
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

J2ME Building Blocks for
Mobile Devices

White Paper on KVM and the Connected, Limited
Device Configuration (CLDC)

May 19, 2000

Copyright © 2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the Java 2 Platform Micro Edition, K Virtual Machine (KVM) or J2ME CLDC Reference
Implementation technologies to use this document for internal evaluation purposes only. Other than this
limited license, you acquire no right, title, or interest in or to the document and you shall have no right to
use the document for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, PersonalJava, Java Card, Jini, JDK, and Java Embedded Server
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents

1. Executive Summary 1

Information Appliances and the Wireless Revolution 1

Everything Connected 1

Customizable, Personal Services 2

Java™ 2 Platform Micro Edition (J2ME™) 4

J2ME Configurations and Profiles 4

Connected, Limited Device Configuration (CLDC) 7

The K Virtual Machine 7

About this White Paper 7

2. Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM 9

Java Editions 9

Java 2 Platform Micro Edition (J2ME) 10

J2ME Building Blocks: Configurations and Profiles 11

J2ME Profiles 12

J2ME Configurations 15

KVM 17

3. The Connected, Limited Device Configuration (CLDC) 19

CLDC Goals 19

CLDC Requirements 20
Contents iii

CLDC Scope 20

Security 21

Adherence to the Java Language Specification 21

Adherence to the Java Virtual Machine Specification 22

Classfile Verification 22

Classfile Format 23

CLDC Libraries 24

Classes Inherited from J2SE 24

System Classes 24

Data Type Classes 24

Collection Classes 24

I/O Classes 25

Calendar and Time Classes 25

Additional Utility Classes 25

Exception Classes 25

Error Classes 26

Limitations 26

CLDC-Specific Classes 26

General Form 26

Examples 27

Generic Connection Framework Interfaces 27

4. The K Virtual Machine (KVM) 29

Introduction to the KVM 29

Sun Implementations 30

Other Implementations 30

Compiler Requirements 30

Porting KVM 31
iv J2ME Building Blocks for Mobile Devices • May 19, 2000

Compilation Control 32

Virtual Machine Startup and JAM 32

Class Loading 33

64-Bit Support 33

Native Code 33

Event Handling 33

Classfile Verification 34

Java Code Compact (ROMizer) 34

5. Future Directions 35
Contents v

vi J2ME Building Blocks for Mobile Devices • May 19, 2000

1

Executive Summary
Information Appliances and the Wireless Revolution
Connected, personalized, intelligent information appliances are becoming
increasingly important in our business and private lives. These appliances,
which include devices such as cell phones, two-way pagers, personal
organizers, screen phones, and POS terminals, have many things in common.
But they are also diverse in features, form, and function. They tend to be
special-purpose, limited-function devices, not the general-purpose computing
machines we have known in the past.

The number of these information appliances is increasing rapidly. For instance,
the total number of cell phone shipments is expected to be around 350 million
units this year alone. The total number of wireless subscribers in the world is
expected to exceed one billion by the end of 2002 or early 2003. Compare this
to the installed base of personal computers, which at the beginning of 2000 was
around 311 million worldwide.

Everything Connected
We anticipate that within the next two to five years, the majority of new
information appliances will be connected to the Internet. This will lead to a
radical change in the way people perceive and use these devices. The users of
the information appliances will want to access information—Web content,
enterprise data, and personal data—conveniently from anywhere, any time,
and from a variety of devices (Figure 1-1).
1

1

Figure 1-1 Everything connected to the Internet

Customizable, Personal Services
An important consequence of the connected nature of new information
appliances is that these devices will be much more customizable and personal
than the appliances we have today.

Pen computer

Internet

Web Content
Enterprise Data
Personal Data PDA

Digitizer Any Device

Any Information
2 J2ME Building Blocks for Mobile Devices—May 19, 2000

1

Unlike in the past, when devices such as cell phones came with a hard-coded
feature set, the new devices will allow the users to customize their devices by
downloading new services and applications from the Internet.

Several wireless device manufacturers are already working on cell phones that
allow the users to download new applications such as interactive games,
banking and ticketing applications, wireless collaboration and so on
(Figure 1-2).

Figure 1-2 Downloading customized services

Such customizability will not be limited to just communication devices such as
cell phones or two-way pagers. For instance, it is quite realistic to imagine
automobile engines to obtain new service updates as they become available,
washing machines to download new washing programs dynamically,
electronic toys to download updated game programs, and so on.

The need for customizability and personalized applications requires a lot more
from the application development platform than is available in mainstream
small consumer devices today. With the power of a widely used, extensible
programming platform such as the Java™ platform, the development of such
applications and services will become significantly easier.

Advertise
App on

Web Page

Advertise
App on

Web Page

User
Selects

App

User
Selects

App

User
Downloads

App

User
Downloads

App

Web Page
Executive Summary—May 19, 2000 3

1

Java™ 2 Platform Micro Edition (J2ME™)
To meet the demand for information appliances in the rapidly developing
consumer and embedded markets, Sun has extended the scope of Java
technology with the introduction of Java™ 2 Platform, Micro Edition (J2ME™). The
versatility of the Java application development environment is now enabling
the development of many new and powerful information appliance products.
Java technology enables users, service providers, and device manufacturers to
take advantage of a rich portfolio of application content that can be delivered
to the user’s device on demand, by wired or wireless connections.

The main benefits of CLDC devices involve:

• Cross-Platform

Work is transferred between CLDC and other devices.

• Dynamic Content

Content is determined by user experience, and information transfer between
CLDC and other devices.

• Security

• Developer Community

The developer talent needed for these devices already exists and is readily
available for CLDC devices.

