAGE may
perform OP.TYPE_ACCESS upon an O.JAVAOBJECT whose
Sharing attribute has value “SIO” only if O.JAVAOBJECT is being
cast into (checkcast) or is being verified as being an instance of
(instanceof) an interface that extends the Shareable interface.

R.JAVA.4 ([JCRE21]§6.2.8.6) The currently active S.PACKAGE may
perform OP.INVK_INTERFACE upon an O.JAVAOBJECT whose
Sharing attribute has the value “SIO” only if the invoked interface
method extends the Shareable interface.

Java Card Protection Profile Collection Page 67 of 198

Version 1.1 May 2006

R.JAVA.5 The currently active S.PACKAGE may perform an
OP.CREATE only if the value of the Sharing parameter9 is
“Standard”.

Application note: At last, rules governing access to and creation of
O.JAVAOBJECTs by S.JCRE are essentially implementation-dependent
(however, see FDP_ACF.1.3/FIREWALL.)

FDP_ACF.1.3 The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: [assignment: rules, based on security attributes,
that explicitly authorize access of subjects to objects].

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorize access of subjects to objects based on the
following additional rule:

 The subject S.JCRE can freely perform OP.JAVA(…) and OP.CREATE,
with the exception given in FDP_ACF.1.4/FIREWALL, provided it is the
currently active context

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the
[assignment: rules, based on security attributes, that explicitly deny access of
subjects to objects].

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based on the rules:

1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime
attribute has value “CLEAR_ON_DESELECT” if O.JAVAOBJECT’s Context
attribute is not the same as the SELECTed applet Context.

2) Any subject with OP.CREATE and a “CLEAR_ON_DESELECT” LifeTime
parameter if the active context is not the same as the SELECTed applet
Context.

Application note: The deletion of applets may render some O.JAVAOBJECT
inaccessible, and the Java Card RE may be in charge of this aspect. This can be
done, for instance, by ensuring that references to objects belonging to a deleted
application are considered as a null reference. Such a mechanism is
implementation-dependent.

FDP_IFC.1 SUBSET INFORMATION FLOW CONTROL

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects, information, and operations that cause
controlled information to flow to and from controlled subjects covered by the
SFP].

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on the
following subjects, information and operations.

9 For this operation, there is no accessed object; the “Sharing value” thus refers to the parameter of the operation. This rule simply
enforces that shareable transient objects are not allowed. Note: parameters can be seen as security attributes whose value is under the
control of the subject. For instance, during the creation of an object, the creator chooses the JavaCardClass attribute’s value.

Java Card Protection Profile Collection Page 68 of 198

Version 1.1 May 2006

Subjects10 (prefixed with an “S”) and information (prefixed with an “I”)
covered by this policy are:

Subject/Information Description

S.LOCAL
Operand stack of a Java Card VM frame, or local
variable of a Java Card VM frame containing an object
or an array of references.

S.MEMBER Any object’s field, static field or array position.

I.DATA
Java Card VM Reference Data: objectref
addresses of temporary Java Card RE Entry
Point objects and global arrays.

There is a unique operation in this policy:

Operation Description

OP.PUT(S1, S2, I) Transfer a piece of information I from S1 to S2.

Application note: References of temporary Java Card RE entry points, which cannot be
stored in class variables, instance variables or array components, are transferred
from the internal memory of the Java Card RE (TSF data) to some stack through
specific APIs (Java Card RE owned exceptions) or Java Card RE invoked
methods (such as the process(APDU apdu)); these are causes of
OP.PUT(S1,S2,I) operations as well.

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1 The TSF shall enforce the [assignment: information flow control SFP]
based on the following types of subject and information security
attributes: [assignment: list of subjects and information controlled under
the indicated SFP, and for each, the security attributes].

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based on
the following types of subject and information security attributes: (1) the
currently active context.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject
and controlled information through a controlled operation if the
following rules hold: [assignment: for each operation, the security
attribute-based relationship that must hold between subject and
information security attributes].

10 Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java Card Protection Profile Collection Page 69 of 198

Version 1.1 May 2006

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following rule
holds:

An operation OP.PUT(S1, S.MEMBER, I) is allowed if and only if the
currently active context is “Java Card RE”; other OP.PUT operations are
allowed regardless of the active context’s value.

FDP_IFF.1.3 The TSF shall enforce the [assignment: additional information flow
control SFP rules].

FDP_IFF.1.3/JCVM The TSF shall enforce [assignment: additional information flow control
SFP rules].

FDP_IFF.1.4 The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.1.4/JCVM The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.1.5 The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly authorize information flows].

FDP_IFF.1.5/JCVM The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly authorize information flows].

FDP_IFF.1.6 The TSF shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly deny information flows].

FDP_IFF.1.6/JCVM The TSF shall explicitly deny an information flow based on the following
rules: [assignment: other rules, based on security attributes, that explicitly
deny information flows]

Application note: the storage of temporary Java Card RE-owned objects’ references
is runtime-enforced ([JCRE21], §6.2.8.1-3).

Note that this policy essentially applies to the execution of bytecode. Native methods, the Java Card
RE itself and possibly some API methods can be granted specific rights or limitations through the
FDP_IFF.1.3/1267HJCVM to FDP_IFF.1.6/1270HJCVM elements. The way the Java Card virtual
machine manages the transfer of values on the stack and local variables (returned values, uncaught
exceptions) from and to internal registers is implementation-dependent. For instance, a returned
reference, depending on the implementation of the stack frame, may transit trough an internal register
prior to being pushed on the stack of the invoker. The areturn bytecode would cause more than one
OP.PUT operation under this scheme.

Java Card Protection Profile Collection Page 70 of 198

Version 1.1 May 2006

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource
is made unavailable upon the [selection: allocation of the resource to, de-
allocation of the resource from] the following objects: [assignment: list of
objects].

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a resource is
made unavailable upon the allocation of the resource to the following
objects: class instances and arrays.

Application note: The semantics of the Java programming language requires for any
object field and array position to be initialized with default values when the
resource is allocated [JVM],§2.5.1.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

 (See FMT_SMR.1.1/JCRE for the roles)

FMT_MSA.1.1 The TSF shall enforce the [assignment: access control SFP, information
flow control SFP] to restrict the ability to [selection: change default,
query, modify, delete, [assignment: other operations]] the security
attributes [assignment: list of security attributes] to [assignment: the
authorized identified roles].

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the active
context and the SELECTed applet Context security attributes to the Java Card
RE (S.JCRE).

Application note: The modification of the active context as well as that of the
selected applet should be performed in accordance with the rules given in
[JCRE21], §4 and [JCVM21], §3.4.

FMT_MSA.2 SECURE SECURITY ATTRIBUTES

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for security
attributes.

FMT_MSA.2.1/JCRE The TSF shall ensure that only secure values are accepted for security
attributes.

Application note: The following rules are given as examples only. For instance, the
last two rules are motivated by the fact that the Java Card API defines only
transient arrays factory methods. Future versions may allow the creation of
transient objects belonging to arbitrary classes; such evolution will naturally
change the range of “secure values” for this component.

– The Context attribute of a *.JAVAOBJECT must correspond to that of an
installed applet or be “Java Card RE”.

Java Card Protection Profile Collection Page 71 of 198

Version 1.1 May 2006

– An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point
or a global array necessarily has “Java Card RE” as the value for its
Context security attribute.

– An O.JAVAOBJECT whose Sharing attribute value is a global array
necessarily has “array of primitive type” as a JavaCardClass security
attribute’s value.

– Any O.JAVAOBJECT whose Sharing attribute value is not “Standard”
has a PERSISTENT-LifeTime attribute’s value.

– Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT
has an array type as JavaCardClass attribute’s value.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1 The TSF shall enforce the [assignment: access control SFP, information
flow control SFP] to provide [selection: restrictive, permissive,
[assignment:other property]] default values for security attributes that are
used to enforce the SFP.

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to provide restrictive default values for security
attributes that are used to enforce the SFP.

Application note: Objects’ security attributes of the access control policy are created
and initialized at the creation of the object or the subject. Afterwards, these
attributes are no longer mutable (FMT_MSA.1/JCRE). At the creation of an
object (OP.CREATE), the newly created object, assuming that the
FIREWALL SFP permits the operation, gets its Lifetime and Sharing
attributes from the parameters of the operation; on the contrary, its Context
attribute has a default value, which is its creator’s Context attribute and AID
respectively ([JCRE21], §6.1.2). There is one default value for the SELECTed
applet Context that is the default applet identifier’s Context, and one default
value for the active context, that is “Java Card RE”.

Application note: There is no security attribute attached to subjects or information in
the Java Card VM information flow policy. However, this is the Java Card RE
who controls the currently active context. Moreover, the knowledge of
which reference corresponds to a temporary entry point object or a global
array and which does not is solely available to the Java Card RE (and the
Java Card virtual machine).

FMT_MSA.3.2 The TSF shall allow the [assignment: the authorized identified roles] to
specify alternative initial values to override the default values when an
object or information is created.

FMT_MSA.3.2/FIREWALL The TSF shall allow the following role(s) to specify alternative initial
values to override the default values when an object or information is
created: none.

Application note: The intent is that none of the identified roles has privileges with
regard to the default values of the security attributes. Notice that creation of
objects is an operation controlled by the FIREWALL SFP; the latitude on the
parameters of OP.CREATE is described there. The operation shall fail
anyway if the created object would have had security attributes whose
value violates FMT_MSA.2.1/JCRE.

Java Card Protection Profile Collection Page 72 of 198

Version 1.1 May 2006

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1 The TSF shall maintain the roles: [assignment: the authorized identified
roles].

FMT_SMR.1.1/JCRE The TSF shall maintain the roles: the Java Card RE.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

FMT_SMR.1.2/JCRE The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1 The TSF shall be capable of performing the following security
management functions: [assignment: list of security management
functions to be provided by the TSF].

FMT_SMF.1.1/JCRE The TSF shall be capable of performing the following security management
functions:

- Modify the active context and the SELECTed applet Context.

- Modify the list of registered applets’ AID.

FPT_SEP.1 TSF DOMAIN SEPARATION

FPT_SEP.1.1 The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.1 The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.2 The TSF shall enforce separation between the security domains of
subjects in the TSC.

FPT_SEP.1.2 The TSF shall enforce separation between the security domains of subjects in
the TSC.

Application note: By security domain it is intended “execution context” which
should not be confused with other meanings of “security domains”.

5.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.

Java Card Protection Profile Collection Page 73 of 198

Version 1.1 May 2006

FCS_CKM.1 CRYPTOGRAPHIC KEY GENERATION

The whole set of cryptographic algorithms is generally not implemented because of limited memory
resources and/or limitations due to exportation. Therefore, the following requirement should only
apply to the implemented subset.

FCS_CKM.1.1 The TSF shall generate cryptographic KEYS in accordance with a specified
cryptographic KEY generation algorithm [assignment: cryptographic KEY
generation algorithm] and specified cryptographic KEY sizes [assignment:
cryptographic KEY sizes] that meet the following: [assignment: list of
standards].

Application note: The keys can be generated and diversified in accordance with
[JCAPI21] specification in classes KeyBuilder and KeyPair (at least Session
key generation).

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented
algorithms ([JCAPI21][JCAPI22], [JCAPI221], [JCAPI222]).

FCS_CKM.2 CRYPTOGRAPHIC KEY DISTRIBUTION

FCS_CKM.2.1 The TSF shall distribute cryptographic KEYS in accordance with a
specified cryptographic KEY distribution method [assignment:
cryptographic KEY distribution method] that meets the following:
[assignment: list of standards].

Application note: Command SetKEY that meets [JCAPI21] standard.

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented
algorithms ([JCAPI21], [JCAPI22], [JCAPI221], [JCAPI222]).

FCS_CKM.3 CRYPTOGRAPHIC KEY ACCESS

FCS_CKM.3.1 The TSF shall perform [assignment: type of cryptographic KEY access] in
accordance with a specified cryptographic KEY access method
[assignment: cryptographic KEY access method] that meets the following:
[assignment: list of standards].

Application note: The keys can be accessed in accordance with [JCAPI21] in class
Key.

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented
algorithms ([JCAPI21], [JCAPI22], [JCAPI221], [JCAPI222]).

Java Card Protection Profile Collection Page 74 of 198

Version 1.1 May 2006

FCS_CKM.4 CRYPTOGRAPHIC KEY DESTRUCTION

FCS_CKM.4.1 The TSF shall destroy cryptographic KEYS in accordance with a specified
cryptographic KEY destruction method [assignment: cryptographic KEY
destruction method] that meets the following: [assignment: list of standards].

Application note: The keys are reset in accordance with [JCAPI21] in class Key with
the method clearKey(). Any access to a cleared key attempting to use it for
ciphering or signing shall throw an exception.

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented
algorithms ([JCAPI21], [JCAPI22], [JCAPI221], [JCAPI222]).

FCS_COP.1 CRYPTOGRAPHIC OPERATION

FCS_COP.1.1 The TSF shall perform [assignment: list of cryptographic operations] in
accordance with a specified cryptographic algorithm [assignment:
cryptographic algorithm] and cryptographic KEY sizes [assignment:
cryptographic KEY sizes] that meet the following: [assignment: list of
standards].

Application note: The TOE shall provide a subset of cryptographic operations
defined in [JCAPI21] in accordance to [JCAPI21] specification (see
javacardx.crypto.Cipher and javacardx.security packages).

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented
algorithms ([JCAPI21], [JCAPI22], [JCAPI221], [JCAPI222]).

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a resource is
made unavailable upon the allocation of the resource to the following object:
the APDU buffer.

Application note: The allocation of a resource to the APDU buffer is typically
performed as the result of a call to the process() method of an applet.

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
object: the bArray object.

Application note: A resource is allocated to the bArray object when a call to an
applet’s install() method is performed. There is no conflict with
FDP_ROL.1 here because of the bounds on the rollback mechanism
(FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend
outside the execution of the install() method, and the de-allocation occurs
precisely right after the return of it.

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
objects: any transient object.

Java Card Protection Profile Collection Page 75 of 198

Version 1.1 May 2006

Application note: The events that provoke the de-allocation of a transient object are
described in [JCRE21], §5.1.

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
objects: any reference to an object instance created during an aborted transaction.

Application note: The events that provoke the de-allocation of the previously
mentioned references are described in [JCRE21], §7.6.3.

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: the cryptographic buffer (D.CRYPTO).

Application note: The javacard.security & javacardx.crypto packages do provide
secure interfaces to the cryptographic buffer in a transparent way. See
javacard.security.KeyBuilder and Key interface of [JCAPI21].

Application note: Java Card System 2.1.1 defines no explicit (or implicit) de-allocation
of objects, but those caused by the failure of installation or the abortion of a
transaction. The only related function for keys is the clearKey() method,
which does not mandate erasure of the contents of the key (see FCS_CKM.4)
nor the behavior of the transaction with respect to this “clearing”. ST
authors may consider additional security requirements on this topic.

FDP_ROL.1 BASIC ROLLBACK

FDP_ROL.1.1 The TSF shall enforce [assignment: access control SFP(s) and/or information
flow control SFP(s)] to permit the rollback of the [assignment: list of
operations] on the [assignment: information and/or list of objects].

FDP_ROL.1.2 The TSF shall permit operations to be rolled back within the [assignment:
boundary limit to which rollback may be performed].

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to permit the rollback of OP.JAVA,
OP.CREATE on O.JAVAOBJECTs.

Application note: FDP_ROL.1.2/FIREWALL The TSF shall permit operations
to be rolled back within the scope of a select(), deselect(),
process(),install() or uninstall() call, notwithstanding the restrictions
given in [JCRE21], §7.7, within the bounds of the Commit Capacity
([JCRE21], §7.8), and those described in [JCAPI21],
[JCVM221]Transactions are a service offered by the APIs to applets. It is
also used by some APIs to guarantee the atomicity of some operation. This
mechanism is either implemented in Java Card platform or relies on the
transaction mechanism offered by the underlying platform. Some
operations of the API are not conditionally updated, as documented in
[JCAPI21] (see for instance, PIN-blocking, PIN-checking, update of
Transient objects).

Application note: The rollback within the scope of the uninstall() method only
applies to Java Card platform, version 2.2.1 compliant TOEs.

Java Card Protection Profile Collection Page 76 of 198

Version 1.1 May 2006

5.1.1.3 Card Security Management

The following SFRs are related to the security requirements at the level of the whole card, in contrast
to the previous ones, that are somewhat restricted to the TOE alone. For instance, a potential security
violation detected by the Java Card virtual machine may require a reaction that does not only concern
the virtual machine, such as blocking the card (or request the appropriate security module with the
power to block the card to perform the operation).

FAU_ARP.1 SECURITY ALARMS

FAU_ARP.1.1 The TSF shall take [assignment: list of the least disruptive actions] upon
detection of a potential security violation.

FAU_ARP.1.1/JCS The TSF shall throw an exception, lock the card session or reinitialize the
Java Card System and its data [assignment: other actions] upon detection
of a potential security violation.

REFINEMENT Potential security violation is refined to one of the following events:

– CAP file inconsistency
– Typing error in the operands of a bytecode
– applet life cycle inconsistency
– Card tearing (unexpected removal of the Card out of the

CAD or RF signal loss) and power failure
– Abortion of a transaction in an unexpected context (see

(abortTransaction(), [JCAPI21] and ([JCRE21], §7.6.2)
– Violation of the Firewall or Java Card VM SFPs
– Unavailability of resources
– Array overflow
– Other runtime errors related to applet’s failure (like

uncaught exceptions)

Application note: The thrown exceptions and their related events are described in
[JCRE21], [JCAPI21], and [JCVM21].

Application note: The bytecode verification defines a large set of rules used to detect
a “potential security violation”. The actual monitoring of these “events”
within the TOE only makes sense when the bytecode verification is
performed on-card.

Application note: Depending on the context of use and the required security level,
there are cases where the card manager and the TOE must work in
cooperation to detect and appropriately react in case of potential security
violation. This behavior must be described in this component. It shall detail
the nature of the feedback information provided to the card manager (like
the identity of the offending application) and the conditions under which
the feedback will occur (any occurrence of the
java.lang.SecurityException exception).

Application note: The “locking of the card session” may not appear in the policy of
the card manager. Such measure should only be taken in case of severe
violation detection; the same holds for the re-initialization of the Java Card
System. Moreover, the locking should occur when “clean” re-initialization
seems to be impossible.

Java Card Protection Profile Collection Page 77 of 198

Version 1.1 May 2006

The locking may be implemented at the level of the Java Card System as a denial of service
(through some systematic “fatal error” message or return value) that lasts up to the next
“RESET” event, without affecting other components of the card (such as the card manager).

Finally, because the installation of applets is a sensitive process, security alerts in this case
should also be carefully considered herein.

FDP_SDI.2 STORED DATA INTEGRITY MONITORING AND ACTION

FDP_SDI.2.1 The TSF shall monitor user data stored within the TSC for [assignment:
integrity errors] on all objects, based on the following attributes:
[assignment: user data attributes].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [assignment: action to
be taken].

Application note: Although no such requirement is mandatory in the specification, at
least an exception shall be raised upon integrity errors detection on
cryptographic keys, PIN values, biometric templatesand their associated
security attributes. Even if all the objects cannot be monitored,
cryptographic keys, PIN objects and biometric shall be considered with
particular attention by ST authors as they play a key role in the overall
security.

Application note: It is also recommended to monitor integrity errors in the code of
the native applications and Java Card applets.

For integrity sensitive application, their data shall be monitored (D.APP_I_DATA): applications may
need to protect information against unexpected modifications, and explicitly control whether a piece
of information has been changed between two accesses. For example, maintaining the integrity of an
electronic purse’s balance is extremely important because this value represents real money. Its
modification must be controlled, for illegal ones would denote an important failure of the payment
system.

A dedicated library could be implemented and made available to developers to achieve better security
for specific objects, following the same pattern that already exists in cryptographic APIs, for instance.

FPT_RVM.1 NON-BYPASSABILITY OF THE TSP

FPT_RVM.1.1 The TSF shall ensure that TSP enforcement functions are invoked and
succeed before each function within the TSC is allowed to proceed.

Application note: Execution of native code is not within the TSC. Nevertheless, access
to native methods from the Java Card System is subject to TSF control, as
there is no difference in the interface or the invocation mechanism between
native and interpreted methods.

FPT_TDC.1 INTER-TSF BASIC TSF DATA CONSISTENCY

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret
[assignment: list of TSF data types] when shared between the TSF and
another trusted IT product.

Java Card Protection Profile Collection Page 78 of 198

Version 1.1 May 2006

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files
(shared between the card manager and the TOE), the bytecode and its data
arguments (shared with applets and API packages), when shared between
the TSF and another trusted IT product.

Application note: Concerning the interpretation of data between the TOE and the
underlying Java Card platform, it is assumed that the TOE is developed
consistently with the SCP functions, namely concerning memory
management, I/O functions, cryptographic functions, and so on.

FPT_TDC.1.2 The TSF shall use [assignment: list of interpretation rules to be applied
by the TSF] when interpreting the TSF data from another trusted IT
product.

FPT_TDC.1.2 The TSF shall use the following rules when interpreting the TSF data from
another trusted IT product:

– The [JCVM21] specification;
– Reference export files;
– The ISO 7816-6 rules;
– The EMV specification

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of
failures occur: [assignment: list of types of failures in the TSF].

FPT_FLS.1.1/JCS The TSF shall preserve a secure state when the following types of failures
occur: those associated to the potential security violations described in
FAU_ARP.1.

Application note: The Java Card RE Context is the Current context when the Java
Card VM begins running after a card reset ([JCRE21], §6.2.3) or after a
proximity card (PICC) activation sequence ([JCRE222]). Behavior of the
TOE on power loss and reset is described in [JCRE21], §3.5, and §7.1.
Behavior of the TOE on RF signal loss is described in [JCRE222], §3.6.2.

FPR_UNO.1 UNOBSERVABILITY

FPR_UNO.1.1 The TSF shall ensure that [assignment: list of users and/or subjects] are
unable to observe the operation [assignment: list of operations] on
[assignment: list of objects] by [assignment: list of protected users and/or
subjects].

Application note: Although it is not required in [JCRE21] specifications, the non-
observability of operations on sensitive information such as keys appears as
impossible to circumvent in the smart card world. The precise list of
operations and objects is left unspecified, but should at least concern secret
keys and PIN codes when they exists on the card, as well as the
cryptographic operations and comparisons performed on them.

Java Card Protection Profile Collection Page 79 of 198

Version 1.1 May 2006

FPT_TST.1 TSF TESTING

FPT_TST.1.1 The TSF shall run a suite of self-tests [selection: during initial start-up,
periodically during normal operation, at the request of the authorized
user, at the conditions [assignment: conditions under which self test
should occur]] to demonstrate the correct operation of the TSF.

FPT_TST.1.1 The TSF shall run a suite of self-tests during initial start-up (at each power
on) to demonstrate the correct operation of the TSF.

Application note: TSF-testing is not mandatory in [JCRE21], but appears in most of
security requirements documents for masked applications. Testing could
also occur randomly.

FPT_TST.1.2 The TSF shall provide authorized users with the capability to verify the
integrity of TSF data.

