

Streaming APIs for XML Parsers
Java Web Services Performance Team
White Paper
August 2005

Table of Contents

Introduction ... 3
StAX.. 4

Events... 5
Interface javax.xml.stream.XMLStreamConstants ... 5

Cursor API ... 6
Example: ... 9
Example: ... 12

Event Iterator API .. 12
Interface javax.xml.stream.XMLEventReader ... 12
Example: ... 13
Interface javax.xml.stream.XMLEventWriter .. 13

Filters ... 14
Resource Resolution .. 14
Error Reporting and Exception handling ... 15

Java Web Services Developer Pack... 16
Sun Java Streaming XML Parser (SJSXP) .. 16
SJSXP RoadMap ... 17
XMLTest ... 18

What is XMLTest?... 18
Running XMLTest ... 18

Hardware and Software Configuration ... 19
Other StAX Implementations ... 19

Performance Results .. 19
Summary.. 26
References ... 27

1. Introduction Sun Microsystems, Inc.

Chapter 1

Introduction

Today, XML has emerged as a versatile and platform independent format for describing and delivering high-value
solutions. Services using XML can be accessed from virtually any device, including cellular phones, PDAs, and desktops.
Technologies like Web Services have been developed that can integrate existing business processes and resources and
make them available over the Web by utilizing XML. To use this XML meaningfully in an application, it needs to be
parsed and the relevant data extracted. There are a variety of ways to achieve this like Simple API for XML (SAX) and
Document Object Model (DOM), but more recently a new breed of parsers based on pull-parsing techniques has emerged
as the popular choice amongst developers.

This document describes the Sun Java Streaming XML Parser (SJSXPTM) and some of its performance characteristics.
SJSXP is an implementation of JSR-173. JSR-173 introduces new Streaming APIs for XML (StAX) which is a
sandardized Java based API for pull-parsing XML. Pull parsing differs from the traditional SAX based iteration and
DOM based tree model, in that it is optimized for speed and performance.

2. StAX

Chapter 2

StAX
From bootstrapping configuration files to deciphering large business documents received as messages, processing XML is
ubiquitous. Most developers are familiar with two approaches for processing XML:

 Simple API for XML processing (SAX)
 Document Object Model (DOM)

SAX is a low-level API whose main benefit is efficiency. When parsing an XML document with SAX, events are
generated and passed to the application using callbacks to handlers that implement the SAX handler APIs. The events are
of a very low level, e.g. startCDATA() and endCDATA(). All of these low level events must be taken into account by
the developer and it is also the developer’s responsibility to maintain full document state information during the parse.
SAX also requires the entire document to parsed.
DOM is a high-level parsing API whose main benefit is ease of use. DOM presents the application with an in-memory
tree-like structure and provides for random-access. This simplicity comes at a high cost in performance penalties. DOM
requires the entire document to be parsed and created as Objects before any part of the document can be processed or any
actions taken.
Now imagine an API that has the efficiency of SAX yet is easy to use with higher level XML constructs. Enter the
Streaming API for XML (StAX), a bi-directional API for reading and writing XML. It is formally specified by JSR 173,
http://jcp.org/en/jsr/detail?id=173.
StAX is often referred to as “pull parsing.” The developer uses a simple iterator based API to “pull” the next XML
construct in the document. It is possible to skip ahead to areas of interest in the document, get only subsections of the
document and arbitrarily stop or suspend processing at any time. This is different than SAX where the parser pushes the
lower-level event at the application. With StAX, the application is in total control and drives the parser verses the parser
driving the application.
StAX allows an application to process multiple XML sources simultaneously. For example: when one document includes
or imports another document, the application can process the imported document while processing the original document.
This use case is common when the application is reading documents such as XML Schemas or WSDL documents.
StAX has two basic functions: To allow users to read and write XML as efficiently as possible and be easy to use (cursor
API), and be easy to extend and allow for easy pipelining (event iterator API). The event iterator API is intended to layer
on top of the cursor API. The cursor API has two interfaces: XMLStreamReader and XMLStreamWriter. The event
iterator API has two main interfaces: XMLEventReader and XMLEventWriter.

