
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

1.512.434.1511

MIDP APIs for Wireless

Applications

A Brief Tour for Software Developers

A White Paper



Please

Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, and Java Community Process are trademarks, registered trademarks, or service marks of Sun

Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks

of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by

Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, J2ME, et Java Community Process sont des marques de fabrique ou des marques déposées, ou

marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et

sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant

les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



CHAPTER 1

Introduction

Writing wireless applications that run on all mobile phones and two-way pagers has

become a lot easier with the recent release of the Java™ 2 Platform, Micro Edition

(J2ME™) Mobile Information Device Profile (MIDP).

Applications that run on devices supporting MIDP are called MIDlets. Like applets,

MIDlets are controlled by the software that runs them – in this case the cell phone or

two-way pager device implementation that supports MIDP and the J2ME Connected

Limited Device Configuration (CLDC).

Both CLDC and MIDP have been developed through the Java Community Process
SM

program. More than 20 companies, representing handset manufacturers, wireless

operators, and software providers, collaborated to create these specifications. CLDC

outlines the basic set of libraries and Java™ virtual machine features that must be

present in each implementation of a J2ME environment on highly constrained

devices, such as cell phones and pagers. To form a complete environment for these

devices, MIDP adds supplementary libraries that provide APIs not handled by the

low-level CLDC, such as the user interface, database, and device-specific

networking.
1



CHAPTER 2

A Complete Environment

MIDP is the first profile available for the J2ME mobile design center. The

combination of CLDC and MIDP provides a complete environment for creating

applications on cell phones and two-way pagers.

To provide you with an overview of the development process, this paper describes

some of the most useful MIDP APIs and how one developer employed them to

create a stock trading demo running on a cell phone.

You can use these same APIs, and many others that are available under the MIDP

umbrella, to create a wide variety of applications — ranging from games to

consumer applications, including the stock tracking MIDlet described below. Or, you

may want to develop enterprise applications for use on devices issued to your

company’s sales force, field service representatives, or other corporate road warriors.

Despite the constraints associated with the limited memory, input, output, and

screen size, the potential for creating ingenious, useful applications on these devices

is almost unlimited.

A Word about MIDlets

A MIDlet, as we mentioned earlier, is a MIDP application. The application must

extend the MIDlet class to allow the application management software to control the

MIDlet, retrieve properties from the application descriptor, and notify and request

state changes. All MIDlets extend the MIDlet class – the interface between the

runtime environment (the application manager) and the MIDlet application code.

The MIDlet class provides APIs for invoking, pausing, restarting, and terminating

the MIDlet application.

The application management software can manage the activities of multiple MIDlets

within a runtime environment. In addition, the MIDlet can initiate some state

changes by itself, and notify the application management software of those changes.
2



Application Portability

One key feature of high-level MIDP applications is their portability across various

cell phones and pagers. The MIDP implementation insulates the application from

differences among devices by handling issues such as screen layout and button

mapping.

The MIDP APIs are logically composed of high-level and low-level APIs. The APIs

are designed for applications or services where the handset functions as the client

device. The user gains access to applications and services that run on the handset

through a network service provider.

The high-level APIs are designed for applications where software portability across

a range of handsets is desired. This is important if you are writing an application or

service that a network service provider plans to deploy to a selected set of handsets.

To achieve this portability, the APIs use a high level of abstraction. The trade-off is

that the high-level APIs limit the amount of control the developer has over the

human interface’s look and feel. The underlying implementation of the user

interface APIs, which is accomplished by the handset manufacturer, is responsible

for adapting the human interface to the device’s hardware and native user interface

style.
A Complete Environment 3



CHAPTER 3

Tracking Stocks the MIDP Way

Despite its limitations, the cell phone proves to be an excellent device

for consumers who want to keep track of their stock portfolio while on

the go. They can keep a list of their stocks, track the stock prices over

the Internet, and receive alerts when a stock hits a certain price. There

is even a stock ticker API that displays real-time stock updates. The

simple ticker scrolls across the top of the cell phone’s screen, one stock

at a time. For his demo, the developer used an online stock service to

provide the stock text string with actual, real-time quotes.

