

An Oracle White Paper
May 2013

Java Usage Tracking and Visualization with
Oracle Fusion Middleware

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Executive Overview... 1
Introduction ... 2
The Building Blocks... 3

Oracle Java SE Advanced .. 3
WebLogic Enterprise Edition... 4
Business Activity Monitoring (BAM) .. 4
Business Process Management Suite (BPMS)............................... 5

The Architecture – Putting the Building Blocks Together 5
Step 1: Java Runtime Configuration .. 5
Step 2: Usage Tracking Initiation ... 6
Step 3: Usage Tracking Server .. 6
Step 4: Transform and Integrate .. 7
Step 5: Load Data to Active Cache .. 8
Step 6: Declaratively Construct Custom Dashboards 10
Step 7: Deliver Real-Time Dashboards to the End User.............. 11
Step 8: Turn Insight into Action .. 12

Conclusion .. 12

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Executive Overview

The ability to understand and control the nature of software within the enterprise is critical for
today’s large organizations. Understanding what users are running on their desktops enables
IT departments to manage security and liability risk as well as facilitating the implementation of
IT policy around software updates and upgrades.

The Java runtime environment is the most widely used application runtime platform deployed
on enterprise systems today. In addition to being installed on more than 97% of enterprise
desktops, the Java virtual machine powers a large percentage of server-based packaged and
custom applications as well as a diverse set of mobile and embedded platforms.

This paper describes an approach for enabling the tracking and visualization of enterprise Java
usage through the use of Oracle Fusion Middleware. Organizations adopting such an
approach can be expected to realize a diverse set of benefits including:

• Insight into Java installations and deployments across locations

• Ability to avoid liability issues and stay on top of security updates with an efficient
tracking system

• Lower internal support costs for tracking and maintaining multiple versions of Java

• Increased manageability of systems and applications with a visual, real-time
dashboard of Java deployments

• Enablement of proactive IT operations with reports, alerts, and the ability to perform
usage data forensics

 1

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Introduction

The challenge of creating a distributed, reliable, real-time, and enterprise grade visualization
and analysis application for the tracking of Java runtime environment (JRE) usage can be
easily accomplished through the use of tools within Oracle’s Fusion Middleware toolbox.

The benefit of this approach is that it allows organizations to build the infrastructure for such a
solution using enterprise-grade components with minimal software development while
maintaining a flexible visualization and analytics layer that can easily be customized for each
organization’s unique business needs in a declarative fashion. It is possible to build a similar
solution through custom coding or scripting by mixing a variety of custom or off-the-shelf
components; however doing so would most certainly take more time, require more coding and
configuration, be less resilient to software failures, and not provide the same level of
configurability and changeability by the non-technical user.

In addition to serving as a vehicle for providing insight, the tools in the Fusion Middleware
toolbox can also be leveraged to integrate actionable hooks into the analytics environment. For
example, an administrator seeing a pattern of questionable program invocations or out-of-
compliance JRE instances can initiate an internal service request to investigate and rectify the
usage directly from the dashboard.

The reference architecture proposed in this paper utilizes the following components of Fusion
Middleware:

• Oracle Java SE Advanced

• WebLogic Enterprise Edition

• Business Activity Monitoring (BAM)

• Business Process Management (BPM) Suite

It is intended that organizations use the concepts and approach described in this paper as a
template and inspiration for an implementation that can meet their own unique needs.

 2

Java Usage Tracking and Visualization with Oracle Fusion Middleware

The Building Blocks

This solution can be constructed exclusively through the use of Oracle Fusion Middleware
components. Oracle Fusion Middleware is a collection of standards-based software products that
spans a range of tools and services: from Java EE and developer tools, to integration services, identity
management, business process management, business intelligence, and collaboration. Oracle Fusion
Middleware offers complete support for development, deployment, and management.