2. StAX

Events
Both APIs can be thought of as iterating over a set of events. In the cursor API the events may be unrealized; in the event
iterator API the events are realized. An XML document is broken down into the following event granularity by both the
cursor and event iterator API:

Interface javax.xml.stream.XMLStreamConstants

Field Summary
static

int
ATTRIBUTE
 Indicates an event is an attribute

static
int

CDATA
 Indicates an event is a CDATA section

static
int

CHARACTERS
 Indicates an event is characters

static
int

COMMENT
 Indicates an event is a comment

static
int

DTD
 Indicates an event is a DTD

static
int

END_DOCUMENT
 Indicates an event is an end document

static
int

END_ELEMENT
 Indicates an event is an end element

static
int

ENTITY_DECLARATION
 Indicates a Entity Declaration

static
int

ENTITY_REFERENCE
 Indicates an event is an entity reference

static
int

NAMESPACE
 Indicates the event is a namespace declaration

static
int

NOTATION_DECLARATION
 Indicates a Notation

static
int

PROCESSING_INSTRUCTION
 Indicates an event is a processing instruction

static
int

SPACE
 The characters are white space (see [XML], 2.10 "White Space Handling").

static
int

START_DOCUMENT
 Indicates an event is a start document

static
int

START_ELEMENT
 Indicates an event is a start element

2. StAX

Cursor API
The cursor API moves a virtual cursor across the underlying XML data and is the most efficient way to read XML data. A
cursor can be thought of as an interface that moves over the underlying data and allows access to the underlying state
through method calls. The cursor always moves forward. Events exist in the cursor (and event iterator) API as
abstractions describing the XML Infoset. The cursor API is based on the “iterator” pattern:

 hasNext()

 next()

Interface javax.xml.stream.XMLStreamReader
The cursor model is supported by the XMLStreamReader interface:

Method Summary
 void close()

 Frees any resources associated with this Reader.
 int getAttributeCount()

 Returns the count of attributes on this START_ELEMENT, this
method is only valid on a START_ELEMENT or ATTRIBUTE.

 java.lang.String getAttributeLocalName(int index)
 Returns the localName of the attribute at the provided index

 QName getAttributeName(int index)
 Returns the qname of the attribute at the provided index

 java.lang.String getAttributeNamespace(int index)
 Returns the namespace of the attribute at the provided index

 java.lang.String getAttributePrefix(int index)
 Returns the prefix of this attribute at the provided index

 java.lang.String getAttributeType(int index)
 Returns the XML type of the attribute at the provided index

 java.lang.String getAttributeValue(int index)
 Returns the value of the attribute at the index

 java.lang.String getAttributeValue(java.lang.String namespaceURI,
java.lang.String localName)
 Returns the normalized attribute value of the attribute with the
namespace and localName If the namespaceURI is null the namespace is not
checked for equality

 java.lang.String getCharacterEncodingScheme()
 Returns the character encoding declared on the xml declaration Returns
null if none was declared

 java.lang.String getElementText()
 Reads the content of a text-only element, an exception is thrown if this
is not a text-only element.

 java.lang.String getEncoding()
 Return input encoding if known or null if unknown.

2. StAX

 int getEventType()
 Returns an integer code that indicates the type of the event the cursor is
pointing to.

 java.lang.String getLocalName()
 Returns the (local) name of the current event.

 Location getLocation()
 Return the current location of the processor.

 QName getName()
 Returns a QName for the current START_ELEMENT or
END_ELEMENT event

 NamespaceContext getNamespaceContext()
 Returns a read only namespace context for the current position.

 int getNamespaceCount()
 Returns the count of namespaces declared on this START_ELEMENT
or END_ELEMENT, this method is only valid on a START_ELEMENT,
END_ELEMENT or NAMESPACE.

 java.lang.String getNamespacePrefix(int index)
 Returns the prefix for the namespace declared at the index.

 java.lang.String getNamespaceURI()
 If the current event is a START_ELEMENT or END_ELEMENT this
method returns the URI of the prefix or the default namespace.

 java.lang.String getNamespaceURI(int index)
 Returns the uri for the namespace declared at the index.