FPT_TST.1.3 The TSF shall provide authorized users with the capability to verify the
integrity of stored TSF executable code.

5.1.1.4 AID Management

FMT_MTD.1 MANAGEMENT OF TSF DATA

(See FMT_SMR.1.1/JCRE for the roles)

FMT_MTD.1.1 The TSF shall restrict the ability to [selection: change default, query,
modify, delete, clear, [assignment: other operations]] the [assignment:
list of TSF data] to [assignment: the authorized identified roles].

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered applets’
AID to the Java Card RE [assignment: other authorized identified role].

Application note: The installer and the Java Card RE manage some other TSF data
such as the applet life cycle or CAP files, but this management is
implementation specific. Objects in the Java programming language may
also try to query AIDs of installed applets through the lookupAID(…) API
method.

Application note: The installer, applet deletion manager or even the card manager
may be granted the right to modify the list of registered applets’ AIDs in
specific implementations (possibly needed for installation and deletion;
see #.DELETION and #.INSTALL).

FMT_MTD.3 SECURE TSF DATA

FMT_MTD.3.1 The TSF shall ensure that only secure values are accepted for TSF data.

Java Card Protection Profile Collection Page 80 of 198

Version 1.1 May 2006

FIA_ATD.1 USER ATTRIBUTE DEFINITION

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes
belonging to individual users: [assignment: list of security attributes].

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to
individual users: the AID and version number of each package, the AID of
each registered applet, and whether a registered applet is currently selected
for execution ([JCVM21], §6.5).

FIA_UID.2 USER IDENTIFICATION BEFORE ANY ACTION

FIA_UID.2.1/AID The TSF shall require each user to identify itself before allowing any other
TSF-mediated actions on behalf of that user.

Application note: By users here it must be understood the ones associated to the
packages (or applets) that act as subjects of policies. In the Java Card
System, every action is always performed by an identified user interpreted
here as the currently selected applet or the package that is the subject’s
owner. Means of identification are provided during the loading procedure
of the package and the registration of applet instances.

Application note: The role Java Card RE defined in FMT_SMR.1/JCRE is attached to
an IT security function rather than to a “user” of the CC terminology. The
Java Card RE does not “identify” itself with respect to the TOE, but it is a
part of it.

FIA_USB.1 USER-SUBJECT BINDING

FIA_USB.1.1 The TSF shall associate the appropriate user security attributes with
subjects acting on behalf of that user.

Application note: For S.PACKAGEs, the Context security attribute plays the role of
the appropriate user security attribute; see FMT_MSA.1.1/JCRE below.

Java Card Protection Profile Collection Page 81 of 198

Version 1.1 May 2006

5.1.2 InstG Security Functional Requirements

This group bulks the SFRs related to the installation of the applets, which addresses security aspects
outside the runtime. The idea here is that installation of applets is a critical phase, which lies partially
out of the boundaries of the firewall, and therefore has to be deserved specific treatment. In the
Common Criteria model, loading a package or installing an applet was considered as being an
importation of user data (that is, user application‘s data) with its security attributes (such as the
parameters of the applet used in the firewall rules).

See also FIA_ATD.1, FIA_USB.1, FMT_MTD.1, FMT_SMR.1 for various information about applet
installation.

FDP_ITC.2 IMPORT OF USER DATA WITH SECURITY ATTRIBUTES

FDP_ITC.2.1 The TSF shall enforce the [assignment: access control SFP(s) and/or
information flow control SFP(s)] when importing user data, controlled
under the SFP, from outside of the TSC.

FDP_ITC.2.1/Installer The TSF shall enforce the PACKAGE LOADING information flow control
SFP when importing user data, controlled under the SFP, from outside of
the TSC.

Application note: The most common importation of user data is package loading and
applet installation on the behalf of the installer. Security attributes consist
of the shareable flag of the class component, AID and version numbers of
the package, maximal operand stack size and number of local variables for
each method, and export and import components (visibility).

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the imported user
data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

Application note: The format of the CAP file is precisely defined in Sun’s
specification ([JCVM21]); it contains the user data (like applet’s code and
data) and the security attribute altogether. Therefore there is no association
to be carried out elsewhere.

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security attributes of the
imported user data is as intended by the source of the user data.

Application note: Each package contains a package Version attribute, which is a pair
of major and minor version numbers ([JCVM21], §4.5). With the AID, it
describes the package defined in the CAP file. When an export file is used
during preparation of a CAP file, the versions numbers and AIDs indicated
in the export file are recorded in the CAP files ([JCVM21], §4.5.2): the
dependent packages Versions and AIDs attributes allow the retrieval of
these identifications.. Implementation-dependent checks may occur on a
case-by-case basis to indicate that package files are binary compatibles.
However, package files do have “package Version Numbers” ([JCVM21])

Java Card Protection Profile Collection Page 82 of 198

Version 1.1 May 2006

used to indicate binary compatibility or incompatibility between successive
implementations of a package, which obviously directly concern this
requirement.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data
controlled under the SFP from outside the TSC: [assignment: additional
importation control rules].

FDP_ITC.2.5/Installer The TSF shall enforce the following rule when importing user data
controlled under the SFP from outside the TSC:

 A package may depend on (import or use data from) other packages
already installed. This dependency is explicitly stated in the loaded
package in the form of a list of package AIDs. The loading is allowed
only if, for each dependent package, its AID attribute is equal to a resident
package AID attribute, the major (minor) Version attribute associated to the
former is equal (less than or equal) to the major (minor) Version attribute
associated to the latter ([JCVM21],§4.5.2).

Application note: The intent of this rule is to ensure the binary compatibility of the

package with those already on the card ([JCVM21], §4.4).

Application note: The installation (the invocation of an applet’s install method by

the installer) is implementation dependent ([JCRE21]§10.2).

Application note: Other rules governing the installation of an applet, that is, its

registration to make it SELECTable by giving it a unique AID, are also
implementation dependent (see, for example, [JCRE21], §10).

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/Installer The TSF shall maintain the roles: the installer.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/Installer The TSF shall be able to associate users with roles.

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of failures
occur: the installer fails to load/install a package/applet as described in
[JCRE21] §10.1.4.

Application note: The TOE may provide additional feedback information to the card
manager in case of potential security violations (see FAU_ARP.1).

Java Card Protection Profile Collection Page 83 of 198

Version 1.1 May 2006

FPT_RCV.3 AUTOMATED RECOVERY WITHOUT UNDUE LOSS

FPT_RCV.3.1/Installer When automated recovery from [assignment: list of failures/service
discontinuities] is not possible, the TSF shall enter a maintenance mode
where the ability to return the TOE to a secure state is provided.

Application note: This element is not within the scope of the Java Card specification,
which only mandates the behavior of the Java Card System in good working
order. Further details on the “maintenance mode” shall be provided in
specific implementations. The following is an excerpt from [CC1]:

In this maintenance mode normal operation might be impossible or
severely restricted, as otherwise insecure situations might occur.
Typically, only authorized users should be allowed access to this mode but
the real details of who can access this mode is a function of class FMT
Security management. If FMT does not put any controls on who can
access this mode, then it may be acceptable to allow any user to restore the
system if the TOE enters such a state. However, in practice, this is
probably not desirable as the user restoring the system has an opportunity
to configure the TOE in such a way as to violate the TSP.

FPT_RCV.3.2/Installer For [assignment: list of failures/service discontinuities], the TSF shall
ensure the return of the TOE to a secure state using automated procedures.

Application note: Should the installer fail during loading/installation of a
package/applet, it has to revert to a “consistent and secure state”. The Java
Card RE has some clean up duties as well; see [JCRE21], §10.1.4 for possible
scenarios. Precise behavior is left to implementers.

Application note: In the case where the configuration includes the applet deletion
manager (and the associated group, ADELG), this component shall include
among the listed failures that of the deletion of a package/applet. See
([JCRE22], 11.3.4) for possible scenarios. Precise behavior is left to
implementers.

Other events such as the unexpected tearing of the card, power loss, and so on. are partially handled
by the underlying hardware platform (see the SCPG group) and, from the TOE’s side, by events “that
clear transient objects” and transactional features. See FPT_FLS.1.1/JCS, FDP_RIP.1.1/TRANSIENT,
FDP_RIP.1.1/ABORT and FDP_ROL.1.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without
exceeding [assignment: quantification] for loss of TSF data or objects
within the TSC.

Application note: The quantification is implementation dependent, but some facts
can be recalled here. First, the SCP ensures the atomicity of updates for
fields and objects (see the SCPG group), and a power-failure during a
transaction or the normal runtime does not create the loss of otherwise-
permanent data, in the sense that memory on a smart card is essentially
persistent with this respect (EEPROM). Data stored on the RAM and subject
to such failure is intended to have a limited lifetime anyway (runtime data
on the stack, transient objects’ contents). According to this, the loss of data
within the TSC should be limited to the same restrictions of the transaction
mechanism.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that were or
were not capable of being recovered.

Java Card Protection Profile Collection Page 84 of 198

Version 1.1 May 2006

FRU_RSA.1 MAXIMUM QUOTAS

FRU_RSA.1.1 The TSF shall enforce maximum quotas of the following resources:
[assignment: controlled resources] that [selection: individual user, defined
group of users, subjects] can use [selection: simultaneously, over a
specified period of time].

FRU_RSA.1.1/Installer The TSF shall enforce maximum quotas of the following resources:
persistent memory [other controlled resources] that applet instances can use
simultaneously.

Application note: TOEs that are compliant with Global Platform specifications
should implement these quota checks at installation time.

5.1.3 BCVG Security Functional Requirements
This group of requirements concerns bytecode verification. A bytecode verifier can be understood as
a process that acts as a filter on a CAP file verifying that the bytecodes of the methods defined in the
file conform to certain well-formed requirements. As mentioned in §2.1.1, there are different
techniques that have been proposed for performing those checks. The solution described in [JCBV], for
example, is based on a data flow analysis and makes use of an abstract interpreter. The abstract
interpreter simulates execution of each instruction, using types of the data being operated on instead
of values. For each instruction, the state of the operand stack and local variables are compared to the
type(s) required during execution, and then are updated according to the operation of the instruction.
The main component of this group of functional requirements is an information flow control policy,
which describes the constraints imposed on the operations (the bytecodes) that make information flow
between the subjects (local variables, operand stack, fields).

The group is composed of three sub-groups. The first one constitutes a complete information flow
control policy with hierarchical attributes, which describes the type constraints imposed on the
bytecodes. That typing policy strongly depends on having a secure configuration of the attributes it is
based on. Such secure configurations are strongly related to the constraints imposed on the structure
of the CAP file format by Sun specifications, and constitute a second important sub-group of
requirements. Finally, the third sub-group requires bytecode verification to prevent any operand stack
overflow that could arrive during the interpretation of bytecodes.

FDP_IFC.2 COMPLETE INFORMATION FLOW CONTROL

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects and information] and all operations that
cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.1/BCV The TSF shall enforce the TYPING information flow control SFP on
S.LOCVAR, S.STCKPOS, S.FLD, S.MTHD and all operations that cause
that information to flow to and from subjects covered by the SFP.

Subjects11 (prefixed with an “S”) covered by this policy are:

11Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java Card Protection Profile Collection Page 85 of 198

Version 1.1 May 2006

Subject Description

S.LOCVAR Any local variable of the currently executed method.

S.STCKPOS Any operand stack position of the currently executed method.

S.FLD Any field declared in a package loaded on the card.

S.MTHD Any method declared in a package loaded on the card.

The operations (prefixed with “OP”) that make information flow between
the subjects are all bytecodes. For instance, the aload_0 bytecode causes
information to flow from the local variable 0 to the top of the operand
stack; the bytecode putfield(x) makes information flow from the top of
the operand stack to the field x; and the return_a bytecode makes
information flow out of the currently executed method.

Operation Description

OP.BYTECODE(BYTCD) Any bytecode for the Java Card platform.

The information (prefixed with an “I”) controlled by the typing policy are
the bytes, shorts, integers, references and return addresses contained in the
different storage units of the Java Card VM (local variables, operand stack,
static fields, instance fields and array positions).

Information Description

I.BYTE(BY) Any piece of information that can be encoded in a byte.

I.SHORT(SH) Any piece of information that can be encoded in a short value.

I.INT(W1,W2) Any piece of information that can be encoded in an integer value, which in
turn is encoded in two words w1 and w2.

I.REFERENCE(RF) Any reference to a class instance or an array.

I.ADDRESS(ADRS) Any return address of a subroutine.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in
the TSC to flow to and from any subject in the TSC are covered by an
information flow control SFP.

FDP_IFC.2.2/BCV The TSF shall ensure that all operations that cause any information in the
TSC to flow to and from any subject in the TSC are covered by an
information flow control SFP.

FDP_IFF.2 HIERARCHICAL SECURITY ATTRIBUTES

See FMT_MSA.1 for more information about security attributes.

Java Card Protection Profile Collection Page 86 of 198

Version 1.1 May 2006

FDP_IFF.2.1 The TSF shall enforce the [assignment: information flow control SFP]
based on the following types of subject and information security
attributes: [assignment: the minimum number and type of security
attributes].

FDP_IFF.2.1/BCV The TSF shall enforce the TYPING information flow control SFP based on
the following types of subject and information security attributes: (1) type
attribute of the information, (2) type attribute of the storage units of the
Java Card VM, (3) class attribute of the fields and methods, (4) bounds
attribute of the methods.

The following table describes which security attributes are attached to
which subject/information of our policy.

Subject/Information Attributes

S.LOCVAR TYPE

S.STCKPOS TYPE

S.FLD TYPE, CLASS

S.MTHD TYPE, CLASS, BOUNDS

I.BYTE(BY) TYPE

I.SHORT(SH) TYPE

I.INT(W1,W2) TYPE

I.REFERENCE(RF) TYPE

I.ADDRESS(ADRS) TYPE

The following table describes the security attributes.

Attribute Name Description

TYPE Either the type attached to the information, or the type held or declared
by the subject.

CLASS The class where a field or method is declared.

BOUNDS The start and end of the method code inside the method component of
the CAP file where it is declared.

The TYPE security attribute attached to local variables and operand stack
positions is the type of information they currently hold. The TYPE attribute
of the fields and the methods is the type declared for them by the
programmer.

The BOUNDS attribute of a method is used to prevent control flow to jump
outside the currently executed method.

The following table describes the possible values for each security
attribute.

Java Card Protection Profile Collection Page 87 of 198

Version 1.1 May 2006

Name Description

TYPE byte, short, int1, int2, any class name C,

T[] with T any TYPE,

T0 (T1 x1, …. Tn xn) with T0,.. Tn any TYPE,

RetAddrs(adrs), Top, Null, .

CLASS The name of a class, represented as a reference into the class Component
of one of the packages loaded on the card.

BOUNDS Two integers marking a rank into the method component of a package
loaded on the card.

Byte values have type byte and short values have type short. The first and
second halves of an integer value has respectively type int1, and int2. The
type of a reference to an instance of the class C is C itself. A reference to an
array of elements of type T has type T[]. From the previous basic types it is
possible to build the type T0 (T1 x1, …. Tn xn) of a method. A return address
adrs of a subroutine has type RetAddrss(adrs). Finally, the former types are
extended with three extra types Top, Null and , so that the domain of
types forms a complete lattice. Top is the type of any piece of data, that is,
the maximum of the lattice. Null is the type of the default value null of all
the reference types (classes and arrays). is the type of an element that
belongs to all types (for instance the value 0, provided that null is
represented as zero).

FDP_IFF.2.2 The TSF shall permit an information flow between a controlled subject
and controlled information through a controlled operation if the
following rules, based on the ordering relationships between security
attributes hold: [assignment: for each operation, the security attribute-
based relationship that must hold between subject and information
security attributes].

FDP_IFF.2.2/BCV The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following
rules, based on the ordering relationships between security attributes,
hold:

 The following rules constitute a synthetic formulation of the information
flow control:

R.JAVA.6 If the bytecode pushes values from the operand stack, then
there is a sufficient number of values on the stack and the values of
the attribute TYPE of the top positions of the stack are appropriate
with respect to the ones expected by the bytecode.

R.JAVA.7 If the bytecode pushes values onto the operand stack, then
there is sufficient room on the operand stack for the new values.
The values, with the appropriate attribute TYPE value are added to
the top of the operand stack.

R.JAVA.8 If the bytecode modifies a local variable with a value with
attribute TYPE T, it must be recorded that the local variable now

Java Card Protection Profile Collection Page 88 of 198

Version 1.1 May 2006

contains a value of that type. In addition, the variable shall be
among the local variables of the method.

R.JAVA.9 If the bytecode reads a local variable, it must be ensured
that the specified local variable contains a value with the attribute
TYPE specified by the bytecode.

R.JAVA.10 If the bytecode uses a field, it must be ensured that its
value is of an appropriate type. This type is indicated by the
CLASS attribute of the field.

R.JAVA.11 If the bytecode modifies a field, then it must be ensured
that the value to be assigned is of an appropriate type. This type is
indicated by the CLASS attribute of the field

R.JAVA.12 If the bytecode is a method invocation, it must be ensured
that it is invoked with arguments of the appropriate type. These
types are indicated by the TYPE and CLASS attributes of the
method.

R.JAVA.13 If the bytecode is a branching instruction, then the
bytecode target must be defined within the BOUNDS of the
method in which the branching instruction is defined.

Application note: The rules described above are strongly inspired in the rules
described in section 4.9 of [JVM], Second Edition. The complete set of
typing rules can be derived from the “Must” clauses from Chapter 7 of
[JCVM21] as instances of the rules defined above.

FDP_IFF.2.3 The TSF shall enforce the [assignment: additional information flow
control SFP rules].

FDP_IFF.2.3/BCV The TSF shall enforce the following additional information flow control
SFP rules: none.

FDP_IFF.2.4 The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.2.4/BCV The TSF shall provide the following list of additional SFP capabilities:
none.

FDP_IFF.2.5 The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly authorize information flows].

FDP_IFF.2.5/BCV The TSF shall explicitly authorize an information flow based on the
following rules: none.

FDP_IFF.2.6 The TSF shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly deny information flows].

FDP_IFF.2.6/BCV The TSF shall explicitly deny an information flow based on the following
rules: none.

Java Card Protection Profile Collection Page 89 of 198

Version 1.1 May 2006

FDP_IFF.2.7/BCV The TSF shall enforce the following relationships for any two valid
information flow control security attributes:

a) There exists an ordering function that, given two valid security
attributes, determines if the security attributes are equal, if one
security attribute is greater than the other, or if the security
attributes are incomparable; and

b) There exists a least upper bound in the set of security attributes,
such that, given any two valid security attributes, there is a valid
security attribute that is greater than or equal to the two valid
security attributes; and

c) There exists a greatest lower bound in the set of security attributes,
such that, given any two valid security attributes, there is a valid
security attribute that is not greater than the two valid security
attributes.

Application note: The order relationship between types is described, for instance, in
the description of the checkcast bytecode of [JCVM21]. That relation is
with the following rules:

 Top is the maximum of all types;

 Null is the minimum of all classes and array types;

 is the minimum of all types.

These three extra types are introduced in order to satisfy the two last items in
requirement FDP_IFF.2.7.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

(See FMT_SMR.1.1/BCV (p. 91) for the roles)

FMT_MSA.1.1/BCV.1 The TSF shall enforce the TYPING information flow control SFP to restrict
the ability to modify the TYPE security attribute of the fields and methods
to none.

FMT_MSA.1.1/BCV.2 The TSF shall enforce the TYPING information flow control SFP to restrict
the ability to modify the TYPE security attribute of local variables and
operand stack position to the role Bytecode Verifier.

Application note: The TYPE attribute of the local variables and the operand stack
positions is identified to the attribute of the information they hold.
Therefore, this security attribute is possibly modified as information flows.
For instance, the rules of the typing function enable information to flow
from a local variable lv to the operand stack by the operation sload,
provided that the value of the type attribute of lv is short. This operation
hence modifies the type attribute of the top of the stack. The modification of
the security attributes should be done according to the typing rules derived
from Chapter 7 of [JCVM21].

Java Card Protection Profile Collection Page 90 of 198

Version 1.1 May 2006

FMT_MSA.2 SECURE SECURITY ATTRIBUTES

FMT_MSA.2.1/BCV The TSF shall ensure that only secure values are accepted for security
attributes.

Application note: During the type verification of a method, the bytecode verifier
makes intensive use of the information provided in the CAP format like the
sub-class relationship between the classes declared in the package, the type
and class declared for each method and field, the rank of exceptions
associated to each method, and so on. All that information can be thought of
as security attributes used by the bytecode verifier, or as information
relating security attributes. Moreover, the bytecode verifier relies on several
properties about the CAP format. All the properties on the CAP format
required by the bytecode verifier could, for instance, be completely
described in the TSP model, and the bytecode verifier should ensure that
they are satisfied before starting type verifications. Examples of such
properties are:

 Correspondences between the different components of the CAP file (for instance,
each class in the class component has an entry in the descriptor component).

 Pointer soundness (example: the index argument in a static method invocation
always has an entry in the constant pool);

 Absence of hanged pointers (example: each exception handler points to the
beginning of some bytecode);

 Redundant information (enabling different ways of searching for it);

 Conformance to the Java Language Specification respecting the access control
features mentioned in §2.2 of [JCVM22].

 Packages that are loaded post-issuance cannot contain native code.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/BCV The TSF shall enforce the TYPING information flow control SFP to
provide restrictive default values for security attributes that are used to
enforce the SFP.

Application note: The TYPE attribute of the fields and methods is fixed by the
application provider and never modified. When a method is invoked, the
operand (type) stack is empty. The initial type assigned to those local
variables that correspond to the method parameters is the type the
application provider declared for those parameters. Any other local variable
used in the method is set to the default value Top.

FMT_MSA.3.2/BCV The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

Application note: The intent is to have none of the identified roles to have privileges
with regards to the default values of the TYPE attributes.

Java Card Protection Profile Collection Page 91 of 198

Version 1.1 May 2006

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/BCV The TSF shall maintain the roles: Bytecode Verifier.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/BCV The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/BCV The TSF shall be capable of performing the following security management
functions: Modify the TYPE security attribute of local variables and
operand stack position.

FRU_RSA.1 MAXIMUM QUOTAS

FRU_RSA.1.1/BCV The TSF shall enforce maximum quotas of the following resources: the
operand stack and the local variables that a method can use
simultaneously.

Java Card Protection Profile Collection Page 92 of 198

Version 1.1 May 2006

5.1.4 ADELG Security Functional Requirements

This group bulks the SFRs related to the deletion of applets and/or packages, enforcing the applet
deletion manager (ADEL) policy on security aspects outside the runtime. The idea here is that deletion
is a critical phase and therefore requires specific treatment. This policy is better thought as a frame to
be filled by ST implementers.

5.1.4.1 Applet Deletion Manager Policy

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL,
O.JAVAOBJECT, O.APPLET and O.CODE_PKG and all operations
among subjects and objects covered by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

S.ADEL The applet deletion manager. It may be an
applet ([JCRE22], §11), but its role asks anyway for
a specific treatment from the security viewpoint.
This subject is unique.

 In Java Card version 2.2.1, S.ADEL calls the “unistall”
method of the applet instance to be deleted, if
implemented by the applet, to inform it of the
deletion request. The order in which these calls and
the dependencies checks are performed are out of the
scope of this protection profile: O.CODE_PKG
 The code of a package, including alllinking
information. On the Java Card platform, a
package is the installation unit.

