JavaTV " APITechnical Overview:

The JavaTV APIWhitepaper

Version1.0
November 14,2000

Authors: BartCalder, Jon Courtney, Bill Foote, Linda Kyrnitszke,
David Rivas, Chihiro Saito, JamesVanLoo, Tao Ye

< Sun.

microsystems

Sun Microsystems, Inc.

Copyright © 1998, 1999, 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun
Microsystems, the Sun Logo, Java, Java TV, JavaPhone, PersonalJava and all Java-based marks, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open
Company, Ltd.

The OPEN LOOK and SUM' Graphical User Interface was developed by Sun Microsystems, Inc. for its
users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the
concept of visual or graphical user interfaces for the computer industry. Sun holds a hon-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-
3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. SUN MICRO-
SYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

For further information on Intellectual Property matters, contact Sun's Legal Department:
E-Mail: trademarks@sun.com
Phone: 650.960.1300

Please send any comments ond&iga TV API Technical Overvigw javatv-comments@sun.com.

Contents

Introduction 1

1.1 Television Receivers 2

1.2 Television-Specific Applications 3
1.2.1 Electronic Program Guides 4
1.2.2 Program-Specific Applications 4
1.2.3 Stand-alone Applications 4
1.2.4 Advertisements 4

1.3 Features of the Java TV APl 5

Environment 7

2.1 Hardware Environment 7

2.2 Software Environment 8

2.3 Application Environment 9
2.3.1 Storage and Input/Output 10
2.3.2 Return Channel and Non-Broadcast Network Access 10
2.3.3 Security 11
2.3.4 Abstract Window Toolkit 12

Services and Service Information 13

3.1 Services and Service Information Definitions 14

Contents i

3.2 Sl Packages 14
3.2.1 Service Package 16
3.2.2 Navigation Package 16
3.2.3 Guide Package 17
3.2.4 Transport Package 18

4. Service Selection 19
4.1Service Selection Definitions 19
4.2 Service Selection APl Overview 20

4.3 Service Context State Model 20

5. JMF and the Broadcast Pipeline 23
5.1 JMF Controls 23
5.2 JMF Synchronization 24

5.3 Player Architecture and the Broadcast Pipeline 25

6. Broadcast Data APIs 27
6.1 Broadcast Data API Definitions 27
6.2 Broadcast File Systems 28
6.2.1 DSM-CC Object Carousels 28
6.2.2 DSM-CC Data Carousels 31
6.2.3 Reducing the Effects of Carousel Latency 31
6.3 IP Datagrams 32
6.4 Streaming Data 33

7. Application Lifecycle 35
7.1 Xlet Application Lifecycle Definitions 35
7.2 Application Manager Requirements 36
7.3 Xlet States 37
7.3.1 Xlet State Machine 37

Java TV API Technical Overview, Version 1.0, 11/14/00

7.3.2 Xlet Lifecycle Model 38
7.4 Xlet Package 39

7.4.1 Xlet Interface 40

7.4.2 XletContext Interface 42
7.5 Xlet Lifecycle Example 42

8. Appendix I: Related Documents 45

9. Index 47

Contents i

iv. Java TV API Technical Overview, Version 1.0, 11/14/00

Introduction

This document describes the Java™API, an extension of the Jal platform designed

for developers who are producing Java-based interactive television content. The Java TV
API gives programs written in the Java programming language control of broadcast
television receivers and set-top boxes.

A key purpose of the Java TV API is to provide application developers with the ability to
easily build applications that are independent of the underlying broadcast network
technology on which they will be deployed. For example, many applications need basic
information from a service information database, such as a list of the names of services
currently available. The Java TV API provides an abstraction that permits applications to
obtain this information in a manner independent of the service information protocol
currently in use. This allows an application to be written and then reused in a variety of
network environments. The Java TV API is designed throughout with a high level of
abstraction from hardware and over-wire protocols.

Wherever possible, the Java TV API relies on an application environment to provide
general purpose APIs. For example, file storage APIs and network communication APIs are
provided by the application environment. In some cases, functionality that might be
available on a set-top box is exposed with another Java extension. For example, in set-tof
boxes that provide telephone service, the JavaPHokiel may be used.

FIGURE 1Shows the Java TV API and application environment as they are typically
implemented on digital receivers. Programmers write applications to the Java TV API and
application environment APIs, allowing their applications to be largely unaware of the
underlying RTOS and hardware details.

Introduction 1

FIGURE1 A Typical Television Receiver Implementation

B T SRR i T :ﬂmm

......... - Jm
#mm Technology
Jaya Platloem Layes

feallime 0% ATOS

et k Hardware
Moital Tekeyizeon Recenwer L2 Laryer

This document is a description of the API elements that comprise the Java TV API and is
intended to be viewed along with the actual APIs in javadoc or other form. Because the Java
TV APl is designed to scale across a wide variety of possible implementations, this
document does not describe minimal or performance-related hardware and software
requirements.

1.1 Television Receivers

A television receiver may process either analog signals, digital signals, or both. Signals are
usually broadcast to receivers over terrestrial, cable, or satellite networks. A digital signal
permits a wider variety of content to be broadcast than does an analog signal. A digital
broadcast might contain other types of information along with the digitized audio-video,
such as a Java application. Television receivers come in a broad range of functionality and
capabilities. The Java TV API provides access to the functionality that is commonly found
on these receivers and scales across different receiver implementations.

While there are a wide variety of television receivers with different capabilities, it is useful

to categorize receivers into three major types based on the kind of network connection a
receiver supports: enhanced broadcast receivers, interactive broadcast receivers, and multi-
network receivers. Each type of receiver builds on the capabilities of the previous type, as
described below:

1. Enhanced Broadcast Receivers
Enhanced broadcast receivers are capable of providing traditional broadcast television
that is enhanced with graphics, images, text and can be controlled by a Java language-

2 Java TV API Technical Overview, Version 1.0, 11/14/00

based program provided as a part of the broadcast. Such receivers support local view
interactions, including input from a remote control, on-screen graphical elements,
selection among multiple audio-video streams, and switching among displays that
augment audio-video presentation. Enhanced broadcast receivers receive data from a
head-end or server, often carried via a broadcast file system. However, enhanced
broadcast receivers have no return channel to the broadcaster, and therefore do not
imply interaction with a head-end or server.

2. Interactive Broadcast Receivers
Interactive broadcast receivers include a return channel to the broadcaster that provide
communication with a head-end or server. Such receivers are capable of providing
electronic commerce, video-on-demand, email, and local chat-style communication.
Interactive broadcast receivers include the capabilities found on enhanced broadcast
receivers.

3. Multi-Network Receivers
Multi-network receivers provide access to more than a broadcast network and a return
channel. Multi-network receivers include Internet capable receivers and receivers
providing other communication services, such as local telephony. Such receivers can be
home telecommunication hubs and provide diverse services, such as Internet browsing
Multi-network receivers include the capabilities found on both enhanced broadcast
receivers and interactive broadcast receivers.

1.2 Television-Specific Applications

The Java TV API characterizes television programs as services. This is an abstraction the
provides a common way to refer to a wide variety of content that may appear in a broadcasi
environment. For example, a service can refer to a regular TV program with its
synchronized audio and video or to an enhanced television broadcast that contains audio,
video, and a Java application that is synchronized with the broadcast. The Java TV API
provides a means for selecting services, accessing a database containing service
information, controlling a television-specific media player, and accessing data that is
broadcast along with a television signal.

Content developers can write many types of television-specific applications, or services,
including electronic program guides, program-specific applications, stand-alone

Introduction 3

applications, and advertisements. Some of the characteristics of these kinds of applications
are described below.

1.2.1 Electronic Program Guides

Electronic program guides (EPGs) are some of the more common applications found on
today's television receivers. An EPG's primary function is to provide the viewer with an
overview of current and upcoming television programs. Usually, an EPG also changes the
channel to the viewer’s selection. With this type of application, interactive performance and
short start-up times are critical to a positive user experience.

1.2.2 Program-Specific Applications

Program-specific applications are created for and deployed along with specific service
audio-video programming. Examples include an application deployed with a game show
that allows viewers to play along at home, and an application that provides interactive
information about a sporting event. These applications have several key requirements. For
instance, the receiver hosting the application must be able to suspend the application when
the viewer changes the channel.

1.2.3 Stand-alone Applications

Stand-alone applications appear to run unattached to normal television programming. An
example is a stock ticker application that obtains data from a secondary network, displaying
prices on screen. The user may be able to lock this application to the screen so that it
remains as they change to another channel.

1.2.4 Advertisements

Advertisement applications are applications that augment the audio/visual content of a
commercial. Such applications typically run for only the duration of the commercial,
therefore, they are extremely short-lived. The actual downloading of the advertisement
application may actually take place before the commercial starts. The application is
typically stopped and discarded at the end of the commercial.

4 Java TV API Technical Overview, Version 1.0, 11/14/00

1.3 Features of the Java TV API

The Java TV APl is a programming interface targeted at developers of interactive television
services and other types of software applications that run on digital broadcast receivers. Thi
major capabilities provided by the Java TV API for various types of applications are
described below.

Accessing Services and Service Information

The Java TV API represents television programming, both traditional and interactive, as
a set of individual services. The service information APIs provide support for obtaining
service information (SI), which can be used to select a service.

The Sl database provides applications access to information about what services are
available during runtime. Access to the Sl database is through the SI manager. If an
application is not interested in every service available, the SI manager permits filtering
operations to find services of interest. The views of the S| database that have been
defined are for controlling navigation, EPGs, and MPEG-2 delivery. For more
information, see Chapter 3, “Services and Service Information”.