 java.lang.String getNamespaceURI(java.lang.String prefix)
 Return the uri for the given prefix.

 java.lang.String getPIData()
 Get the data section of a processing instruction

 java.lang.String getPITarget()
 Get the target of a processing instruction

 java.lang.String getPrefix()
 Returns the prefix of the current event or null if the event does not have
a prefix

 java.lang.Object getProperty(java.lang.String name)
 Get the value of a feature/property from the underlying implementation

 java.lang.String getText()
 Returns the current value of the parse event as a string, this returns the
string value of a CHARACTERS event, returns the value of a COMMENT,
the replacement value for an ENTITY_REFERENCE, the string value of a
CDATA section, the string value for a SPACE event, or the String value of
the internal subset of the DTD.

2. StAX

 char[] getTextCharacters()
 Returns an array which contains the characters from this event.

 int getTextCharacters(int sourceStart, char[] target,
int targetStart, int length)
 Gets the the text associated with a CHARACTERS, SPACE or
CDATA event.

 int getTextLength()
 Returns the length of the sequence of characters for this Text event
within the text character array.

 int getTextStart()
 Returns the offset into the text character array where the first character
(of this text event) is stored.

 java.lang.String getVersion()
 Get the xml version declared on the xml declaration Returns null if
none was declared

 boolean hasName()
 returns true if the current event has a name (is a START_ELEMENT
or END_ELEMENT) returns false otherwise

 boolean hasNext()
 Returns true if there are more parsing events and false if there are no
more events.

 boolean hasText()
 Return true if the current event has text, false otherwise The following
events have text: CHARACTERS,DTD ,ENTITY_REFERENCE,
COMMENT, SPACE

 boolean isAttributeSpecified(int index)
 Returns a boolean which indicates if this attribute was created by
default

 boolean isCharacters()
 Returns true if the cursor points to a character data event

 boolean isEndElement()
 Returns true if the cursor points to an end tag (otherwise false)

 boolean isStandalone()
 Get the standalone declaration from the xml declaration

 boolean isStartElement()
 Returns true if the cursor points to a start tag (otherwise false)

 boolean isWhiteSpace()
 Returns true if the cursor points to a character data event that consists
of all whitespace

2. StAX

 int next()
 Get next parsing event - a processor may return all contiguous
character data in a single chunk, or it may split it into several chunks.

 int nextTag()
 Skips any white space (isWhiteSpace() returns true), COMMENT, or
PROCESSING_INSTRUCTION, until a START_ELEMENT or
END_ELEMENT is reached.

 void require(int type, java.lang.String namespaceURI,
java.lang.String localName)
 Test if the current event is of the given type and if the namespace and
name match the current namespace and name of the current event.

 boolean standaloneSet()
 Checks if standalone was set in the document

Example:
// get a factory instance
XMLInputFactory myFactory = XMLInputFactory.newInstance();
// set error reporter (similar to setting ErrorReporter in SAX)
myFactory.setXMLReporter(myXMLReporter);
// set resolver (similar to setting EntityResolver in SAX)
myFactory.setXMLResolver(myXMLResolver);
// configure the factory, e.g. validating or non-validating
myFactory.setProperty(..., ...);
// create new XMLStreamReader
XMLStreamReader myReader = myFactory.createXMLStreamReader(...);
// document encoding from the XML declaration
String encoding = myReader.getEncoding();
// loop through document for XML constructs of interest
while(myReader.hasNext()) {
 int event = myReader.next();
 if (event == START_ELEMENT) {
 QName elementQName = myReader.getName();
 ...
 } else {
 ...
 }
}

2. StAX

Interface javax.xml.stream.XMLStreamWriter
The XMLStreamWriter interface specifies how to write XML. The XMLStreamWriter does not perform well
formedness checking on its input. It does support Namespaces and even Namespace “correction” with the use of
java.xml.stream.isReparingNamespaces on the XMLOutputFactory. The writing side of the API has methods
that correspond to the reading side for event types:

Method Summary
 void close()

 Close this writer and free any resources associated with the writer.
 void flush()

 Write any cached data to the underlying output mechanism.
 NamespaceContext getNamespaceContext()