The stock information is stored in the cell phone’s database. Just how

many stocks the user may include in the database depends on several

factors. For example, different devices come with varying quantities of

available memory – low-end cell phones provide only 10K of usable

memory, while many midrange devices have 100K to 200K available.

Each stock quote consumes only about 20 bytes, so the user could

potentially store information about a large number of stocks in the

database. However, practicality intervenes – because of the difficulty

of inputting stock information using the cell phone’s keypad, and

limited screen scrolling resources, most users will be content with

tracking half a dozen stocks on their cell phones or pagers.
4



MIDP APIs

The APIs for this application center around two primary functions – the user

interface and the record store for the database. Unlike working with the Java™ 2

Platform, Standard Edition (J2SE™), there is not much leeway in choosing APIs

because of device limitations and the need to make these applications portable.

However, as the developer pointed out, this can be an advantage — it makes the

design task much easier. Even complex applications can be created using simple

building blocks that can be relied on to work together.

For the user interfaces, the developer employed APIs for Forms, Items, and

Commands. The underlying CLDC APIs were used to handle strings, objects, and

integers. He used basic Java APIs for numbers, storing text, and vectors –

fundamental functions used in every Java technology-based application. MIDP

persistent storage classes were utilized to preserve the stock information in the

database when the user turned off the phone. As the developer said, it was a very

simple process.

Here are some of the primary APIs that were used to make this typical MIDP-based

stock trading application.

MIDP APIs for the User Interface

The high-level portion of the user interface API is screen-based. That is, the API is

designed so that interaction with the user is based around a succession of screens,

each of which presents a reasonable amount of data to the user. Commands are

presented to the user on a per-screen basis. They allow the application to determine

which screen to display next, what computation to perform, what request to make of

a network service, and so on.

Command

The Command object encapsulates the name and information related to the

semantics of an action. It is primarily used for presenting a choice of actions to the

user. The behavior that the Command activates is not encapsulated in the Command

object. This means that it contains only information about “Command,” not the

actual action that occurs when Command is activated. The resulting behavior is

defined in a CommandListener associated with the screen.

Each Command contains three pieces of information: a label, a type, and a priority.

The label is used for the visual representation of the command; the type and priority

are used by the system to determine how the Command is mapped into a concrete

user interface.
Tracking Stocks the MIDP Way 5



Commands may be implemented in any user interface construct that has semantics

for activating a single action — a soft button, an item in a menu, or some other direct

user interface construct. For example, a speech interface may present these

Commands as voice tags. The way Command objects are presented, or “mapped,” in

the user interface, depends on the semantic information contained within the

Command.

Mapping objects to concrete user interface constructs may also depend on the total

number of Commands. For example, if an application asks for more abstract

Commands than can be mapped onto the available physical buttons on a device, the

device may use an alternate human interface such as a menu. The abstract

Commands that cannot be mapped onto physical buttons are placed in a menu, and

the label “Menu” is mapped to one of the programmable buttons.

Alert

An alert is a screen that informs the user about an exceptional condition or error. In

the stock application, the alert lets the user know that a specified stock had reached

a predetermined price.

The alert screen can handle both text and images, although in the stock demo, only

text was used. There are two variations of alert screens: timed and modal. The timed

variation allows the alert to pause for a certain period of time before proceeding to

the next screen on its own. The model variation requires input from the user before

it can proceed; the user must initiate a command (for example, press a button) for

the screen to go away. If there is not enough space to display all of the timed alerts,

and the user is forced to scroll the screen, the timed alerts can be turned into modal

alerts.

Choice

Choice defines an API for user interface components that implement a selection from

a predefined number of choices.

Each element of a Choice is composed of a text string and an optional image. If the

application provides an image, the implementation may choose to ignore the image

if it exceeds the device’s display capacity. If the implementation displays the image,

it is displayed adjacent to the text string and the pair is treated as a unit.

Images within any particular Choice object should all be of the same size, because

the implementation is allowed to allocate the same amount of vertical space for

every element. If an element is too long to be displayed, the implementation will

enable the user to see the whole element. If this is done by wrapping an element to

multiple lines, the second and subsequent lines indicate to the user that they are part

of the same element, not a new element.
6 MIDP APIs for Wireless Applications



After a Choice object has been created, elements may be inserted, appended, and

deleted. In addition, the implementation may get and set each element’s text string

and image parts.