Selecting Services

Service selection APIs are used to select a service for presentation. The mechanics of
selection are determined by the components of the service, and include starting an
application if an application is a part of the service. For more information, see Chapter
4, “Service Selection”.

Controlling the Broadcast Pipeline

The Java TV API uses the J&¥aViedia Framework (JMF) to represent the broadcast
pipeline of a receiver. The JMF defines sources of data and handlers of content. The
Java TV APl makes a similar distinction for a broadcast pipeline. A tuner-
demultiplexer-conditional access (C/A) subsystem is the source of data in the JIMF
sense, while the decoder-framebuffer-audio output is the content handletpsee

For more information, see Chapter 5, “JMF and the Broadcast Pipeline”.

Accessing Broadcast Data

A service is modeled as a multiplex of analog and digital data streams. In many cases
these streams are not directly available to an application (e.g., audio/video streams).
However, the multiplex may have streams of digital data that are available to an

Introduction 5

application. The broadcast data APIs provide support for access to broadcast file
systems, streaming data and encapsulated IP data. For more information, see Chapter 6,
“Broadcast Data APIs”.

* Managing Application Lifecycle
The sequence of steps by which an application is initialized, undergoes various state
changes and is eventually destroyed is collectively known as the application lifecycle.
The Java TV API defines a lifecycle for applications that run on digital broadcast
receivers.

Such applications are called Xlet applications. An Xlet is either resident on the receiver
or can be downloaded and controlled by an application manager, which is part of a dig-
ital television receiver's software operating environment. The application manager man-
ages an Xlet's lifecycle state changes. Each receiver has a resident application manager
capable of providing an Xlet access to its environment through an application context
passed to the Xlet during its initialization. For more information, see Chapter 7, “Appli-
cation Lifecycle”.

6 Java TV API Technical Overview, Version 1.0, 11/14/00

Environment

The following sections, Hardware Environment and Software Environment, provide a
model describing features provided by the environment in which the Java TV applications
run. This model is not intended to be inclusive of all aspects of a television receiver, but
simply to describe the pieces of the receiver to which the Java TV API and Java application
environment provide access.

2.1 Hardware Environment

This section describes elements that make up a broadcast receiver. It is intended to be
explanatory and provide context and definitions for concepts that are part of the Java TV
API. This section is not intended to specify hardware requirements for the API.

The television receiver gets video, audio, and data from the broadcast stream and processt
them through a broadcast media and data pipeline. The receiver gets the media and data
specific formats, called protocols, and decodes them using a variety of decoders specific |
these protocols.

A distinguishing characteristic of a television receiver, relative to typical computing
devices, is that the receiver is designed around a broadcast media pipeline. The broadcas
media pipeline typically consists of a set of subsystems, such as a digital tuner, a demulti-
plexer, a conditional access module, a collection of media decoders and a rendering sub-
system, through which the media flow. The Java TV API does not require that all
subsystems be present. For instance, a receiver may have no conditional access subsyst:
or may not have a digital tuner. The Java TV API provides an abstraction that allows the
application programmer to remain unaware of the details of the underlying hardware envi-
ronment. However, the Java TV API assumes that the broadcast receiver has some sort o
broadcast pipeline.

Environment 7

To illustrate, the following are the elements of a typical pipeline and the steps taken as an
RF signal passes through it and is processed in a digital broadcast receimengseg

(This diagram is an example of one particular pipeline that could exist. Many other pipeline
configurations are possible.)

1. An RF signal is tuned.

2. The tuned RF signal is demodulated into a digital signal, carrying an MPEG-2 transport
stream.

3. The transport stream is passed through a demultiplexer and broken into multiple streams
(e.g., audio, video, and data).

4. The video and audio streams are fed through a conditional access (C/A) subsystem,
which determines access privileges and may decrypt data.

5. The decrypted audio and video streams are fed to a decoder, which converts them into
signals appropriate for the video and audio output devices.

FIGURE2 Typical Enhanced Broadcast Digital TV Broadcast Pipeline

MPEG2 Encrypled Condiional Decryplhed
Transport MPEG Access MPEG

Sirearm Stream Subsyslem Siream

Tuner Module

Decoder
Framebuffer

Anignng

2.2 Software Environment

The software environment on a digital receiver typically consists of a Java application envi-
ronment, the Java TV API, and supporting applications. In addition, the software environ-
ment typically includes a Real-Time Operating System (RTOS).

8 Java TV API Technical Overview, Version 1.0, 11/14/00

As shown irFicure 3 at the highest layer of the software environment, the Application
Layer, an application can use the Java TV API and the Java packages from the layer below
the Java Technology Layer. Java applications execute in the application environment's vir-
tual machine (VM). The Java TV API abstracts the functionality exposed by the lower-level
libraries to control the hardware operations of the receiver.

The RTOS provides the system-level support needed to implement the Java technology

layer. In addition, the RTOS and related device-specific libraries control the receiver
through a collection of device drivers.

FIGURE3 Typical Software Stack on a Digital TV Receiver

JalE T s | de—

Java TV APl Java

Java Platform Layer

Hardware

Digital Televizion Recemverf] Layer

2.3 Application Environment

Applications designed to run on a broadcast receiver may take advantage of the applicatiol
environment APIs, as well as the features built into the Java VM. This section describes the
major aspects of broadcast receiver capabilities that are provided by the application envi-
ronment and VM, apart from the Java TV API.

The APIs of a Java application environment are organized into functional groups called
“packages”. The PersonalJ@Vapplication environment is typically used for devices with
constrained memory footprints, such as television receivers. The PersonalJava applicatior
environment specification includes several useful packages:

Environment 9

I/O
Thejava.io package provides data input/output facilities using the classes
java.io.InputStream andjava.io.OutputStream and their subclasses.

* Networking
Thejava.net package provides access to network functions using such classes as
java.net.URL , java.net.InetAddress , andjava.net.Socket

* Graphics toolkit
Thejava.awt package provides graphics rendering and window services to applica-
tions using such classesjas.awt.Canvas |, java.awt.Font , and
java.awt.Scrollbar

» System functions
Classes such gsva.lang.Thread andjava.util. EventObject provide applica-
tions with system-level functionality. The application environment also includes useful
utility classes, such gsva.util. Hashtable andjava.util.Calendar

2.3.1 Storage and Input/Output

The application environment packagea.io provides abstractions for stream-based 1/O,
file-based I/0, and a wide variety of buffering options. Flash ROM systems, local hard
drives, and server-based remote storage systems can all be accesped.iwith Some
environments may support the use of a system error stream for providing service operators
with information on the status of receivers and their usage; such streams ajsalise .

Additionally, broadcast data streams and file systems require the jgse.nof . For more
information, see the section on broadcast data APIs.

2.3.2 Return Channel and Non-Broadcast Network Access

The packaggva.net provides an environment for accessing network sockets and HTTP
connections, and for parsing URLS. In conjunction viathvio , this package provides the
required functionality to access and manage an IP return channel or to access IP data encap-
sulated in MPEG transport streams.

10 Java TV API Technical Overview, Version 1.0, 11/14/00

2.3.3 Security

The application environment provides the foundation upon which network operators and
standards organizations can define their own security models and policies. The Java TV
API does not dictate a particular security model or policy, but uses the JDK 1.2 security

architecture to express the security policies that are provided by the application environ-
ment.

This solution gives network operators and standards organizations the freedom to redefin
their security models as future needs change. It also allows broadcasters to incorporate le
acy security mechanisms into the platform. The remainder of this section describes some
important security concerns associated with interactive television and the APl support pro:
vided for each.

Conditional Access

The conditional access (C/A) subsystem controls the management of a set of authenti
cation keys used to descramble or decrypt downstream video or data streams. The Ja
TV API does not define a mechanism for acquiring or managing C/A keys or decryption
algorithms. There are a wide variety of deployed systems and a few standard interfaces
including APIs, defining C/A architectures.

Rather than provide a high-level C/A subsystem API, the Java TV APIs express C/A
subsystem interaction through the service selection APIs and the S| database. For mor
details, see Chapter 3, “Services and Service Information” and Chapter 4, “Service
Selection”.

Secure Communication

Secure communication is important for protecting confidential information, such as
financial data or electronic mail. Secure bi-directional TCP/IP connections can be
achieved using SSL (secure sockets layer) and TLS (Transport Level Security) connec
tions. The Java Secure Socket Extension (JSSE) is a Java standard extension for makir
SSL and TLS connections. The JSSE includes classesjiuvdkeet and

javax.net.ssl packages that enable applications to access secure communications ir
a way that builds on the services presefvifio andjava.net

Virtual Machine

The Java VM is designed to provide secure execution of code. Bytecode verification
insures the validity of the instructions that the VM executes. Class loading mechanisms

Environment 11

protect how code is loaded into the machine and can guarantee the validity of the code's
source. The absence of direct memory-pointer manipulations from the Java language
eliminates the risk of corruption due to code masquerading as data or stack-overflow
based attacks. These techniques combine to provide a uniquely safe execution environ-
ment and augment the other security mechanisms.

2.3.4 Abstract Window Toolkit

The Java Abstract Window Toolkit (AWT) provides a collection of basic tools with which

to build user interface (Ul) components, or widgets. AWT also provides a large collection

of native widgets. Vendors, consortia, and standards can define widgets to reside on receiv-
ers. Applications may also use the AWT to bundle special-purpose widgets supporting a
particular look and feel. Such application-specific widgets are usually downloaded with the
application.