 Returns the current namespace context.
 java.lang.String getPrefix(java.lang.String uri)

 Gets the prefix the uri is bound to
 java.lang.Object getProperty(java.lang.String name)

 Get the value of a feature/property from the underlying implementation
 void setDefaultNamespace(java.lang.String uri)

 Binds a URI to the default namespace This URI is bound in the scope of
the current START_ELEMENT / END_ELEMENT pair.

 void setNamespaceContext(NamespaceContext context)
 Sets the current namespace context for prefix and uri bindings.

 void setPrefix(java.lang.String prefix,
java.lang.String uri)
 Sets the prefix the uri is bound to.

 void writeAttribute(java.lang.String localName,
java.lang.String value)
 Writes an attribute to the output stream without a prefix.

 void writeAttribute(java.lang.String namespaceURI,
java.lang.String localName, java.lang.String value)
 Writes an attribute to the output stream

 void writeAttribute(java.lang.String prefix,
java.lang.String namespaceURI,
java.lang.String localName, java.lang.String value)
 Writes an attribute to the output stream

 void writeCData(java.lang.String data)
 Writes a CData section

 void writeCharacters(char[] text, int start, int len)
 Write text to the output

2. StAX

 void writeCharacters(java.lang.String text)
 Write text to the output

 void writeComment(java.lang.String data)
 Writes an xml comment with the data enclosed

 void writeDefaultNamespace(java.lang.String namespaceURI)
 Writes the default namespace to the stream

 void writeDTD(java.lang.String dtd)
 Write a DTD section.

 void writeEmptyElement(java.lang.String localName)
 Writes an empty element tag to the output

 void writeEmptyElement(java.lang.String namespaceURI,
java.lang.String localName)
 Writes an empty element tag to the output

 void writeEmptyElement(java.lang.String prefix,
java.lang.String localName,
java.lang.String namespaceURI)
 Writes an empty element tag to the output

 void writeEndDocument()
 Closes any start tags and writes corresponding end tags.

 void writeEndElement()
 Writes an end tag to the output relying on the internal state of the writer
to determine the prefix and local name of the event.

 void writeEntityRef(java.lang.String name)
 Writes an entity reference

 void writeNamespace(java.lang.String prefix,
java.lang.String namespaceURI)
 Writes a namespace to the output stream If the prefix argument to this
method is the empty string, "xmlns", or null this method will delegate to
writeDefaultNamespace

 void writeProcessingInstruction(java.lang.String target)
 Writes a processing instruction

 void writeProcessingInstruction(java.lang.String target,
java.lang.String data)
 Writes a processing instruction

 void writeStartDocument()
 Write the XML Declaration.

 void writeStartDocument(java.lang.String version)
 Write the XML Declaration.

2. StAX

 void writeStartDocument(java.lang.String encoding,
java.lang.String version)
 Write the XML Declaration.

 void writeStartElement(java.lang.String localName)
 Writes a start tag to the output.

 void writeStartElement(java.lang.String namespaceURI,
java.lang.String localName)
 Writes a start tag to the output

 void writeStartElement(java.lang.String prefix,
java.lang.String localName,
java.lang.String namespaceURI)
 Writes a start tag to the output

Example:
// Write the XML Declaration

myWriter.writeStartDocument("ISO-8859-1", "1.0");

// Writes a start tag to the output

myWriter.writeStartElement(“hello”);

// Write text to the output

myWriter.writeCharacters(“world”);

// Writes an end tag to the output relying on the internal state of the writer

// to determine the prefix and local name of the event

myWriter.writeEndElement();

// Closes any start tags and writes corresponding end tags

myWriter.writeEndDocument();

// Write any cached data to the underlying output mechanism

myWriter.flush();

// Close this writer and free any resources associated with the writer

myWriter.close();

Event Iterator API
The event iterator API introduces objects representing the events that one can probe for in cursor API. Events exist in the
event iterator (and cursor) API as abstractions describing the XML Infoset. The event iterator API has an interface that is
very easy to implement and use. The nextEvent() method returns an object that is immutable, can be cached or passed
on to another component in the chain of processing.
The event iterator API is based on the “iterator” pattern:

 hasNext()

 next()

 peek() (ability to “peek” into the next event)

Interface javax.xml.stream.XMLEventReader
This is the top level interface for parsing XML Events. It provides the ability to peek at the next event and returns

2. StAX

configuration information through the property interface.

