
Migrating from Java Applets to plugin-free Java technologies

An Oracle White Paper

January, 2016

Migrating from Java Applets to plugin-free
Java technologies

Migrating from Java Applets to plugin-free Java technologies

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing

decisions. The development, release, and timing of any features or functionality described for

Oracle’s products remains at the sole discretion of Oracle.

Migrating from Java Applets to plugin-free Java technologies

Executive Overview ... 4

Browser Plugin Perspectives ... 4

Java Web Start .. 5

Alternatives ... 6

Native Windows/OS X/Linux Installers ... 6

Inverted Browser Control ... 7

Detecting Applets .. 7

Migrating from Java Applets to plugin-free Java technologies

4

Executive Overview

With modern browser vendors working to restrict or reduce the support of plugins like
Flash, Silverlight and Java in their products, developers of applications that rely on the
Java browser plugin need to consider alternative options. Java developers currently relying
on browser plugins should consider migrating from Java Applets to the plugin-free Java
Web Start technology.

Supporting Java in browsers is only possible for as long as browser vendors are
committed to supporting standards based plugins. By late 2015, many browser vendors
had either removed or announced timelines for the removal of standards based plugin
support, while some are introducing proprietary browser-specific extension APIs.
Consequently, Oracle is planning to deprecate the Java browser plugin in JDK 9.

The deprecated plugin technology will be completely removed from the Oracle Java
Development Kit (JDK) and Java Runtime Environment (JRE) in a future Java release
TBD. Java Web Start applications do not rely on a browser plugin and will not be affected
by these changes.

Browser Plugin Perspectives

Java’s rapid rise to fame 20 years ago began with a tumbling duke applet running in
the HotJava browser, long before Microsoft Internet Explorer, Mozilla Firefox or Google
Chrome were released. Applets allowed richer development functionality through a
browser plugin at a time when browser capabilities were very limited, and provided
centralized distribution of applications without requiring users to install or update
applications locally. The Netscape Navigator browser went on to popularize a standards
based plug-in model with the Netscape Plugin API (NPAPI), which was in turn adopted
by many other browsers, allowing plugins to extend the capabilities of browsers to
provide cross-platform and cross-browser functionality.

As Java evolved to become one of the leading mainstream development platforms, so did
the applet’s hosts – the web browsers. The rise of web usage on mobile device browsers,
typically without support for plugins, increasingly led browser makers to want to restrict
and remove standards based plugin support from their products, as they tried to unify the
set of features available across desktop and mobile versions. The Oracle JRE can only
support applets on browsers for as long as browser vendors provide the requisite cross-
browser standards based plugin API (e.g. NPAPI) support.

Oracle does not plan to provide additional browser-specific plugins as such plugins would
require application developers to write browser-specific applets for each browser they
wish to support. Moreover, without a cross-browser API, Oracle would only be able to

https://adtmag.com/blogs/watersworks/2015/05/java-at-20.aspx
https://docs.oracle.com/javase/tutorial/uiswing/components/applet.html
https://en.wikipedia.org/wiki/HotJava
http://www.apple.com/hotnews/thoughts-on-flash/

Migrating from Java Applets to plugin-free Java technologies

5

offer a subset of the required functionality, different from one browser to the next,
impacting both application developers and users.

Users who wish to learn more about announcements from browser vendors around
plugin technologies should contact their browser vendors directly. Java developers should
begin to explore plugin-free technologies that do not rely on a browser plugin to run. One
such technology is Java Web Start.

Java Web Start

Java Web Start has been included in the Oracle JRE since 2001 and is launched
automatically when a Java application using Java Web Start technology is downloaded for
the first time. The conversion of an applet to a Java Web Start application provides the
ability to launch and update the resulting application without relying on a web browser, as
shown in Figure 2. Desktop shortcuts can also launch the application, providing the user
with the same experience as that of a native application.

Figure 1: Java Control Panel showing Java content as enabled in the browser

https://www.java.com/en/download/faq/java_webstart.xml

Migrating from Java Applets to plugin-free Java technologies

6

Detailed instructions on migrating Java Applets to Java Web Start are available as part of
the Applet Development Guide.

Alternatives

If an applet cannot be converted to a Java Web Start application, developers can explore
alternative approaches.

Native Windows/OS X/Linux Installers

The javapackager command allows developers to create standalone native install bundles
on Windows, OS X and Linux that do not require a separate JRE installation.

Figure 3: Example of customized appearance of an installable package for OS X

Figure 2: Java Cache Viewer listing cached Java Web Start applications

http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/applet_dev_guide.html#JSDPG1032
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html

Migrating from Java Applets to plugin-free Java technologies

7

This option is best suited for desktop applications, where the user may not have their own
JRE installed and just wants the program to run. For example, it can be used to create
standalone native install bundles for applications using JavaFX or Swing user interface
technologies, as shown in Figure 3. But it may not be appropriate for server-based
applications where an administrator would want full control over the environment.

Inverted Browser Control

JavaFX contains a feature called WebView, which enables applications to use an
embedded version of WebKit to render HTML5 content, as shown in Figure 4. As a
result, developers can create applications that use this browser to access remote
applications.

For example, a developer could create a miniature web browser that makes it easier for
their users to launch remote applications. The WebFX project on GitHub is a prototype
example of this behavior.

Detecting Applets

Figure 4: A JavaFX WebView Object in an application

http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/overview.htm#JFXWV135
https://github.com/brunoborges/webfx

Migrating from Java Applets to plugin-free Java technologies

8

Large organizations often have many applications deployed across their environment and
may not know which ones are applets to target for conversion. System administrators can
use the usage tracking feature of Java Advanced Management Console, shown in Figure 5,
to build an application inventory, and identify these applications.

For organizations using and deploying applications from 3rd parties, System
Administrators can use the Java Advanced Management Console to track Java usage
within their organization, identifying Applet, Web Start, and other Java application types.
This usage tracking lets them identify which versions of Java are used by which
applications. It also allows them to create Deployment Rule Sets to manage compatibility
between different versions.

Figure 5: Java Advanced Management Console

http://www.oracle.com/technetwork/java/javaseproducts/advanced-mgmt/advancedmanagementconsole-2254207.html
http://www.oracle.com/technetwork/java/javaseproducts/advanced-mgmt/advancedmanagementconsole-2254207.html
https://www.youtube.com/watch?v=ZALX0zS7cpI
https://www.youtube.com/watch?v=ZALX0zS7cpI
https://blogs.oracle.com/java-platform-group/entry/managing_multiple_java_versions

Migrating from Java Applets to plugin-free Java

technologies

January 2016

Author: Dalibor Topic

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