O.APPLET Any installed applet, its code and data.

O.JAVAOBJECT Java class instance or array.

Operations (prefixed with “OP”) of this policy are described in the
following table.

Operation Description

OP.DELETE_APPLET(O.APPLET,…) Delete an installed applet and its objects,
either logically or physically.

Java Card Protection Profile Collection Page 93 of 198

Version 1.1 May 2006

Operation Description

OP.DELETE_PCKG(O.CODE_PKG,…) Delete a package, either logically or
physically

OP.DELETE_PCKG_APPLET(O.CODE_PKG,…) Delete a package and its installed applets,
either logically or physically.

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based on the
following: (1) the security attributes of the covered subjects and objects, (2)
the list of AIDs of the applet instances registered on the card, (3) the
attribute ResidentPackages, which journals the list of AIDs of the
packages already loaded on the card, and (4) the attribute ActiveApplets,
which is a list of the active applets’ AIDs.

The following table presents some of the security attributes associated to
the subjects/objects under control of the policy. However, they are mostly
implementation independent.

Subject/Object Attributes

O.CODE_PKG package’s AID, dependent packages’ AIDs, Static References

O.APPLET Selection state

O.JAVAOBJECT Owner, Remote

The package’s AID identifies the package defined in the CAP file.

When an export file is used during preparation of a CAP file, the version
numbers and AIDs indicated in the export file are recorded in the CAP files
([JCVM21], §4.5.2): the dependent packages AIDs attribute allows the
retrieval of those identifications.

Static fields of a package may contain references to objects. The Static
References attribute records those references.

An applet instance can be in two different selection states: selected or
deselected. If the applet is selected (in some logical channel), then in turn it
could either be currently selected or just active. At any time there could be
more than one active applet instances over each I/O interface, but only one
currently selected (the maximum number of active applet instances
depends on the Java Card platform version). This latter is the one that is
processing the current command ([JCRE22], §4).

The Owner of an object is either the applet instance that created the object
or the package (library) where it has been defined (these latter objects can
only be arrays that initialize static fields of the package).

Java Card Protection Profile Collection Page 94 of 198

Version 1.1 May 2006

An object is said to be remote if it is an instance of a class that directly or
indirectly implements the interface java.rmi.Remote.

Finally, there are needed security attributes that are not attached to any
object or subject of the TSP: (1) the ResidentPackages Versions (or Resident
Image,[JCVM21],§4.5) and AIDs. They describe the packages that are
already on the card, (2) the list of registered applet instances and (3) the
ActiveApplets security attribute. They are all attributes internal to the Java
Card VM, that is, not attached to any specific object or subject of the SPM.
These attributes are TSF data that play a role in the SPM.

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the ADEL
SFP:

The subject of this policy is S.ADEL.

Some basic common specifications are required in order to allow Java Card
applets and packages to be deleted without knowing the implementation
details of a particular deletion manager. In particular, this policy
introduces a notion of reachability, which provides a general means to
describe objects that are referenced from a certain applet instance or
package.

In the context of this policy, an object O is reachable if and only if either: (1)
the owner of O is a registered applet instance A (O is reachable from A), (2)
a static field of a loaded package P contains a reference to O (O is reachable
from P), (3) there exists a valid remote reference to O (O is remote
reachable), and (4) there exists an object O’ that is reachable according to
either (1) or (2) or (3) above and O’ contains a reference to O (the
reachability status of O is that of O’).

The following access control rules determine when an operation among
controlled subjects and objects is allowed by the policy:

R.JAVA.14 ([JCRE22], §11.3.4.1, Applet Instance Deletion). The S.ADEL
may perform OP.DELETE_APPLET upon an O.APPLET only
if, (1) S.ADEL is currently selected, (2) O.APPLET is deselected
and (3) there is no O.JAVAOBJECT owned by O.APPLET such
that either O.JAVAOBJECT is reachable from an applet instance
distinct from O.APPLET, or O.JAVAOBJECT is reachable from a
package P, or ([JCRE22], §8.5) O.JAVAOBJECT is remote
reachable.

From Java Card platform, version 2.2.1, condition (2) becomes:

(2’) There is no instance in the context of O.APPLET that is active
in any logical channel.

R.JAVA.15 ([JCRE22],§11.3.4.1, Multiple Applet Instance Deletion). The
S.ADEL may perform OP.DELETE_APPLET upon several
O.APPLET only if, (1) S.ADEL is currently selected, (2) every
O.APPLET being deleted is deselected and (3) there is no
O.JAVAOBJECT owned by any of the O.APPLET being deleted
such that either O.JAVAOBJECT is reachable from an applet
instance distinct from any of those O.APPLET, or

Java Card Protection Profile Collection Page 95 of 198

Version 1.1 May 2006

O.JAVAOBJECT is reachable from a package P, or ([JCRE22], §8.5)
O.JAVAOBJECT is remote reachable.

From Java Card platform, version 2.2.1, condition (2) becomes:

(2’) There is no instance of any of the O.APPLETs being deleted
that is active in any logical channel.

R.JAVA.16 ([JCRE22], §11.3.4.2, Applet/Library Package Deletion). The
S.ADEL may perform OP.DELETE_PCKG upon an
O.CODE_PCKG only if, (1) S.ADEL is currently selected, (2) no
reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PCKG that is an instance of a class that belongs to
O.CODE_PCKG exists on the card and (3) there is no package
loaded on the card that depends on O.CODE_PCKG.

R.JAVA.17 ([JCRE22], §11.3.4.3, Applet Package and Contained
Instances Deletion). The S.ADEL may perform
OP.DELETE_PCKG_APPLET upon an O.CODE_PCKG only
if, (1) S.ADEL is currently selected, (2) no reachable
O.JAVAOBJECT, from a package distinct from O.CODE_PCKG,
which is an instance of a class that belongs to O.CODE_PCKG
exists on the card, (3) there is no package loaded on the card that
depends on O.CODE_PCKG and (4) for every O.APPLET of those
being deleted it holds that: (i) O.APPLET is deselected and (ii)
there is no O.JAVAOBJECT owned by O.APPLET such that
either O.JAVAOBJECT is reachable from an applet instance not
being deleted, or O.JAVAOBJECT is reachable from a package
not being deleted, or ([JCRE22],§8.5) O.JAVAOBJECT is remote
reachable.

From Java Card platform, version 2.2.1, condition (4i) becomes:

(4i’) There is no instance in the context of O.APPLET that is active
in any logical channel.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: none.

Application note: However, the S.ADEL may be granted privileges ([JCRE22],
§11.3.5) to bypass the preceding policies. For instance, the logical deletion of
an applet renders it un-selectable; this has implications on the management
of the associated TSF data (see application note of FMT_MTD.1.1/JCRE).

FDP_ACF.1.4/ADEL The TSF shall explicitly deny access of any subject but the S.ADEL to
O.CODE_PKG or O.APPLET for the purpose of deleting it from the card.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the ability to
modify the ActiveApplets security attribute to the Java Card RE
(S.JCRE).

Java Card Protection Profile Collection Page 96 of 198

Version 1.1 May 2006

Application note: The modification of the ActiveApplets security attribute should be
performed in accordance with the rules given in [JCRE22], §4.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/ADEL The TSF shall maintain the roles: the applet deletion manager.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following security management
functions: Modify theActiveApplets security attribute.

5.1.4.2 Additional Deletion Requirements

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: applet instances and/or packages when one of the
deletion operations in FDP_ACC.2.1/ADEL is performed on them.

Application note: Deleted freed resources (both code and data) may be reused,
depending on the way they were deleted (logically or physically).
Requirements on de-allocation during applet/package deletion are
described in [JCRE22], §11.3.4.1, §11.3.4.2 and §11.3.4.3.

Application note: There is no conflict with FDP_ROL.1 requirements appearing in
the document as of the bounds on the rollback: the deletion operation is out
of the scope of the rollback (FDP_ROL.1.1/FIREWALL, p.75).

Java Card Protection Profile Collection Page 97 of 198

Version 1.1 May 2006

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of failures
occur: the applet deletion manager fails to delete a package/applet as described
in [JCRE22], §11.3.4.

Application note: The TOE may provide additional feedback information to the card
manager in case of a potential security violation (see FAU_ARP.1).

Application note: The applet instance deletion must be atomic. The “secure state”
refered to in the requirement must comply with the Java Card
specifications. That is, if a reset or power fail occurs during the deletion
process, then before any applet is selected in card, either the applet instance
deletion is completed or the the applet shall be selectable and all objects
owned by the applet remain unchanged (that is, the functionality of all
applet instances on the card remains the same as prior to the unsuccessful
deletion attempt) [JCRE22], §11.3.4.

Java Card Protection Profile Collection Page 98 of 198

Version 1.1 May 2006

5.1.5 RMIG Security Functional Requirements

This group is mainly devoted to specifying the policies that control the access to remote objects and
the flow of information that takes place when the Java Card RMI service is used. There are specific
control rules concerning the access to remote objects. The rules relate mainly to the lifetime of their
corresponding remote references. Information concerning remote object references can be sent out of
the card only if the corresponding remote object has been designated as exportable. Array parameters
of remote method invocations are required to be allocated on the card as global arrays, the storage of
references to those arrays must then be restricted as well.

5.1.5.1 Java Card RMI Policy

The Java Card RMI policy embodies both an access control and an information flow control policy.

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/JCRMI The TSF shall enforce the JCRMI access control SFP on S.CAD, S.JCRE,
O.APPLET, O.REMOTE_OBJ, O.REMOTE_MTHD, O.ROR,
O.RMI_SERVICE and all operations among subjects and objects covered
by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

S.CAD The CAD. In the scope of this policy it represents
the actor that requests, by issuing commands to
the card, for Java Card RMI services.

S.JCRE The Java Card RE is responsible on behalf of the
card issuer of the bytecode execution and runtime
environment functionalities. In the context of this
security policy, the Java Card RE is in charge of the
execution of the commands provided to (1) obtain
the initial remote reference of an applet instance
and (2) perform Remote Method Invocation.

O.APPLET Any installed applet, its code and data.

O.REMOTE_OBJ A remote object is an instance of a class that
implements one (or more) remote interfaces. A
remote interface is one that extends, directly or
indirectly, the interface java.rmi.Remote
([JCAPI22]).

O.ROR A remote object reference. It provides
information concerning: (i) the identification of a
remote object and (ii) the Implementation class
of the object or the interfaces implemented by
the class of the object. This is the object’s
information to which the CAD can access.

Java Card Protection Profile Collection Page 99 of 198

Version 1.1 May 2006

O.REMOTE_MTHD A method of a remote interface.

O.RMI_SERVICE These are instances of the class
javacardx.rmi.RMIService. They are the
objects that actually process the Java Card RMI
services.

Operations (prefixed with “OP”) of this policy are described in the
following table.

Operation Description

OP.GET_ROR(O.APPLET,…)

Retrieves the initial remote object reference of a
Java Card RMI based applet. This reference is the
seed which the CAD client application needs to
begin remote method invocations

OP.INVOKE(O.RMI_SERVICE,…) Requests a remote method invocation on the
remote object.

FDP_ACC.2.2/JCRMI The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/JCRMI The TSF shall enforce the JCRMI access control SFP to objects based on the
following: (1) the security attributes of the covered subjects and objects, (2)
the list of AIDs of the applet instances registered on the card and (3) the
attribute ActiveApplets, which is a list of the active applets’ AIDs.

The following table presents the security attributes associated to the objects
under control of the policy.

Object Attributes

O.APPLET Package’s AID or none

O.REMOTE_OBJ Owner, class, Identifier, Exported

O.REMOTE_MTHD Identifier

O.RMI_SERVICE Owner, Returned References

O.ROR Valid

The package’s AID identifies the package defined in the CAP file.

An applet instance can be in two different selection states: selected or
deselected. If the applet is selected (in some logical channel), then in turn it
could either be currently selected or just active. At any time there could be
more than one active applet instances over each I/O interface, but only one
currently selected. This latter is the one that is processing the current
command ([JCRE22], §4).

Java Card Protection Profile Collection Page 100 of 198

Version 1.1 May 2006

The owner of a remote object is the applet instance that created the object.
The class attribute identifies the implementation class of the remote object.
The remote object Identifier is a number that uniquely identifies a remote
object in the card. The attribute Exported indicates whether the remote
object is exportable or not.

A remote method Identifier is a number that uniquely identifies a remote
method within a certain remote class.

The owner of an O.RMI_SERVICE is the applet instance that created the
object. The attribute Returned References lists the remote object references
that have been sent to the CAD during the applet selection session. This
attribute is implementation dependent.

The validity of an O.ROR is defined in [JCRE22], §8.5.

Finally, there are some security attributes that are not attached to any
object or subject of the TSP: (1) the list of registered applet instances and (2)
the ActiveApplets security attribute. They are all attributes internal to the
Java Card VM that is, not attached to any specific object or subject of the
SPM. These attributes are TSF data that play a role in the SPM.

FDP_ACF.1.2/JCRMI The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the JCRMI
SFP:

R.JAVA.18 The S.CAD may perform OP.GET_ROR upon an
O.APPLET only if O.APPLET is the currently selected applet, and
there exists an O.RMI_SERVICE with a registered initial reference
to an O.REMOTE_OBJ that is owned by O.APPLET.

R.JAVA.19 The S.JCRE may perform OP.INVOKE upon
O.RMI_SERVICE, O.ROR and O.REMOTE_MTHD, only if,
O.ROR is valid and belongs to the Returned References of
O.RMI_SERVICE, and the Identifier of O.REMOTE_MTHD
matches one of the remote methods in the class, indicated by the
security attribute class, of the O.REMOTE_OBJECT to which
O.ROR makes reference.

Application note: The validity of a remote object reference is specified as a lifetime
characterization. The security attributes involved in the rules for
determining valid remote object references are the attribute Returned
References of the O.RMI_SERVICE and the attribute ActiveApplets (see
FMT_REV.1.1/JCRMI and FMT_REV.1.2/JCRMI).

Application note: The precise mechanism by which a remote method is invoked on a
remote object is defined in detail in ([JCRE22], §8.5.2 and [JCAPI22]).

FDP_ACF.1.3/JCRMI The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: none.

FDP_ACF.1.4/JCRMI The TSF shall explicitly deny access of any subject but S.JCRE to
O.REMOTE_OBJ and O.REMOTE_MTHD for the purpose of performing a
remote method invocation.

Java Card Protection Profile Collection Page 101 of 198

Version 1.1 May 2006

FDP_IFC.1 SUBSET INFORMATION FLOW CONTROL

FDP_IFC.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP on the
following subjects, information and operations.

Subjects12 (prefixed with an “S”) and information (prefixed with an “I”)
covered by this policy are:

Subject/Information Description

S.JCRE As in the Access control policy

S.CAD As in the Access control policy

I.RORD Remote object reference descriptors

A remote object reference descriptor provides information concerning: (i)
the identification of the remote object and (ii) the implementation class of
the object or the interfaces implemented by the class of the object. The
descriptor is the only object’s information to which the CAD can access.

Application note: Array parameters of remote method invocations must be allocated
on the card as global arrays objects. References to global arrays cannot be
stored in class variables, instance variables or array components. The
control of the flow of that kind of information has already been specified in
FDP_IFC.1.1/JCVM.

There is a unique operation in this policy:

Operation Description

OP.RET_RORD(S.JCRE,S.CAD,I.RORD) Send a remote object reference
descriptor to the CAD.

A remote object reference descriptor is sent from the card to the CAD
either as the result of a successful applet selection command ([JCRE22],
§8.4.1), and in this case it describes, if any, the initial remote object
reference of the selected applet; or as the result of a remote method
invocation ([JCRE22],§8.3.5.1) .

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP based on
the following types of subject and information security attributes: the
security attribute Exported of the information.

12 Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java Card Protection Profile Collection Page 102 of 198

Version 1.1 May 2006

The following table summarizes which security attribute is attributed to
which subject/information.

Subject/Information Attributes

S.JCRE None

S.CAD None

I.RORD ExportedInfo (Boolean value)

The ExportedInfo attribute of an I.RORD indicates whether the
O.REMOTE_OBJ which I.RORD identifies is exported or not (as
indicated by the security attribute Exported of the O.REMOTE_OBJ).

FDP_IFF.1.2/JCRMI The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following rule
holds:

An operation OP.RET_RORD(S.JCRE, S.CAD, I.RORD) is permitted
only if the attribute ExportedInfo I.RORD has the value “true” ([JCRE22],
§8.5).

FDP_IFF.1.3/JCRMI The TSF shall enforce [assignment: additional information flow control
SFP rules].

FDP_IFF.1.4/JCRMI The TSF shall provide [assignment: list of additional SFP capabilities].

FDP_IFF.1.5/JCRMI The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly authorize information flows].

FDP_IFF.1.6/JCRMI The TSF shall explicitly deny an information flow based on the following
rules: [assignment: rules, based on security attributes that explicitly deny
information flows].

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/JCRMI The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the
ActiveApplets security attribute to the Java Card RE (S.JCRE).

Application note: The modification of the ActiveApplets security attribute should be
performed in accordance with the rules given in [JCRE22], §4.

FMT_MSA.1.1/EXPORT The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to restrict the ability to modify the security
attribute Exported of an O.REMOTE_OBJ to its owner.

Application note: The Exported status of a remote object can be modified by invoking
its methods export() and unexport(), and only the owner of the object may
perform the invocation without raising a SecurityException
(javacard.framework.service.CardRemoteObject). However, even if the

Java Card Protection Profile Collection Page 103 of 198

Version 1.1 May 2006

owner of the object may provoke the change of the security attribute value,
the Java Card RE could perform the modification itself.

FMT_MSA.1.1/REM_REFS The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to restrict the ability to modify the security
attribute Returned References of an O.RMI_SERVICE to its owner.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/JCRMI The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to provide restrictive default values for
security attributes that are used to enforce the SFP.

Application note: Remote objects’ security attributes are created and initialized at the
creation of the object, and except for the Exported attribute, the values of the
attributes are not longer modifiable. The default value of the Exported
attribute is true.

Application note: There is one default value for the SELECTed applet context that is the
default applet identifier’s context, and one default value for the active context,
that is “Java Card RE”.

FMT_MSA.3.2/JCRMI The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

Application note: The intent is to have none of the identified roles to have privileges
with regards to the default values of the security attributes. Notice that
creation of objects is an operation controlled by the FIREWALL SFP; the
latitude on the parameters of this operation is described there.

FMT_REV.1 REVOCATION

FMT_REV.1.1 The TSF shall restrict the ability to revoke security attributes associated
with the [selection: users, subjects, objects, [assignment: other additional
resources]] to [assignment: the authorized identified roles].

FMT_REV.1.1/JCRMI The TSF shall restrict the ability to revoke the Returned References
security attribute of an O.RMI_SERVICE to the Java Card RE
[assignment: other authorized identified role].

FMT_REV.1.2 The TSF shall enforce the rules [assignment: specification of revocation
rules].

FMT_REV.1.2/JCRMI The TSF shall enforce the rules that determine the lifetime of remote object
references.

Application note: The rules previously mentioned are described in [JCRE22], §8.5.

Java Card Protection Profile Collection Page 104 of 198

Version 1.1 May 2006

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/JCRMI The TSF shall maintain the roles: applet.

Application note: applets own Remote interface objects and may choose to allow or
forbid their exportation, which is managed through a security attribute.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/JCRMI The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/JCRMI The TSF shall be capable of performing the following security management
functions:

- Modify the security attribute Exported of an O.REMOTE_OBJ.

- Modify the security attribute Returned References of an
O.RMI_SERVICE.

5.1.6 LCG Security Functional Requirements

The security issues introduced by logical channels are mainly related to the access to SIO objects
owned by legacy applets as well as to the clearing of transient data which is shared by applet instances
which are concurrently active in different logical channels. Accordingly, this group introduces a
reformulation of the FIREWALL SFP specified in the group CoreG and a modification to a component
of the security requirement for residual information protection (FDP_RIP.1.1/TRANSIENT).

5.1.6.1 Firewall Policy

Except for the requirements explicitly introduced in what follows, this policy includes unchanged the
functional requirements specified in the FIREWALL access control SFP of the group CoreG.

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/ FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,
S.JCRE, O.JAVAOBJECT and all operations among subjects and objects
covered by the SFP.

 Subjects (prefixed with an “S”), objects (prefixed with an “O”) and
operations (prefixed with “OP”) are exactly the same, which are covered
by the FIREWALL access control SFP.

Java Card Protection Profile Collection Page 105 of 198

Version 1.1 May 2006

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

See FMT_MSA.1 for more information about security attributes.

FDP_ACF.1.1/ FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based
on the following: (1) the security attributes of the covered subjects and
objects, (2) the currently active context, (3) the SELECTed applet Context,
and (4) the attribute ActiveApplets, which is a list of the active applets’
AIDs.

The following table describes the new security attribute attached to the
subjects S.PACKAGE

Subject Attributes

S.PACKAGE Selection Status

The following table describes the possible values for the new security
attributes.

Name Description

Selection Status Multiselectable, Non-multiselectable or “None”

ActiveApplets List of package’s AIDs

The Java Card platform, version 2.2, introduces the possibility for an applet
instance to be selected on multiple logical channels at the same time, or
accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets.
Applets that belong to a same package are either all multiselectable or not
([JCVM22],§2.2.5). Therefore, the selection mode can be regarded as an
attribute of packages. No selection mode is defined for a library package.

Support for multiple logical channels (with multiple selected applet
instances) requires a change to the selected applet concept as stated in Java
Card System, version 2.1.1.. Since more than one applet instance can be
selected at the same time, and one applet instance can be selected on
different logical channels simultaneously, it is necessary to differentiate the
state of the applet instances in more detail. An applet instance will be
considered an active applet instance if it is currently selected in at least one
logical channel.. An applet instance is the currently selected applet instance
only if it is processing the current command. There can only be one
currently selected applet instance at a given time. ([JCRE22],§4).

The ActiveApplets security attribute is internal to the Java Card VM, that
is, not attached to any specific object or subject of the SPM. The attribute is
TSF data that plays a role in the SPM.

FDP_ACF.1.2/ FIREWALL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the
FIREWALL SFP:

Java Card Protection Profile Collection Page 106 of 198

Version 1.1 May 2006

 The same rules of the 1FIREWALL SFP defined in 5.1.1.1 except for rule
R.JAVA.4, which must be replaced by the following rule:

R.JAVA.20 ([JCRE22], §6.2.8.6,) An S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing
attribute has the value “SIO”, and whose Context attribute has the
value “Package AID”, only if one of the following applies:

a) The value of the attribute Selection Status of the package
whose AID is “Package AID” is “Multiselectable»,

b) The value of the attribute Selection Status of the package
whose AID is “Package AID” is “Non-multiselectable», and
either “Package AID” is the value of the currently selected
applet or otherwise “Package AID” does not occur in the
attribute ActiveApplets,

and in either of the cases above the invoked interface method
extends the Shareable interface.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the active
context, the SELECTed applet Context and the ActiveApplets security
attributes to the Java Card RE (S.JCRE).