J2ME Configurations and Profiles
Serving the information appliance market calls for a large measure of flexibility
in how computing technology and applications are deployed. This flexibility is
required because of

1. the large range of existing device types and hardware configurations,

2. constantly improving device technology,

3. the diverse range of existing applications and features, and

4. the need for applications and capabilities to change and grow (often in
unforeseen ways) in order to accommodate the future needs of the
consumer.
4 J2ME Building Blocks for Mobile Devices—May 19, 2000

1

Users want the ability to purchase economically-priced products with basic
functionality and then use them with ever-increasing sophistication.

In order to support this kind of flexibility and customizable deployment
demanded by the consumer and embedded market, the J2ME architecture is
designed to be modular and scalable. This modularity and scalability are
defined by J2ME as three layers of software built upon the Host Operating
System of the device:

• Java Virtual Machine. This layer is an implementation of a Java virtual
machine that is customized for a particular device’s host operating system
and supports a particular J2ME configuration.

• Configuration. The configuration is less visible to users, but is very important
to profile implementers. It defines the minimum set of Java virtual machine
features and Java class libraries available on a particular “category” of
devices representing a particular “horizontal” market segment. In a way, a
configuration defines the “lowest common denominator” of the Java
platform features and libraries that the developers can assume to be
available on all devices.

• Profile. The profile is the most visible layer to users and application
providers. It defines the minimum set of Application Programming
Interfaces (APIs) available on a particular “family” of devices representing a
particular “vertical” market segment. Profiles are implemented “upon” a
particular configuration. Applications are written “for” a particular profile
and are thus portable to any device that “supports” that profile. A device
can support multiple profiles.
Executive Summary—May 19, 2000 5

1

The three layers built upon the Host Operating System are illustrated in
Figure 1-3.

Figure 1-3 J2ME software layer stack

In J2ME, a Java virtual machine implementation and a configuration
specification are very closely aligned. Together they are designed to capture
just the essential capabilities of each category of device. Further differentiation
into device families is provided with the additional APIs specified at the
profile layer. To meet the need of new and exciting applications, profiles can be
augmented with additional Java class libraries.

Over time, as device manufacturers develop new families and/or categories of
devices, J2ME will provide a range of profiles, configurations, and virtual
machine technologies, each optimized for the different application
requirements and memory footprints commonly found in the consumer and
embedded marketplace. These will be specified through the Java Community
Process (JCP).

The J2ME architecture currently has two configurations that have been defined
using the JCP. The Connected Device Configuration (CDC) uses the classic Java
virtual machine, a full-featured VM that includes all the functionality of a

Virtual MachineJava Virtual Machine

Configuration

Host Operating System

Profiles
6 J2ME Building Blocks for Mobile Devices—May 19, 2000

1

virtual machine residing on a desktop system. This configuration is intended
for devices with at least a few megabytes of available memory.

For wireless devices and other systems with severely constrained memory
environments, J2ME uses the Connected Limited Device Configuration (CLDC),
discussed in more detail below.

Connected, Limited Device Configuration (CLDC)
The configuration for mobile devices or the Connected, Limited Device
Configuration (CLDC) defines targeted Java platforms which are small,
resource-constrained devices, each with a memory budget in the range of 160
kB to 512 kB. The CLDC is composed of the K Virtual Machine (KVM) and core
class libraries that can be used on a variety of devices such as cell phones, two-
way pagers, personal organizers, home appliances, and so on. Eighteen
companies, mostly wireless device manufacturers, have participated in the
definition of this configuration using the Java Community Process (JCP).

The K Virtual Machine
The K Virtual Machine (KVM), a key feature of the J2ME architecture, is a
highly portable Java virtual machine designed from the ground up for small-
memory, limited-resource, network-connected devices such as cellular phones,
pagers, and personal organizers. These devices typically contain 16- or 32-bit
processors and a minimum total memory footprint of approximately 128
kilobytes. However, the KVM can be deployed flexibly in a wide variety of
devices appropriate for various industries and the large range of trade-offs
among processor power, memory size, device characteristics, and application
functionality they engender.

About this White Paper
The purpose of this white paper is to describe the current reference
implementation of KVM along with the closely related Connected, Limited
Device Configuration (CLDC). Chapter 2 sets the stage for this discussion by
providing an expanded introduction to the Java 2 Micro Edition. Then, Chapter
3 reviews the essential features of the Connected, Limited Device
Configuration and the APIs that it defines. Chapter 4 provides more detailed
information on KVM and on what is required when porting it to new devices.
Executive Summary—May 19, 2000 7

1

Finally, Chapter 5 briefly discusses the future directions of KVM and CLDC
technology.
8 J2ME Building Blocks for Mobile Devices—May 19, 2000

2

Introduction to the Java 2 Platform
Micro Edition, CLDC, and KVM
Java Editions
Recognizing that one size does not fit all, Sun has grouped its Java
technologies into three editions, each aimed at a specific area of today’s vast
computing industry:

• Java 2 Enterprise Edition (J2EE)—for enterprises needing to serve their
customers, suppliers, and employees with solid, complete, and scalable
Internet business server solutions.

• Java 2 Standard Edition (J2SE)—for the familiar and well-established desktop
computer market.

• Java 2 Micro Edition (J2ME)—for the combined needs of:
— consumer and embedded device manufacturers who build a diversity of
information devices;
— service providers who wish to deliver content to their customers over
those devices; and
— content creators who want to make compelling content for small,
resource-constrained devices.

Each Java edition defines a set of technology and tools that can be used with a
particular product:

• Java virtual machines that fit inside a wide range of computing devices;

• libraries and APIs specialized for each kind of computing device; and

• tools for deployment and device configuration.
9

2

Figure 2-1 below illustrates the target markets of each edition.