The following describes the palette of tools used to build a comprehensive solution. Depending on the
requirements of the individual organization, a subset of these tools may be necessary to achieve that
organization’s business and technical needs; for example, organizations interested only in insight and
visualization but not in driving integrated action on the part of their users may not need to consider the
BPM Suite.

Oracle Java SE Advanced

Oracle Java SE Advanced offers a set of commercial features above the standard functionality of the
Java Runtime Environment (JRE) and Java Development Kit (JDK) which includes tools to allow
enterprise organizations to gain greater visibility and control over large installations by knowing exactly
which versions of Java are deployed and running what applications. In addition, Oracle Java SE
Advanced provides a number of other key features that enable low-impact virtual machine monitoring
on production systems and after-the-fact incident logging and debugging.

One of these commercial features: Usage Tracking, allows the Java Runtime Environment (JRE) to be
configured to collect telemetry data for each Java SE invocation on every desktop or server in the
enterprise. The data collected includes the following:

• Java and JVM versions

• Java application name

• Host name and IP address

• Invocation timestamp

• JVM arguments

• Classpath

• JRE location on the system

• Operating system name and version

• Launch type (e.g. applet, web start, command line)

3

Java Usage Tracking and Visualization with Oracle Fusion Middleware

By providing a configuration file to the JRE, this information can be captured and recorded on every
invocation and can either be stored locally on host or delivered over the network to a central tracking
server.

More details about Oracle Java SE Advanced can be found at:
http://www.oracle.com/us/technologies/java/standard-edition/advanced-suite/overview/index.html

WebLogic Enterprise Edition

Oracle WebLogic Server Enterprise Edition is a scalable, enterprise-ready Java Platform, Enterprise
Edition (Java EE) application server and forms the base infrastructure layer for Oracle Fusion
Middleware. WebLogic Server enables enterprises to deploy mission-critical applications in a robust,
secure, highly available, and scalable environment and facilitates the configuration of clusters to
distribute load, and provide extra capacity in case of hardware or other failures.

Within the context of this solution, WebLogic serves as the application container that hosts the higher
level applications as well as the custom Java code required to consume Java usage tracking data.
WebLogic provides clustered singleton support which facilitates the reliable nature of this solution as
well as Java Message Service (JMS) support which allows for the asynchronous yet reliable routing of
usage tracking data to the visualization engine.

More details about Weblogic Server can be found at:
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

Business Activity Monitoring (BAM)

Oracle Business Activity Monitoring (BAM) is a complete solution for building interactive, real-time
dashboards and proactive alerts for monitoring business processes and services. BAM gives both
business executives and operational managers timely information to make better decisions. Real-time
event updates allow users to gauge - within seconds - the impact of key performance indicators on
their business and take immediate corrective actions

BAM provides non-developers with the capability to create custom dashboards without having to write
a single line of code. Through a step-by-step wizard, business users can create dashboards that
monitor and correlate real-time events.

Within the context of this solution, BAM serves as the end-user facing data acquisition and
visualization engine.

More details about BAM can be found at:
http://www.oracle.com/technetwork/middleware/bam/overview/index.html

4

http://www.oracle.com/us/technologies/java/standard-edition/advanced-suite/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/bam/overview/index.html

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Business Process Management Suite (BPMS)

Oracle Business Process Management Suite (BPMS) is a complete product suite that leverages industry
standard languages and notations for execution of processes by a unified engine. It provides a complete
process lifecycle with modeling, managing, simulating, optimizing, and executing business processes
across organizational divisions, systems, and applications.

Within the context of this solution, BPMS can be leveraged to automate the response to insights
surfaced by BAM regardless of whether that response involves human or system tasks.

More details about BPMS can be found at:
http://www.oracle.com/technetwork/middleware/bpm/overview/index.html

The Architecture – Putting the Building Blocks Together

The Fusion Middleware building blocks described in the previous section can be assembled, along with
some configuration and a bit of custom code, into a solution architecture that achieves the goal of
tracking JRE usage in a distributed, reliable, real-time, and actionable fashion.