The modification of the active context, SELECTed applet Context and ActiveApplets security
attributes should be performed in accordance with the rules given in [JCRE22], §4 and ([JCVM22], §3.4.

5.1.6.2 Additional Requirements on Logical Channels

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

The following element must substitute former 1FDP_RIP.1.1/TRANSIENT:

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
objects: any transient object.

Application note: The events that provoke the de-allocation of any transient object
are described in [JCRE22], §5.1.

Application note: The clearing of CLEAR_ON_DESELECT objects is not necessarily
performed when the owner of the objects is deselected. In the presence of
multiselectable applet instances, CLEAR_ON_DESELECT memory segments may
be attached to applets that are active in different logical channels.
Multiselectable applet instances within a same package must share the
transient memory segment if they are concurrently active ([JCRE22], §4.2.

Java Card Protection Profile Collection Page 107 of 198

Version 1.1 May 2006

5.1.7 ODELG Security Functional Requirements

The following requirements are concerned with the secure deletion of information provoked by the
object deletion mechanism. This mechanism is triggered by the applet who owns the deleted objects
by invoking a specific API method.

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: the objects owned by the context of an applet instance
which triggered the execution of the method
javacard.framework.JCSystem.requestObjectDeletion().

Application note: Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused.
Requirements on de-allocation after the invocation of the method are
described in [JCAPI22].

Application note: There is no conflict with FDP_ROL.1 here because of the bounds
on the rollback mechanism: the execution of requestObjectDeletion() is
not in the scope of the rollback because it must be performed in between
APDU command processing, and therefore no transaction can be in
progress.

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following type of failure
occurs: the object deletion functions fail to delete all the unreferenced objects
owned by the applet that requested the execution of the method

Application note: The TOE may provide additional feedback information to the card
manager in case of potential security violation (see FAU_ARP.1).

Java Card Protection Profile Collection Page 108 of 198

Version 1.1 May 2006

5.1.8 CarG Security Functional Requirements

This group of requirements applies to those configurations where the bytecode verifier is not
embedded on the card. If this is the case, the TOE shall include requirements for preventing the
installation of a package that has not been bytecode verified, or that has been modified after bytecode
verification.

FCO_NRO.2 ENFORCED PROOF OF ORIGIN

FCO_NRO.2.1 The TSF shall enforce the generation of evidence of origin for transmitted
[assignment: list of information types] at all times.

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for transmitted
application packages at all times.

Application note: If this is the case and the card receives a new application package
for installation, the card manager shall first check that it actually comes
from the verification authority. The verification authority is the entity
responsible for bytecode verification.

FCO_NRO.2.2 The TSF shall be able to relate the [assignment: list of attributes] of the
originator of the information, and the [assignment: list of information
fields] of the information to which the evidence applies.

FCO_NRO.2.2/CM The TSF shall be able to relate the identity of the originator of the information,
and the application package contained in the information to which the
evidence applies.

FCO_NRO.2.3 The TSF shall provide a capability to verify the evidence of origin of
information to [selection: originator, recipient, [assignment: list of third
parties]] given [assignment: limitations on the evidence of origin].

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin of
information to the recipient given [assignment: limitations on the evidence
of origin].

Application note: The exact limitations on the evidence of origin are implementation
dependent. In most of the implementations, the card manager performs an
immediate verification of the origin of the package using an electronic
signature mechanism, and no evidence is kept on the card for future
verifications.

Java Card Protection Profile Collection Page 109 of 198

Version 1.1 May 2006

FIA_UID.1 TIMING OF IDENTIFICATION

FIA_UID.1.1/CM The TSF shall allow [assignment: list of TSF-mediated actions] on behalf of
the user to be performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application note: The list of TSF-mediated actions is implementation-dependent, but
package installation requires the user to be identified. Here by user is meant
the one(s) that in the Security Target shall be associated to the role(s)
defined in the component FMT_SMR.1/CM.

FDP_IFC.2 COMPLETE INFORMATION FLOW CONTROL

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP on S.CRD, S.BCV, S.SPY and all operations that cause that information
to flow to and from subjects covered by the SFP.

Subjects (prefixed with an “S”) covered by this policy are those involved in
the reception of an application package by the card through a potentially
unsafe communication channel:

Subject Description

S.BCV The subject representing who is in charge of the bytecode verification of the packages
(also known as the verification authority).

S.CRD The on-card entity in charge of package downloading.

S.SPY Any other subject that may potentially intercept, modify, or permute the messages
exchanged between the former two subjects.

The operations (prefixed with “OP”) that make information to flow
between the subjects are those enabling to send a message through and to
receive a message from the communication channel linking the card to the
outside world. It is assumed that an attacker is able to read any message
sent through the channel as clear text. Moreover, the attacker may capture
any message sent through the communication channel and send its own
messages to the other subjects.

Operation Description

OP.SEND(M) A subject sends a message M through the communication channel.

OP.RECEIVE(M) A subject receives a message M from the communication channel.

The information (prefixed with an “I”) controlled by the typing policy is
the APDUs exchanged by the subjects through the communication channel
linking the card and the CAD. Each of those messages contain part of an
application package that is required to be loaded on the card, as well as
any control information used by the subjects (either S.BCV or S.SPY) in the
communication protocol.

Java Card Protection Profile Collection Page 110 of 198

Version 1.1 May 2006

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any information in the TSC
to flow to and from any subject in the TSC are covered by an information flow
control SFP.

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP based on the following types of subject and information security
attributes: [assignment: the minimum number and type of security
attributes].

Application note: The security attributes used to enforce the PACKAGE LOADING
SFP are implementation dependent. More precisely, they depend on the
communication protocol enforced between the CAD and the card. For
instance, some of the attributes that can be used are: (1) the keys used by the
subjects to encrypt/decrypt their messages; (2) the number of pieces the
application package has been split into in order to be sent to the card; (3) the
ordinal of each piece in the decomposition of the package, and so on. See for
example Appendix D of [GP].

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following
rules hold: [assignment: the rules describing the communication protocol
used by the CAD and the card for transmitting a new package].

Application note: The precise set of rules to be enforced by the function is
implementation dependent. The whole exchange of messages shall verify at
least the following two rules: (1) the subject S.CRD shall accept a message
only if it comes from the subject S.CAD; (2) the subject S.CRD shall accept
an application package only if it has received without modification and in
the right order all the APDUs sent by the subject S.CAD.

An example of such a communication protocol can be found in Appendix D of [GP].

FDP_IFF.1.3/CM The TSF shall enforce the [assignment: additional information flow
control SFP rules].

FDP_IFF.1.4/CM The TSF shall provide [assignment: list of additional SFP capabilities].

FDP_IFF.1.5/CM The TSF shall explicitly authorize an information flow based on the following
rules: [assignment: rules, based on security attributes that explicitly
authorize information flows].

FDP_IFF.1.6/CM The TSF shall explicitly deny an information flow based on the following
rules: [assignment: other rules, based on security attributes, that explicitly
deny information flows]

Java Card Protection Profile Collection Page 111 of 198

Version 1.1 May 2006

FDP_UIT.1 DATA EXCHANGE INTEGRITY

These requirements apply to those configurations where bytecode verification is not considered as
being part of the TOE. If this is the case, then the bytecode verifier can be seen as an external IT
product, and packages to be loaded on the card are user data in transit from that external product to
the Java Card System.

FDP_UIT.1.1 The TSF shall enforce the [assignment: access control SFP(s) and/or
information flow control SFP(s)] to be able to [selection: transmit,
receive] user data in a manner protected from [selection: modification,
deletion, insertion, replay] errors.

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to be able to receive user data in a manner protected from
modification, deletion, insertion and replay errors.

Application note: Modification errors should be understood as modification,
substitution, unrecoverable ordering change of data and any other integrity
error that may cause the application package to be installed on the card to
be different from the one sent by the CAD.

FDP_UIT.1.2 The TSF shall be able to determine on receipt of user data, whether
[selection: modification, deletion, insertion, replay] has occurred.

FDP_UIT.1.2/CM The TSF shall be able to determine on receipt of user data, whether
modification, deletion, insertion, replay of some of the pieces of the
application sent by the CAD has occurred.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to restrict the ability to [selection: change default, query, modify, delete,
[assignment: other operations]] the security attributes [assignment: list of
security attributes] to [assignment: the authorized identified roles].

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to provide restrictive default values for security attributes that are
used to enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the [assignment: the authorized identified roles] to
specify alternative initial values to override the default values when an
object or information is created.

Java Card Protection Profile Collection Page 112 of 198

Version 1.1 May 2006

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/CM The TSF shall maintain the roles: [assignment: the authorized identified roles].

FMT_SMR.1.2/CM The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/CM The TSF shall be capable of performing the following security management
functions: [assignment: list of security management functions to be provided by
the TSF].

FTP_ITC.1 INTER-TSF TRUSTED CHANNEL

The following requirements apply to those configurations where bytecode verification is not
considered as being part of the TOE. If this is the case, then the CAD can be seen as a remote trusted IT
product, and packages to be loaded on the card shall be transmitted using an inter-TSF trusted
channel to prevent them from being modified during downloading. Such trusted channel connects the
embedded Java Card System to the secured environment where the package has been verified.

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and a
remote trusted IT product that is logically distinct from other
communication channels and provides assured identification of its end
points and protection of the channel data from modification or
disclosure.

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself and a
remote IT product that is logically distinct from other communication
channels and provides assured identification of its end points and
protection of the channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit [selection: the TSF, the remote trusted IT product] to
initiate communication via the trusted channel.

FTP_ITC.1.2/CM The TSF shall permit the CAD placed in a secured environment to initiate
communication through the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for
[assignment: list of functions for which a trusted channel is required].

FTP_ITC.1.3/CM The TSF shall initiate communication through the trusted channel for
installing a new application package on the card.

Application note: There is no dynamic package loading on the Java Card platform.
New packages can be installed on the card only on demand of the card
issuer.

Java Card Protection Profile Collection Page 113 of 198

Version 1.1 May 2006

5.1.9 SCPG Security Functional Requirements

This group contains the security requirements for the smart card platform, that is, operating system
and chip that the Java Card System is implemented upon. It does not define requirements for the TOE
but for its IT environment. The requirements are expressed in terms of security functional
requirements from [CC2].

UNDERLYING ABSTRACT MACHINE TEST (FPT_AMT)

FPT_AMT.1.1 The TSF shall run a suite of tests [selection: during initial start-up,
periodically during normal operation, at the request of an authorized user,
[assignement: other conditions]] to demonstrate the correct operation of
the security assumptions provided by the abstract machine that
underlies the TSF.

FPT_AMT.1.1/SCP The TSF shall run a suite of tests during initial start-up (at each power on)
to demonstrate the correct operation of the security assumptions provided
by the abstract machine that underlies the TSF.

Application note: The abstract machine that underlies the TSF comprises the lower
levels of the SCP, that is, the OS and its dedicated native applications
and/or APIs (for instance, hardware cryptographic functions/buffers), as
well as the IC. Self-test of these components is, as an example, included in
[PP0010]. These tests are initiated by the TSF of the SCP itself.

FAIL SECURE (FPT_FLS)

FPT_FLS.1.1/SCP The TSF shall preserve a secure state when the following types of failures
occur: [assignment: list of types of failures in the TSF].

FAULT TOLERANCE (FRU_FLT)

FRU_FLT.1.1/SCP The TSF shall ensure the operation of [assignment: list of TOE capabilities]
when the following failures occur: [assignment: list of type of failures].

These components shall be used to specify the list of SCP capabilities supporting the Java Card
System/CM that will still be operational at the occurrence of the mentioned failures (EEPROM worn
out, lack of EEPROM, random generator failure).

TSF PHYSICAL PROTECTION (FPT_PHP)

FPT_PHP.3.1/SCP The TSF shall resist [assignment: physical tampering scenarios] to the
[assignment: list of TSF devices/elements] by responding automatically
such that the TSP is not violated.

Java Card Protection Profile Collection Page 114 of 198

Version 1.1 May 2006

DOMAIN SEPARATION (FPT_SEP)

FPT_SEP.1.1/SCP The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.2/SCP The TSF shall enforce separation between the security domains of subjects
in the TSC.

Application note: The use of “security domain” here refers to execution space, and
should not be confused with other meanings of security domains.

REFERENCE MEDIATION (FPT_RVM)

FPT_RVM.1.1/SCP The TSF shall ensure that the TOE enforcement functions (TSP) are
invoked and succeed before each function within the TSC is allowed to
proceed.

Application note: This component supports OE.SCP.SUPPORT, which in turn
contributes to the secure operation of the TOE, by ensuring that these latter
and supporting platform security mechanisms cannot be bypassed.

The TSF and TSC stated in these three components refer to that of the SCP.

TRUSTED RECOVERY (FPT_RCV)

FPT_RCV.3.1/SCP When automated recovery from [assignment: list of failures/service
discontinuities] is not possible, the TSF shall enter a maintenance mode
where the ability to return the TOE to a secure state is provided.

FPT_RCV.3.2/SCP For [assignment: list of failures/service discontinuities], the TSF shall ensure
the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3/SCP The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without
exceeding [assignment: quantification] for loss of TSF data or objects within
the TSC.

FPT_RCV.3.4/SCP The TSF shall provide the capability to determine the objects that were or
were not capable of being recovered.

FPT_RCV.4.1/SCP The TSF shall ensure that reading from and writing to static and objects’
fields interrupted by power loss have the property that the SF either
completes successfully, or for the indicated failure scenarios, recovers to a
consistent and secure state.

Application note: This requirement comes from the specification of the Java Card
platform but is obviously supported in the implementation by a low-level
mechanism of the SCP.

Java Card Protection Profile Collection Page 115 of 198

Version 1.1 May 2006

5.1.10 CMGRG Security Functional Requirements

This group contains the security requirements for the card manager. These are requirements for the IT
environment of the TOE. They are all expressed in terms of security functional requirements from
[CC2].

The security requirements below helps defining a policy for controlling access to card content
management operations and for expressing card issuer security concerns. This policy shall be highly
dependent on the particular security and card management architecture present in the card. Therefore
the policy should be accordingly refined when developing conformant Security Targets.

FDP_ACC.1 SUBSET ACCESS CONTROL

FDP_ACC.1.1 The TSF shall enforce the [assignment: access control SFP] on
[assignment: list of subjects, objects, and operations among subjects and
objects covered by the SFP].

FDP_ACC.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP on [assignment: list of subjects, objects, and operations among
subjects and objects covered by the SFP].

Application note: It should be noticed that TSF here refers to the security functions of
the environment, rather than security functions of the TOE.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to objects based on the following: [assignment: list of subjects
and objects controlled under the indicated SFP, and for each, the SFP-relevant
security attributes, or named groups of SFP-relevant security attributes].

FDP_ACF.1.2/CMGR The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: [assignment:
rules governing access among controlled subjects and controlled objects using
controlled operations on controlled objects].

FDP_ACF.1.3/CMGR The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: [assignment: rules, based on security attributes,
that explicitly authorize access of subjects to objects].

FDP_ACF.1.4/CMGR The TSF shall explicitly deny access of subjects to objects based on the
[assignment: rules, based on security attributes, that explicitly deny access of
subjects to objects].

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to restrict the ability to [selection: change default, query, modify,

Java Card Protection Profile Collection Page 116 of 198

Version 1.1 May 2006

delete, [assignment: other operations]] the security attributes [assignment: list
of security attributes] to [assignment: the authorized identified roles].

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to provide restrictive default values for security attributes that
are used to enforce the SFP.

FMT_MSA.3.2/CMGR The TSF shall allow the [assignment: the authorized identified roles] to specify
alternative initial values to override the default values when an object or
information is created.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/CMGR The TSF shall maintain the roles: [assignment: the authorized identified roles].

FMT_SMR.1.2/CMGR The TSF shall be able to associate users with roles.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/CMGR The TSF shall be capable of performing the following security
management functions: [assignment: list of security management
functions to be provided by the TSF].

FIA_UID.1 TIMING OF IDENTIFICATION

FIA_UID.1.1/CMGR The TSF shall allow [assignment: list of TSF-mediated actions] on behalf of
the user to be performed before the user is identified.

FIA_UID.1.2/CMGR The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application note: The list of TSF-mediated actions depends on the particular card
manager security architecture implemented, but typically card content
modification requires for the user attempting the modification to be
identified. Here by user is meant the one(s) that in the Security Target shall
be associated to the role(s) defined in the component FMT_SMR.1/CMGR

5.1.11 EMG Security Functional Requirements

This group contains the security requirements for the management of the external memory,
introduced in the version 2.2.2 of the Java Card System (cf. [JCAPI222], optional package
javacardx.external).

Java Card Protection Profile Collection Page 117 of 198

Version 1.1 May 2006

5.1.11.1 External Memory Policy

FDP_ACC.1: SUBSET ACCESS CONTROL

FDP_ACC.1.1/EXT_MEM The TSF shall enforce the EXTERNAL MEMORY access control SFP on
subject S.APPLET, object O.EXT_MEM_INSTANCE, and operations
OP.CREATE_EXT_MEM_INSTANCE, OP.READ_EXT_MEM and
OP.WRITE_EXT_MEM .

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

Subject/Object Description

S.APPLET Any applet instance

O.EXT_MEM_INSTANCE Any External Memory Instance created from the MemoryAccess Interface of
the Java Card API [JCAPI222].

The following table describes the operations (prefixed with “OP”) of this
policy. Each operation has a specific number of parameters given between
brackets, among which there is the “accessed object”, the first one, when
applicable.

Operation Description

OP.CREATE_EXT_MEM_INSTANCE Creation of an instance of the
MemoryAccess Interface.

OP.READ_EXT_MEM(O.EXT_MEM_INSTANCE,address) Reading the external memory

OP.WRITE_EXT_MEM(O.EXT_MEM_INSTANCE, address) Writing the external memory

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

See FMT_MSA.1 for more information about security attributes.

FDP_ACF.1.1/ EXT_MEM The TSF shall enforce the EXTERNAL MEMORY access control SFP to objects
based on the following:

Object Security Attribute Description

O.EXT_MEM_INSTANCE Address space Accessible memory portion.

Java Card Protection Profile Collection Page 118 of 198

Version 1.1 May 2006

FDP_ACF.1.2/EXT_MEM The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed by the EXTERNAL
MEMORY SFP:

R.JAVA.21 ([JCAPI222]) Any subject S.APPLET that performs
OP.CREATE_EXT_MEM_INSTANCE obtains an object
O.EXT_MEM_INSTANCE that addresses a memory space
different from that of the Java Card System.

Application note: The actual mechanism for creating an instance of external memory
is implementation-dependent. This rule only says that the accessible
address space must not interfere with that of the Java Card System.

R.JAVA.22 ([JCAPI222]) Any subject S.APPLET may perform
OP.READ_EXT_MEM(O.EXT_MEM_INSTANCE, address)
provided the address belongs to the space of the
O.EXT_MEM_INSTANCE.

R.JAVA.23 ([JCAPI222]) Any subject S.APPLET may perform
OP.WRITE_EXT_MEM(O.EXT_MEM_INSTANCE, address)
provided the address belongs to the space of the
O.EXT_MEM_INSTANCE.

Application note: The creation of and the access to an external memory instance is
subject to the Firewall rules.

FDP_ACF.1.3/EXT_MEM The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: [assignment: rules, based on security attributes, that
explicitly authorize access of subjects to objects].

FDP_ACF.1.4/EXT_MEM The TSF shall explicitly deny access of subjects to objects based on the
[assignment: rules, based on security attributes, that explicitly deny access of
subjects to objects].

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/EXT_MEM The TSF shall enforce the EXTERNAL MEMORY access control SFP to
restrict the ability to set up the security attribute address space to the Java
Card RE.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/EXT_MEM The TSF shall enforce the EXT_MEM access control SFP to provide no
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/EXT_MEM The TSF shall allow the Java Card RE to specify alternative initial values to
override the default values when an object or information is created.

Java Card Protection Profile Collection Page 119 of 198

Version 1.1 May 2006

Application note: Upon creation of an external memory instance, the Java Card RE
gets the address space value for the newly created object. This is implementation
dependent.

FMT_SMF.1 SPECIFICATION OF MANAGEMENT FUNCTIONS

FMT_SMF.1.1/EXT_MEM The TSF shall be capable of performing the following security management
functions: Set up the address space security attribute.

5.2 TOE SECURITY ASSURANCE REQUIREMENTS

The assurance requirement of the Protection Profiles is EAL 4 augmented.

REQUIREMENT NAME TYPE

EAL 4 Methodically designed, tested,
and reviewed

Assurance level

The assurance requirements ensure, among others, the security of the TOE during its development
and production. We present here some application notes on the assurance requirements included in
the EAL of the Protection Profile. These are not to be considered as iteration or refinement of the original
components.

 ACM_AUT.1 Partial Configuration Management automation

 ACM_CAP.4 Generation support and acceptance procedures

 ACM_SCP.2 Problem tracking Configuration Management coverage

These components contribute to the integrity and correctness of the TOE during its development.
Procedures dealing with physical, personnel, organizational, technical measures for the confidentiality
and integrity of Java Card System software (source code and any associated documents) shall exist and
be applied in software development.

 ADV_FSP.2 Fully defined external interfaces

 ADV_HLD.2 Security enforcing high-level design

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ADV_SPM.1 Informal TOE security policy model

These SARs ensure that the TOE will be able to meet its security requirements and fulfill its objectives.
The Java Card System shall implement the [JCAPI]. The implementation of the Java Card API shall be
designed in a secure manner, including specific techniques to render sensitive operations resistant to
state-of-art attacks.

 ADO_DEL.2 Detection of modification

This SAR ensures the integrity of the TOE and its documentation during the transfer of the TOE
between all the actors appearing in the first two stages. Procedures shall ensure protection of TOE
material/information under delivery and storage that corrective actions are taken in case of improper

Java Card Protection Profile Collection Page 120 of 198

Version 1.1 May 2006

operation in the delivery process and storage and that people dealing with the procedure for delivery
have the required skills.

 ADO_IGS.1 Installation, generation, and start-up procedures

 AGD_ADM.1 Administrator guidance

 AGD_USR.1 User guidance

These SARs ensure proper installation and configuration: the TOE will be correctly configured and the
TSFs will be put in good working order. The administrator is the card issuer, the platform developer,
the card embedder or any actor who participates in the fabrication of the TOE once its design and
development is complete (its source code is available and released by the TOE designer). The users are
applet developers, the card manager developers, and possibly the final user of the TOE.

The applet and API packages programmers should have a complete understanding of the concepts
defined in [JCRE] and [JCVM]. They must delegate key management, PIN management and
cryptographic operations to dedicated APIs. They should carefully consider the effect of any possible
exception or specific event and take appropriate measures (such as catch the exception, abort the
current transaction, and so on.). They must comply with all the recommendations given in the
platform programming guide as well. Failure to do so may jeopardize parts of (or even the whole)
applet and its confidential data.

This guidance also includes the fact that sharing object(s) or data between applets (through shareable
interface mechanism, for instance) must include some kind of authentication of the involved parties,
even when no sensitive information seems at stake (so-called “defensive development”).

 ALC_DVS.1 Identification of security measures

 ALC_LCD.1 Developer defined life-cycle model

 ALC_TAT.1 Well-defined development tools

It is assumed that security procedures are used during all manufacturing and test operations through
the production phase to maintain confidentiality and integrity of the TOE and of its manufacturing
and test data (to prevent any possible copy, modification, retention, theft or unauthorized use).