Method Summary
 void close()

 Frees any resources associated with this Reader.
 java.lang.Str

ing
getElementText()
 Reads the content of a text-only element.

 java.lang.Obj
ect

getProperty(java.lang.String name)
 Get the value of a feature/property from the underlying implementation

 boolean hasNext()
 Check if there are more events.

 XMLEvent nextEvent()
 Get the next XMLEvent

 XMLEvent nextTag()
 Skips any insignificant space events until a START_ELEMENT or
END_ELEMENT is reached.

 XMLEvent peek()
 Check the next XMLEvent without reading it from the stream.

Example:
XMLInputFactory myFactory = XMLInputFactory.newInstance();
FileInputStream myFileInputStream = new FileInputStream(myFileName);
XMLEventReader myReader = myFactory.createXMLEventReader(myFileInputStream);
while(myReader.hasNext()) {
 XMLEvent myEvent = myReader.nextEvent();
 if (myEvent.isStartElement()) {
 ...
 } else {
 ...
 }
}

Interface javax.xml.stream.XMLEventWriter
The output side of the event iterator API is XMLEventWriter. This is the top level interface for writing XML
documents. Instances of this interface are not required to validate the well formedness of the XML:

Method Summary
 void add(XMLEvent event)

 Add an event to the output stream Adding a START_ELEMENT will
open a new namespace scope that will be closed when the corresponding
END_ELEMENT is written.

2. StAX

 void add(XMLEventReader reader)
 Adds an entire stream to an output stream, calls next() on the
inputStream argument until hasNext() returns false This should be treated as a
convenience method that will perform the following loop over all the events
in an event reader and call add on each event.

 void close()
 Frees any resources associated with this stream

 void flush()
 Writes any cached events to the underlying output mechanism

 NamespaceContext getNamespaceContext()
 Returns the current namespace context.

 java.lang.String getPrefix(java.lang.String uri)
 Gets the prefix the uri is bound to

 void setDefaultNamespace(java.lang.String uri)
 Binds a URI to the default namespace This URI is bound in the scope of
the current START_ELEMENT / END_ELEMENT pair.

 void setNamespaceContext(NamespaceContext context)
 Sets the current namespace context for prefix and uri bindings.

 void setPrefix(java.lang.String prefix,
java.lang.String uri)
 Sets the prefix the uri is bound to.

Filters
It is possible to filter the input of both the Cursor and Event models. This is very efficient. Filters cannot modify the
reader state, they can only skip events. For example, if an application only wants to see START_ELEMENT and
END_ELEMENT events:
public class FilterImpl
 implements StreamFilter {
 public boolean accept(XMLStreamReader myReader) {
 if (myReader.isStartElement()
 || myReader.isEndElement()) {
 return true;
 } else {
 return false;
 }
 }
}

Resource Resolution
The XMLResolver interface provides a way to set the method that resolves resources during the processing of XML
contents. The application sets the interface on the XMLInputFactory, which subsequently sets the interface on all
processors that the instance of the factory creates.

2. StAX

Error Reporting and Exception handling
All fatal errors are reported as javax.xml.stream.XMLStreamExceptions. Nonfatal errors and warnings are reported
using the javax.xml.stream.XMLReporter interface. The Location interface provides line/column/character offset
information.

3. Java WSDP

Chapter 3

Java Web Services Developer Pack
The JavaTM Web Services Developer Pack ("Java WSDP") is a free integrated toolkit you can use to build, test and deploy
XML applications, Web services, and Web applications with the latest Web service technologies and standards
implementations.
It provides developer choice and flexibility by supporting the Sun JavaTM System Application Server Platform Edition 8,
the Sun Java System Web Server 6.1, and Tomcat 5.0 for Java WSDP 1.6 Web containers for Web services development.
With the newest release of the Java WSDP 1.6, developers will be able to:

• Develop and deploy using the latest XML and Web services technologies slated for inclusion into Sun's
deployment platforms.