Figure 2-1 Java 2 editions and their target markets

Java 2 Platform Micro Edition (J2ME)
J2ME specifically addresses the large, rapidly growing consumer space, which
covers a range of devices from tiny commodities, such as pagers, all the way
up to the TV set-top box, an appliance almost as powerful as a desktop
computer. Like the “larger” Java editions, Java 2 Micro Edition maintains the
qualities that Java technology has become known for:

• built-in consistency across products in terms of running anywhere, any time,
on any device;

• the power of a high-level object-oriented programming language with a
large developer base;

• portability of code;

• safe network delivery; and

• upward scalability with J2SE and J2EE.

HotSpot JVM KVM Card VM

Java Language

Java 2
Enterprise

Edition
Java 2

Standard
Edition

server

workstation

PC, laptop

NC

set-top box,
net TV

communicator

screen-
phone

PDA

smartphone cell phone

pager

POS

card

Memory: 10MB 1MB 512kB 32kB
8 bit16 bit32 bit64 bit

Java 2 Micro Edition
CLDCCLDCCDCCDC
10 J2ME Building Blocks for Mobile Devices—May 19, 2000

2

With J2ME, Sun provides a complete end-to-end solution for creating
dynamically extensible, networked products and applications for the consumer
and embedded market. J2ME enables device manufacturers, service providers,
and content creators to gain a competitive advantage and capitalize on new
revenue streams by developing and deploying compelling new applications
and services to their customers worldwide.

At a high level, J2ME is currently targeted at two broad categories of products:

• Shared, fixed, connected information devices. In Figure 2-1, this category is
represented by the grouping labeled CDC (Connected Device
Configuration). Typical examples of devices in this category include TV set-
top boxes, Internet TVs, Internet-enabled screenphones, high-end
communicators, and automobile entertainment/navigation systems. These
devices have a large range of user interface capabilities, memory budgets in
the range of 2 to 16 megabytes, and persistent, high-bandwidth network
connections, most often using TCP/IP.

• Personal, mobile, connected information devices. In Figure 2-1, this category is
represented by the grouping labeled CLDC (Connected, Limited Device
Configuration). Cell phones, pagers and personal organizers are examples of
devices in this category. These devices have very simple user interfaces
(compared to desktop computer systems), minimum memory budgets
starting at about 128 kilobytes, and low bandwidth, intermittent network
connections. In this category of products, network communications are often
not based on the TCP/IP protocol suite.

The line between these two product categories is fuzzy and becoming more so
every day. As a result of the ongoing technological convergence in the
computer, telecommunication, consumer electronics and entertainment
industries, there will be less distinction between general-purpose computers,
personal communication devices, consumer electronics devices and
entertainment devices. Also, future devices are more likely to use wireless
connectivity instead of traditional fixed or wired networks. In practice, the line
between the two categories is defined more by the memory budget, bandwidth
considerations, battery power consumption, and physical screen size of the
device, rather than by its specific functionality or type of connectivity.

J2ME Building Blocks: Configurations and Profiles
While connected consumer devices such as cell phones, pagers, personal
organizers and set-top boxes have many things in common, they are also
diverse in form, function and features. Information appliances tend to be
Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM—May 19, 2000 11

2

special-purpose, limited-function devices. To address this diversity, an essential
requirement for J2ME is not only small size but also modularity and
customizability.

The J2ME architecture is modular and scalable so that it can support the kinds
of flexible deployment demanded by the consumer and embedded markets. To
enable this, J2ME provides a range of virtual machine technologies, each
optimized for the different processor types and memory footprints commonly
found in the consumer and embedded marketplace.

For low-end, resource-limited products, J2ME supports minimal configurations
of the Java virtual machine and Java APIs that embody just the essential
capabilities of each kind of device. As device manufacturers develop new
features in their devices, or service providers develop new and exciting
applications, these minimal configurations can be expanded with additional
APIs or with a richer complement of Java virtual machine features. To support
this kind of customizability and extensibility, two essential concepts are
defined by J2ME:

• Configuration. A J2ME configuration defines a minimum platform for a
“horizontal” category or grouping of devices, each with similar
requirements on total memory budget and processing power. A
configuration defines the Java language and virtual machine features and
minimum class libraries that a device manufacturer or a content provider
can expect to be available on all devices of the same category.

• Profile. A J2ME profile is layered on top of (and thus extends) a
configuration. A profile addresses the specific demands of a certain
“vertical” market segment or device family. The main goal of a profile is to
guarantee interoperability within a certain vertical device family or domain
by defining a standard Java platform for that market. Profiles typically
include class libraries that are far more domain-specific than the class
libraries provided in a configuration.

J2ME configurations and profiles are defined through the Java Community
Process (JCP).

J2ME Profiles
Application portability is a key benefit of Java technology in the desktop and
enterprise server markets. Portability is also a critical element of the J2ME
value proposition for consumer devices. However, application portability
requirements in the consumer space are generally quite different from
12 J2ME Building Blocks for Mobile Devices—May 19, 2000

2

portability requirements demanded by the desktop and server markets. In
most cases consumer devices have substantial differences in memory size,
networking, and user interface capabilities, making it very difficult to support
all devices with just one solution.

In general, the consumer device market is not so homogeneous that end users
expect or require universal application portability. Rather, in the consumer
space, applications should ideally be fully portable between devices of the
same kind. For example, consider the following types of consumer devices:

– cellular telephones

– washing machines

– intercommunicating electronic toys

It seems clear that each of these represents a different “market segment” or
“device family” or “application domain.” As such, consumers would expect
useful applications to be portable within a device family. For example:

• I would expect my discount broker’s stock trading application to work on
each of my cell phones, even though they are from different manufacturers.

• If I found a wonderful grape-juice-stain-removing wash cycle application on
the Internet, I would be annoyed if it ran on my old brand-X washer, but not
my new brand-Z washer.