 ATE_COV.2 Analysis of Coverage

 ATE_DPT.1 Testing: high-level design

 ATE_FUN.1 Functional testing

 ATE_IND.2 Independent testing - sample

The purpose of these SARs is to ensure whether the TOE behaves as specified in the design
documentation and in accordance with the TOE security functional requirements. This is
accomplished by determining that the developer has tested the security functions against its
functional specification and high-level design, gaining confidence in those tests results by performing
a sample of the developer’s tests, and by independently testing a subset of the security functions.

 AVA_MSU.2 Validation of analysis

This SAR ensures that the guidance on installation, generation, and start-up procedures is not
misleading, unreasonable or conflicting, whether secure procedures for all modes of operation have
been addressed, and whether use of the guidance will facilitate prevention and detection of insecure
TOE states.

 AVA_SOF.1 Strength of TOE security function evaluation

Java Card Protection Profile Collection Page 121 of 198

Version 1.1 May 2006

The objectives of this SAR are to determine whether SOF claims are made in the ST for all non-
cryptographic, probabilistic or permutational mechanisms and whether the developer’s SOF claims
made in the ST are supported by an analysis that is correct.

Augmentation of level EAL4 results from the selection of the following two SARs:

 AVA_VLA.3 Moderately resistant

EAL4 requires vulnerability assessment through imposition of AVA_VLA.2. This dictates a review of
identified vulnerabilities only. The component AVA_VLA.3 requires that a systematic search for
vulnerabilities be documented and presented. This provides a significant increase in the consideration
of vulnerabilities over that provided by AVA_VLA.2.

 ADV_IMP.2 Implementation of the TSF.

EAL4 requires through imposition of ADV_IMP.1 the description of a subset of the implementation
representation in order to capture the detailed internal working of the TSF. The component
ADV_IMP.2 requires the developer to provide the implementation representation for the entire TSF.

Java Card Protection Profile Collection Page 122 of 198

Version 1.1 May 2006

6 Rationale

This chapter presents the evidence used in the evaluation of the Protection Profiles. This evidence
supports the claims that each of them is a complete and cohesive set of requirements and that a
conformant TOE would provide an effective set of IT security countermeasures within the security
environment.

6.1 SECURITY OBJECTIVES RATIONALE

This section demonstrates that the stated security objectives address the entire security environment
aspects identified. Each security objective is correlated to at least one threat, organizational security
policy or assumption.

The section is structured by configuration and then by the type of rationale.

6.1.1 Minimal Configuration

6.1.1.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.1215HSCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

Java Card Protection Profile Collection Page 123 of 198

Version 1.1 May 2006

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.1152HALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data13 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
shared resource of all the applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective OE.NO-
INSTALL: applets are always installed in a secured environment that
prevents any malevolent manipulation of the applets and cards.

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields

13 The Java Card System may possess keys as well.

Java Card Protection Profile Collection Page 124 of 198

Version 1.1 May 2006

and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native
methods indirectly (O.NATIVE) that is, through an API that is assumed to
be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(OE.VERIFICATION).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CADs implement a
timeout policy that prevents them from being blocked should a card fail to
answer. That point is out of scope of this Protection Profile, though.

The objective OE.CARD-MANAGEMENT supports OE.1224HVERIFICATION and contributes to cover
all the threats on confidentiality and integrity of code and data. The objective also contributes, by
preventing usurpation of identity resulting from a malicious installation of an applet on the card, to
counter the threat T.1070HSID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

Java Card Protection Profile Collection Page 125 of 198

Version 1.1 May 2006

 O
E.

N
O

-IN
ST

A
LL

O
E.

V
ER

IF
IC

A
TI

O
N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O
.S

H
RD

_V
A

R_
CO

N
FI

D

O
.1

14
5H

FI
RE

W
A

LL

O
.1

14
8H

N
A

TI
V

E

O
.1

13
9H

O
PE

RA
TE

O
.A

LA
RM

O
.R

EA
LL

O
CA

TI
O

N

O
.1

14
2H

RE
SO

U
RC

ES

O
.1

13
8H

SI
D

O
E.

12
15

H
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y

O
E.

SC
P.

SU
PP

O
RT

O

.1
15

8H
CI

PH
ER

O
.K

EY
-M

N
G

T

O
.P

IN
-M

N
G

T

O
.T

RA
N

SA
CT

IO
N

T.PHYSICAL X
T.1047HCONFID-JCS-

CODE
T.1057HINTEG-APPLI-

CODE
T.1060HINTEG-JCS-

CODE

 X X

T.1054HCONFID-JCS-
DATA

T.1067HINTEG-JCS-
DATA

 X X

X X X

 X X X

T.1050HCONFID-
APPLI-DATA

 X X X X X X X X X X X X X X

T.1063HINTEG-APPLI- X X X X X X X X X X X X X X
T.SID.1 X X X X
T.SID.2 X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X
T.RESOURCES X X X X

Table 3: Minimal Configuration threats rationale

6.1.1.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption
A.1023HNATIVE is upheld. The objective OE.VERIFICATION upholds the assumption
A.VERIFICATION.

The assumptions A.NO-DELETION and A.NO-INSTALL are also upheld by the environmental
objective OE.CARD-MANAGEMENT.

Table 4 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

Java Card Protection Profile Collection Page 126 of 198

Version 1.1 May 2006

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

N
A

TI
V

E

O
E.

N
O

-D
EL

ET
IO

N

O
E.

N
O

-IN
ST

A
LL

O
E.

V
ER

IF
IC

A
TI

O
N

A.1023HNATIVE X
A.NO-DELETION X X

A.NO-INSTALL X X
A.VERIFICATION X

Table 4: Minimal Configuration assumptions rationale

The following security objectives of the TOE are related to the assumptions made for this
configuration as follows:

O.FIREWALL The controlled sharing of data owned by different applications assumes
that the code of the applications is well typed (A.VERIFICATION). Secured
installation ensures the correct initialization of TSF data such as the
identity of the applications (A.NO-INSTALL).

O.SID The correct identification of the applications depends on the assumptions
stating that pre-issuance applications have been correctly installed (A.NO-
INSTALL), and that those are exactly the applications that will be on the
card (A.NO-DELETION).

6.1.1.3 Organizational Policies Related to Security Objectives

No organizational security policy has been defined for this configuration.

6.1.2 Java Card System Standard 2.1.1 Configuration

6.1.2.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.1215HSCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on the code and the data of Java Card System and applets: T.CONFID-JCS-
CODE, T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Java Card Protection Profile Collection Page 127 of 198

Version 1.1 May 2006

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.1152HALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data14 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
resource shared by all applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is

14 The Java Card System may possess keys as well..

Java Card Protection Profile Collection Page 128 of 198

Version 1.1 May 2006

countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native
methods indirectly (O.NATIVE) that is, through an API that is assumed to
be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(OE.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective
countering this threat (O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Java Card Protection Profile Collection Page 129 of 198

Version 1.1 May 2006

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CAD implement a
timeout policy that prevent them from being blocked should a card fails to
answer. That point is out of scope of this Protection Profile, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL and O.LOAD security objectives.

INTEGRITY AND INSTALLATION

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. In this
configuration the integrity of a package’s code is covered by the objective
O.LOAD.

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for
installation. In this configuration the integrity of a package’s code is
covered by the objective O.LOAD.

The objective OE.CARD-MANAGEMENT supports OE.1224HVERIFICATION and contributes to cover
all the threats on confidentiality and integrity of code and data, the T.1097HINSTALL threat, and the
T.INTEG-APPLI-CODE.2 and T.INTEG-APPLI-DATA.2 threats. The objective also contributes, by
preventing usurpation of identity resulting from a malicious installation of an applet on the card, to
counter the threat T.1070HSID.1.

Finally, the objectivesOE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

 O
.IN

ST
A

LL

O
.L

O
A

D

O
E.

V
ER

IF
IC

A
TI

O
N

 O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.1
14

5H
FI

RE
W

A
LL

O

.1
14

8H
N

A
TI

V
E

O
.1

13
9H

O
PE

RA
TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.1
14

2H
RE

SO
U

RC
ES

O

.1
13

8H
SI

D

O
E.

12
15

H
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.1

15
8H

CI
PH

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.T

RA
N

SA
CT

IO
N

T.PHYSICAL X
T.1047HCONFID-JCS-

CODE
T.1057HINTEG-APPLI-

CODE
T.1060HINTEG-JCS-CODE

 X X

Java Card Protection Profile Collection Page 130 of 198

Version 1.1 May 2006

T.1054HCONFID-JCS-
DATA

T.1067HINTEG-JCS-DATA

X X

X X X

 X X X

T.1050HCONFID-APPLI-
DATA

 X X X X X X X X X X X X X X

T.1063HINTEG-APPLI- X X X X X X X X X X X X X X
T.SID.1 X X X X X X
T.SID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X X
T.RESOURCES X X X X X

T.INSTALL X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X

Table 5: Java Card System Standard 2.1.1 Configuration threats rationale

6.1.2.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption
A.1023HNATIVE is upheld. The objective OE.APPLET covers the assumption A.APPLET, and
contributes to the enforcement of the objective O.NATIVE in the presence of post-issuance
downloaded applications. The objective OE.VERIFICATION upholds the assumption
A.VERIFICATION.

Table 6 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

O
E.

N
A

TI
V

E

O
E.

A
PP

LE
T

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

V
ER

IF
IC

A
TI

O
N

A.NATIVE X
A.APPLET X

A.DELETION X
A.VERIFICATION X

Table 6: Java Card System Standard 2.1.1 Configuration assumptions rationale

The assumption A.DELETION is upheld by the environmental objective OE.CARD-MANAGEMENT.

Java Card Protection Profile Collection Page 131 of 198

Version 1.1 May 2006

6.1.2.3 Organizational Policies Related to Security Objectives

Only one organizational security policy, OSP.VERIFICATION, has been defined for this configuration.
This policy is covered by the security objective of the environment OE.VERIFICATION.

Java Card Protection Profile Collection Page 132 of 198

Version 1.1 May 2006

6.1.3 Java Card System Standard 2.2 Configuration

6.1.3.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL COVERED BY OE.1215HSCP.IC. PHYSICAL PROTECTIONS RELY ON THE
UNDERLYING PLATFORM AND ARE THEREFORE AN ENVIRONMENTAL ISSUE.CONFIDENTIALITY &
INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables reading or modifying a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.1152HALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys, PINs and biometric
templates are particular cases of an application’s sensitive data15 that ask for appropriate management
(O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT, O.TRANSACTION). If the PIN class of the Java Card
API is used, the objective (O.FIREWALL) is also concerned.

15 The Java Card System may possess keys as well..

Java Card Protection Profile Collection Page 133 of 198

Version 1.1 May 2006

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
shared resource of all the applications. The disclosure of such data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Any attempt to read a piece of information that was previously used by an application but has been
logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is
reused.O.EXT_MEM counters unauthorized disclosing and modification of Java Card System data
through the use of the external memory features of the TOE.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is
countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

Java Card Protection Profile Collection Page 134 of 198

Version 1.1 May 2006

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native
methods indirectly (O.NATIVE) that is, through an API that is assumed to
be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(OE.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective
countering this threat (O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal, RF signal loss or hardware reset) and most
CADs implement a timeout policy that prevent them from being blocked
should a card fails to answer. That point is out of scope of this Protection
Profile, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL and O.LOAD security objectives.

INTEGRITY AND INSTALLATION

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. In this
configuration the integrity of a package’s code is covered by the objective
O.LOAD.

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for

Java Card Protection Profile Collection Page 135 of 198

Version 1.1 May 2006

installation. In this configuration the integrity of a package’s code is
covered by the objective O.LOAD.

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The O.REMOTE security objective contributes to prevent the invocation of
a method that is not supposed to be accessible from outside the card.

CARD MANAGEMENT

T.DELETION This threat is covered by the O.1186HDELETION security objective.

OBJECT DELETION

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective.

The objective OE.CARD-MANAGEMENT supports OE.1224HVERIFICATION and contributes to cover
all the threats on confidentiality and integrity of code and data, the T.1097HINSTALL threat, the
T.1113HDELETION threat and the T.INTEG-APPLI-CODE.2 and T.INTEG-APPLI-DATA.2 threats. The
objective also contributes, by preventing usurpation of identity resulting from a malicious installation
of an applet on the card, to counter the threat T.1070HSID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

Java Card Protection Profile Collection Page 136 of 198

Version 1.1 May 2006

 O

.IN
ST

A
LL

O
.L

O
A

D

O
E.

V
ER

IF
IC

A
TI

O
N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.1
14

5H
FI

RE
W

A
LL

O

.1
14

8H
N

A
TI

V
E

O
.1

13
9H

O
PE

RA
TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.1
14

2H
RE

SO
U

RC
ES

O

.1
13

8H
SI

D

O
E.

12
15

H
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.1

15
8H

CI
PH

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.B

IO
-M

N
G

T
O

.T
RA

N
SA

CT
IO

N

O
.1

18
6H

D
EL

ET
IO

N

O
.R

EM
O

TE

O
.O

BJ
-D

EL
ET

IO
N

O

.E
X

T_
M

EM

T.PHYSICAL X
T.1047HCONFID-JCS-

CODE
T.1057HINTEG-APPLI-

CODE
T.1060HINTEG-JCS-

CODE

 X X

X

T.1054HCONFID-JCS-
DATA

T.1067HINTEG-JCS-
DATA

X X

X X X

 X X X

 X

T.1050HCONFID-APPLI- X X X X X X X X X X X X X X X X
T.1063HINTEG-APPLI- X X X X X X X X X X X X X X X X

T.1070HSID.1 X X X X X X
T.1073HSID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.1084HNATIVE X X X
T.1087HRESOURCES X X X X X

T.1097HINSTALL X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X

T.1113HDELETION X X
T.EXE-CODE-REMOTE X
T.1116HOBJ-DELETION X

Table 7: Java Card System Standard 2.2 Configuration threats rationale

6.1.3.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption
A.1023HNATIVE is upheld. The objective OE.APPLET covers the assumption A.APPLET, and
contributes to the enforcement of the objective O.NATIVE in the presence of post-issuance
downloaded applications. The objective OE.VERIFICATION upholds the assumption
A.VERIFICATION.

Table 8 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

Java Card Protection Profile Collection Page 137 of 198

Version 1.1 May 2006

O
E.

N
A

TI
V

E

O
E.

A
PP

LE
T

O
E.

V
ER

IF
IC

A
TI

O
N

A.NATIVE X
A.APPLET X

A.VERIFICATION X

Table 8: Java Card System Standard 2.2 Configuration assumptions rationale

6.1.3.3 Organizational Policies Related to Security Objectives

Only one organizational security policy, OSP.VERIFICATION, has been defined for this configuration.
This policy is covered by the security objective of the environment OE.VERIFICATION.

Java Card Protection Profile Collection Page 138 of 198

Version 1.1 May 2006

6.1.4 Defensive Configuration

6.1.4.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.1215HSCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the security objective
O.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As both the bytecode verifier and the firewall are software tools automating critical controls, the
objective O.1152HALARM asks for them to provide clear warning and error messages, so that the
appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data16 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.BIO-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective
(O.FIREWALL) is also concerned.

16 The Java Card System may possess keys as well.

Java Card Protection Profile Collection Page 139 of 198

Version 1.1 May 2006

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
shared resource of all the applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.
O.EXT_MEM counters unauthorized disclosing and modification of Java Card System data through
the use of the external memory features of the TOE.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is
countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
O.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective O.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

Java Card Protection Profile Collection Page 140 of 198

Version 1.1 May 2006

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native
methods indirectly (O.NATIVE) that is, through an API that is assumed to
be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(O.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective countering this threat
(O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CAD implement a
timeout policy that prevent them from being blocked should a card fails to
answer. That point is out of scope of this Protection Profile, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL security objective.

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The O.REMOTE security objective contributes to prevent the invocation of
a method that is not supposed to be accessible from outside the card.

CARD MANAGEMENT

T.DELETION This threat is covered by the O.1186HDELETION security objective.

Java Card Protection Profile Collection Page 141 of 198

Version 1.1 May 2006

OBJECT DELETION

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective.

The objective OE.CARD-MANAGEMENT contributes to cover the threats T.1097HINSTALL and
T.1113HDELETION. The objective also contributes, by preventing usurpation of identity resulting
from a malicious installation of an applet on the card, to counter the threat T.1070HSID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

 O
.IN

ST
A

LL

O
.V

ER
IF

IC
A

TI
O

N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.1
14

5H
FI

RE
W

A
LL

O

.1
14

8H
N

A
TI

V
E

O
.1

13
9H

O
PE

RA
TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.1
14

2H
RE

SO
U

RC
ES

O

.1
13

8H
SI

D

O
E.

12
15

H
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.1

15
8H

CI
PH

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.B

IO
-M

N
G

T
O

.T
RA

N
SA

CT
IO

N

O
.1

18
6H

D
EL

ET
IO

N

O
.R

EM
O

TE

O
.O

BJ
-D

EL
ET

IO
N

O

.E
X

T_
M

EM

T.PHYSICAL X
T.1047HCONFID-JCS-

CODE
T.1057HINTEG-APPLI-

CODE
T.1060HINTEG-JCS-CODE

 X

X

T.1054HCONFID-JCS-
DATA

T.1067HINTEG-JCS-
DATA

 X

X X X

 X X X

 X

T.1050HCONFID-APPLI- X X X X X X X X X X X X X X X
T.1063HINTEG-APPLI- X X X X X X X X X X X X X X X

T.SID.1 X X X X X X
T.SID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X X
T.RESOURCES X X X X X

T.INSTALL X X
T.DELETION X X

T.EXE-CODE-REMOTE X
T.OBJ-DELETION X

Table 9: Defensive Configuration threats rationale

6.1.4.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

Java Card Protection Profile Collection Page 142 of 198

Version 1.1 May 2006

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code (A.1023HNATIVE) embedded on the card. This trusted native code is not subject to change
during the lifetime of the card.

Table 10 provides a mapping of security objectives to the assumptions made on the environment of
the TOE.

O
E.

N
A

TI
V

E

A.NATIVE X

Table 10: Defensive Configuration assumptions rationale

6.1.4.3 Organizational Policies Related to Security Objectives

No organizational security policy has been defined for this configuration.

Java Card Protection Profile Collection Page 143 of 198

Version 1.1 May 2006

6.2 SECURITY REQUIREMENTS RATIONALE

This section is devoted to demonstrate that the set of security requirements (both on the TOE and on
the environment) is suitable to meet security objectives. The presentation follows the same structure as
§4.1, listing the requirements that are related to each objective of each configuration.

The following conventions shall are used throughout this section:

 In the text of the rationales there shall be explicit references to (access and information flow)
control policies, as contributing to meet certain security objectives. These references shall be
associated to the principal security components by means of which those policies are defined,
FDP_ACC and FDP_ACF in the case of control policies; FDP_IFC and FDP_IFF in the case of
information flow ones, as well as to all the SFRs on which the afore mentioned components
depend. The rationale tables, on the contrary, shall list the security objectives that the policies’
components contribute to meet.

 The name of a SFR class component shall be used to make reference to (all) the iterations of
that component that are present in a configuration. By present in a configuration it must be
understood as belonging to one of the groups included in that configuration.

 A reference to a particular iteration of a SFR component shall be denoted as
Component_Name/Label, where Label shall be the name of the TOE component.

6.2.1 Minimal Configuration

6.2.1.1 TOE Security Requirements Rationale

Unless explicitly stated, all the security functional requirements to which this section makes reference
are those specified in the group CoreG (§5.1.1).

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_SMF.1, FMT_MTD.1, and
FMT_MTD.3. Additional support includes FPT_RVM.1 and FPT_SEP.1.

Lastly, installation procedures ensure protection against forgery (the AID of
an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,

Java Card Protection Profile Collection Page 144 of 198

Version 1.1 May 2006

FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected:
communication with external users and their internal subjects is well
controlled (FIA_ATD.1, FIA_USB.1) to prevent alteration of TSF data (also
protected by components of the FPT class).

Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FPT_FLS.1). Memory management is controlled
by the TSF (FMT_MTD.1, FMT_MTD.3, FMT_SMF.1 and FMT_SMR.1) and
is only accessible to user-applications through the API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the Java Card VM information flow control policy (FDP_IFF.1,
FDP_IFC.1) and the functional requirements FPT_RVM.1 and FPT_SEP.1.
The functional requirements of the class FMT also indirectly contribute to
meet this objective.

O.NATIVE The Java Card VM is the machine running the bytecode of the applets
(FPT_RVM.1). These can only be linked with API methods or other
packages already on the card. This objective mainly relies on the
environmental objective OE.NATIVE, which upholds the assumption
A.NATIVE.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The Java Card VM information flow
control policy (FDP_IFF.1, FDP_IFC.1) prevents an application from keeping
a pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

O.SHRD_VAR_INTEG This objective is met by the Java Card VM information flow control policy
(FDP_IFF.1, FDP_IFC.1), which prevents an application from keeping a
pointer to the input/output buffer of the card, or any other global array
that is shared by all the applications. Such a pointer could be used to access
and modify it when the buffer is being used by another application.

Java Card Protection Profile Collection Page 145 of 198

Version 1.1 May 2006

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, as specified by
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card technology-based class libraries (“Java Card class
libraries”).

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries (see the class javacardx.crypto.Cipher and the package javacardx.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. API classes implement the security
functions behind these requirements. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

Java Card Protection Profile Collection Page 146 of 198

Version 1.1 May 2006

 FA
U

_A
R

P.
1

FC
S_

C
K

M
.1

FC
S_

C
K

M
.2

FC
S_

C
K

M
.3

FC
S_

C
K

M
.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FM
T_

SM
F.

1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X
O.SID X X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

Table 11: Security requirements rationale for the Minimal Configuration

Java Card Protection Profile Collection Page 147 of 198

Version 1.1 May 2006

6.2.1.2 IT Environment Security Requirements Rationale

The environmental objective OE.1224HVERIFICATION, which is satisfied by IT procedural means, is
met by the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective
OE.1212HSCP.SUPPORT and OE.1210HSCP.RECOVERY to assist the TOE to recover in the event of a
power failure. If the power fails or the card is withdrawn prematurely from the CAD, the operation of
the TOE may be interrupted leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 12: Security requirements rationale for the group SCPG

6.2.1.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears right below the table.