12 Java TV API Technical Overview, Version 1.0, 11/14/00

Services and Service Information

A service is a collection of content for presentation on a receiver. This collection is handled
as a unit within the Java TV API. Services can be selected for presentation. Television
viewers often refer to this concept as a “television channel.” On today’s advanced television
receivers, a service might not just consist of a single audio and video stream, it may consis
of multiple audio and video streams as well as data.

Services have characteristic service information (Sl), which is stored in the Sl database. S
describes the layout and content of an audio/video/data stream, such as the MPEG-2
transport stream.

The Java TV API uses Locator objects to reference Sl elements. A given locator may
represent a network-independent object and have multiple mappings to network-depender
locators. The Java TV API provides methods for discovery of such circumstances and for
transformation to network-dependent locators.

Various protocols for transmitting S| are used and standardized today. For example, DVB-
Slis used in various satellite, cable, and terrestrial systems; the ATSC A56 standard is use:
on both satellite and cable; and the new ATSC PSIP (A65) is used on terrestrial and cable
DTV. There are also a wide variety of private protocols. The Java TV API provides an
abstraction of Sl protocols, therefore a Java TV application does not have to be aware of the
Sl protocol that delivers information to the receiver. As a result, the application is not
required to have special code to run in various environments, such as DVB-based, SCTE-
based or ATSC-based systems.

Services and Service Information 13

3.1 Services and Service Information Definitions

service- a collection of service components intended to be provided together as defined
by the content provider. Each service has service information (SlI) associated with it,
and every service must have its SI made available to the receiver. An Sl entry is one of
the defining properties of a service.

service information (SI) - information describing the content of a service or services.
This includes basic information to present the components of the service as a coherent
whole, as well as meta information such as the maturity rating of the service.

service component a "mono-media” element such as a video stream, an audio stream,

a Java application, or some other data type that can be presented without needing extra
information. A service will contain one or more service components, and a service
component may be shared by more than one service.

service locator- the information about a service needed to resolve it into a physical
address for presentation.

Sl database- a database that stores service information accessible by television
applications.

S| manager- the primary access point to the underlying SI database. The SI manager
reports changes related to the available Sl elements and is capable of resolving a service
locator into the meta data associated with the service.

Sl element- an object that represents a piece of service information.

3.2 Sl Packages

The Sl database object model allows various views of Sl, based on an application's needs.
Each view is represented as a package in the Java TV Sl APIs. The SI API packages are
Service, Navigation, Guide, and Transport.

14

service package: javax.tv.service

The service package provides the primary point of access to the Sl database and con-
tains classes common to the other Sl packages, such as the Service and SIElement inter-
faces.

navigation package: javax.tv.service.navigation

The navigation package contains classes that are used to navigate the existing services
(which are called Services in DVB and Virtual Channels in ATSC).

Java TV API Technical Overview, Version 1.0, 11/14/00

e guide package: javax.tv.service.guide
The guide package contains classes useful for electronic program guides (EPGS),
including program schedules, individual program events, and program ratings.

» transport package: javax.tv.service.transport
The transport package represents the MPEG-2 delivery mechanism.

FIGURE 4 depicts the S| API packages. The arrows in the diagram indicate the dependencies
among the packages.

FIGURE4 Sl API Package Dependencies

Most digital TV receivers will be unable to cache all the SI data in memory. The receiver
will cache a subset of the Sl data, consisting of the most useful information, but when it
needs to retrieve data not stored in memory, the receiver will parse the transport stream.
Because access to the transport stream may take a significant amount of time, the SI API
provide asynchronous access to information that is not cached.

The Sl APIs also provide a flexible mechanism for future extension of the API through the
extension of SIElement, which would allow access to additional information.

Services and Service Information 15

3.2.1 Service Package
The service package provides several features used by the other SI packages:

» Base classes extended by the other Sl packages.

* The event notification mechanisms for Sl element changes detected in the transport
stream and events delivering asynchronous requests.

» Exceptions.

Because most of the Sl elements are interfaces rather than classes, an application does not
have a way to directly instantiate an object that implements the specified interface.

Applications can register with the various objects to be notified when Sl elements change in
the broadcast. The SIChangeListener object and the SIChangeEvent object support the
standard Java event model. The types of objects that support change notification are:

* The ServiceDetails object, which reports changes related to its associated
ServiceComponent objects.

» The Transport object, which reports changes to carried services and network-definition
related tables represented by the TransportStream object, the Network object, and the
Bouquet object.

* The ProgramSchedule object, which reports changes detected in any one of the
ProgramEvent objects in the schedule.

The service package also provides a mechanism to deliver data asynchronously. This
functionality is provided by the SIRequestor, and SIRequest interfaces. A caller of an
asynchronous method registers as an SIRequestor in order to later receive a callback once
the requested data is available. The SIRequestor object receives the requested data or an
indication of a failure. The SIRequest object is provided to cancel asynchronous requests if
they are no longer needed by the caller.

3.2.2 Navigation Package
The navigation package provides two types of functionality:

* Mechanisms to request more detailed information about services and their service
components.

16 Java TV API Technical Overview, Version 1.0, 11/14/00

* A mechanism to group Service objects into collections based on various grouping
criteria.

The main navigation function is represented by several objects. The SI manager is the
primary access point to the underlying Sl database. It can generate a collection of Service
objects, called a ServiceList, based on the selection criteria represented by the ServiceFilte
object. The collection can then be used to sort, either by channel numbers or by channel
names, and navigate through the Service objects. The base class ServiceFilter can be us
to generate the default collection (using no filtering criteria), which represents all services
installed on the receiver.

The Service object itself contains only the minimal information (such as locator, channel
name and number) needed for navigation. Additional information about the service is
contained in the ServiceDetails object. The ServiceDetails object provides information
related to conditional access, the delivery mechanism of the service, and the time when the
information about the service was last updated.

A set of channel components is associated with a Service object. It can also be associate
with a specific ProgramEvent object, if such information is available. The current
ProgramEvent object provides the same components as the Service object carrying the
current program.

3.2.3 Guide Package

The guide package includes functionality to support EPGs. This package provides EPGs
with two related sets of information: the program schedule on each channel and the rating
information associated either with the channel or a specific program event. The
ProgramSchedule object can be used to retrieve the program that is currently playing, the
immediately following one, and then any other available program in the future for a
specified time period. Each ProgramEvent object can be queried for its name, start time an
end time, description, rating, and other related information.

Rating related information is organized into rating regions (such as countries, groups of
countries or arbitrary geographical regions) where each region may have a multiple rating
dimensions, such as the MPAA rating, FCC TV rating, DVB age-based rating, and
broadcaster-specific rating. Each dimension contains multiple levels; each ProgramEvent
object is labeled with one of these levels for all supported rating regions.

Services and Service Information 17

3.2.4 Transport Package

The transport package includes information about the physical media, such as MPEG-2
transport, that delivers the content the Sl describes. The SI manager provides access to
Transport objects, which in the MPEG case is extended by the TransportStreamCollection
to represent an MPEG-2 multiplex. The generic Transport interface can be extended to
support other types of transport delivery mechanisms, such as Internet Protocol (IP).

18 Java TV API Technical Overview, Version 1.0, 11/14/00

Service Selection

Once a service has been discovered, the service selection API allows an application to
control the presentation of services in a simple, high level way. The service selection API
combines into a single method call control of tuning, service information, media playback,
broadcast file transport, and the application manager. In particular, it largely conceals the
nature of the components making up the service.

For instance, an application can present a service without needing to know about its audic
components, video components or subtitle components. Furthermore, an application does
not need to know about whether the service has an associated application or anything abot
how to launch such an application.

4.1Service Selection Definitions

* service context- an environment in which services are presented. A receiver supports
one or more service contexts. Within a service context, one service may be selected fol
presentation at a time.

* service content handler- an entity in the receiver responsible for the presentation of
some portion of a service. A single service content handler may present several servic
components that share the same time clock. The lifecycle of the service content handlel
is bound by the lifecycle of the presentation of the service. An individual service
content handler may also have its own lifecycle within the lifecycle of the service. For
example, an application within a service may replace itself with another application in
the same service.

Service Selection 19

4.2 Service Selection API Overview

The purpose of the service selection API is to provide applications with a mechanism to
select services for presentation. The class that represents the environment in which these
services are presented is the ServiceContext class. Receivers may limit the number of
objects of this class that they support, even to one instance. ServiceContext is a high level
representation of a tuner, its associated decoding hardware, and state. ServiceContext
allows an application to control the presentation of the components associated with a
particular service. Theelect() method on a ServiceContext object causes the service
context to attempt to present a service. This selection is asynchronous and completion is
notified via an event-listener mechanism. Failure to select a service is reported via an
exception, if it can be determined at the tisalect() is called, or via an event, if it is
determined at some time later. Once a service context is presenting a service, various
information can be obtained about that service, including locators for the components of the
service.

When a ServiceContext object is presenting a service, the

getServiceContentHandlers() method returns references to the "engines" or "players"
that are presenting the various service components. For real-time media such as audio,
video, and subtitles, JMF Players are returned as objects of type ServiceMediaHandler. For
several audio, video, and subtitle components sharing the same clock, a single JMF Player
is returned.

4.3 Service Context State Model

A ServiceContext can exist in one of four states - Presenting, Not Presenting, Presentation
Pending, and Destroyed. The initial state is Not Presenting. From any state (except the
Destroyed state), theelect) method can be called. Assuming no exception is thrown,

the ServiceContext enters the Presentation Pending state. No event is generated on this state
transition.