• My child’s birthday party would be less enjoyable if the new robot doesn’t
“talk to” and “play games with” the new electronic teddy bear.

On the other hand, consumers don’t expect the stock application or an
automobile service program to run on the washing machine or the toy robot. In
other words, application portability across different device categories is not
necessarily very important.

In addition, there are important economic reasons to keep these device families
separate. Consumer devices compete heavily on cost and convenience, and
these factors often translate directly into limitations on physical size and
weight, processor power, memory size, and power consumption (in battery-
powered devices.) Consumers’ wallets will always favor devices that perform
the desired functions, but that do not have added cost for unnecessary features.

Thus, the J2ME framework provides the concept of a profile to make it possible
to define Java platforms for specific vertical markets. A profile defines a Java
platform for a specific vertical market segment or device category. Profiles can
serve two distinct portability requirements:
Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM—May 19, 2000 13

2

• A profile provides a complete toolkit for implementing applications for a
particular kind of device, such as a pager, set-top box, cell phone, washing
machine, or interactive electronic toy.

• A profile may also be created to support a significant, coherent group of
applications that might be hosted on several categories of devices. For
example, while the differences between set-top boxes, pagers, cell phones,
and washing machines are significant enough to justify creating a separate
profile for each, it might be useful for certain kinds of personal information
management or home banking applications to be portable to each of these
devices. This could be accomplished by creating a separate profile for these
kinds of applications and ensuring that this new profile can be easily and
effectively supported on each of the target devices along with its “normal”
more device-specific profile.

It is possible for a single device to support several profiles. Some of these
profiles will be very device-specific, while others will be more application-
specific. Applications are written “for” a specific profile and are required to use
only the features defined by that profile. Manufacturers choose which profile(s)
to support on each of their devices, but are required to implement all features
of the chosen profile(s). The value proposition to the consumer is that any
application written for a particular profile will run on any device that supports
that profile.

In its simplest terms, a profile is a contract between an application and a J2ME
vertical market segment. All the devices in the market segment agree to
implement all the features defined in the profile. And the application agrees to
use only those features defined in the profile. Thus, portability is achieved
between the applications and the devices served by that profile. New devices
can take advantage of a large and familiar application base. Most importantly
new, compelling applications (perhaps completely unforeseen by the original
profile designers) can be dynamically downloaded to existing devices.

At the implementation level, a profile is defined simply as a collection of Java
APIs and class libraries that reside on top of a specified configuration and that
provide the additional domain-specific capabilities for devices in a specific
market segment.

In our example above, each of the three families of devices (cell phones,
washing machines, and intercommunicating toys) would be addressed by a
separate J2ME profile. Of course, the only one of these profiles in existence at
the current time is the MIDP, designed for cell phones and related devices.
14 J2ME Building Blocks for Mobile Devices—May 19, 2000

2

Profiles and the specific rules for defining J2ME profiles are described in more
detail in separate specifications.

J2ME Configurations
In J2ME, an application is written “for” a particular profile, and a profile is
“based upon” or “extends” a particular configuration. Thus, all of the features
of a configuration are automatically included in the profile and may be used by
applications written for that profile.

A configuration defines a Java platform for a “horizontal” category or
grouping of devices with similar requirements on total memory budget and
other hardware capabilities. More specifically, a configuration:

• specifies the Java programming language features supported,

• specifies the Java virtual machine features supported,

• specifies the basic Java libraries and APIs supported.

J2ME is designed so that it can be deployed in more than one configuration.
Each configuration specifies the Java virtual machine features and a set of APIs
that the profile implementer (and the applications using that profile) can safely
assume to be present on all devices when shipped from the factory. Profile
implementers must design their code to stay within the bounds of the Java
virtual machine features and APIs specified by that configuration.

In its simplest terms, a configuration is a contract between a profile
implementer and a device’s Java virtual machine. The virtual machines of all
the devices in the market segment agree to implement all the features defined
in the configuration. And the profile implementers agree to use only those
features defined in the configuration. Thus, portability is achieved between the
profile and the devices served by that configuration. New devices can take
advantage of existing profiles. And new profiles can be installed on existing
devices.

In our example above, each of the three profiles (for cell phones, washing
machines, and intercommunicating toys) would most likely be built upon the
same configuration, the CLDC. This configuration provides all the basic
functionality to serve the needs of each of these, and perhaps many more,
profiles.
Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM—May 19, 2000 15

2

To avoid fragmentation, there will be a very limited number of J2ME
configurations. Currently, the goal is to define two standard J2ME
configurations (see Figure 2-2):

• Connected, Limited Device Configuration (CLDC). The market consisting
of personal, mobile, connected information devices is served by the CLDC.
This configuration includes some new classes, not drawn from the J2SE
APIs, designed specifically to fit the needs of small-footprint devices.

• Connected Device Configuration (CDC). The market consisting of shared,
fixed, connected information devices is served by the Connected Device
Configuration (CDC). To ensure upward compatibility between
configurations, the CDC shall be a superset of the CLDC.

Figure 2-2 Relationship between J2ME configurations and Java 2 Standard Edition

Figure 2-2 illustrates the relationship between CLDC, CDC and Java 2 Standard
Edition (J2SE). As shown in the figure, the majority of functionality in CLDC
and CDC has been inherited from J2SE. Each class inherited from J2SE must be
precisely the same or a subset of the corresponding class in Java 2 Standard
Edition. In addition, CLDC and CDC may introduce a number of features, not
drawn from the J2SE, designed specifically to fit the needs of small-footprint
devices. For further details, refer to Configurations and Profiles Architecture
Specification, Java 2 Platform Micro Edition (J2ME), Sun Microsystems, Inc.