Java Card Protection Profile Collection Page 148 of 198

Version 1.1 May 2006

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO: FAU_SAA.1 is not

satisfied
FCS_CKM.1 (FCS_CKM.2 or

FCS_COP.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.2/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL
FDP_ACF.1/CMGR (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/CMGR,
FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.2/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFF.1/JCVM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.2/BCV,
FMT_MSA.3/BCV

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or

FDP_IFC.1)
OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FIA_ATD.1/AID None OK
FIA_UID.1/CMGR None OK
 None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/BCV (FDP_ACC.1 or

FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/BCV,
FMT_SMR.1/BCV,
FMT_SMF.1.1/BCV

Java Card Protection Profile Collection Page 149 of 198

Version 1.1 May 2006

SFR Dependency Status
FMT_MSA.1/CMGR (FDP_ACC.1 or

FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR,
FMT_SMF.1.1/CMGR

FMT_MSA.1/JCRE (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE

FMT_MSA.2/BCV (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.2/BCV,
 FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
 FMT_SMR.1/JCRE

FMT_MTD.1/JCRE (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FMT_SMR.1/JCRE,
 FMT_SMF.1.1/JCRE

FMT_MTD.3 (ADV_SPM.1) and
(FMT_MTD.1)

 OK: FMT_MTD.1/JCRE

FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK:
FPR_UNO.1 None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT.PHP.3/SCP None OK
FPT_RCV.3/SCP (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_RSA.1/BCV None OK
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP

Table 13: Functional Requirement Dependencies (Minimal)

Java Card Protection Profile Collection Page 150 of 198

Version 1.1 May 2006

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
Java Card VM or other components of the TOE detect these events during
their usual working order. Thus, in principle there would be no applicable
audit recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FIA_UID.1 This is required by the component FMT_SMR.1 of the group BCVG.
However, the role bytecode verifier defined in this component is attached
to an IT security function rather than to a “user” of the CC terminology.
The bytecode verifier does not “identify” itself with respect to the TOE,
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

6.2.1.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A medium strength of function
level to be the reasonable minimum level for cards hosting sensitive applications. It shall probably be
the case, as it is frequent nowadays, that the required strength of function level will be high in, for
instance, banking or electronic signature applications. Considering that Java Card technology-based
products may also address other less security sensitive contexts, and furthermore, that the resistance
of the mechanisms mentioned above to attacks with high potential is hard to be achieved and
demonstrated, the choice of a high strength of function requirement is left to the card issuer
depending on the intended usage of the product. Thus, in this protection profile, a protection against
moderate attack potential has been chosen as the minimal level for those multi-applicative cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.1.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.1.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

Java Card Protection Profile Collection Page 151 of 198

Version 1.1 May 2006

6.2.1.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

 ADV_FSP.1 Informal functional specification

 ADV_HLD.2 Security enforcing high-level design

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

 AGD_ADM.1 Administrator guidance

 AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

Java Card Protection Profile Collection Page 152 of 198

Version 1.1 May 2006

6.2.1.6 Internal Consistency and Mutual Support
The purpose of this part of the rationale is to show that the security requirements are mutually
supportive and internally consistent. No detailed analysis is given to this because:

 The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

 The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java Card Protection Profile Collection Page 153 of 198

Version 1.1 May 2006

6.2.2 Java Card System Standard 2.1.1 Configuration

6.2.2.1 TOE Security Requirements Rationale

Unless explicitly stated, all the security functional requirements to which this section makes reference
are those specified in the groups CoreG (§5.1.1), InstG (§5.1.2) and CarG (§5.1.8).

Note: the differences between the Minimal and the Java Card System Standard 2.1.1 configurations
have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_SMF.1, FMT_MTD.1, and
FMT_MTD.3. Additional support includes FPT_RVM.1 and FPT_SEP.1.

At last, installation procedures ensure protection against forgery (the AID
of an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.LOAD This objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2) and
the integrity of the corresponding data is under the control of the
PACKAGE LOADING information flow policy (FDP_IFC.2/CM,
FDP_IFF.1/CM) and FDP_UIT.1. Appropriate identification
(FIA_UID.1/CM) and transmission mechanisms are also enforced
(FTP_ITC.1).

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9). .

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly

Java Card Protection Profile Collection Page 154 of 198

Version 1.1 May 2006

aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1,
FMT_MTD.3,FMT_SMF.1, FMT_SMR.1) and is only accessible to user-
applications through the API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the Java Card VM information flow control policy (FDP_IFF.1,
FDP_IFC.1) and the functional requirements FPT_RVM.1, FPT_SEP.1 and
FDP_ITC.2. The functional requirements of the class FMT also indirectly
contribute to meet this objective.

O.NATIVE The Java Card VM is the machine running the bytecode of the applets
(FPT_RVM.1). These can only be linked with API methods or other
packages already on the card. This objective mainly relies on the
environmental objectives OE.NATIVE and OE.APPLET, which uphold the
assumptions A.1023HNATIVE and A.APPLET respectively.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The Java Card VM information flow
control policy (FDP_IFF.1, FDP_IFC.1) prevents an application from keeping
a pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

O.SHRD_VAR_INTEG This objective is met by the Java Card VM information flow control policy
(FDP_IFF.1, FDP_IFC.1), which prevents an application from keeping a
pointer to the input/output buffer of the card, or any other global array
that is shared by all the applications. Such a pointer could be used to access
and modify it when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Java Card Protection Profile Collection Page 155 of 198

Version 1.1 May 2006

Transactions are provided to applets as Java Card class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries, (see the class javacardx.crypto.Cipher and the package javacardx.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. API classes implement the security
functions behind these requirements. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

Java Card Protection Profile Collection Page 156 of 198

Version 1.1 May 2006

 FA
U

_A
R

P.
1

FC
S_

C
K

M
.1

FC
S_

C
K

M
.2

FC
S_

C
K

M
.3

FC
S_

C
K

M
.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FM
T_

SM
F.

1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

FC
O

_N
R

O
.2

FD
P_

IF
C.

2

FD
P_

IF
F.

1

FD
P_

IT
C.

2

FD
P_

U
IT

.1

FI
A

_U
ID

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

FT
P_

IT
C.

1

O.INSTALL X X X
O.LOAD X X X X X X

O.SID X
O.OPERATE X X

O.RESOURCES X X
O.FIREWALL X

Table 14: Security requirements rationale for the Java Card System Standard 2.1.1 Configuration

Java Card Protection Profile Collection Page 157 of 198

Version 1.1 May 2006

6.2.2.2 IT Environment Security Requirements Rationale

The environmental objective OE.1224HVERIFICATION, which is satisfied by IT procedural means, is
met by the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.APPLET might be also satisfied by IT procedural means. The IT
verification that a post-issuance loaded applet contains no native code could be carried out as a part of
the verification of how well the CAP file is formed. This verification has been associated in the group
BCVG (§5.1.3) to the requirement of secure security attributes, expressed by the component
FMT_MSA.2 (see application note at pp. 90).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective
OE.1212HSCP.SUPPORT and OE.1210HSCP.RECOVERY to assist the TOE to recover in the event of a
power failure. If the power fails or the card is withdrawn prematurely from the CAD the operation of
the TOE may be interrupted leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 15: Security requirements rationale for the group SCPG

6.2.2.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

Java Card Protection Profile Collection Page 158 of 198

Version 1.1 May 2006

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO: FAU_SAA.1 is not

satisfied
FCO_NRO.2 (FIA_UID.1) OK: FIA_UID.1/CM
FCS_CKM.1 (FCS_CKM.2 or

FCS_COP.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
 FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.2/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL
FDP_ACF.1/CMGR (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/CMGR,
 FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.2/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFC.2/CM (FDP_IFF.1) OK: FDP_IFF.1/CM
FDP_IFF.1/CM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.2/CM,
FMT_MSA.3/CM

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.2/BCV,
FMT_MSA.3/BCV

FDP_ITC.2/Installer (FDP_ACC.1 or
FDP_IFC.1) and
(FTP_ITC.1 or
FTP_TRP.1) and
(FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.2/CM,
FTP_ITC.1/CM

Java Card Protection Profile Collection Page 159 of 198

Version 1.1 May 2006

SFR Dependency Status
FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or

FDP_IFC.1)
OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FDP_UIT.1/CM (FDP_ACC.1 or

FDP_IFC.1) and
(FTP_ITC.1 or
FTP_TRP.1)

OK: FDP_IFC.2/CM,
FTP_ITC.1/CM

FIA_ATD.1/AID None OK
FIA_UID.1/CM None OK
FIA_UID.1/CMGR None OK
 None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/BCV (FDP_ACC.1 or

FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/BCV,
FMT_SMR.1/BCV,
FMT_SMF.1.1/BCV

FMT_MSA.1/CM (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/CM,
FMT_SMR.1/CM,
FMT_SMF.1.1/CM

FMT_MSA.1/CMGR (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR,
FMT_SMF.1.1/CMGR

FMT_MSA.1/JCRE (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE

FMT_MSA.2/BCV (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.2/BCV,
FMT_MSA.1/BCV,
 FMT_SMR.1/BCV

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CM (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CM,
 FMT_SMR.1/CM

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

Java Card Protection Profile Collection Page 160 of 198

Version 1.1 May 2006

SFR Dependency Status
FMT_MTD.1/JCRE (FMT_SMR.1)

and
(FMT_SMF.1)

OK: FMT_SMR.1/JCRE,
 FMT_SMF.1.1/JCRE

FMT_MTD.3 (ADV_SPM.1) and
(FMT_MTD.1)

 OK: FMT_MTD.1/JCRE

FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CM (FIA_UID.1) OK: FIA_UID.1/CM
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK:FIA_UID.2.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: FIA_UID.1
FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/Installer (ADV_SPM.1) OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT_RCV.3/Installer (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/Installer None OK
FRU_RSA.1/BCV None OK
FTP_ITC.1/CM None OK

Table 16: Functional Requirement Dependencies (Java Card System Standard 2.1.1)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
Java Card VM or other components of the TOE detect these events during
their usual working order. Thus, in principle there would be no applicable
audit recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

Java Card Protection Profile Collection Page 161 of 198

Version 1.1 May 2006

FIA_UID.1 This is required by the component FMT_SMR.1 of the group InstG.
However, the role installer defined in this component is attached to an IT
security function rather than to a “user” of the CC terminology. The
installer does not “identify” itself with respect to the TOE, but is a part of
it. Thus, here it is claimed that this dependency can be left out. The reader
may notice that the role is required because of the SFRs on management of
TSF data and security attributes, essentially those of the firewall policy.

 This is also required by the component FMT_SMR.1 of the group BCVG.
However, the role bytecode verifier defined in this component is attached
to an IT security function rather than to a “user” of the CC terminology.
The bytecode verifier does not “identify” itself with respect to the TOE;
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

6.2.2.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A medium strength of function
seems to be the reasonable minimum level for cards hosting sensitive applications. It shall probably be
the case, as it is frequent nowadays, that the required strength of function level will be high in, for
instance, banking or electronic signature applications. Considering that Java Card technology-based
products may also address other less security sensitive contexts, and furthermore, that the resistance
of the mechanisms mentioned above to attacks with high potential is hard to be achieved and
demonstrated, the choice of a high strength of function requirement is left to the card issuer
depending on the intended usage of the product. Thus, in this protection profile, a protection against
moderate attack potential has been chosen as the minimal level for those multi-applicative cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.2.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.2.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.2.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

Java Card Protection Profile Collection Page 162 of 198

Version 1.1 May 2006

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

 ADV_FSP.1 Informal functional specification

 ADV_HLD.2 Security enforcing high-level design

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

 AGD_ADM.1 Administrator guidance

 AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.2.6 Internal Consistency and Mutual Support
The purpose of this part of the Protection Profile rationale is to show that the security requirements
are mutually supportive and internally consistent. No detailed analysis is given to this because:

 The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

Java Card Protection Profile Collection Page 163 of 198

Version 1.1 May 2006

 The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java Card Protection Profile Collection Page 164 of 198

Version 1.1 May 2006

6.2.3 Java Card System Standard 2.2 Configuration

6.2.3.1 TOE Security Requirements Rationale

In the context of this rationale the FIREWALL access control policy is the one specified in the group LCG
(§5.1.6). The references to the components FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL and
FMT_MSA.1/JCRE must be understood as denoting the definitions of those components as provided
in the group LCG.

Note: The differences between the Java Card System Standard 2.1.1 and the Java Card System
Standard 2.2 configurations have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_SMF.1, FMT_MTD.1, and
FMT_MTD.3. Additional support includes FPT_RVM.1 and FPT_SEP.1.

Lastly, installation procedures ensure protection against forgery (the AID of
an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.LOAD This objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2) and
the integrity of the corresponding data is under the control of the
PACKAGE LOADING information flow policy (FDP_IFC.2/CM,
FDP_IFF.1/CM) and FDP_UIT.1. Appropriate identification
(FIA_UID.1/CM) and transmission mechanisms are also enforced
(FTP_ITC.1).

O.1186HDELETION This objective specifies that applet and package deletion must be secure.
The non-introduction of security holes is ensured by the ADEL access
control policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and
confidentiality of data that does not belong to the deleted applet or
package is a by-product of this policy as well. Non-accessibility of deleted
data is met by FDP_RIP.1/ADEL and the TSFs are protected against
possible failures of the deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3
(see application note)). The functional requirements of the class FMT
included in the group ADELG also contribute to meet this objective.

Java Card Protection Profile Collection Page 165 of 198

Version 1.1 May 2006

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly
aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

 Almost every objective and/or functional requirement indirectly
contributes to this one too, in particular the EXTERNAL MEMORY access
control policy (FDP_ACC.1, FDP_ACF.1), if the TOE implements external
memory features (Java Card platform, version 2.2.2).

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1,
FMT_MTD.3,FMT_SMF.1, FMT_SMR.1) and is only accessible to user-
applications through the API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the Java Card VM information flow control policy (FDP_IFF.1,
FDP_IFC.1), the Java Card RMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the functional requirements FPT_RVM.1,
FPT_SEP.1 and FDP_ITC.2. The functional requirements of the class FMT
also indirectly contribute to meet this objective.

O.NATIVE The Java Card VM is the machine running the bytecode of the applets
(FPT_RVM.1). These can only be linked with API methods or other
packages already on the card. This objective mainly relies on the
environmental objectives OE.NATIVE and OE.APPLET, which uphold the
assumptions A.1023HNATIVE and A.APPLET respectively.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The Java Card VM information flow
control policy (FDP_IFF.1, FDP_IFC.1) prevents an application from keeping
a pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

Java Card Protection Profile Collection Page 166 of 198

Version 1.1 May 2006

Protection of the array parameters of remotely invoked methods, which are
global as well, is covered by the general initialization of method
parameters (FDP_RIP.1).

O.SHRD_VAR_INTEG This objective is met by the Java Card VM information flow control policy
(FDP_IFF.1, FDP_IFC.1), which prevents an application from keeping a
pointer to the input/output buffer of the card, or any other global array
that is shared by all the applications. Such a pointer could be used to access
and modify it when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries (see the class javacardx.crypto.Cipher and the package javacard.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. API classes implement the security
functions behind these. The firewall security functions (FDP_ACC.2,
FDP_ACF.1) shall protect the access to private and internal data of the
objects.

O.BIO-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The applets that manage biometric
templates rely on the security functions that implement these
requirements. The firewall security functions (FDP_ACC.2, FDP_ACF.1)
shall protect the access to private and internal data of the templates. Note
that the objective applies only to configurations including the
javacardx.biometry package defined in [JCAPI222].

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

O.REMOTE The access to the TOE’s internal data and the flow of information from the
card to the CAD required by the Java Card RMI service is under control of
the Java Card RMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the JCRMI information flow control policy
(FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI). The functional requirements of the
class FMT included in the group RMIG also contribute to meet this
objective.

Java Card Protection Profile Collection Page 167 of 198

Version 1.1 May 2006

O.EXT_MEM The Java Card System memory is protected against applet’s tentatives of
unauthorized access through the external memory facilities by the
EXTERNAL MEMORY access control policy (FDP_ACC.1.1/EXT_MEM,
FDP_ACF.1.1/ EXT_MEM), which first controls the accessible address
space, then controls the effective read and write operations.

OBJECT DELETION

O.1189HOBJ-DELETION This objective specifies that deletion of objects is secure. The objective
is met by the functional requirements FDP_RIP.1/ODEL and
FPT_FLS.1/ODEL.

Java Card Protection Profile Collection Page 168 of 198

Version 1.1 May 2006

 FA
U

_A
R

P.
1

FC
S_

C
K

M
.1

FC
S_

C
K

M
.2

FC
S_

C
K

M
.3

FC
S_

C
K

M
.4

FC
S_

CO
P.

1

FD
P_

A
CC

.1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FM
T_

SM
F.

1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.BIO-MNGT X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X
O.EXT_MEM X X X X X X X

FC
O

_N
R

O
.2

FD
P_

IF
C.

2

FD
P_

IF
F.

1

FD
P_

IT
C.

2

FD
P_

U
IT

.1

FI
A

_U
ID

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

FT
P_

IT
C.

1

O.INSTALL X X X
O.LOAD X X X X X X

O.SID X
O.OPERATE X X

O.RESOURCES X X
O.FIREWALL X

Java Card Protection Profile Collection Page 169 of 198

Version 1.1 May 2006

 FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.3

FM
T_

R
EV

.1

FM
T_

SM
R

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

O.DELETION X X X X X X X X
O.OBJ-DELETION X X

O.REMOTE X X X X X X X X
O.FIREWALL X

Table 17: Security requirements rationale for the Java Card System Standard 2.2
Configuration

6.2.3.2 IT Environment Security Requirements Rationale

The environmental objective OE.1224HVERIFICATION, which is satisfied by IT procedural means, is
met by the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.APPLET might be also satisfied by IT procedural means. The IT
verification that a post-issuance loaded applet contains no native code could be carried out as a part of
the verification of how well the CAP file is formed. This verification has been associated in the group
BCVG (§5.1.3) to the requirement of secure security attributes, expressed by the component
FMT_MSA.2 (see application note at pp. 90).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective
OE.1212HSCP.SUPPORT and OE.1210HSCP.RECOVERY to assist the TOE to recover in the event of a
power failure or signal loss. If the RF signal is lost, the power fails or the card is withdrawn
prematurely from the CAD, the operation of the TOE may be interrupted leaving the TOE in an
inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

Java Card Protection Profile Collection Page 170 of 198

Version 1.1 May 2006

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 18: Security requirements rationale for the group SCPG

6.2.3.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO: FAU_SAA.1 is not

satisfied
FCO_NRO.2/CM (FIA_UID.1) OK: FIA_UID.1/CM
FCS_CKM.1 (FCS_CKM.2 or

FCS_COP.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
 FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
 FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or
FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
 FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.2/ADEL (FDP_ACF.1) OK:FDP_ACF.1/ADEL
FDP_ACC.2/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL

Java Card Protection Profile Collection Page 171 of 198

Version 1.1 May 2006

SFR Dependency Status
FDP_ACC.1.1/EXT_MEM (FDP_ACF.1) OK: FDP_ACF.1.1/

EXT_MEM
FDP_ACC.2/JCRMI (FDP_ACF.1) OK: FDP_ACF.1/JCRMI
FDP_ACF.1/ADEL (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.2/ADEL,
FMT_MSA.3/ADEL

FDP_ACF.1/CMGR (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1/CMGR,
 FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_ACF.1/JCRMI (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.2/JCRMI,
FMT_MSA.3/JCRMI

FDP_ACF.1.1/ EXT_MEM (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.1.1/EXT_MEM,
FMT_MSA.3.1/EXT_MEM

FDP_IFC.1/JCRMI (FDP_IFF.1) OK: FDP_IFF.1/JCRMI

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.2/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFC.2/CM (FDP_IFF.1) OK: FDP_IFF.1/CM
FDP_IFF.1/CM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.2/CM,
FMT_MSA.3/CM

FDP_IFF.1/JCRMI (FDP_IFC.1) and
(FMT_MSA.3) OK: FDP_IFC.1/JCRMI,

 FMT_MSA.3/JCRMI

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.2/BCV,
FMT_MSA.3/BCV

FDP_ITC.2 (FDP_ACC.1 or
FDP_IFC.1) and
(FTP_ITC.1 or
FTP_TRP.1) and
(FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.2/CM,
FTP_ITC.1/CM

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or

FDP_IFC.1)
OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FDP_UIT.1/CM (FDP_ACC.1 or

FDP_IFC.1) and
(FTP_ITC.1 or
FTP_TRP.1)

OK: FDP_IFC.2/CM,
FTP_ITC.1/CM

FIA_ATD.1/AID None OK
FIA_UID.1/CM None OK
FIA_UID.1/CMGR None OK
FIA_UID.2.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID

Java Card Protection Profile Collection Page 172 of 198

Version 1.1 May 2006

SFR Dependency Status
FMT_MSA.1/ADEL (FDP_ACC.1 or

FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.2/ADEL,
FMT_SMR.1/ADEL,
FMT_SMF.1.1/ADEL

FMT_MSA.1/BCV (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/BCV,
FMT_SMR.1/BCV,
FMT_SMF.1.1/BCV

FMT_MSA.1/CM (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/CM,
FMT_SMR.1/CM,
FMT_SMF.1.1/CM

FMT_MSA.1/CMGR (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR,
FMT_SMF.1.1/CMGR

FMT_MSA.1/EXPORT
FMT_MSA.1/JCRMI
FMT_MSA.1/REM-REFS

(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.1/JCRMI,
FMT_SMR.1/JCRMI,
FMT_SMF.1.1/ADEL,
FMT_SMF.1.1/JCRMI

FMT_MSA.1/JCRE (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE

FMT_MSA.1.1/EXT_MEM, (FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMR.1)
and
(FMT_SMF.1)

OK:
FDP_ACC.1.1/EXT_MEM,
FMT_SMR.1.1/JCRE,
FMT_SMF.1.1/EXT_MEM

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.2/BCV (ADV_SPM.1) and
(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.2/BCV,
FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/ADEL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
 FMT_SMR.1/BCV

FMT_MSA.3/CM (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CM,
FMT_SMR.1/CM

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

Java Card Protection Profile Collection Page 173 of 198

Version 1.1 May 2006

SFR Dependency Status
FMT_MSA.3/FIREWALL (FMT_MSA.1) and

(FMT_SMR.1)
OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/JCRMI (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MSA.3.1/EXT_MEM (FMT_MSA.1) and
(FMT_SMR.1)

OK:
FMT_MSA.1.1/EXT_MEM,
FMT_SMR.1.1/JCRE

FMT_MTD.1/JCRE (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE

FMT_MTD.3 (ADV_SPM.1) and
(FMT_MTD.1)

OK: FMT_MTD.1/JCRE

FMT_REV.1/JCRMI (FMT_SMR.1) OK: FMT_SMR.1/JCRMI
FMT_SMR.1/ADEL (FIA_UID.1) KO: FIA_UID.1
FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CM (FIA_UID.1) OK: FIA_UID.1/CM
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK:FIA_UID.2.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: FIA_UID.1
FMT_SMR.1/JCRMI (FIA_UID.1) OK: FIA_UID.2.1/AID

FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/ADEL (ADV_SPM.1) OK
FPT_FLS.1/Installer (ADV_SPM.1) OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/ODEL (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT_RCV.3/Installer (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/Installer None OK
FRU_RSA.1/BCV None OK
FTP_ITC.1/CM None OK

Table 19: Functional Requirement Dependencies (Java Card System Standard 2.2)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation

Java Card Protection Profile Collection Page 174 of 198

Version 1.1 May 2006

analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
Java Card VM or other components of the TOE detect these events during
their usual working order. Thus, in principle there would be no applicable
audit recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FIA_UID.1 This is required by the component FMT_SMR.1 of the group InstG.
However, the role installer defined in this component is attached to an IT
security function rather than to a “user” of the CC terminology. The
installer does not “identify” itself with respect to the TOE, but is a part of
it. Thus, here it is claimed that this dependency can be left out.
The reader may notice that the role is required because of the SFRs on
management of TSF data and security attributes, essentially those of the
firewall policy.