Figure 1 visually depicts the Java usage tracking solution architecture. The context diagram is
numerically annotated with the steps necessary to realize the solution which are described in greater
detail further in this section.

Figure 1: Solution Architecture

Step 1: Java Runtime Configuration

Each licensed Java Runtime Environment (JRE) must be enabled for usage tracking. This is achieved
by adding a usagetracker.properties file to the $JAVA_HOME/lib/management directory where
$JAVA_HOME represents the JRE home directory. The usagetracker.properties file should contain a

5

http://www.oracle.com/technetwork/middleware/bpm/overview/index.html

Java Usage Tracking and Visualization with Oracle Fusion Middleware

single line that reads com.oracle.usagetracker.logToUDP = $host:$port where $host represents the DNS name
or IP address of the centralized usage tracking server (described in subsequent sections) and $port
represents the UDP port on which that centralized server accepts connections; the default listen port is
32139 but the implementer may select any listen port as long as it is consistent across all ‘client’ JREs
and the centralized server.

In enterprise environments, this property file can be distributed en-masse by rolling out a pre-
configured snapshot of the JRE or by automatically updating existing environments through the use of
systems management tools like Microsoft’s System Center Configuration Manager (SCCM).

This configuration can be applied to any JRE whether it is present on an end user’s desktop or on a
back office server.

Further details about usage tracker configuration can be found at:
http://docs.oracle.com/javase/products/usagetracker.html

Step 2: Usage Tracking Initiation

Each time a configured JRE is invoked the usage tracker feature serializes information about the
invocation as a UDP packet and sends it to the server/port combination specified in the
usagetracker.properties file.

The type of data tracked for each invocation includes Java version/vendor, JVM version/vendor,
application name, host name, classpath, JVM arguments, and timestamp. Full details about what
information is logged can be found at: http://docs.oracle.com/javase/products/usagetracker.html.

Step 3: Usage Tracking Server

The role of the usage tracking server in this architecture is to capture invocation datagrams enterprise-
wide and convert them into a form that can be processed by the data visualization engine. This
involves deploying a central server which is capable of capturing and decoding these packets. A
simplified sample implementation of such a server can be found at:
http://docs.oracle.com/javase/products/samplecode/UsageTrackerServer.java.

While such a server could be implemented in a standalone fashion, this approach would require manual
activation, monitoring, and would not be fault tolerant in the event of software or hardware failure. To
solve for these issues, this architecture implements the usage tracker server as a Clustered Singleton
service hosted by WebLogic Enterprise Edition. This approach allows for the usage tracker to be
hosted on a single server within a WebLogic cluster, activated automatically upon WebLogic server
startup, and automatically migrated to another hardware node in the cluster in case of software or
hardware failure.

A clustered singleton can be developed by implementing the weblogic.cluster.singleton.SingletonService
interface and bootstrapping the usage tracker server’s run() method from the singleton’s activate()

6

http://docs.oracle.com/javase/products/usagetracker.html
http://docs.oracle.com/javase/products/usagetracker.html
http://docs.oracle.com/javase/products/samplecode/UsageTrackerServer.java

Java Usage Tracking and Visualization with Oracle Fusion Middleware

method. The singleton along with supporting classes should be packaged as a JAR and copied into the
WebLogic domain’s lib folder on all application servers within the cluster. The cluster should then be
configured to recognize the singleton via WebLogic Scripting Tool (WLST) scripts or via the admin
console as shown in Figure 2.

Figure 2: Clustered Singleton Configuration through WebLogic Console

For a clustered singleton to be activated at server startup and migrated upon server failure, WebLogic
managed server instances that are participating in the cluster hosting the singleton must be started by
WebLogic’s Node Manager. Details on configuring and operating Node Manager can be found here:
http://docs.oracle.com/cd/E23943_01/web.1111/e13740/toc.htm.