The most important reason for the configuration layer of J2ME is that
configurations and Java virtual machines are very closely related and are
rather complex pieces of software. Small differences in a configuration’s
specification can require a large number of modifications to the internal design
of a Java virtual machine, which would be very expensive and time-consuming

J2SE

CDC CLDC

Classes outside J2SE may not
use the java.* name space
16 J2ME Building Blocks for Mobile Devices—May 19, 2000

2

to maintain. Having a small number of configurations means that a relatively
small number of Java virtual machine implementations can serve the needs of
both a large number of profiles and a large number different device hardware
types. This economy of scale provided by J2ME is very important to the
success and cost-effectiveness of devices in the consumer and embedded
industry.

KVM
The KVM is a compact, portable Java virtual machine specifically designed
from the ground up for small, resource-constrained devices. The high-level
design goal for the KVM was to create the smallest possible “complete” Java
virtual machine that would maintain all the central aspects of the Java
programming language, but would run in a resource-constrained device with
only a few hundred kilobytes total memory budget.

More specifically, the KVM was designed to be:

• small, with a static memory footprint of the virtual machine core in the
range of 40 kilobytes to 80 kilobytes (depending on compilation options and
the target platform,)

• clean, well-commented, and highly portable,

• modular and customizable,

• as “complete” and “fast” as possible without sacrificing the other design
goals.

The “K” in KVM stands for “kilo.” It was so named because its memory budget
is measured in kilobytes (whereas desktop systems are measured in
megabytes). KVM is suitable for 16/32-bit RISC/CISC microprocessors with a
total memory budget of no more than a few hundred kilobytes (potentially less
than 128 kilobytes). This typically applies to digital cellular phones, pagers,
personal organizers, and small retail payment terminals.

The minimum total memory budget required by a KVM implementation is
about 128 kB, including the virtual machine, the minimum Java class libraries
specified by the configuration, and some heap space for running Java
applications. A more typical implementation requires a total memory budget of
256 kB, of which half is used as heap space for applications, 40 to 80 kB is
needed for the virtual machine itself, and the rest is reserved for configuration
and profile class libraries. The ratio between volatile memory (e.g., DRAM)
and non-volatile memory (e.g., ROM or Flash) in the total memory budget
Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM—May 19, 2000 17

2

varies considerably depending on the implementation, the device, the
configuration, and the profile. A simple KVM implementation without system
class prelinking support needs more volatile memory than a KVM
implementation with system classes (or even applications) preloaded into the
device.

The actual role of a KVM in target devices can vary significantly. In some
implementations, the KVM is used on top of an existing native software stack
to give the device the ability to download and run dynamic, interactive, secure
Java content on the device. In other implementations, the KVM is used at a
lower level to also implement the lower-level system software and applications
of the device in the Java programming language. Several alternative usage
models are possible.

At the present time, the KVM and CLDC are closely related. CLDC runs only
on top of KVM and CLDC is the only configuration supported by KVM.
However, over time it is expected that CLDC will run on other J2ME virtual
machine implementations and that the KVM may perhaps support other
configurations as they are defined.

For further information on the KVM, refer to the KVM web site at
http://java.sun.com/products/kvm.

The KVM is derived from a research system called Spotless developed
originally at Sun Microsystems Laboratories. More information on Spotless is
available in the Sun Labs technical report “The Spotless System: Implementing
a Java system for the Palm Connected Organizer” (Sun Labs Technical Report
SMLI TR-99-73).
18 J2ME Building Blocks for Mobile Devices—May 19, 2000

3

The Connected, Limited Device
Configuration (CLDC)
As mentioned previously, the KVM and CLDC are very closely related. In
essence, CLDC is the specification for a “class” of Java virtual machines that can
run on the categories of devices targeted by CLDC and support the profiles
layered on top of CLDC. The KVM is a particular implementation (currently the
one and only Sun reference implementation) of a Java virtual machine meeting
the CLDC specifications. Therefore, no discussion of KVM can be complete
without an understanding of the CLDC requirements. This chapter briefly
describes some of the CLDC specifications that affect the KVM.

CLDC Goals
• To define a standard Java platform for small, resource-constrained,

connected devices.

• To allow dynamic delivery of Java applications and content to those devices.

• To enable 3rd party application developers to easily create applications and
content that can be deployed to those devices.
19

3

CLDC Requirements
• To run on a wide variety of small devices ranging from wireless

communication devices such as cellular telephones and two-way pagers to
personal organizers, point-of-sale terminals and even home appliances.

• To make minimal assumptions about the native system software available in
CLDC devices.

• To define a minimum complement or the “lowest common denominator” of
Java technology applicable to a wide variety of mobile devices.

• To guarantee portability and interoperability of profile-level code between
the various kinds of mobile (CLDC) devices.

The entire CLDC implementation (static size of the virtual machine + libraries)
should fit in less than 128 kilobytes. The CLDC Specification assumes that
applications can be run in as little as 32 kilobytes of Java heap space.

CLDC Scope
The CLDC configuration addresses the following areas:

• Java language and virtual machine features

• Core Java libraries (java.lang.*, java.util.*)

• Input/output

• Networking

• Security

• Internationalization

The CLDC configuration does not address the following areas. These features
are addressed by profiles implemented on top of the CLDC:

• Application life-cycle management (application installation, launching,
deletion)

• User interface

• Event handling

• High-level application model (the interaction between the user and the
application)
20 J2ME Building Blocks for Mobile Devices—May 19, 2000

3

Security
The CLDC specification addresses the following topics related to security:

• Low-level-virtual machine security is achieved by requiring downloaded
Java classes to pass a classfile verification step.

• Applications are protected from each other by being run in a closed
“sandbox” environment.

• Classes in protected system packages cannot be overridden by applications.