If a call toselect() = method completes successfully, either a NormalContentEvent or an
AlternativeContentEvent is generated and the ServiceContext moves into the Presenting
state. If the service selection fails, a SelectionFailedEvent is generated. If the state before
the select call was Not Presenting, the ServiceContext returns to that state and a
PresentationTerminatedEvent is generated. If the state before the select call was Presenting,

20 Java TV API Technical Overview, Version 1.0, 11/14/00

the ServiceContext tries to return to a previous state which can result in a
NormalContentEvent or AlternativeContentEvent if possible. If that is not possible, the
ServiceContext returns a PresentationTerminatedEvent.

The Not Presenting state is entered due to service presentation being stopped, which is
reported by the PresentationTerminatedEvent. The stopping of service presentation can b
initiated by an application calling teep() method or because some change in the
environment makes continued presentation impossible.

The Destroyed state is entered by callingdbstroy() method. Once this state is entered,

the ServiceContext can no longer be used for any purpose. A destroyed ServiceContext i
eligible for garbage collection once all references to it by any application have been
removed.

FIGURE 5 Shows the state machine diagram for ServiceContext objects.

FIGURE 5 ServiceContext States

stopd)
solect() (completion)
- ha—
—
salecti
destroy()
destroy() destroyi)

Service Selection 21

TABLE 1 describes each valid ServiceContext state.

TABLE 1 Descriptions of the ServiceContext States
State Name Description
Not Presenting The initial state of the ServiceContext. In this state, no service is presented to the

viewer. The ServiceContext also enters this state if its stop method is called or|if a
previously presented service can no longer be presented.

Presentation Pending The ServiceContext enters the Presentation Pending state after the select method is
called and no exceptions are thrown. If a service was being presented in the prgvious
state, the service continues to be presented in this state. If the selection operation
does not complete successfully, the ServiceContext leaves the Presentation Pending
state and attempts to return to its previous state.

Presenting The ServiceContext enters the Presenting state if the service selection operation
completes successfully. In this state, either normal content or alternative contept is
presented to the viewer.

Destroyed The ServiceContext enters the Destroyed state when the destroy method is called. In
this context, no service is presented to the viewer. Once this state is entered, the
ServiceContext can no longer be used.

22 Java TV API Technical Overview, Version 1.0, 11/14/00

JMF and the Broadcast Pipeline

The Java TV API uses the Java Media Framework (JMF) 1.0 APIs for managing the
broadcast media pipeline. The JMF APIs provide a foundation for the Java TV API by
defining a set of APIs and a framework for displaying time-based media that are
independent of transport mechanism, transport protocol, and media content type.

JMF definegavax.media.Player , which extends MediaHandler, for time-based media
data. A Player object encapsulates the state machine required to acquire resources and
manage the rendering of time-based media streams. A Player object also provides variou:
controls for the rendering facilities (e.g., volume and video picture controls). Finally, in the
case of a Player for an audio/video stream, a GUI component object that contains the videc
portion of the stream can be obtained from the Player. This allows easy integration and
placement of video with the rest of the presentation.

For a detailed description of JMF, see the JMF 1.0 specification.

5.1 JMF Controls

A JMF Control is an object that is obtained from a Player at runtime. The object
implements théavax.media.Control interface, and will also implement at least one
interface that provides control over some aspect of the media the Player is managing. For
example, many Players provide an object which supporiswhemedia.GainControl

interface to control a Player's audio gain.

In addition to the controls defined in the JMF 1.0 specification, the Java TV API includes
the following controls defined in th&ax.tv.media package.

JMF and the Broadcast Pipeline 23

TABLE 2 Controls included in the Java TV API

Interface Function
javax.tv.media.MediaSelectControl Media selection
javax.tv.media.AWTVideoSizeControl Video size and position

The set of controls defined as part of the Java TV API are controls that a Java TV
implementation may support, though not all Players will support all of these controls all of
the time. An application can check if a Player instance supports a particular control using
the Player'sjetControl(String forName) method. If the output is null, the control
specified bytorName is not supported. To obtain all the controls a Player instance supports,
use thegetControls() method. This method returns an array of Control objects that might
include manufacturer specific controls, if the implementation supports them.

Additionally, the DAVIC 1.4 (Digital Audio-Video Council) specification includes a

number of useful IMF Control objects that may be used with implementations of the Java
TV API. These controls are listed imsLE 3.

TABLE 3 DAVIC Controls

DAVIC Control Function
org.davic.media.MediaTimeEventControl Time based events
org.davic.media.LanguageControl Base class for language selection
org.davic.media.AudioLanguageControl Audio language selection
org.davic.media.SubtitlingLanguageControl Subtitle language selection
org.davic.media.FreezeControl Freeze frame
org.davic.media.MediaTimePositionControl Position

5.2 JMF Synchronization

JMF allows the specification of synchronization relationships between media and the clock
that serves as the synchronization master for presenting the media. The details of the
synchronization primitives are described in the IMF documentation. A JMF Player inherits

24 Java TV API Technical Overview, Version 1.0, 11/14/00

from the Clock class, which provides a method to obtain the current media-time. Clock also
provides a method to obtain an object called a time-base. The time-base represents the
synchronization master for Clock, which has methods for specifying the synchronization
point between media-time and the time-base, as well as other parameters for controlling the
relationship between the media-time and the time-base.

A new mechanism defined by DAVIC is supported in the Java TV API to provide for the
delivery of an event at a particular media-time. A Player that can support delivery of such
events provides the MediaTimeEventControl interface, which provides for the registration
of MediaTimeEventListeners. The MediaTimeEvent is delivered to
MediaTimeEventListeners when the appropriate media-time has occurred.

5.3 Player Architecture and the Broadcast Pipeline

JMF controls the playback of media data with an object of g@ssmedia.Player

There are two distinct components that are created for this: protocol handlers and media
handlers. A Player is a type of media handler. A protocol handler is a source of data; a
media handler is a consumer of data. A protocol abstracts and, therefore, is completely
dependent upon, the data delivery mechanism that is used. For example, separate protoc
handlers are required for HTTP delivered over an IP connection and MPEG-2 Transport
delivered from a cable tuner. JMF defines the abstract class

javax.media.protocol.DataSource as the base class for all protocol handlers. JMF
defines the interfagavax.media.MediaHandler for all content handlers;
javax.media.Player extends MediaHandler.

Most implementations of JMF assume that a complete decoding pipeline should be
constructed each time a new media stream is to be rendered. In desktop environments, tt
is a natural notion. Usually, separate network connections are required for each stream of
media. Each connection has completely separate pipeline requirements, and requires a
potentially complex negotiation with the source of the connection (e.g., a server).

In a broadcast environment, this is not the case. The interface to the broadcast network c:
be modeled as a multiplex of multiplexes. Such a model combines the actual tuner (the first
multiplex) and demux (the second multiplex). Thus, the control interface to a broadcast
network consists of tuning (primary multiplex selection) and stream selection (secondary
multiplex selection) (seecure 6). For traditional video broadcast, the resulting pipeline is
always the same: the secondary multiplex is connected to an audio/video decoder. Thus,

JMF and the Broadcast Pipeline 25

channel changing requires no acquisition of new pipeline resources (tuner, demux, codec,
screen), merely a command to the network interface with tuning and stream selection
parameters. This presumes that the same tuner and rendering sub-system is used to view the
different channels.

FIGURE 6 Broadcast Network Interface

Network Interface

Sianal s — Audio Out
igna == . .
Sq_b— AWV Decoder |——Video Out

— Data Out

(Tuner/Demux)

JMF can model this pipeline with no modification to the existing interfaces. The Player
object still represents the whole pipeline and the DataSource still represents the connection
to the network. To accommodate the broadcast selection mechanisms described above, a
simple addition is required. Rather than require that the pipeline be reconstructed whenever
one of the two multiplexes is switched (which is what happens if a new player is
constructed for each tuning request), a selection interface that can affect the two demuxes is
provided. This mechanism is foundjavax.tv.media.MediaSelectControl tisa JMF

Control with APIs for asynchronous selection and de-selection of content.

26 Java TV API Technical Overview, Version 1.0, 11/14/00

Broadcast Data APIs

The Java TV APIs for broadcast data permit access to data transmitted in the television
broadcast signal. These APIs support access to data carried in three formats:

Broadcast file systems
The Java TV API provides access to broadcast file and directory data through use of the
file access mechanisms defined in the package

IP datagrams

The Java TV API provides access to unicast and multicast IP datagrams transmitted ir
the broadcast stream through the use of the conventional datagram reception
mechanisms of thiava.net package.

Streaming data
The Java TV API provides access to generic streaming data extracted from the
broadcast using the JMF packaaex.media.protocol

6.1 Broadcast Data API Definitions

DSM-CC - MPEG-2 Digital Storage Media Command and Control, as defined in ISO/
IEC 13818-6 (see the reference to DSM-CC in Appendix I).

object carousel- A mechanism for cyclic transmission of DSM-CC User-to-User (U-

U) Objects over data carousel. Object carousels convey hierarchical file structures using
DSM-CC U-U File and Directory objects.

data carousel- A mechanism for cyclic transmission of data modules, as defined by the
DSM-CC User-to-Network Download protocol.

Broadcast Data APls 27

» asynchronous data data that includes no timing requirements. In an MPEG-2
transport stream, asynchronous data contains no program clock reference (PCR) or
presentation time stamp (PTS) values.