Step 4: Transform and Integrate

At this stage, usage data has been received by the usage tracking server via UDP. However, to make it
available to the visualization engine, that data must be converted to XML and placed onto a Java
Message System (JMS) queue. Use of JMS serves as a reliable and loosely-coupled integration pattern
between the custom usage tracking server and the packaged visualization engine implemented with
Oracle Business Activity Monitoring (BAM).

WebLogic Enterprise Edition includes an enterprise-grade JMS infrastructure which should be used to
create a new JMS queue. The usage tracking server code is responsible for parsing the incoming UDP
messages as they arrive by transforming them to a simple XML structure, and using WebLogic’s JMS
application programming interface (API) to inject them into the newly created JMS queue. Because the
UDP messages arrive in comma-separated (CSV) form in a well known order (as detailed in the
documentation referenced in step 2) parsing them simply involves splitting the string on commas and
building an XML string that looks like Figure 3:

7

http://docs.oracle.com/cd/E23943_01/web.1111/e13740/toc.htm

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Figure 3: Usage Tracker message after conversion to XML

More details about configuring JMS under WebLogic can be found at:
http://docs.oracle.com/cd/E23943_01/web.1111/e13738/toc.htm.

Step 5: Load Data to Active Cache

Oracle Business Activity Monitoring (BAM) is a complete solution for building interactive, real-time
dashboards and proactive alerts for monitoring business processes and services. The first step to
leverage the power of BAM to serve as a visualization engine for this solution is to define a data
structure that matches the data provided by the Oracle Java SE Advanced Usage Tracking
implementation. Figure 4 shows a data object layout defined using BAM’s Architect Administration
Console that supports usage tracking.

8

http://docs.oracle.com/cd/E23943_01/web.1111/e13738/toc.htm

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Figure 4: BAM data object configuration

Data objects that are defined in BAM are stored within BAM’s Active Data Cache which is a persistent,
transacted, memory-based storage system that makes data available for access by BAM’s Active Report
Engine for real-time delivery to end users. There are a number of ways that data can be injected into
the Active Data Cache; for the purpose of this architecture, the ingress method is linkage of a JMS queue
directly to the data object configured in the Active Data Cache.

By using the BAM Architect Console an Enterprise Message Source can be configured that links a JMS queue
to a data object and defines any transformation that may be needed. Figure 5 shows the definition of
such a message source.

Figure 5: Enterprise Message Source tying a local JMS queue to a BAM data object

Figure 6 shows the mapping between XML element names in the JMS message and the field names
defined in the data object. In addition, some data types (like DateTime objects) may require special
handling and this figure also shows how an appropriate DateTime format can be specified.

9

Java Usage Tracking and Visualization with Oracle Fusion Middleware

Figure 6: Enterprise Message Source configuration showing message to data object field mapping and transformation

Once the data object and message sources are configured and the message source is activated, all Java
invocations across the enterprise that have been properly configured will pass their data to the Java
usage tracking server via UDP which will transform that data to XML and pass the data to BAM via a
JMS queue. The raw form of that data can now be centrally viewed in the Active Data Cache by
looking at the data object’s contents using BAM’s Architect Console as seen in Figure 7.

Figure 7: A view of usage tracking data object content

Step 6: Declaratively Construct Custom Dashboards

Oracle Business Activity Monitoring (BAM) can be used by business users to visually and declaratively
build and deploy real-time monitoring dashboards. BAM’s Active Studio Console can be leveraged to
construct a multi-layer graphical dashboard tied to the data object and message source configured in
the previous step.

Dashboard creators can choose from a rich set of graph and table types to support display of a variety
of metrics related to Java usage tracking. Some samples uses include:

• Tracking total JVM invocations by version number

• Breakdown of JVM invocations by type (applet, application, web start, etc)

10

Java Usage Tracking and Visualization with Oracle Fusion Middleware

• Number of hosts in the enterprise segmented by version

• Most utilized Java applications

All elements of the raw data object are available for utilization and the ability exists to augment the
core dataset either through creation of ‘calculated fields’ that are based on some logical transformation
of the core data or through the combination of the core data with other enterprise data sources specific
to the implementing organization that can be integrated into BAM. In this example, we have created a
‘calculated field’ that determines whether a JVM version is in-compliance with corporate IT policy and
display that metric on the dashboard.