Adherence to the Java Language Specification
The general goal for a Java VM supporting CLDC is to be as compliant with
the Java Language Specification as is feasible within the strict memory limits of
the target devices. Except for the following differences, a Java VM supporting
CLDC shall be compatible with Chapters 1 through 17 of The Java Language
Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-Wesley,
1996, ISBN 0-201-63451-1:

• No support for floating point data types (float and double).

• No support for finalization of class instances. The method
Object.finalize() does not exist.

• Limitations on error handling. Most subclasses of lava.lang.Error are
not supported. Errors of these types are handled in an implementation-
dependent manner appropriate for the device (in contrast, CLDC includes a
fairly complete set of exception classes.)
The Connected, Limited Device Configuration (CLDC)—May 19, 2000 21

3

Adherence to the Java Virtual Machine Specification
The general goal for a Java VM supporting CLDC is to be as compliant with
the Java Virtual Machine Specification as is possible within strict memory
constraints. Except for the following differences, a Java VM supporting CLDC
shall be compatible with the Java Virtual Machine as specified in the The Java
Virtual Machine Specification (Java Series) by Tim Lindholm and Frank Yellin.
Addison-Wesley, 1996, ISBN 0-201-63452-X.

• No support for floating point data types (float and double).

• No support for the Java Native Interface (JNI).

• No user-defined, Java-level class loaders.

• No reflection features.

• No support for thread groups or daemon threads.

• No support for finalization of class instances.

• No weak references.

• Limitations on error handling.

Apart from floating point support, which has been omitted primarily because
the majority of the CLDC target devices do not have hardware support for
floating point arithmetic, the features above have been eliminated either
because of:

• strict memory limitations, or

• because of potential security concerns in the absence of the full J2SE security
model.

Classfile Verification
CLDC requires that a Java VM be able to identify and reject invalid classfiles.
However, since the standard classfile verification approach defined by J2SE is
too memory-consuming for small devices, CLDC defines an alternative
mechanism for classfile verification.

In this alternative, each method in a downloaded Java classfile contains a
“stackmap” attribute. This attribute is newly-defined in CLDC and is not
defined by The Java Virtual Machine Specification. Typically, this attribute is
added to standard classfiles by a “pre-verification” tool that analyzes each
method in the classfile. Pre-verification is typically performed on a server or
22 J2ME Building Blocks for Mobile Devices—May 19, 2000

3

desktop system before the classfile is downloaded to the device (see
Figure 3-1). The stack map attribute increases the size of a classfile by
approximately 5%.

The presence of this attribute enables a CLDC-compliant Java VM to verify
Java classfiles much more quickly and with substantially less VM code and
dynamic RAM consumption than the standard Java VM verification step, but
with the same level of security.

Note that since stack maps have been implemented by utilizing the extensible
attribute mechanism built in Java classfiles, classfiles containing stack maps
will run unmodified in larger Java environments such as J2SE or J2EE.

Figure 3-1 Classfile verification in CLDC/KVM

Classfile Format
In order to enable dynamic downloading of 3rd party applications and content,
CLDC requires that implementations support the distribution of Java
applications via compressed Java Archive (JAR) files. Whenever a Java
application intended for a CLDC device is “represented publicly” or
“distributed publicly” it must be formatted in a compressed Java Archive (JAR)
file, and classfiles within a JAR file must contain the stackmap attribute.
(However, once an application is admitted into the kinds of closed, private,

Development workstation

MyApp.java

preverifier

MyApp.class

javac

MyApp.class

verifier

interpreter

…download... Target device
(KVM runtime)
The Connected, Limited Device Configuration (CLDC)—May 19, 2000 23

3

vendor-controlled networks sometimes used with today’s information
appliances, the vendor is free to use a different format.)

CLDC Libraries
In order to ensure upward compatibility and portability of applications, the
majority of the class libraries included in CLDC are a subset of those specified
for the larger Java editions (J2SE and J2EE). Only those classes that are
appropriate for mobile devices are specified by CLDC.

Classes Inherited from J2SE
The following classes have been inherited directly from Java 2 Standard
Edition. Each class is a subset of the corresponding class in J2SE. The methods
and fields of these classes are a subset of the complete classes as defined in the
larger Java editions. Only those methods and fields that are appropriate for
“connected, limited devices” are specified by CLDC.

System Classes

From java.lang:

Object, Class, Runtime, System, Thread, Runnable,
String, StringBuffer, Throwable

Data Type Classes

From java.lang:

Boolean, Byte, Short, Integer, Long, Character

Collection Classes

From java.util:

Vector, Stack, Hashtable, Enumeration
24 J2ME Building Blocks for Mobile Devices—May 19, 2000

3

I/O Classes

From java.io:

InputStream, OutputStream, ByteArrayInputStream,
ByteArrayOutputStream, DataInput, DataOutput,
DataInputStream, DataOutputStream, Reader, Writer,
InputStreamReader, OutputStreamWriter, PrintStream

Calendar and Time Classes

From java.util:

Calendar, Date, TimeZone

Additional Utility Classes
java.util.Random, java.lang.Math

Exception Classes

From java.lang:

Exception, ClassNotFoundException,
IllegalAccessException, InstantiationException,
InterruptedException, RuntimeException,
ArithmeticException, ArrayStoreException,
ClassCastException, IllegalArgumentException,
IllegalThreadStateException, NumberFormatException,
IllegalMonitorStateException, IndexOutOfBoundsException,
ArrayIndexOutOfBoundsException,
StringIndexOutOfBoundsException,
NegativeArraySizeException, NullPointerException,
SecurityException

From java.util:

EmptyStackException, NoSuchElementException

From java.io:

EOFException, IOException, InterruptedException,
UnsupportedEncodingException, UTFDataFormatException
The Connected, Limited Device Configuration (CLDC)—May 19, 2000 25

3

Error Classes

From java.lang:

Error, VirtualMachineError, OutOfMemoryError

Limitations
• CLDC includes limited support for the translation of Unicode characters to

and from a sequence of bytes using Readers and Writers.