6.2 Broadcast File Systems

The Java TV API provides access to broadcast file and directory data through use of the file
access mechanisms defined in the packageo . Such data is typically transmitted in a
“carousel” wherein the contents of a remote file system are cyclically transmitted to permit
reconstruction on the receiver. The Java TV APl models broadcast carousels as
conventional disk file systems with high access latencies. Most interactions with the
specific carousel protocols are handled by the Java TV API implementation rather than the
application.

The Java TV API is sufficiently high level for use with any broadcast file system protocol.
However, its use with two prevalent protocols, the DSM-CC object carousel protocol and
the DSM-CC data carousel protocol, are described in detail below.

6.2.1 DSM-CC Object Carousels

The DSM-CC object carousel protocol is a commonly used form of broadcast file system. It
specifies three object types for structuring carousel data:

» DSM::ServiceGateway- provides access to the top-level directory of an object
carousel.

» DSM::Directory - represents a conventional directory structure; may refer to files or
other directories.

* DSM::File - represents generic file data.

The classgava.io.File represents all of these object types. The Java TV API class
javax.tv.carousel.CarouselFile subclassefva.io.File to handle object carousel
access, adding the ability to:

» Refer to a carousel object usijagax.tv.locator.Locator
* Notify applications of updates to individual carousel objects

28 Java TV API Technical Overview, Version 1.0, 11/14/00

Applications use the conventional file input classes ofathgéo package (i.e.,
FilelInputStream, FileReader, and RandomAccessFile) to read from a CarouselFile object.

6.2.1.1 Object Carousel Example Usage

1. Create CarouselFile of top-level directory.
CarouselFile serviceGateway = new CarouselFile(locator);

2. List top-level objects.
String files[] = serviceGateway.list();

3. Create a file object.
CarouselFile myFile = new CarouselFile(serviceGateway, files[0]);

4. Create a file input object.
FilelnputStream fis = new FilelnputStream(myFile);

5. Read from file.
byte data = fis.read();

6. Close file.
fis.close();

When a CarouselFile of a ServiceGateway is instantiated, the receiver "mounts” the
associated carousel in the local file system, attaching the carousel's namespace as a subti
of the local file system hierarchy. The location of the mount point in the local file system is
dynamically determined or specified by television standards bodies. After the carousel ha:
been mounted, the application can query the location of the carousel in the local file systerr
hierarchy using the methadhrouselFile.getCanonicalPath()

After a carousel has been mounted in the local file system, applications can access objec
of type DSM::Directory and DSM::File in the carousel using CarouselFile objects or
normaljava.io.File objects. ThecarouselFile class has special asynchronous loading
features not found ijava.io.File (see Object Carousel Management).

The read methods on the file input clagsesputStream |, FileReader , and
RandomAccessFile throw instances abException if the requested data cannot be loaded

Broadcast Data APIs 29

from the carousel. If the carousel is no longer accessible, the receiver may permit
applications to continue to read from previously loaded data.

6.2.1.2 Object Carousel Management

Although applications can treat object carousels much like any other file system, the
receiver must interact with carousels explicitly. This interaction should be consistent from
one receiver implementation to another to provide consistent behavior to applications. The
following actions are recommended when implementations of the Java TV API access
DSM-CC object carousels.

Upon instantiating a CarouselFile of a DSM::ServiceGateway object, the receiver:

1. Attaches the service domain of the referenced carousel,
2. Mounts the carousel file hierarchy in the local file system, and
3. Asynchronously loads the contents of the DSM::ServiceGateway object.

Upon instantiating a CarouselFile of a DSM::Directory object, the receiver asynchronously
loads the contents of the DSM::Directory object. A call to the directory method
CarouselFile.listDirectoryContents() blocks until the contents of the
DSM::ServiceGateway or DSM::Directory referenced by the CarouselFile are loaded.

Likewise, instantiating a CarouselFile referencing a DSM::File object asynchronously
loads the contents of the DSM::File object. A read operation on a

java.io.FilelnputStream , java.io.FileReader , Orjava.io.RandomAccessFile

object opened on a CarouselFile object representing a DSM::File object blocks until the
contents of the corresponding DSM::File object are loaded.

A close operation on every instancgavt.io.FilelnputStream ,
java.io.FileReader , andjava.io.RandomAccessFile corresponding to a single
DSM::File object unloads the contents of the DSM::File object.

Finalization of all instances of CarouselFile referring to a single DSM::Directory object
unloads the contents of the DSM::Directory object. After all instances of CarouselFile
referring to objects in the carousel have been finalized and all instances of
java.io.FilelnputStream , java.io.FileReader , andjava.io.RandomAccessFile

referring to DSM::File objects in the carousel have been closed, the receiver:

30 Java TV API Technical Overview, Version 1.0, 11/14/00

1. Unloads the DSM::ServiceGateway object,
2. Unmounts the carousel from the local file system, and
3. Detaches the service domain of the carousel.

6.2.2 DSM-CC Data Carousels

The DSM-CC data carousel protocol supports transmission of a single-directory file system
to the receiver. The data carousel protocol includes a DownLoadInfolndication message
announcing the data modules present in a particular carousel, and messages to transmit 1
contents of each carousel module. If the television receiver is compliant with broadcast
standards that permit string-based naming of data carousel modules, instances of
CarouselFile can be used to access and read data carousel modules in a manner similar
that for DSM::File objects in an object carousel. Specifically,

* A CarouselFile instantiated as the top-level "directory” of a data carousel provides the
contents of the DownLoadInfolndication message for the carousel.

» Instances of CarouselFile may be created to refer to individual data carousel modules.
Instantiating a CarouselFile object asynchronously loads the module to which it refers.

* A read operation onjava.io.FilelnputStream , java.io.FileReader , or
java.io.RandomAccessFile instance opened on a CarouselFile object representing a
carousel module blocks until the corresponding module is loaded. The read operation
accesses only the contents of the blockDataByte field of the DownloadDataBlock
messages comprising the module.

* A close operation on every instancgavh.io.FileInputStream ,
java.io.FileReader , andjava.io.RandomAccessFile corresponding to a single
data carousel module unloads the module.

6.2.3 Reducing the Effects of Carousel Latency

Access to data in DSM-CC object carousels or data carousels can be subject to a much
higher degree of latency than is found in a typical disk-based file system. In the absence ¢
measures to deal with this latency, applications that access multiple carousel-based files
might experience considerable delays as all the needed data is loaded. To reduce these
delays, applications based on the Java TV API can use the following latency-managemen
techniques:

Broadcast Data APIs 31

» Applications can create a new thread per carousel file to be read, and then block in
parallel on read operations. This minimizes the average time required for accessing
each file, but causes additional thread overhead.

» Applications can poll non-blocking status methods, such as

FilelnputStream.available() or FileReader.ready() , to determine the
availability of data.
» Applications can time out on read operations by issuingad.interrupt() calls to

blocked threads.

* Instantiating a file input class on a CarouselFile asynchronously loads the
corresponding carousel data. Therefore, applications can first create instances of file
input classes for each required carousel file and then block in series on read operations.
This minimizes the total time required to access all the required files, but typically
causes the average file access time to be greater than in the case of multiple parallel
reads.

6.3 IP Datagrams

The Java TV API provides access to IP datagrams transmitted in the broadcast stream
through use of the normal datagram reception mechanismsjafdinet package.
Applications receive unicast IP datagrams usingatfzenet.DatagramSocket class.
Applications receive multicast IP datagrams usinga¥enet.MulticastSocket class.

To enable reception of multicast IP datagrams, the Java TV API assigns a locally-unique IP
address to service components carrying encapsulated IP datagrams. These addresses are
generated dynamically from the set of IP addresses reserved for use in private networks (see
RFC 1918 referenced in Appendix | for more information). Television applications
determine the local IP address assigned to a given service component using the class

javax.tv.net.InterfaceMap . Applications then use this IP address to indicate the
network interface from which instancesj@fa.net.MulticastSocket or
java.net.DatagramSocket receive multicast datagrams.

32 Java TV API Technical Overview, Version 1.0, 11/14/00

6.4 Streaming Data

The Java TV API provides access to generic streaming data in the television broadcast
using the JMF packagavax.media.protocol . Asynchronous streaming data can be
obtained using the interfag®ax.tv.media.protocol.PushSourceStream?2

A Java TV API application typically refers to an individual data service component using a

javax.tv.locator.Locator object. Using the methadcator.toExternalForm() , an
application converts the Locator object into a string from which a
javax.media.MediaLocator object is constructed. The resulting MediaLocator object is
then used to obtainjavax.media.DataSource object fromjavax.media.Manager

Then, the DataSource object is used to obtain one or more PushSourceStream?2 objects.

The interface PushSourceStream2 extends the JMF version 1.0 interface
javax.media.protocol.PushSourceStream with a new read mechanism. The method
PushSourceStream?2.readStream() provides access to the payload of the data and throws
exceptions to indicate data loss. The Java TV APl makes no guarantees concerning
buffering or availability of the data obtained through PushSourceStream?2.

Broadcast Data APIs 33

34 Java TV API Technical Overview, Version 1.0, 11/14/00

Application Lifecycle

The Java TV API defines an application model called the Xlet application lifecycle. Java
applications that use this lifecycle model are called Xlets. The Xlet application lifecycle is
compatible with the existing application environment and virtual machine technology.