 This is also required by the component FMT_SMR.1 in group ADELG. See
the explanation in the paragraph above (the role in this case is applet
deletion manager).

 This is also required by the component FMT_SMR.1 of the group BCVG.
However, the role bytecode verifier defined in this component is attached
to an IT security function rather than to a “user” of the CC terminology.
The bytecode verifier does not “identify” itself with respect to the TOE,
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

6.2.3.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A medium strength of function
seems to be the reasonable minimum level for cards hosting sensitive applications. It shall probably be
the case, as it is frequent nowadays, that the required strength of function level will be high in, for
instance, banking or electronic signature applications. Considering that Java Card technology-based
products may also address other less security sensitive contexts, and furthermore, that the resistance
of the mechanisms mentioned above to attacks with high potential is hard to be achieved and
demonstrated, the choice of a high strength of function requirement is left to the card issuer
depending on the intended usage of the product. Thus, in this protection profile it has been chosen a
protection against moderate attack potential as the minimal level for those multi-applicative cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

Java Card Protection Profile Collection Page 175 of 198

Version 1.1 May 2006

6.2.3.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.3.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.3.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

 ADV_FSP.1 Informal functional specification

 ADV_HLD.2 Security enforcing high-level design

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

 AGD_ADM.1 Administrator guidance

 AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

Java Card Protection Profile Collection Page 176 of 198

Version 1.1 May 2006

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.3.6 Internal Consistency and Mutual Support
The purpose of this part of the Protection Profile rationale is to show that the security requirements
are mutually supportive and internally consistent. No detailed analysis is given to this because:

 The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

 The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java Card Protection Profile Collection Page 177 of 198

Version 1.1 May 2006

6.2.4 Defensive Configuration

6.2.4.1 TOE Security Requirements Rationale

In the context of this rationale the FIREWALL access control policy is the one specified in the group LCG
(§5.1.6). The references to the components FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL and
FMT_MSA.1/JCRE must be understood as denoting the definitions of those components as provided
in the group LCG.

This rationale for this configuration is almost the same than the one defined for the Java Card System
Standard 2.2 configuration. There are two main differences:

1. The configuration Defensive has no security objective O.LOAD. The packages loaded post-
issuance are verified on card. Therefore there shall be no reference to the SFRs of the group
CarG (§5.1.8).

2. The configuration Defensive is the only one to have as security objective
O.1205HVERIFICATION. Therefore there shall be references to the SFRs of the group BCVG
(§5.1.3).

Note: the differences between the Defensive and the Java Card System Standard 2.2 configurations
have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_SMF.1, FMT_MTD.1, and
FMT_MTD.3. Additional support includes FPT_RVM.1 and FPT_SEP.1.

 At last, installation procedures ensure protection against forgery (the AID
of an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.1186HDELETION This objective specifies that applet and package deletion must be secure.
The non-introduction of security holes is ensured by the ADEL access
control policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and
confidentiality of data that does not belong to the deleted applet or
package is a by-product of this policy as well. Non-accessibility of deleted
data is met by FDP_RIP.1/ADEL and the TSFs are protected against
possible failures of the deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3

Java Card Protection Profile Collection Page 178 of 198

Version 1.1 May 2006

(see application note)). The functional requirements of the class FMT
included in the group ADELG also contribute to meet this objective.

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (the latter is
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly
aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

Almost every objective and/or functional requirement indirectly
contributes to this one too, in particular the EXTERNAL MEMORY access
control policy (FDP_ACC.1, FDP_ACF.1), if the TOE implements external
memory features.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1,
FMT_MTD.3,FMT_SMF.1, FMT_SMR.1) and is only accessible to user-
applications through the API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the Java Card VM information flow control policy (FDP_IFF.1,
FDP_IFC.1), the Java Card RMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the functional requirements FPT_RVM.1,
FPT_SEP.1 and FDP_ITC.2. The functional requirements of the class FMT
also indirectly contribute to meet this objective.

O.NATIVE The Java Card VM is the machine running the bytecode of the applets
(FPT_RVM.1). These can only be linked with API methods or other
packages already on the card. This objective mainly relies on the
environmental objectives OE.NATIVE and in the requirement of secure
security attributes expressed by the component FMT_MSA.2 of the group
BCVG (§5.1.3) (see application note at pp. 90).

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block. If the block is used to store the local variables of a newly
allocated frame, then the TYPING information flow control policy 2 of the
group BCVG (FDP_IFC.2/BCV, FDP_IFF.2/BCV) also contributes to satisfy
this objective by ensuring that the local variable is never read before
being assigned with an initial value.

Java Card Protection Profile Collection Page 179 of 198

Version 1.1 May 2006

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The Java Card VM information flow control
policy (FDP_IFF.1, FDP_IFC.1) prevents an application from keeping a
pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

Protection of the array parameters of remotely invoked methods, which are
global as well, is covered by the general initialization of method
parameters (FDP_RIP.1).

O.SHRD_VAR_INTEG This objective is met by the Java Card VM information flow control policy
(FDP_IFF.1, FDP_IFC.1), which prevents an application from keeping a
pointer to the input/output buffer of the card, or any other global array
that is shared by all the applications. Such a pointer could be used to access
and modify it when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries (see the class javacardx.crypto.Cipher and the package javacard.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. API classes implement the security
functions behind these. The firewall security functions (FDP_ACC.2,
FDP_ACF.1) shall protect the access to private and internal data of the
objects.

O.BIO-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The applets that manage biometric
templates rely on the security functions that implement these
requirements. The firewall security functions (FDP_ACC.2, FDP_ACF.1)
shall protect the access to private and internal data of the templates. Note
that the objective applies only to configurations including the
javacardx.biometry package defined in [JCAPI222].

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

Java Card Protection Profile Collection Page 180 of 198

Version 1.1 May 2006

O.REMOTE The access to the TOE’s internal data and the flow of information from the
card to the CAD required by the Java Card RMI service is under control of
the Java Card RMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the JCRMI information flow control policy
(FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI). The functional requirements of the
class FMT included in the group RMIG also contribute to meet this
objective.O.EXT_MEM The Java Card System memory is protected
against applet’s tentatives of unauthorized access through the external
memory facilities by the EXTERNAL MEMORY access control policy
(FDP_ACC.1.1/EXT_MEM, FDP_ACF.1.1/ EXT_MEM), which first controls
the accessible address space, then controls the effective read and write
operations.

OBJECT DELETION

O.1189HOBJ-DELETION This objective specifies that deletion of objects is secure. The objective
is met by the functional requirements FDP_RIP.1/ODEL and
FPT_FLS.1/ODEL.

INTEGRITY, CONFIDENTIALITY AND CORRECT EXECUTION

O.1205HVERIFICATION This objective is directly met by the TYPING information flow control
policy (FDP_IFC.2/BCV, FDP_IFF.2/BCV) 2and the functional requirements
of the group BCVG (§5.1.3).

Java Card Protection Profile Collection Page 181 of 198

Version 1.1 May 2006

 FA
U

_A
R

P.
1

FC
S_

C
K

M
.1

FC
S_

C
K

M
.2

FC
S_

C
K

M
.3

FC
S_

C
K

M
.4

FC
S_

CO
P.

1

FD
P_

A
CC

.1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FM
T_

SM
F.

1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.BIO-MNGT X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X
O.EXT_MEM X X X X X X X

FD
P_

IT
C.

2

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

O.INSTALL X X X
O.SID X

O.OPERATE X X
O.RESOURCES X X

O.FIREWALL X

Java Card Protection Profile Collection Page 182 of 198

Version 1.1 May 2006

 FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.3

FM
T_

R
EV

.1

FM
T_

SM
R

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

O.DELETION X X X X X X X X
O.OBJ-DELETION X X

O.REMOTE X X X X X X X X
O.FIREWALL X

 FD
P_

IF
C.

2

FD
P_

IF
F.

1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

SM
R

.1

FR
U

_R
SA

.1

O.REALLOCATION X X X X
O.VERIFICATION X X X X X X X

Table 20: Security requirements rationale for the Defensive Configuration

6.2.4.2 IT Environment Security Requirements Rationale

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective
OE.1212HSCP.SUPPORT and OE.1210HSCP.RECOVERY to assist the TOE to recover in the event of a
power failure or signal loss. If the RF signal is lost, the power fails or the card is withdrawn
prematurely from the CAD the operation of the TOE may be interrupted leaving the TOE in an
inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

Java Card Protection Profile Collection Page 183 of 198

Version 1.1 May 2006

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 21: Security requirements rationale for the group SCPG

6.2.4.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO: FAU_SAA.1 is not satisfied
FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1)

and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
 FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
 FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
 FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or FDP_ITC.2
or FCS_CKM.1) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or FDP_ITC.2
or FCS_CKM.1) and
(FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
 FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.2/ADEL (FDP_ACF.1) OK:FDP_ACF.1/ADEL
FDP_ACC.2/FIREWALL (FDP_ACF.1) OK: FDP_ACF.1/FIREWALL
FDP_ACC.2/JCRMI (FDP_ACF.1) OK: FDP_ACF.1/JCRMI
FDP_ACC.1.1/EXT_MEM (FDP_ACF.1) OK: FDP_ACF.1.1/ EXT_MEM
FDP_ACF.1/ADEL (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.2/ADEL,
FMT_MSA.3/ADEL

FDP_ACF.1/CMGR (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1/CMGR,
 FMT_MSA.3/CMGR

Java Card Protection Profile Collection Page 184 of 198

Version 1.1 May 2006

SFR Dependency Status
FDP_ACF.1/FIREWALL (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_ACF.1/JCRMI (FDP_ACC.1) and
(FMT_MSA.3)

OK FDP_ACC.2/JCRMI,
FMT_MSA.3/JCRMI

FDP_ACF.1.1/ EXT_MEM (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1.1/EXT_MEM,
FMT_MSA.3.1/EXT_MEM

FDP_IFC.1/JCRMI (FDP_IFF.1) OK: FDP_IFF.1/JCRMI

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.2/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV

FDP_IFF.1/JCRMI (FDP_IFC.1) and
(FMT_MSA.3) OK: FDP_IFC.1/JCRMI,

 FMT_MSA.3/JCRMI

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.2/BCV,
FMT_MSA.3/BCV

FDP_ITC.2 (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or
FTP_TRP.1) and (FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.2/BCV,
KO: FTP_ITC.1 or FTP_TRP.1

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) OK: FDP_ACC.2/FIREWALL,

FDP_IFC.1/JCVM
FDP_SDI.2 None OK
FIA_ATD.1/AID None OK
FIA_UID.1/CMGR None OK
FIA_UID.2.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/ADEL (FDP_ACC.1 or FDP_IFC.1)

and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.2/ADEL,
FMT_SMR.1/ADEL,
FMT_SMF.1.1/ADEL

FMT_MSA.1/BCV (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.2/BCV,
FMT_SMR.1/BCV,

FMT_SMF.1.1/BCV

FMT_MSA.1/CMGR (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.1/CMGR,
 FMT_SMR.1/CMGR,
 FMT_SMF.1.1/CMGR

FMT_MSA.1/EXPORT
FMT_MSA.1/JCRMI
FMT_MSA.1/REM-REFS

(FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_IFC.1/JCRMI,
FMT_SMR.1/JCRMI,
FMT_SMF.1.1/ADEL,
FMT_SMF.1.1/JCRMI

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE,
FMT_SMF.1.1/ADEL

Java Card Protection Profile Collection Page 185 of 198

Version 1.1 May 2006

SFR Dependency Status
FMT_MSA.1.1/EXT_MEM, (FDP_ACC.2 or FDP_IFC.1)

and (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FDP_ACC.1.1/EXT_MEM,
FMT_SMR.1.1/JCRE,
FMT_SMF.1.1/EXT_MEM

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.2/BCV (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.2/BCV,
FMT_MSA.1/BCV,

 FMT_SMR.1/BCV

FMT_MSA.3/ADEL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/ADEL,
 FMT_SMR.1/ADEL

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,

 FMT_SMR.1/BCV

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
 FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/JCRMI (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MSA.3.1/EXT_MEM (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1.1/EXT_MEM,
FMT_SMR.1.1/JCRE

FMT_MTD.1/JCRE (FMT_SMR.1)
and
(FMT_SMF.1)

OK: FMT_SMR.1/JCRE,
FMT_SMF.1.1/JCRE,
FMT_SMF.1.1/ADEL

FMT_MTD.3 (ADV_SPM.1) and
(FMT_MTD.1)

OK: FMT_MTD.1/JCRE

FMT_REV.1/JCRMI (FMT_SMR.1) OK: FMT_SMR.1/JCRMI
FMT_SMR.1/ADEL (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK: FIA_UID.2.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/JCRMI (FIA_UID.1) OK: FIA_UID.2.1/AID
FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/ADEL (ADV_SPM.1) OK

FPT_FLS.1/Installer (ADV_SPM.1) OK

FPT_FLS.1/JCS (ADV_SPM.1) OK

FPT_FLS.1/ODEL (ADV_SPM.1) OK

FPT_FLS.1/SCP (ADV_SPM.1) OK

Java Card Protection Profile Collection Page 186 of 198

Version 1.1 May 2006

SFR Dependency Status
FPT_RCV.3/Installer (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/BCV None OK
FRU_RSA.1/Installer None OK

Table 22: Functional Requirement Dependencies (Defensive)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
Java Card VM or other components of the TOE detect these events during
their usual working order. Thus, in principle there would be no applicable
audit recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FTP_ITC.1 or FTP_TRP.1 Import from outside TSF control defines the mechanisms for introduction
of user data into the TOE such that it has appropriate security attributes
and is appropriately protected. The dependency of FDP_ITC.2 on one of
these components is not justified in the presence of on-card bytecode
verification.

FIA_UID.1 This is required by the component FMT_SMR.1 of the group InstG.
However, the role installer defined in this component is attached to an IT
security function rather than to a “user” of the CC terminology. The
installer does not “identify” itself with respect to the TOE, but is a part of
it. Thus, here it is claimed that this dependency can be left out. The reader
may notice that the role is required because of the SFRs on management of
TSF data and security attributes, essentially those of the firewall policy.

 This is also required by the component FMT_SMR.1 in groups ADELG and
BCVG. See the explanation in the paragraph above (the roles in this case
are applet deletion manager and bytecode verifier).

Java Card Protection Profile Collection Page 187 of 198

Version 1.1 May 2006

6.2.4.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A medium strength of function
seems to be the reasonable minimum level for cards hosting sensitive applications. It shall probably be
the case, as it is frequent nowadays, that the required strength of function level will be high in, for
instance, banking or electronic signature applications. Considering that Java Card technology-based
products may also address other less security sensitive contexts, and furthermore, that the resistance
of the mechanisms mentioned above to attacks with high potential is hard to be achieved and
demonstrated, the choice of a high strength of function requirement is left to the card issuer
depending on the intended usage of the product. Thus, in this protection profile, a protection against
moderate attack potential has been chosen as the minimal level for those multi-applicative cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.4.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.4.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.4.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

Java Card Protection Profile Collection Page 188 of 198

Version 1.1 May 2006

 ADV_FSP.1 Informal functional specification

 ADV_HLD.2 Security enforcing high-level design

 ADV_IMP.1 Subset of the implementation of the TSF

 ADV_LLD.1 Descriptive low-level design

 AGD_ADM.1 Administrator guidance

 AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

 ADV_LLD.1 Descriptive low-level design

 ADV_RCR.1 Informal correspondence demonstration

 ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.4.6 Internal Consistency and Mutual Support
The purpose of this part of the Protection Profile rationale is to show that the security requirements
are mutually supportive and internally consistent. No detailed analysis is given to this because:

 The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

 The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java Card Protection Profile Collection Page 189 of 198

Version 1.1 May 2006

7 APPENDIX: A UNIFIED VIEW OF
CONFIGURATIONS

This section provides an all-embracing presentation of the security environment, security objectives
and functional requirements of the configurations defined in this document. The tables included
below not only make explicit the contents proper of each configuration but also reflects the
differences between the configurations.

Assets are common to all configurations. Those corresponding to User data are: D.APP_CODE,
D.APP_C_DATA, D.APP_I_DATA, D.PIN and D.APP_KEYs. D.BIO is also user data in version 2.2.2
of the Java Card platform. Those corresponding to TSF data are: D.JCS_CODE, D.JCS_DATA,
D.SEC_DATA, D.API_DATA, D.CRYPTO and D.JCS_KEYs.

The configurations’ assumptions are displayed in Table 23.

Assumption Minimal Standard 2.1.1 Standard 2.2 Defensive
A.NATIVE X X X X
A.NO-INSTALL X
A.NO-DELETION X
A.DELETION X
A.APPLET X X
A.VERIFICATION X X X

Table 23: Assumptions of Configurations

The threats to the assets against which specific protection is required within the configurations or their
environments are displayed in Table 24. The post-issuance installation of applets introduces one
threat (T.INSTALL), and two more (T.INTEG-APPLI-CODE.2, T.INTEG-APPLI-DATA.2) in the case
that bytecode verification is performed off-card. Thereby the absence of the latter two threats in the
Java Card System 2.2 Defensive configuration.

Java Card Protection Profile Collection Page 190 of 198

Version 1.1 May 2006

Threat Minimal Standard 2.1.1 Standard 2.2 Defensive
T.PHYSICAL X X X X
T.CONFID-JCS-CODE X X X X
T.CONFID-APPLI-DATA X X X X
T.CONFID-JCS-DATA X X X X
T.INTEG-APPLI-CODE X X X X
T.INTEG-JCS-CODE X X X X
T.INTEG-APPLI-DATA X X X X
T.INTEG-JCS-DATA X X X X
T.SID.1 X X X X
T.SID.2 X X X X
T.EXE-CODE.1 X X X X
T.EXE-CODE.2 X X X X
T.NATIVE X X X X
T.RESOURCES X X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X
T.INSTALL X X X
T.EXE-CODE-REMOTE X X
T.DELETION X X
T.OBJ-DELETION X X

Table 24: Threats of Configurations

There is only one organizational security policy defined in this document, OSP.1131HVERIFICATION,
which applies for both the Java Card System Standard 2.1.1 and the Java Card System Standard 2.2
configurations.

Each configuration determines a particular TOE. Table 25 lists the security objectives addressed by
each of those TOEs. The configuration that includes an on -card bytecode verifier is the only one to
have the verification of the bytecodes of a package as a security objective. The addressing of that
objective is the difference between the Defensive and the Standard 2.2 configurations.

Java Card Protection Profile Collection Page 191 of 198

Version 1.1 May 2006

TOE security objective Minimal Standard 2.1.1 Standard 2.2 Defensive
O.SID X X X X
O.OPERATE X X X X
O.RESOURCES X X X X
O.FIREWALL X X X X
O.NATIVE X X X X
O.REALLOCATION X X X X
O.SHRD_VAR_CONFID X X X X
O.SHRD_VAR_INTEG X X X X
O.ALARM X X X X
O.TRANSACTION X X X X
O.CIPHER X X X X
O.PIN-MNGT X X X X
O.KEY-MNGT X X X X
O.1177HINSTALL X X X
O.LOAD X X
O.1186HDELETION X X
O.OBJ-DELETION X X
O.REMOTE X X

O.BIO-MNGT X X
O.EXT_MEM X X
O.VERIFICATION X

Table 25: TOE Security Objectives of Configurations

Table 26 displays the security objectives to be achieved by the environment associated to each TOE
configuration.

Environment security objective Minimal Standard 2.1.1 Standard 2.2 Defensive
OE.NATIVE X X X X
OE.SCP.RECOVERY X X X X
OE.SCP.SUPPORT X X X X
OE.SCP.IC X X X X
OE.NO-DELETION X
OE.NO-INSTALL X
OE.VERIFICATION X X X
OE.APPLET X X
OE.CARD-MANAGEMENT X X X X

Table 26: Security objectives for the environment of Configurations

Finally, Table 27 makes explicit the relation between SFRs, and the groups to which they belong, and
the several configurations defined in this document.

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FAU_ARP.1/JCS CoreG X X X X
FCS_CKM.1 CoreG X X X X
FCS_CKM.2 CoreG X X X X
FCS_CKM.3 CoreG X X X X
FCS_CKM.4 CoreG X X X X
FCS_COP.1 CoreG X X X X

Java Card Protection Profile Collection Page 192 of 198

Version 1.1 May 2006

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FDP_ACC.2/FIREWALL CoreG X X
FDP_ACF.1/FIREWALL CoreG X X
FDP_IFC.1/JCVM CoreG X X X X
FDP_IFF.1/JCVM CoreG X X X X
FDP_RIP.1/ABORT CoreG X X X X
FDP_RIP.1/APDU CoreG X X X X
FDP_RIP.1/bArray CoreG X X X X
FDP_RIP.1/KEYS CoreG X X X X
FDP_RIP.1/OBJECTS CoreG X X X X
FDP_RIP.1/TRANSIENT CoreG X X
FDP_ROL.1/FIREWALL CoreG X X X X
FDP_SDI.2 CoreG X X X X
FIA_ATD.1/AID CoreG X X X X
FIA_UID.2/AID CoreG X X X X
FIA_USB.1 CoreG X X X X
FMT_MSA.1/JCRE CoreG X X
FMT_MSA.2/JCRE CoreG X X X X
FMT_MSA.3/FIREWALL CoreG X X X X
FMT_MTD.1/JCRE CoreG X X X X
FMT_MTD.3 CoreG X X X X
FMT_SMR.1/JCRE CoreG X X X X
FPR_UNO.1 CoreG X X X X
FPT_FLS.1/JCS CoreG X X X X
FPT_RVM.1 CoreG X X X X
FPT_SEP.1 CoreG X X X X
FPT_TDC.1 CoreG X X X X
FPT_TST.1 CoreG X X X X
FDP_ITC.2 InstG X X X
FMT_SMR.1/Installer InstG X X X
FPT_FLS.1/Installer InstG X X X
FPT_RCV.3/Installer InstG X X X
FRU_RSA.1/Installer InstG X X X
FDP_IFC.2/BCV BCVG X X X X
FDP_IFF.2/BCV BCVG X X X X
FMT_MSA.1/BCV BCVG X X X X
FMT_MSA.2/BCV BCVG X X X X
FMT_MSA.3/BCV BCVG X X X X
FMT_SMR.1/BCV BCVG X X X X
FRU_RSA.1/BCV BCVG X X X X
FDP_ACC.2/ADEL ADELG X X
FDP_ACF.1/ADEL ADELG X X
FMT_MSA.1/ADEL ADELG X X
FMT_MSA.3/ADEL ADELG X X
FMT_SMR.1/ADEL ADELG X X
FDP_RIP.1/ADEL ADELG X X
FPT_FLS.1/ADEL ADELG X X
FDP_ACC.2/JCRMI RMIG X X
FDP_ACF.1/JCRMI RMIG X X
FDP_IFC.1/JCRMI RMIG X X
FDP_IFF.1/JCRMI RMIG X X
FMT_MSA.1/JCRMI RMIG X X

Java Card Protection Profile Collection Page 193 of 198

Version 1.1 May 2006

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FMT_MSA.3/JCRMI RMIG X X
FMT_REV.1/JCRMI RMIG X X
FMT_SMR.1/JCRMI RMIG X X
FDP_ACC.2/FIREWALL LCG X X
FDP_ACF.1/FIREWALL LCG X X
FMT_MSA.1/JCRE LCG X X
FDP_RIP.1/TRANSIENT LCG X X
FDP_RIP.1/ODEL ODELG X X
FPT_FLS.1/ODEL ODELG X X
FCO_NRO.2/CM CarG X X
FDP_IFC.2/CM CarG X X
FDP_IFF.1/CM CarG X X
FDP_UIT.1/CM CarG X X
FMT_MSA.1/CM CarG X X
FMT_MSA.3/CM CarG X X
FMT_SMR.1/CM CarG X X
FIA_UID.1/CM CarG X X
FTP_ITC.1/CM CarG X X
FPT_PHP.3/SCP SCPG X X X X
FPT_AMT.1/SCP SCPG X X X X
FPT_FLS.1/SCP SCPG X X X X
FPT_RCV.3/SCP SCPG X X X X
FPT_RCV.4/SCP SCPG X X X X
FPT_RVM.1/SCP SCPG X X X X
FPT_SEP.1/SCP SCPG X X X X
FRU_FLT.1/SCP SCPG X X X X
FDP_ACC.1/CMGR CMGRG X X X X
FDP_ACF.1/CMGR CMGRG X X X X
FIA_UID.1/CMGR CMGRG X X X X
FMT_MSA.1/CMGR CMGRG X X X X
FMT_MSA.3/CMGR CMGRG X X X X
FMT_SMR.1/CMGR CMGRG X X X X
FDP_ACC.1.1/EXT_MEM EMG X X
FDP_ACF.1.1/ EXT_MEM EMG X X
FMT_MSA.1.1/EXT_MEM EMG X X
FMT_MSA.3.1/EXT_MEM EMG X X

Table 27: Security Functional Requirements of Configurations

Finally, Table 28 summarizes the roles associated with each configuration:

Configuration Roles

Minimal Java Card RE, authorized role (CMGRG), Bytecode Verifier.