• CLDC does not support class java.util.Properties, which is part of
J2SE. However, a limited set of properties beginning with the keyword
“microedition” can be accessed by calling the method
System.getProperty(String key).

CLDC-Specific Classes
The J2SE and J2EE libraries provide a rich set of functionality for handling
input and output access to storage and networking systems via the java.io
and java.net.* packages, However, it is difficult to make all this
functionality fit in a small device with only a few hundred kilobytes of total
memory budget.

This has led to a generalization of the J2SE network and I/O classes for J2ME.
The general goal for this new system is to be a precise functional subset of J2SE
classes, which can easily map to common low-level hardware or to any J2SE
implementation, but with better extensibility, flexibility and coherence in
supporting new devices and protocols.

Instead of using a collection of totally different kinds of abstractions for
different forms of communication, a set of related abstractions are used at the
application programming level.

General Form

All connections are created using a single static method in a system class called
javax.microedition.Connector. If successful, this method will return an
object that implements one of the generic connection interfaces. There are
number of these interfaces that form a hierarchy with the Connection
interface being the root. The method takes a URL parameter in the general
form:
26 J2ME Building Blocks for Mobile Devices—May 19, 2000

3

Connector.open("<protocol>:<address>;<parameters>");

Examples

NOTE—These examples are provided for illustration only. CLDC itself does
not define any protocol implementations. It is not expected that a particular
J2ME profile would provide support for all these kinds of connections. J2ME
profiles may also support protocols not shown below.

• HTTP records: Connector.open("http://www.foo.com");

• Sockets: Connector.open("socket://129.144.111.222:9000");

• Communication ports: Connector.open("comm:0;baudrate=9600");

• Datagrams: Connector.open("datagram://129.144.111.333");

• Files: Connector.open("file:foo.dat");

• Network file systems: Connector.open("nfs:/foo.com/foo.dat");

Generic Connection Framework Interfaces

This new framework is implemented using a hierarchy of Connection
interfaces that group together classes of protocols with the same semantics.
This hierarchy consists of the following seven interfaces from
javax.microedition.io:

Connection, InputConnection, OutputConnection,
StreamConnection, ContentConnection, DatagramConnection,
StreamConnectionNotifier

The Connected, Limited Device Configuration (CLDC)—May 19, 2000 27

3

28 J2ME Building Blocks for Mobile Devices—May 19, 2000

4

The K Virtual Machine (KVM)
Introduction to the KVM
The KVM (also known as the K Virtual Machine) is a compact, portable Java
virtual machine intended for small, resource-constrained devices such as
cellular phones, pagers, personal organizers, mobile Internet devices, point-of-
sale terminals, home appliances, and so forth.

The high-level design goal for the KVM was to create the smallest possible
“complete” Java virtual machine that would maintain all the central aspects of
the Java programming language, and that would nevertheless run in a
resource-constrained device with only a few tens or hundreds of kilobytes of
available memory (hence the name K, for kilobytes). More specifically, the
KVM is designed to be:

• Small, with a static memory footprint of the virtual machine core in the
range 40 kilobytes to 80 kilobytes (depending on the target platform and
compilation options).

• Clean and highly portable.

• Modular and customizable.

• As “complete” and “fast” as possible without sacrificing the other design
goals.

The KVM is implemented in the C programming language, so it can easily be
ported onto various platforms for which a C compiler is available. The virtual
machine has been built around a straightforward bytecode interpreter with
29

4

various compile-time flags and options to aid porting efforts and improve
space optimization.

The following sections provide highlights of the KVM reference
implementation. Additional detail can be found in the KVM Porting Guide.

Sun Implementations
Sun’s KVM reference implementation can be compiled and tested on two
platforms:

• Solaris

• Windows

A third implementation can be compiled and used on:

• Palm OS

The Solaris and Windows platforms are used for KVM development,
debugging, testing, and demonstration. They leverage a wealth of
development tools and allow rapid porting and development efforts due to the
increased workstation-class performance. The Solaris and Windows versions of
the KVM are used as the basis for official CLDC reference implementations
that customers can use for the device-specific ports.

The Palm OS platform is the primary test bed to ensure that KVM meets its
goals of efficiently executing on a resource-limited device.

Other Implementations
At the time of this writing, the KVM has been successfully ported to more than
25 devices by Sun’s Early Access licensees.

Compiler Requirements
The KVM is designed to be built with any C compiler capable of compiling
ANSI-compliant C files. The only non-ANSI feature in the source code is its use
of 64-bit integer arithmetic.

Our reference implementation has only been tested on machines with 32-bit
pointers and that do not require “far” pointers of any sort. We do not know if
it will run successfully on platforms with pointers of other sizes.
30 J2ME Building Blocks for Mobile Devices—May 19, 2000

4

The codebase has been successfully compiled with the following compilers:

• Metrowerks CodeWarrior Release 6 for Palm,

• Sun DevPro C Compiler 4.2 on Solaris,

• GNU C compiler on Solaris,

• Microsoft Visual C++ 6.0 Professional on Windows 98 and Windows NT 4.0.

Porting KVM
The majority of KVM source code is common to all implementations. The
relatively small amount of machine-dependent and/or platform-specific code
is isolated to small number of files. New or modified versions of these files
must be created for each port.