A key business benefit of this approach is that sophisticated and visually compelling dashboards can be
built and modified as requirements change very quickly through a web interface by non-programmers
without the need for engaging graphic designers.

More details on creating and deploying BAM reports can be found at:
http://docs.oracle.com/cd/E23943_01/user.1111/e10230/toc.htm.

Step 7: Deliver Real-Time Dashboards to the End User

Once the dashboard has been created, it is available to users to view in their web browser directly or as
a region (or portlet) within an internally or externally facing portal. Oracle BAM streams data directly
to the dashboard so users can keep the page with the dashboard open and it will update in real-time as
new data arrives in the Active Data Cache without the need for the user to refresh the page. Figure 8
shows the end user’s view of a sample Java usage tracking dashboard.

Figure 8: End user’s view of the Java usage tracking dashboard

11

http://docs.oracle.com/cd/E23943_01/user.1111/e10230/toc.htm

Java Usage Tracking and Visualization with Oracle Fusion Middleware

12

Step 8: Turn Insight into Action

The solution up to this point is certainly compelling enough; enterprise IT executives and operational
managers now have the power to monitor usage of their company’s Java footprint centrally, reliably,
and in a real-time fashion. In addition, this solution is nimble enough to be tweaked by non-technical
users as requirements and monitoring patterns evolve.

However, the real power of such a solution is the ability to closely tie insight to action whereby users
who detect a troubling pattern or condition through the dashboard are able to immediately take steps
to rectify the situation by kicking off a mitigating process directly from inside the dashboard.

BAM has the ability to initiate external HTTP calls from user triggered buttons on the dashboard.
These calls can be used to start a business process hosted on Oracle’s Business Process Management
Suite (BPMS). The business process can contain diverse elements like business rules, system-level
integrations, and human-based approvals that exhibit the characteristics of being automated and
traceable. For example, an end user noticing an out-of-compliance JRE or a deprecated application
being run on a user’s machine can immediately click a button next to the entry in the BAM dashboard
and trigger a business process which opens a case with IT and automatically routes to an administrator.
Upon reviewing the usage, the administrator can choose to automatically trigger an update to the
offending user’s desktop by triggering an interaction with the company’s systems management
application.

Insight on its own is powerful, but insight paired with tightly integrated actionable hooks translates to
even higher levels of business process success.

Conclusion

IT organizations looking to reduce risk, lower support costs, and gain actionable insight around their
Java SE deployments can do so in a distributed, reliable, and real-time fashion by leveraging various
components of the Oracle Fusion Middleware stack. The advantage of following this blueprint and
architecting the solution using these components is that this solution is flexible enough to be easily
customized to the specific needs of each organization while at the same time being easy to develop and
deploy with a minimal amount of custom coding.

Java Usage Tracking and Visualization with
Oracle Fusion Middleware
May 2013
Author: Edward Shnekendorf

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in
law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This
document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our
prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0113

	Executive Overview
	Introduction
	The Building Blocks
	Oracle Java SE Advanced
	WebLogic Enterprise Edition
	Business Activity Monitoring (BAM)
	Business Process Management Suite (BPMS)

	The Architecture – Putting the Building Blocks Together
	Step 1: Java Runtime Configuration
	Step 2: Usage Tracking Initiation
	Step 3: Usage Tracking Server
	Step 4: Transform and Integrate
	Step 5: Load Data to Active Cache
	Step 6: Declaratively Construct Custom Dashboards
	Step 7: Deliver Real-Time Dashboards to the End User
	Step 8: Turn Insight into Action

	Conclusion