The Xlet application lifecycle model defines the dialog (protocol) between an Xlet and its
environment through the following:

* A simple, well-defined state machine
* A concise definition of the application's states
* An API to signal changes between the states

7.1 Xlet Application Lifecycle Definitions

The following definitions are used in the Xlet application lifecycle model:

» application manager- A part of a digital television receiver's software operating
environment that manages Java applications. The application manager controls the
lifecycle of an Xlet by signalling its state changes. An application manager is required
on a receiver, but its precise behavior is implementation specific.

» Xlet - A Java application (usually downloaded) that runs on the digital television
receiver.

» Xlet states- The states changes of an Xlet are handled by the Xlet itself, i.e., only the
Xlet knows when the state has been successfully changed. The four Xlet states are
Loaded, Active, Paused, and Destroyed. Xlets communicate with the application
manager about state changes via callbacks. The Xlet signals the success or failure of
such changes with the return value of the callbacks.

Application Lifecycle 35

» Xlet context - the object that an Xlet uses to access other facilities in the system. Each
Xlet has one XletContext object and it can be tailored to a specific environment.

7.2 Application Manager Requirements

The Xlet application lifecycle addresses the amount of control that an application manager
can exert over an Xlet. The application manager's control over Xlets does not include giving
an Xlet access to other resources on the receiver, such as graphics or shared resource
allocation/management. Note that the application manager may or may not be written
entirely in the Java language.

Although a detailed specification of an application manager is outside the scope of the Java
TV API, the Xlet application lifecycle model requires that the resident application manager
adhere to the following principles:

» An Xlet can be destroyed at any time.
An application manager is the entity on a digital television receiver that has ultimate
control over the Xlets it manages. Therefore, the application manager must be able to
destroy an Xlet at any time.

* The current state an Xlet will always be known.
An application manager is responsible for signaling Xlets regarding their current state.
Xlets, however, can also change their own states, but they must signal those changes
back to the application manager.

* An application manager can change the state of an Xlet.
The primary purpose of an application manager is to direct the state changes of an Xlet.

* An application manager will know if an Xlet has changed its state.
One of the features of the Xlet application lifecycle API is that the Xlet can change its
own state. Therefore, the application manager must be notified of this state change so it
can track the state of the Xlet.

36 Java TV API Technical Overview, Version 1.0, 11/14/00

7.3 Xlet States

The lifecycle states for Xlets are:

et has

to the

TABLE 4 Xlet States

State Name Description

Loaded The Xlet has been loaded and has not been initialized. This state is entered after the X
been created using new. The no-argument constructor for the Xlet is called and returns wfithout
throwing an exception. The Xlet typically does little or no initialization in this step. If an
exception occurs, the Xlet immediately enters the Destroyed state and is discarded. Note: This
state is entered only once per instance of an Xlet.

Paused The Xlet is initialized and quiescent. It should not be holding or using any shared resources.
This state is entered:
From the Loaded state after the Xlet.initXlet() method returns successfully, or
From the Active state after the Xlet.pauseXlet() method returns successfully, or
From the Active state before the XletContext.notifyPaused() method returns successfully
Xlet.

Active The Xlet is functioning normally and providing service. This state is entered from the Paused
state after the Xlet.startXlet() method returns successfully.

Destroyed The Xlet has released all of its resources and terminated. This state is entered:

When the destroyXlet() method for the Xlet returns successfully. The destroyXlet() meth
shall release all resources held and perform any necessary clean up so it may be garba|
collected; or

When the XletContext.notifyDestroyed() method returns successfully to the Xlet. The Xlg
must perform the equivalent of the Xlet.destroyXlet() method before calling
XletContext.notifyDestroyed.

Note: This state is only entered once per instance of an Xlet.

7.3.1 Xlet State Machine

The Xlet state machine is designed to ensure that the behavior of an Xlet is as close as
possible to the behavior television viewers expect, specifically:

* The perceived startup latency of an Xlet should be very short.
* It should be possible to temporarily stop an Xlet from providing it service.
» It should be possible to destroy an Xlet at any time.

Application Lifecycle 37

FiIcure 7Shows the application state machine diagram for Xlets.

FIGURE7 Xlet State Machine Diagram

lﬂilIlElﬂ =
:intrnr!lnu;:l
destroyXlat()
stariXlet() pauseXhet])

destroy Xlet()

7.3.2 Xlet Lifecycle Model

Only the Xlet can determine if it is able to provide the service for which it was designed.
Therefore, an application manager cannot force an Xlet to provide its service; it can only
indicate that the Xlet is permitted to do so. A typical sequence of Xlet execution is:

TABLE 5 Xlet Execution

Application Manager Xlet

The application manager creates a new instance of an Xlet. The default (no argument) constructor for the| Xlet is
called; it is in the Loaded state.

The application manager creates the necessary context objecThe Xlet uses the context object to initialize itself. |t
for the Xlet to run and initializes the Xlet. is now in the Paused state.

The application manager has decided that it is an appropriateThe Xlet acquires any resources it needs and begips
time for the Xlet to perform its service, so it signals it to ente¢rto perform its service.
the Active state.

The application manager no longer needs the Xlet to perforn] iffhe Xlet stops performing its service and might
service, so it signals the Xlet to stop performing its service. | choose to release some resources it currently hold

o

38 Java TV API Technical Overview, Version 1.0, 11/14/00

Application Manager Xlet

The application manager has determined that the Xlet is no| If it has been designed to do so, the Xlet saves stgte
longer needed, or perhaps needs to make room for a higher or user preferences and performs clean up.
priority application, so it signals the Xlet that it is to be
destroyed.

7.4 Xlet Package

The Xlet package provides developers with APIs that provide application lifecycle
signaling in a digital television receiver environment. The Xlet API consists of two
interfaces, Xlet and XletContext, which express the communication between an Xlet and its
environment. (See Javadocs for more details.)

The Xlet APIs use a callback approach to signal state changes. The state of an Xlet can
change by either the application manager calling one of the methods on Xlet or by the Xlet
notifying the application manager of an internal state transition via the XletContext object.
The semantics of exactly when that state change occurs are important:

» Calls to Xlet
Calls to this interface indicate a successful state change only when the call successfully
returns.

» Calls to XletContext
Calls to this interface indicate a state change on entry.

The Xlet APIs adhere to the following principles:

* The Xlet API signals an Xlet when a state change is required.
The primary purpose of the Xlet API is to direct the state changes of an Xlet.

* A context will be provided to the Xlet when it is initialized.
An XletContext is an object that is used to represent the Xlet. An XletContext is passed
to the Xlet at initialization to permit configuration based on the environment.

* An Xlet can signal when it has changed state.

Application Lifecycle 39

An individual Xlet is the only entity that can define whether or not it is able to perform
properly. Therefore, an Xlet may discover that it can no longer operate as desired and
may choose to change its state.

* An Xlet can signal when it is done.
When the Xlet has completed its task, it should signal this to the application manager.

7.4.1 Xlet Interface

The Xlet interface provides an application manager with four methods to signal application
lifecycle state changes to an Xlet:

* public void initXlet(XletContext ctx)
Initializes the Xlet. This method is a signal for Xlet to initialize itself, so that it is
prepared to provide its service quickly. An XletContext object is passed in with this
method. This object can be used by the Xlet to access properties associated with its
environment, as well as to signal the application manager that it has changed state. If for
some reason the Xlet cannot successfully initialize, it can signal this to the application
manager by throwing an XletStateChangeException. Otherwise, the Xlet returns the
Paused state.

* public void startXlet()
The Xlet moves to the Active state when this method completes. The Xlet should now
be providing its service. Xlets typically attempt to acquire resources at this time. If the
Xlet cannot enter the Active state, it can throw an XletStateChangeException, which
will notify the application manager that the state change failed.

* public void pauseXlet()
The pauseXlet callback signals the Xlet to stop providing service. When the callback
returns, the Xlet is in the Paused state. The Xlet may choose to release some resources
at this time. If the Xlet cannot enter the Paused state, it can throw an XletStateChange-
Exception, which will notify the application manager that the state change failed.

¢ public void destroyXlet()
This method is a signal to the Xlet that it is no longer needed and that it will soon be
purged from the system. Xlets should perform any operations required before termina-
tion, such as releasing resources, saving preferences, and saving state.

40 Java TV API Technical Overview, Version 1.0, 11/14/00

7.4.1.1 Xlets and Finalization

The Java language provides a mechanism called finalization that allows objects to perforn
some clean up just before they are garbage collected. The finalizer on an object will not b
called until all references to the object have been discarded and the object is ready to be
garbage collected. The Java language specification states that programmers should neve
depend on a finalizer being called. Note that in the Xlet interfacgsheyXiet()

method is called on an Xlet shortly before it is to be destroyed. The intent of the two
methods are similar, but programmers can assume thadsthe Xlet() method will be
called.

* What Xlets should do in their finalizers.
As mentioned above, objects should not depend on their finalizers being called. If an
Xlet must typically do clean up at the end of normal execution, the Xlet should use its
destroyXlet() method instead. In most cases the finalizer should be empty.

* Reducing the risk of misbehaving Xlets.
In general, the underlying Java application environment should be designed to reduce
the risk of Xlets that misbehave in their finalizers. One possible technique is to set the
maximum priority of the finalizer's thread group very low. Constructors on objects
thought to cause potential risks (such as Thread and ThreadGroup) can also throw
security exceptions. The implementor of the application environment must provide a
SecurityManager that implements this policy. An application environment will likely
provide at least two SecurityManager objects, one for the normal operation of an Xlet
and one that implements the security policy of the ThreadGroup objects that execute the
finalizer threads.