A relatively small number of well-specified runtime functions must be
implemented in order to provide the necessary interface between KVM and the
underlying native operating environment for such operations as:

• Initializations

• Finalizations (clean-up)

• Heap allocation/deallocation

• Fatal error reporting

• Event handling

• Current time
The K Virtual Machine (KVM)—May 19, 2000 31

4

Compilation Control
A large number of macro definitions are provided to control features relating
to:

• Data alignment

• Long (64-bit) integers

• Floating point (if used)

• Endianness (big endian vs. little endian)

• Classpaths (if used or not)

• System class preloading (ROMizing)

• Platform-specific features

• Memory allocation

• Garbage collection

• Interpreter options and optimizations

• Debugging and tracing options

• Networking and storage options (Generic Connections)

Virtual Machine Startup and JAM
On desktop implementations, the KVM can be run from the command line, as
is done with J2SE.

On devices with user interface capable of launching native applications (such
as Palm OS) the KVM can be configured to run in that fashion.

For devices that do not have such a user interface, the KVM provides a
reference implementation of a facility called the Java Application Manager
(JAM), which serves as an interface between the host operating system and the
virtual machine. The JAM assumes that applications are available for
downloading as JAR files by using a network (typically HTTP) or storage
protocol implemented using the Generic Connection framework. The JAM
reads the contents of the JAR file and an associated descriptor file from the
Internet, and launches the KVM with the main class as a parameter.

For development and testing purposes, desktop implementations of the KVM
can be configured to use the JAM as an alternative startup strategy.
32 J2ME Building Blocks for Mobile Devices—May 19, 2000

4

Class Loading
The KVM reference implementation can load classes from a directory path as
well as from a JAR file. Alternative device-specific class loading mechanisms
can be created where necessary.

64-Bit Support
The KVM is most easily ported to compilers that support 64-bit arithmetic.
However, macros are provided that can be redefined to perform the
appropriate operations for compilers that do not support 64-bit integers.

Native Code
The KVM does not support the Java Native Interface (JNI). Rather, any native
code called from the virtual machine must be linked directly into the virtual
machine at compile time. Invoking native methods is accomplished via native
method lookup tables, which must be created during the build process.

Macros are provided to make the implementation of native methods as easy
and error-free as possible. However, native methods are inherently complex,
and the consequences of mistakes are frequently severe. We advise studying
the KVM Porting Guide with great care before attempting to write your own
native methods.

Event Handling
For porting flexibility, there are four ways in which notification and handling
of events can be done in the KVM:

• Synchronous notification (blocking).

• Polling in Java code.

• Polling in the bytecode interpreter.

• Asynchronous notification.

Each KVM port can use the mechanism that is most appropriate for its
platform.
The K Virtual Machine (KVM)—May 19, 2000 33

4

Classfile Verification
As described in the CLDC chapter, KVM makes use of the new “stack map”
method attribute in order to quickly and efficiently verify classfiles.

A pre-verification tool written in C is supplied with the KVM reference
implementation. This tool can be compiled and run on Solaris and Windows.

Java Code Compact (ROMizer)
The KVM supports the JavaCodeCompact (JCC) utility (also known as the class
prelinker, preloader or ROMizer). This utility allows Java classes to be linked
directly in the virtual machine, reducing VM startup time considerably.

At the implementation level, the JavaCodeCompact utility combines Java class
files and produces a C file that can be compiled and linked with the Java
virtual machine.

In conventional class loading, you use javac to compile Java source files into
Java class files. These class files are loaded into a Java system, either
individually, or as part of a jar archive file. Upon demand, the class loading
mechanism resolves references to other class definitions.

JavaCodeCompact provides an alternative means of program linking and
symbol resolution, one that provides a less-flexible model of program building,
but that helps reduce the VM’s bandwidth and memory requirements.

JavaCodeCompact can:

• Combine multiple input files.

• Determine an object instance’s layout and size.

• Load only designated class members, discarding others.

The JCC tool itself is written in Java, and so is portable to various development
platforms.
34 J2ME Building Blocks for Mobile Devices—May 19, 2000

5

Future Directions
As we move into the future, our goals for the CLDC and KVM technologies are
to further evolve them, and to provide tools to accomplish the following goals:

• Optimize the class file format to reduce space requirements and to reduce
time to install applications on resource-constrained devices.

• Provide better support for Java-level debugging and IDE integration.

• Improve the performance of essential virtual machine components such as
the garbage collector, class loader, and thread synchronization operations.

• Provide other space and performance optimizations.
35

5

36 J2ME Building Blocks for Mobile Devices—May 19, 2000

	Executive Summary
	Information Appliances and the Wireless Revolution
	Everything Connected
	Customizable, Personal Services
	Java™ 2 Platform Micro Edition (J2ME™)
	J2ME Configurations and Profiles
	Connected, Limited Device Configuration (CLDC)
	The K Virtual Machine
	About this White Paper

	Introduction to the Java 2 Platform Micro Edition, CLDC, and KVM
	Java Editions
	Java 2 Platform Micro Edition (J2ME)
	J2ME Building Blocks: Configurations and Profiles
	J2ME Profiles
	J2ME Configurations
	KVM

	The Connected, Limited Device Configuration (CLDC)
	CLDC Goals
	CLDC Requirements
	CLDC Scope
	Security
	Adherence to the Java Language Specification
	Adherence to the Java Virtual Machine Specification
	Classfile Verification
	Classfile Format
	CLDC Libraries
	Classes Inherited from J2SE
	System Classes
	Data Type Classes
	Collection Classes
	I/O Classes
	Calendar and Time Classes
	Additional Utility Classes
	Exception Classes
	Error Classes
	Limitations

	CLDC-Specific Classes
	General Form
	Examples
	Generic Connection Framework Interfaces

	The K Virtual Machine (KVM)
	Introduction to the KVM
	Sun Implementations
	Other Implementations
	Compiler Requirements
	Porting KVM
	Compilation Control
	Virtual Machine Startup and JAM
	Class Loading
	64-Bit Support
	Native Code
	Event Handling
	Classfile Verification
	Java Code Compact (ROMizer)

	Future Directions