Java Card System Standard 2.1.1 Java Card RE, Installer, authorized role (CarG), authorized role
(CMGRG), Bytecode Verifier.

Java Card System Standard 2.2 Java Card RE, Installer, authorized role (CarG), authorized role
(CMGRG) applet deletion manager applets (RMIG) Bytecode

Java Card Protection Profile Collection Page 194 of 198

Version 1.1 May 2006

(CMGRG), applet deletion manager, applets (RMIG), Bytecode
Verifier.

Defensive Java Card RE, Installer, authorized role (CMGRG), applet
deletion manager, applets (RMIG), Bytecode Verifier.

Table 28: Configurations and Roles

Java Card Protection Profile Collection Page 195 of 198

Version 1.1 May 2006

8 APPENDIX: GLOSSARY

AID Application identifier, an ISO-7816 data format used for unique
identification of Java Card applets (and certain kinds of files in card file
systems). The Java Card platform uses the AID data format to identify
applets and packages. AIDs are administered by the International Standards
Organization (ISO), so they can be used as unique identifiers.

AIDs are also used in the security policies (see “Context” below): applets’
AIDs are related to the selection mechanisms, packages’ AIDs are used in the
enforcement of the firewall. Note: although they serve different purposes,
they share the same name space.

APDU Application Protocol Data Unit, an ISO 7816-4 defined communication
format between the card and the off-card applications. Cards receive
requests for service from the CAD in the form of APDUs. These are
encapsulated in Java Card System by the javacard.framework.APDU class
([JCAPI21]).

APDUs manage both the selection-cycle of the applets (through Java Card RE
mediation) and the communication with the Currently selected applet.

APDU buffer The APDU buffer is the buffer where the messages sent (received) by the
card depart from (arrive to). The Java Card RE owns an APDU object (which
is a Java Card RE Entry Point and an instance of the javacard.framework.APDU
class) that encapsulates APDU messages in an internal byte array, called the
APDU buffer. This object is made accessible to the Currently selected applet
when needed, but any permanent access (out-of selection-scope) is strictly
prohibited for security reasons.

applet The name given to any Java Card technology-based application. An applet
is the basic piece of code that can be selected for execution from outside the
card. Each applet on the card is uniquely identified by its AID.

applet deletion manager The on-card component that embodies the mechanisms necessary to delete
an applet or library and its associated data on smart cards using Java Card
technology.

BCV The bytecode verifier is the software component performing a static
analysis of the code to be loaded on the card. It checks several kinds of
properties, like the correct format of CAP files and the enforcement of the
typing rules associated to bytecodes. If the component is placed outside the
card, in a secure environment, then it is called an off-card verifier. If the
component is part of the embedded software of the card it is called an on-
card verifier.

Java Card Protection Profile Collection Page 196 of 198

Version 1.1 May 2006

CAD Card Acceptance Device, or card reader. The device where the card is
inserted, and which is used to communicate with the card. Unless
explicitely said otherwise, in this document, CAD covers PCD.

CAP file A file in the Converted applet format. A CAP file contains a binary
representation of a package of classes that can be installed on a device and
used to execute the package’s classes on a Java Card virtual machine. A
CAP file can contain a user library, or the code of one or more applets.

Class In object-oriented programming languages, a class is a prototype for an
object. A class may also be considered as a set of objects that share a
common structure and behavior. Each class declares a collection of fields
and methods associated to its instances. The contents of the fields
determine the internal state of a class instance, and the methods the
operations that can be applied to it. Classes are ordered within a class
hierarchy. A class declared as a specialization (a subclass) of another class
(its super class) inherits all the fields and methods of the latter.

 Java platform classes should not be confused with the classes of the
functional requirements (FIA) defined in the CC.

Context A context is an object-space partition associated to a package. Applets
within the same Java technology-based package belong to the same context.
The firewall is the boundary between contexts (see “Current context”).

Current context The Java Card RE keeps track of the current Java Card System context (also
called “the active context”). When a virtual method is invoked on an
object, and a context switch is required and permitted, the current context
is changed to correspond to the context of the applet that owns the object.
When that method returns, the previous context is restored. Invocations of
static methods have no effect on the current context. The current context
and sharing status of an object together determine if access to an object is
permissible.

Currently selected applet The applet has been selected for execution in the current session. The Java
Card RE keeps track of the currently selected Java Card applet. Upon
receiving a SELECT command from the CAD or PCD with this applet’s AID,
the Java Card RE makes this applet the currently selected applet over the
I/O interface that received the command. The Java Card RE sends all further
APDU commands recieved over each interface to the currently selected
applet on this interface ([JCRE21] , [JCRE222] Glossary).

Default applet The applet that is selected after a card reset ([JCRE21], §4.1) or upon
completion of the PICC activation sequence on the contactless interface
([JCRE222], §4.1)

Embedded Software Pre-issuance loaded software.

Firewall The mechanism in the Java Card technology for ensuring applet isolation
and object sharing. The firewall prevents an applet in one context from
unauthorized access to objects owned by the Java Card RE or by an applet in
another context.

Java Card Protection Profile Collection Page 197 of 198

Version 1.1 May 2006

Installer The installer is the on-card application responsible for the installation of
applets on the card. It may perform (or delegate) mandatory security
checks according to the card issuer policy (for bytecode-verification, for
instance), loads and link packages (CAP file(s)) on the card to a suitable form
for the Java Card VM to execute the code they contain. It is a subsystem of
what is usually called “card manager”; as such, it can be seen as the
portion of the card manager that belongs to the TOE.

The installer has an AID that uniquely identifies him, and may be
implemented as a Java Card applet. However, it is granted specific
privileges on an implementation-specific manner ([JCRE21], §10).

Interface A special kind of Java programming language class, which declares
methods, but provides no implementation for them. A class may be
declared as being the implementation of an interface, and in this case must
contain an implementation for each of the methods declared by the
interface (See also shareable interface).

Java Card RE The Java Card runtime environment consists of the Java Card virtual
machine, the Java Card API, and its associated native methods. This notion
concerns all those dynamic features that are specific to the execution of a
Java program in a smart card, like applet lifetime, applet isolation and
object sharing, transient objects, the transaction mechanism, and so on.

Java Card RE Entry Point An object owned by the Java Card RE context but accessible by any
application. These methods are the gateways through which applets
request privileged Java Card RE services: the instance methods associated to
those objects may be invoked from any context, and when that occurs, a
context switch to the Java Card RE context is performed.

There are two categories of Java Card RE Entry Point Objects: Temporary
ones and Permanent ones. As part of the firewall functionality, the Java Card
RE detects and restricts attempts to store references to these objects.

Java Card RMI Java Card Remote Method Invocation is the Java Card System, version 2.2,
mechanism enabling a client application running on the CAD platform to
invoke a method on a remote object on the card. Notice that in Java Card
System, version 2.1.1, the only method that may be invoked from the CAD
is the process method of the applet class.

Java Card System The Java Card System: the Java Card RE (Java Card VM +API), the installer,
and the on-card BCV (if the configuration includes one).

Java Card VM The embedded interpreter of bytecodes. The Java Card VM is the
component that enforces separation between applications (firewall) and
enables secure data sharing.

logical channel A logical link to an application on the card. A new feature of the Java Card
System, version 2.2, that enables the opening of simultaneous sessions with
the card, one per logical channel.Commands issued to a specific logical
channel are forwarded to the active applet on that logical channel. Java
Card platform, version 2.2.2, enables opening up to twenty logial channels
over each I/O inteface (contacted or contactless).

Java Card Protection Profile Collection Page 198 of 198

Version 1.1 May 2006

Object deletion The Java Card System, version 2.2, mechanism ensures that any
unreferenced persistent (transient) object owned by the current context is
deleted. The associated memory space is recovered for reuse prior to the
next card reset.

Package A package is a name space within the Java programming language that
may contain classes and interfaces. A package defines either a user library,
or one or more applet definitions. A package is divided in two sets of files:
export files (which exclusively contain the public interface information for
an entire package of classes, for external linking purposes; export files are
not used directly in a Java Card virtual machine) and CAP files.

PCD Proximity Coupling Device. The PCD is a contactless card reader device.

PICC Proximity Card. The PICC is a card with contactless capabilities.

SCP Smart Card Platform. It is comprised of the integrated circuit, the operating
system and the dedicated software of the smart card.

Shareable interface An interface declaring a collection of methods that an applet accepts to
share with other applets. These interface methods can be invoked from an
applet in a context different from the context of the object implementing the
methods, thus “traversing” the firewall.

SIO An object of a class implementing a shareable interface.

Subject An active entity within the TOE that causes information to flow among
objects or change the system’s status. It usually acts on the behalf of a user.
Objects can be active and thus are also subjects of the TOE.

Transient object An object whose contents is not preserved across CAD sessions. The
contents of these objects are cleared at the end of the current CAD session
or when a card reset is performed. Writes to the fields of a transient object
are not affected by transactions.

User Any application interpretable by the Java Card RE. That also covers the
packages. The associated subject(s), if applicable, is (are) an object(s)
belonging to the javacard.framework.applet class.

End of Document

	1 INTRODUCTION
	1.1 IDENTIFICATION
	1.1.1 Identification of the Document
	1.1.2 On the Conformance of Security Targets
	1.1.3 Identification of the Protection Profiles
	1.1.3.1 Minimal Configuration Protection Profile
	1.1.3.2 Java Card System Standard 2.1.1 Configuration Protection Profile
	1.1.3.3 Java Card System Standard 2.2 Configuration Protection Profile
	1.1.3.4 Defensive Configuration Protection Profile

	1.2 REVISIONS AND COMMENTS
	1.3 OVERVIEW
	1.4 CC CONFORMANCE
	1.5 TYPOGRAPHIC CONVENTIONS
	1.6 ASSOCIATED DOCUMENTS
	1.6.1 Reference Documents
	1.6.2 Related Documents

	1.7 CONFIGURATIONS AND GROUPS
	1.7.1 What is a Group?
	1.7.2 What is a Configuration?
	1.7.3 Definition and Composition of Groups

	2 TOE DESCRIPTION
	2.1 PRODUCT TYPE
	2.1.1 Bytecode Verification
	2.1.2 Installation of applets
	Loading
	Linking

	2.1.3 The Card Manager (CM)
	2.1.4 Smart Card Platform: Operating System + Chip + Dedicated Software
	2.1.5 Native Applications

	2.2 JAVA CARD 2.2 TECHNOLOGY
	Java Card Remote Method Invocation (Java Card RMI)
	applet Deletion Manager (ADEL)
	Logical Channels
	Object Deletion
	External Memory

	2.3 FUNCTIONAL COMPONENTS AND CONFIGURATIONS
	2.3.1 Configurations
	2.3.1.1 Minimal Configuration
	2.3.1.2 Java Card System Standard 2.1.1 Configuration
	2.3.1.3 Java Card System Standard 2.2 Configuration
	2.3.1.4 Defensive Configuration

	2.4 LIMITS OF THE TOE
	2.4.1 Scope of Evaluation
	2.4.1.1 Relationship between Configurations and Groups

	2.4.2 The TOE in the Life Cycle of the Smart Card
	2.4.2.1 TOE Development & Production Environments
	2.4.2.2 TOE Final Environment

	2.5 TOE INTENDED USAGE
	2.6 PRODUCT RATIONALE

	3 TOE Security Environment
	3.1 SECURITY ASPECTS
	Confidentiality
	Integrity
	Unauthorized Executions
	Bytecode Verification
	CAP File Verification
	Integrity and Authentication
	Linking and Verification
	Card Management
	Services

	3.2 ASSETS
	3.2.1 User data
	3.2.2 TSF data

	3.3 USERS & SUBJECTS
	3.4 ASSUMPTIONS
	3.4.1 All Configurations
	3.4.2 Minimal Configuration
	3.4.3 Java Card System Standard 2.1.1 Configuration
	3.4.4 Java Card System Standard 2.2 Configuration
	3.4.5 Defensive Configuration

	3.5 THREATS
	3.5.1 All Configurations
	Confidentiality
	Integrity
	Identity Usurpation
	Unauthorized Execution
	Denial of Service

	3.5.2 Minimal Configuration
	3.5.3 Java Card System Standard 2.1.1 Configuration
	Integrity
	Modifications of the Set of Applications

	3.5.4 Java Card System Standard 2.2 Configuration
	Unauthorized Executions
	Card Management
	Services

	3.5.5 Defensive Configuration

	3.6 ORGANIZATIONAL SECURITY POLICIES
	3.6.1 Minimal Configuration
	3.6.2 Java Card System Standard 2.1.1 Configuration
	3.6.3 Java Card System Standard 2.2 Configuration
	3.6.4 Defensive Configuration

	4 SECURITY OBJECTIVES
	4.1 SECURITY OBJECTIVES FOR THE TOE
	4.1.1 All Configurations
	Identification
	Execution
	Services

	4.1.2 Minimal Configuration
	4.1.3 Java Card System Standard 2.1.1 Configuration
	applet Management

	4.1.4 Java Card System Standard 2.2 Configuration
	applet Management
	Object Deletion
	Services

	4.1.5 Defensive Configuration
	Integrity, Confidentiality and Correct Execution

	4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT
	4.2.1 All Configurations
	4.2.2 Minimal Configuration
	4.2.3 Java Card System Standard 2.1.1 Configuration
	4.2.4 Java Card System Standard 2.2 Configuration
	4.2.5 Defensive Configuration

	5 IT SECURITY REQUIREMENTS
	5.1 TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS
	5.1.1 CoreG Security Functional Requirements
	5.1.1.1 Firewall Policy
	FDP_ACC.2: Complete Access Control
	FDP_ACF.1 Security attribute based access control
	FDP_IFC.1 Subset information flow control
	FDP_IFF.1 Simple security attributes
	FDP_RIP.1 Subset residual information protection
	FMT_MSA.1 Management of security attributes
	FMT_MSA.2 Secure security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions
	FPT_SEP.1 TSF domain separation

	5.1.1.2 Application Programming Interface
	FCS_CKM.1 Cryptographic KEY generation
	FCS_CKM.2 Cryptographic KEY distribution
	FCS_CKM.3 Cryptographic KEY access
	FCS_CKM.4 Cryptographic KEY destruction
	FCS_COP.1 Cryptographic operation
	FDP_RIP.1 Subset residual information protection
	FDP_ROL.1 Basic rollback

	5.1.1.3 Card Security Management
	FAU_ARP.1 Security alarms
	FDP_SDI.2 Stored data integrity monitoring and action
	FPT_RVM.1 Non-bypassability of the TSP
	FPT_TDC.1 Inter-TSF basic TSF data consistency
	FPT_FLS.1 Failure with preservation of secure state
	FPR_UNO.1 Unobservability
	FPT_TST.1 TSF testing

	5.1.1.4 AID Management
	FMT_MTD.1 Management of TSF data
	FMT_MTD.3 Secure TSF data
	FIA_ATD.1 User attribute definition
	FIA_UID.2 User identification before any action
	FIA_USB.1 User-subject binding

	5.1.2 InstG Security Functional Requirements
	FDP_ITC.2 Import of user data with security attributes
	FMT_SMR.1 Security roles
	FPT_FLS.1 Failure with preservation of secure state
	FPT_RCV.3 Automated recovery without undue loss
	FRU_RSA.1 Maximum quotas

	5.1.3 BCVG Security Functional Requirements
	FDP_IFC.2 Complete information flow control
	FDP_IFF.2 Hierarchical security attributes
	FMT_MSA.1 Management of security attributes
	FMT_MSA.2 Secure security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions
	FRU_RSA.1 Maximum quotas

	5.1.4 ADELG Security Functional Requirements
	5.1.4.1 Applet Deletion Manager Policy
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions

	5.1.4.2 Additional Deletion Requirements
	FDP_RIP.1 Subset residual information protection
	FPT_FLS.1 Failure with preservation of secure state

	5.1.5 RMIG Security Functional Requirements
	5.1.5.1 Java Card RMI Policy
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FDP_IFC.1 Subset information flow control
	FDP_IFF.1 Simple security attributes
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_REV.1 Revocation
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions

	5.1.6 LCG Security Functional Requirements
	5.1.6.1 Firewall Policy
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes

	5.1.6.2 Additional Requirements on Logical Channels
	FDP_RIP.1 Subset residual information protection

	5.1.7 ODELG Security Functional Requirements
	FDP_RIP.1 Subset residual information protection
	FPT_FLS.1 Failure with preservation of secure state

	5.1.8 CarG Security Functional Requirements
	FCO_NRO.2 Enforced proof of origin
	FIA_UID.1 Timing of identification
	FDP_IFC.2 Complete information flow control
	FDP_IFF.1 Simple security attributes
	FDP_UIT.1 Data exchange integrity
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions
	FTP_ITC.1 Inter-TSF trusted channel

	5.1.9 SCPG Security Functional Requirements
	Underlying abstract machine test (FPT_AMT)
	Fail secure (FPT_FLS)
	Fault tolerance (FRU_FLT)
	TSF Physical protection (FPT_PHP)
	Domain separation (FPT_SEP)
	Reference mediation (FPT_RVM)
	Trusted recovery (FPT_RCV)

	5.1.10 CMGRG Security Functional Requirements
	FDP_ACC.1 Subset Access Control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FMT_SMF.1 Specification of Management Functions
	FIA_UID.1 Timing of identification

	5.1.11 EMG Security Functional Requirements
	5.1.11.1 External Memory Policy
	FDP_ACC.1: Subset Access Control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMF.1 Specification of Management Functions

	5.2 TOE SECURITY ASSURANCE REQUIREMENTS

	6 Rationale
	6.1 SECURITY OBJECTIVES RATIONALE
	6.1.1 Minimal Configuration
	6.1.1.1 Threats Related to Security Objectives
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service

	6.1.1.2 Assumptions Related to Security Objectives
	6.1.1.3 Organizational Policies Related to Security Objectives

	6.1.2 Java Card System Standard 2.1.1 Configuration
	6.1.2.1 Threats Related to Security Objectives
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Integrity and Installation

	6.1.2.2 Assumptions Related to Security Objectives
	6.1.2.3 Organizational Policies Related to Security Objectives

	6.1.3 Java Card System Standard 2.2 Configuration
	6.1.3.1 Threats Related to Security Objectives
	T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying platform and are therefore an environmental issue.Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Integrity and Installation
	Unauthorized Executions
	Card Management
	Object Deletion

	6.1.3.2 Assumptions Related to Security Objectives
	6.1.3.3 Organizational Policies Related to Security Objectives

	6.1.4 Defensive Configuration
	6.1.4.1 Threats Related to Security Objectives
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Unauthorized Executions
	Card Management
	Object Deletion

	6.1.4.2 Assumptions Related to Security Objectives
	6.1.4.3 Organizational Policies Related to Security Objectives

	6.2 SECURITY REQUIREMENTS RATIONALE
	6.2.1 Minimal Configuration
	6.2.1.1 TOE Security Requirements Rationale
	Identification
	Execution
	Services

	6.2.1.2 IT Environment Security Requirements Rationale
	6.2.1.3 Security Functional Requirements Dependencies
	6.2.1.4 Rationale for Strength of Function Medium
	6.2.1.5 Rationale for Assurance Level EAL4 augmented
	6.2.1.5.1 Rationale for Assurance Level EAL4
	6.2.1.5.2 Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	6.2.1.6 Internal Consistency and Mutual Support

	6.2.2 Java Card System Standard 2.1.1 Configuration
	6.2.2.1 TOE Security Requirements Rationale
	Identification
	applet Management
	Execution
	Services

	6.2.2.2 IT Environment Security Requirements Rationale
	6.2.2.3 Security Functional Requirements Dependencies
	6.2.2.4 Rationale for Strength of Function Medium
	6.2.2.5 Rationale for Assurance Level EAL4 augmented
	6.2.2.5.1 Rationale for Assurance Level EAL4
	6.2.2.5.2 Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	6.2.2.6 Internal Consistency and Mutual Support

	6.2.3 Java Card System Standard 2.2 Configuration
	6.2.3.1 TOE Security Requirements Rationale
	Identification
	applet Management
	Execution
	Services
	Object Deletion

	6.2.3.2 IT Environment Security Requirements Rationale
	6.2.3.3 Security Functional Requirements Dependencies
	6.2.3.4 Rationale for Strength of Function Medium
	6.2.3.5 Rationale for Assurance Level EAL4 augmented
	6.2.3.5.1 Rationale for Assurance Level EAL4
	6.2.3.5.2 Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	6.2.3.6 Internal Consistency and Mutual Support

	6.2.4 Defensive Configuration
	6.2.4.1 TOE Security Requirements Rationale
	Identification
	applet Management
	Execution
	Services
	Object Deletion
	Integrity, Confidentiality and Correct Execution

	6.2.4.2 IT Environment Security Requirements Rationale
	6.2.4.3 Security Functional Requirements Dependencies
	6.2.4.4 Rationale for Strength of Function Medium
	6.2.4.5 Rationale for Assurance Level EAL4 augmented
	6.2.4.5.1 Rationale for Assurance Level EAL4
	6.2.4.5.2 Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	6.2.4.6 Internal Consistency and Mutual Support

	7 APPENDIX: A UNIFIED VIEW OF CONFIGURATIONS
	8 APPENDIX: GLOSSARY