7.4.1.2 Xlets and Threads

Xlets should declare their lifecycle methods (the methods implementing the Xlet interface)
assynchronized . This is not done in the Xlet interface method signatures because
interface methods cannot be declared synchronized in the Java language. By declaring thes
methods synchronized, a lock will be acquired on the Xlet object interface when one of the
lifecycle methods is called. This will have the effect of blocking other calls to the other
method's lifecycle methods. Xlets can also benefit from acquiring a lock on themselves
before calling the lifecycle methods on their XletContext. A well-designed application
manager should create individual threads to call the lifecycle methods on Xlets.

Application Lifecycle 41

7.4.2 XletContext Interface

An XletContext is an object passed to an Xlet when it is initialized. XletContext provides
an Xlet with a mechanism to obtain properties, as well as a way to signal internal state
changes to the application manager. There is a one-to-one correspondence between
XletContext objects and Xlets. The XletContext interface defines the following methods:

* public void notifyDestroyed()
This method signals the application manager that the Xlet has entered the Destroyed
state. This method allows an Xlet to signal the application manager that the Xlet has
completed execution and is ready to be destroyed.

¢ public void notifyPaused()
This method signals the application manager that the Xlet has entered the Paused state.
This state is entered when an Xlet can no longer provide its service.

* public java.lang.Object getXletProperty(java.lang.String key)
This method allows an Xlet to retrieve named properties from the XletContext.

* public void resumeRequest()
This method signals the application manager that the Xlet is interested in entering the
Active state.

7.5 Xlet Lifecycle Example

A simple example of Xlet lifecycle is a stock ticker that uses a back channel to retrieve
stock quotes, which it displays on the viewer's television.

1. The application manager obtains the code for the Xlet.

2. The application manager creates an instance of the XletContext object and initializes it
for the new Xlet.

3. The application manager initializes the Xlet by callingnitglet() method and
passing it the XletContext object.

4. The Xlet uses the XletContext object to initialize itself and enters the Paused state.

5. The user presses a button on the television's remote control that signals the application
manager to start the Xlet.

42 Java TV API Technical Overview, Version 1.0, 11/14/00

©

10.

11.

12.

13.

The application manager calls thatxlet() method for the Xlet. The application
manager assumes that the Xlet is performing its service.

Upon receiving this signal, the Xlet creates a new thread that opens the back channel t
retrieve the stock quotes. The Xlet is now in the Active state.

The Xlet begins to show the stock quotes.

Due to circumstances beyond the control of the Xlet, it is no longer able to retrieve
updated stock quotes.

The Xlet decides to continue displaying the most recent quotes it has. Note that the
application is still in the Active state.

After a time, the Xlet is still unable to open the back channel. It decides that the quote:
it is displaying are too old to present and that it can no longer perform its service. It
chooses to take itself out of the Active state. It callsribréyPaused() method on the
XletContext object to signal this change to the application manager.

Finally, the Xlet decides it no longer has any chance of performing its service, so it
decides it should be terminated. The Xlet does some final clean up and calls the
notifyDestroyed() method on the XletContext object to signal the application
manager that it has entered the Destroyed state.

The application manager prepares the Xlet for garbage collection.

Application Lifecycle 43

44 Java TV API Technical Overview, Version 1.0, 11/14/00

Appendix I: Related Documents

The PersonalJava application environment programming interfaces are specified by the
PersonalJava API Specification, Version athttp://java.sun.com/products/personaljava.
This specification defines the relationship between the PersonalJava API and tMe JDK
API.

TheJava Platform 1.1 Core API Specificatiaiescribes the Java platform and is available
at http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

The Java programming language is describethe Java Programming Language, Second
Edition (ISBN: 0-201-31006-6) by Ken Arnold and James Gosling at http://java.sun.com/
docs/books/javaprog/secondedition. This book covers the constructs of the language and
core packages in detail.

The Java programming language is specifiefihe Java Language Specificatidi$BN O-
201-63451-1) by James Gosling, Bill Joy, and Guy Steele at http://java.sun.com/docs/
booksljls.

The Java virtual machine is specifiedlime Java Virtual Machine Specificati¢isBN O-
201-63452-X) by Tim Lindholm and Frank Yellin at http://java.sun.com/docs/books/
vmspec. This book contains comprehensive coverage of the Java virtual machine class fil
format and instruction set. In addition, the book contains directions for compiling the JVM
with numerous practical examples to clarify how it operates in practice. The book also
demonstrates the VM's powerful verification techniques.

The JDK 1.1 class libraries are described in two volumes. The first vollheJava Class
Libraries: Second Edition, Volume(ISBN 0-201-31002-1) by Patrick Chan, Rosanna
Lee, and Douglas Kramer, is at http://java.sun.com/docs/books/chanlee/second_edition/
voll. The second volum@&he Java Class Libraries: Second Edition, Volun{éSBN 0-

Appendix I: Related Documents 45

http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/docs/books/javaprog/secondedition
http://java.sun.com/docs/books/javaprog/secondedition
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/vmspec
http://java.sun.com/docs/books/vmspec
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition/vol1
http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/docs/books/chanlee/second_edition

201-31003-1) by Patrick Chan and Rosanna Lee, is at http://java.sun.com/docs/books/
chanlee/second_edition.

The Secure Sockets Layer (SSL) is document&5bibh Java Standard Extension to JDK
1.1 at http://java.sun.com/security/.

The Java Media Framework is specified in #la&a Media Framework 1.0 Specificatiah
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html. This
specification documents the APIs. A developer's guide describing the Java Media
Framework is available in Java Media Players at http://java.sun.com/products/java-media/
jmf/forDevelopers/playerguide/index.html.

The Digital Audio-Visual Industry Consortium (DAVIC) has defined Java language APIs
for digital television. These can be found at ftp://ftp.davic.org/Davic/Pub/Specl_4/
14p09ml.zip in part 9.

For broadcast data, the MPEG Systems Layer is described in ISO/IEC 13818-1.:
Information technology - Generic coding of moving pictures and associated audio
information - Part 1. Systems

DSM-CC is defined in ISO/IEC 13818-#iformation technology - Generic coding of
moving pictures and associated audio information - Part 6: Extension for Digital Storage
Media Command and Control (DSM-CC)

IP multicasting is described further in RFC 1H@&st Extensions for IP Multicasting
August 1989, by S. Deering; and RFC 22g8ninistratively Scoped IP Multicastuly

1998, by D. Meyer.

IP addresses reserved for use in private networks are described in RF&JHed8s
Allocation for Private Networkd=ebruary 1996, by Y. Rekhter, et al.

For broadcast data, the Internet RFCs can be found at http://www.ietf.org/rfc.html.

46 Java TV API Technical Overview, Version 1.0, 11/14/00

http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/docs/books/chanlee/second_edition
http://java.sun.com/security/ssl/API_users_guide.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerapi/packages.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerguide/index.html
http://java.sun.com/products/java-media/jmf/forDevelopers/playerguide/index.html
ftp://ftp.davic.org/Davic/Pub/Spec1_4/14p09ml.zip
http://www.ietf.org/rfc.html

Index

A
Abstract Window Toolkit, 12
Active state, 35
address, 14
advertisement, 4
application
environment, 9
lifecycle, 6, 35
lifecycle signaling, 39
model, 35
program-specific, 3
state, 35
television-specific, 3
application manager, 6, 19, 35, 36
requirements, 36
asynchronous
access, 15
data, 28
delivery, 16
service selection, 20
streaming data, 33
ATSC, 13,14
audio
gain, 23
output, 5
output device, 8
stream, 8, 13
authentication keys, 11
AWT, 12

B

back channel, 42

bi-directional TCP/IP connection, 11
broadcast

data, 27

data stream, 10

enhanced, 2

file system, 27, 28

file transport, 19

interactive, 3

media pipeline, 5, 7, 8, 23
broadcast data API, 27

definitions, 27
broadcaster-specific rating, 17
bytecode verification, 11

C
C/A, 5,8,11
cache, 15
callback, 39
carousel, 28
data, 27
data structure, 28
latency, 31
management, 30
module, 31
object, 27
protocol, 28
channel, 13
back, 42
component, 17
name, 17
number, 17
return, 3, 10

Index

47

clock, 19
media synchronization, 24
program clock reference, 28
commercial, 4
conditional access, 5, 7,11, 17
content, 13, 18, 23
developer, 3
handler, 5, 19
provider, 14
context, 36
control interface, 25
Control object, 23
cyclic transmission, 27

D

data
broadcast, 27
carousel, 27,31
delivery mechanism, 25
formats, 27
loss, 33
module, 27
source, 25
stream, 11, 13
streaming, 27, 33
transmission, 27
database, 14
datagram
IP, 27,32
reception mechanism, 27, 32
DAVIC, 24,25
decoder, 5,7, 8
decoding hardware, 20
decrypt, 11
decrypted
audio stream, 8
video stream, 8
decryption algorithm, 11
definitions
API features, 5
application, 3
application manager, 6
broadcast data, 5
broadcast data API, 27
broadcast pipeline, 5
EPG, 4
JMF, 23

48 Java TV API Technical Overview, Version 1.0, 11/14/00

lifecycle, 6

receiver, 2

service, 5,14

service information, 5

service selection, 5, 19

SI, 14

Xlet, 6

Xlet API, 35
delivery mechanism, 18
demultiplexer, 5,7
demux, 25
descramble, 11
Destroyed state, 20, 35, 42