ChoiceGroup

A ChoiceGroup is a group of selectable elements intended to be placed within a

Form. The group may be created with a mode that requires either single or multiple

choices to be made. The implementation is responsible for providing the graphical

representation of these modes and must provide visually different graphics for

various modes. For example, it might use “radio buttons” for the single-choice mode

and “checkboxes” for the multiple-choice mode.

In the stock demo, radio buttons were provided to allow the user to choose how

often to update the stock information in the cell phone’s database – continuously,

every 15 minutes, one half hour, three hours, and so on.

Form

When the developer wanted to add more than one item to a screen, he used the

Form API.

For example, if the consumer wants to find out how well his initial investment is

paying off, he can use the text box on this screen to enter the original number of

shares purchased, their price at the time, and their current price. A Command box

then causes the application to calculate the payoff for selling those shares and

display the results.

A Form is defined as a screen that contains an arbitrary mixture of items: images,

read-only text fields, editable text fields, editable date fields, gauges, and choice

groups. In general, any subclass of the Item class may be contained within a Form.

The implementation handles layout, traversal, and scrolling. None of the

components contained in the Form has any internal scrolling; all contents scroll

together. This differs from the behavior of other classes, the List for example, where

only the interior scrolls.

If the developer had wanted to draw images or animations on the screen, he would

have used the MIDlet Canvas object instead of a Form. In this case, he made the

application very simple – displaying text only on a Form.

List

Lists are the lifeblood of the stock demo and every other application – this is the API

most frequently used by MIDP developers. In the stock demo, there are lists of

stocks, lists of alerts – everything visible on the screen is either a List or a Form.
Tracking Stocks the MIDP Way 7



The List class is defined as a screen containing a list of choices. Most of the behavior

is common with the ChoiceGroup class, and the common API is defined in the

interface Choice.

When a List is present on the display, the user can interact with it indefinitely (for

instance, traversing from element to element and possibly scrolling). These

traversing and scrolling operations do not cause application-visible events. The

system notifies the application when a Command is invoked.

List, like any Choice, utilizes a dedicated “select” or “go” functionality of the

devices. Typically, the select functionality is distinct from the soft buttons, but some

devices may use soft buttons for the select. In any case, the application does not

have the means to set a label for a select key.

StringItem

This simple class extends Item by allowing a string to be put on a form. A StringItem

is display only; the user cannot edit the contents. Both the label and the textual

content of a StringItem may be modified by the application.

TextBox

The TextBox class is a screen that allows the user to enter and edit text. A TextBox

has a maximum size or capacity – the maximum number of characters that can be

stored in the object at any time.

This limit is enforced when the TextBox instance is constructed, when the user is

editing text within the TextBox, and when the application program calls methods on

the TextBox that modify its contents. The maximum size is the maximum stored

capacity, and is unrelated to the number of characters that may be displayed at any

given time.

The number of characters displayed and their arrangement on the display, is

determined by the device. The text contained within a TextBox may be more than

can be displayed at one time. If this is the case, the implementation will let the user

view and edit any part of the text by scrolling. This scrolling occurs transparently to

the application.

TextField

Like the TextBox, a TextField is an item that may be placed within a Form, and has a

maximum size determined by the maximum number of objects that can be stored in

the object at any time. In a Form, multiple TextFields can be used to input data such

as the stock’s original purchase price and the number of shares held by the user.
8 MIDP APIs for Wireless Applications



TextField operates the same as TextBox with regard to the maximum size or capacity.

The application may also require the implementation to limit the user’s choice of

inputs – for example, numeric only. In the stock application, both alpha and numeric

symbols were accepted.

Ticker

This class is particularly suited for the developer’s application. Ticker implements a

ticker string, a piece of text that runs continuously across the top portion of the

display. The direction and speed of scrolling are determined by the implementation.

When animated, the ticker tape string scrolls continuously. That is, when the string

finishes scrolling off the display, the ticker starts over at the beginning of the string.

There is no API provided for starting and stopping the ticker. However, the

implementation is allowed to pause the scrolling for power consumption purposes –

for example, if the user doesn't interact with the device for a certain period of time.

The implementation will resume scrolling the ticker when the user interacts with the

device again.

These are the basic classes that the developer used to create the user interface for the

wireless stock application. There are a number of other useful APIs among the MIDP

MIDlets that may be suited for your particular application. A full version of the

MIDP specification can be found on java.sun.com/products/midp/.

MIDP APIs for Handling the Database

To organize and manipulate the cells phone’s database, the developer used another

major class of APIs. Here’s a brief description:

RecordStore

A RecordStore consists of a collection of records, which remain persistent across

multiple invocations of the MIDlet.

The platform is responsible for making its best effort to maintain the integrity of the

MIDlet's record stores throughout the normal use of the platform, including reboots,

battery changes, and so on.

Record stores are created in platform-dependent locations, which are not exposed to

the MIDlets. Each MIDlet suite is restricted to its own space for RecordStores.

MIDlets within a suite are not permitted access to RecordStores created by MIDlets

in another suite. MIDlets within a MIDlet suite are allowed to create multiple

RecordStores, as long as they each have a different name. When a MIDlet suite is

removed from a platform, all the RecordStores associated with its MIDlets will also

be removed.
Tracking Stocks the MIDP Way 9



These APIs allow only the MIDlet suite's own RecordStores to be manipulated, and

do not provide any mechanism for record sharing between MIDlets in different

MIDlet suites. MIDlets within the same MIDlet suite can access each other's

RecordStores directly.

RecordStore names are case sensitive and may consist of any combination of up to 32

Unicode characters. RecordStore names must be unique within the scope of a given

MIDlet suite. In other words, MIDlets within a MIDlet suite are not allowed to create

more than one RecordStore with the same name. However, each MIDlet in different

MIDlet suites is allowed to have a RecordStore with the same name as a MIDlet in

another MIDlet suite. In that case, the RecordStores are still distinct and separate.

No locking operations are provided in this API. Record store implementations

ensure that all individual RecordStore operations are atomic, synchronous, and

serialized, so no corruption will occur with multiple accesses. However, if a MIDlet

uses multiple threads to access a RecordStore, it is the MIDlet's responsibility to

coordinate this access, or unintended consequences may result (in other words, the

program could die). Similarly, if a platform performs transparent synchronization of

a RecordStore, it is the platform's responsibility to enforce exclusive access to the

RecordStore between the MIDlet and synchronization engine.

RecordComparator

This interface defines a comparator that compares two records in a RecordStore to

see if they match or what their relative sort order is. This is utilized to help locate the

record that the user wants to update, add, or delete.

RecordFilter

This interface defines a filter that is used to extract sets of records that match a

criteria. For example, the RecordFilter can be instructed to find all stocks with a

certain price, or stocks that are named “Sun,” in order to create user-specified alerts.

The device will tell the user when the stock reaches a certain price point, and filter

out the rest of the data regarding it and other stocks in the database.
10 MIDP APIs for Wireless Applications



CHAPTER 4

A New World of Wireless
Applications

Mobile service providers are upgrading their networks to support value-added data

services in addition to the voice services available today. By enabling data

communications over the mobile phone network, services such as stock trading,

instant messaging, and e-commerce will be available to consumers wherever they

are.

With the creation of the Mobile Information Device Profile and its many APIs,

developers now have access to simple but powerful tools.They enable the creation of

new applications that will make wireless a way of life for more and more people as

the Internet economy blossoms.
11



Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

1 (800) 786.7638

1.512.434.1511

http://java.sun.com/products/midp/

February 2001


	Introduction
	A Complete Environment
	A Word about MIDlets
	Application Portability
	Tracking Stocks the MIDP Way

	MIDP APIs
	MIDP APIs for the User Interface
	Command
	Alert
	Choice
	ChoiceGroup
	Form
	List
	StringItem
	TextBox
	TextField
	Ticker

	MIDP APIs for Handling the Database
	RecordStore
	RecordComparator
	RecordFilter
	A New World of Wireless Applications
	MIDP APIs for Wireless Applications