Digital Storage Media Command and Control, 27

directory data, 28
DSM::Directory, 28, 30
DSM::File, 28, 30
DSM::ServiceGateway, 28, 30
DSM-CC, 27, 30, 31

object carousel, 28
DSM-CC User-to-User, 27
DVB, 13,14
DVB age-based rating, 17

E
electronic

commerce, 3

program guide, 4
electronic program guide, 15
element, 14

SI, 14
email, 3
end time, 17

enhanced broadcast, 2
environment software, 8
EPG, 4,5, 15,17
event, 16, 17, 25

event listener, 20
exception, 16, 20, 33

=
FCC TV rating, 17
features of the Java TV API, 5
file

access mechanism, 28

data, 28 java.awt.Scrollbar, 10

file system, 31 java.io, 10, 27, 28, 29
broadcast, 27, 28 java.io.File, 28

finalization, 30, 41 java.io.InputStream, 10

Flash ROM, 10 java.io.OutputStream, 10

java.lang.Thread, 10
java.net, 10, 27, 32
java.net.DatagramSocket, 32

G _ java.net.InetAddress, 10
garbage collection, 41 java.net.MulticastSocket, 32
graphics toolkit, 10 java.net.Socket, 10

GL_JI component, 23 java.net.URL, 10

guide package, 15, 17 java.util.Calendar, 10

java.util.EventObject, 10
java.util.Hashtable, 10
javax.io, 11

H javax.media.Control, 23
handler javax.media.GainControl, 23
content, 5 javax.media.MediaHandler, 25
media, 25 javax.media.MediaLocator, 33
protocol, 25 javax.media.Player, 23, 25
service content, 19 javax.media.protocol, 27, 33
head-end, 3 javax.media.protocol.DataSource, 25
HTTP, 10, 25 javax net, 11
hub, 3 javax.net.InterfaceMap, 32
javax.net.ssl, 11
javax.tv.carousel.CarouselFile, 28
I javax.tv.locator.Locator, 28, 33
10, 10 javax.tv.media, 23

javax.tv.media.MediaSelectControl, 26
javax.tv.media.protocol.PushSourceStream2, 33
JMF, 5,23

control, 23, 26

Player object, 20

input/output, 10
interaction, 3

interactive broadcast, 2, 3
Internet Protocol, 18

IP, 18 o
synchronization, 24
address, 32 JSSE. 11
connection, 25 '
data, 10
IP datagram, 27, 32
multicast, 27, 32 K
unicast, 27, 32 keys, 11
J L
Java Media Framework, 5, 23 latency, 37
Java platform, 1 . management, 31
Java Secure Socket Extension, 11 layout, 13

java.awt.Canvas, 10

. wi.Font. 10 legacy security mechanism, 11
java.awt.Font,

Index

lifecycle, 6 O

service content handler, 19 object
Xlet, 35,41 Bouquet, 16
listener, 16, 20, 25 carousel, 27, 28
Loaded state, 35 carousel management, 30
local viewer interaction, 3 CarouselFile, 29
locator, 13, 14,17, 20, 28, 33 Control, 23, 24
DSM, 28
GUI, 23
M Locator, 13, 33
model, Sl database, 14
manager Network, 16
appll_catlon, 6,19, 35 Player, 23, 26
media, 33 ProgramEvent, 16
SI, 5,14 ProgramSchedule, 16, 17
media, 18,23 SecurityManager, 41
decoder, 7 Service, 17
handler, 25

ServiceComponent, 16
m.a“"?‘ge“ 33 ServiceContext, 20
pipeline, 23 ServiceDetails, 16, 17

playback, 19 ServiceFilter, 17
synchronization, 24 ServicelList, 17
time, 25 ’

ServiceMediaHandler, 20

media stream Sl element, 14

rendering, 25 SIChangeEvent, 16

selection, 25 SlIChangeListener, 16
memory, 15 SIRequest, 16

footprint, 9 SIRequestor, 16
meta information, 14 ThreadGroup, 41
MPAA rating, 17 Transport, 16, 18
MPEG-2, 8, 13, 15, 18, 25, 27

TransportStream, 16

delivery, 5 XletContext, 36
multicast IP datagram, 32 output device, 8

multi-network receiver, 2

multiplex, 5, 25
P

N Paused state, 35, 42

. . PCR, 28
naming, string-based, 31 PersonalJava application environment, 9
native widget, 12 ipeli

ve W pipeline, 7
navigation, 5 broadcast media, 23

package, 14,16 construction, 25
network, 2 platform, 1

access, 10 playback, 25

sockt_ets, 10 Player object, 23, 25
networking, 10 JMF, 20

Not Presenting state, 20 Presentation Pending state, 20

Presenting state, 20

50 Java TV API Technical Overview, Version 1.0, 11/14/00

program
clock reference, 28
guide, 3
schedule, 17
program-specific application, 4
property retrieval, 42
protocol, 1,7, 13, 23, 25, 35
carousel, 28
handler, 25
PTS, 28

R
rating
dimension, 17
information, 17
region, 17
receiver, 2
Internet capable, 3
multi-network, 3
reconstruction, 28
resources, 36
rendering, 7
requirements, 2
return channel, 3, 10
RF signal, 8
RTOS, 9

S

schedule, 17

SCTE, 13

secure
communication, 11
sockets layer, 11

security, 11
exception, 41
policy, 41

selection, 13, 20

server, 3

service, 3,13, 14
collection, 17
component, 14, 32, 33
component presenter, 19
content handler, 19
delivery mechanism, 17
domain, 30

information, 13, 14, 19
locator, 14, 20
package, 14,16
presentation, 20
selection, 19
time, 17
service collection, 17
service context, 19, 20
states, 20
service selection, 20
service selection API, 19, 20
ServiceComponent, 16
ServiceDetails, 16
Servicelist, 17
set-top box, 1
S, 5,13,14
API, 14
database, 13, 14, 17
element, 13, 14, 16
manager, 5, 14,17, 18
signal, 2
analog, 2
digital, 2
sockets, 10
SSL, 11
stand-alone application, 4
start time, 17
state, 20, 35
change, 6
state machine, 35
JMF, 23
ServiceContext, 21
Xlet, 37
stock ticker, 4
storage, 10
streaming data, 33
subtitles, 19
synchronization, 24, 41
master, 25
system
functions, 10
requirements, 2

T
TCP/IP, 11
telephony, 3
television channel, 13

Index

51

Thread object, 41
ThreadGroup object, 41
threads, 41
time
clock, 19
stamp, 28
start, 17
time-base, 25
time-based media, 23
TLS, 11
transport
delivery mechanism, 18
mechanism, 23
package, 15, 18
protocol, 23
stream, 15
Transport Level Security, 11
tuner, 5,7, 20, 25
tuning, 19
selection, 25
TV program, 3

U

unicast IP datagram, 32
URL, 10

user interface component, 12

\Y
video
on demand, 3
output device, 8
placement, 23
stream, 8,11, 13
virtual machine, 9, 11, 35
VM, 9,11

W
widget, 12

X
Xlet, 35
application lifecycle, 35

52 Java TV API Technical Overview, Version 1.0, 11/14/00

context, 36
interface, 39, 40
lifecycle model, 38
state machine, 37
states, 35, 36, 37

Xlet API, 39

definitions, 35

Xlet state machine diagram, 38
XletContext interface, 39, 42

	Contents
	1. Introduction�1
	2. Environment�7
	3. Services and Service Information�13
	4. Service Selection�19
	5. JMF and the Broadcast Pipeline�23
	6. Broadcast Data APIs�27
	7. Application Lifecycle�35
	8. Appendix I: Related Documents�45
	9. Index�47

	Introduction
	1.1 Television Receivers
	1.2 Television-Specific Applications
	1.2.1 Electronic Program Guides
	1.2.2 Program-Specific Applications
	1.2.3 Stand-alone Applications
	1.2.4 Advertisements

	1.3 Features of the Java TV API

	Environment
	2.1 Hardware Environment
	2.2 Software Environment
	2.3 Application Environment
	2.3.1 Storage and Input/Output
	2.3.2 Return Channel and Non-Broadcast Network Access
	2.3.3 Security
	2.3.4 Abstract Window Toolkit

	Services and Service Information
	3.1 Services and Service Information Definitions
	3.2 SI Packages
	3.2.1 Service Package
	3.2.2 Navigation Package
	3.2.3 Guide Package
	3.2.4 Transport Package

	Service Selection
	4.1Service Selection Definitions
	4.2 Service Selection API Overview
	4.3 Service Context State Model

	JMF and the Broadcast Pipeline
	5.1 JMF Controls
	5.2 JMF Synchronization
	5.3 Player Architecture and the Broadcast Pipeline

	Broadcast Data APIs
	6.1 Broadcast Data API Definitions
	6.2 Broadcast File Systems
	6.2.1 DSM-CC Object Carousels
	6.2.1.1 Object Carousel Example Usage
	6.2.1.2 Object Carousel Management

	6.2.2 DSM-CC Data Carousels
	6.2.3 Reducing the Effects of Carousel Latency

	6.3 IP Datagrams
	6.4 Streaming Data

	Application Lifecycle
	7.1 Xlet Application Lifecycle Definitions
	7.2 Application Manager Requirements
	7.3 Xlet States
	7.3.1 Xlet State Machine
	7.3.2 Xlet Lifecycle Model

	7.4 Xlet Package
	7.4.1 Xlet Interface
	7.4.1.1 Xlets and Finalization
	7.4.1.2 Xlets and Threads

	7.4.2 XletContext Interface

	7.5 Xlet Lifecycle Example

	Appendix I: Related Documents
	Index