• Create XML and Web service-enabled applications that are secure, interoperable, and portable across different
platforms and devices.

• Simplify and lower the cost of legacy application integration, data interchange, and publishing in a Web
environment.

The Java WSDP 1.6 includes an EA implementation of Sun Java Streaming XML Parser Version 1.0, a high performance
implementation of StAX, the Streaming API for XML. As described earlier, StAX is the standard Java based API for
pull-parsing XML, which complements the existing SAX and DOM parsing models by allowing the programmer to
explicitly ask for next events.

Sun Java Streaming XML Parser (SJSXP)
JSR-173 introduces new Streaming APIs for XML (StAX) which is a Java based API for pull-parsing XML. Sun Java
Streaming XML Parser (SJSXP) is the Implementation of StAX and is extremely fast. SJSXP is a non-validating, XML
1.0 and Namespace 1.0 compliant XML parser. SJSXP has been written using the lower layer of Xerces2 responsible for
reading and applying well formed rules of XML document. This layer responsible for reading various sections of XML
document like ELEMENT, ATTRIBUTES, CHARACTERS, PI, COMMENT etc. is designed as per push model where events are
pushed as they are encountered. However, in a pull model parser stops after parsing the next event on the input stream and
control comes back to application. There has been some attempts where pull layer is built on top of push layer but this
design is not efficient. It required buffering of events so that one event can be pulled at a time.

In SJSXP this problem was tackled in a different way and lower layers were re-designed and largely modified to behave
in pull fashion. Internal state machine has been changed so that parser stops after parsing each event and has the
capability to revive itself when instructed by the application to read next XML event. This design change is important
because it is easy to give control than have it. A push layer (SAX) can be neatly built on top of pull layer without
sacrificing performance.
While re-designing lot of other changes were done to make XML parsing more efficient and lot of other optimizations
went into the code base. Result of these optimizations is visible in the benchmarks. Wherever possible, the parser
maintains a snapshot of the underlying buffer without the extra overhead of copying data into buffer maintained by the
parser. SJSXP also exploits the advantages given by the pull model. StAX Cursor model represents the state of the parser
by an integer constant and various accessor functions to retrieve information related to that state. This design gives
implementation vendors a chance to create objects lazily. SJSXP exploits this feature very well. Objects are not computed

3. Java WSDP

unless requested by the application.
Compliance to the XML standards is of utmost importance, while optimizing XML parser, it has been taken care that
compliance to the standards is maintained. SJSXP confirms to above mentioned XML standards. For example, it has
come to notice that certain pull parsers doesn't check if each character in the XML document is a valid XML character.
This is serious and will result in some of the non-XML files and fatal errors to escape through the parser.

SJSXP RoadMap
Going forward, XML 1.1 and DTD Validation support will be added to SJSXP. As StAX becomes part of Java platform
in JavaTM SE 6.0, SJSXP will become the default implementation of StAX in Sun's JDK. As said earlier, push layer can
be neatly built on top of pull layer. In JAXP 1.4, SJSXP and JAXP implementation are merged such that lower layers of
JAXP implementation are replaced with SJSXP. Now in JAXP 1.4 there is a pull layer which sits at the bottom and a push
layer is built on top of pull layer. From JAXP 1.4, single library will support 3 different XML parsing models viz. StAX
(Pull Model), SAX (Push Model) and DOM (Object Model).

4. XMLTest

Chapter 4

XMLTest

What is XMLTest?
XMLTest [8] is an XML processing test developed at Sun Microsystems and released to the public in early 2004. Since
then it has been adapted and used by other vendors to gauge XML performance. XMLTestis designed to mimic the
processing that takes place in the lifecycle of an XML document. XMLTest simulates a multi-threaded server program
that processes multiple XML documents in parallel. This is very similar to an application server that deploys web services
and concurrently processes a number of XML documents that arrive in client requests. Since we wanted to concentrate on
XML processing performance, rather than use some sort of web container, we designed a standalone multi-threaded
program implemented in Java. To avoid the effect of file I/O, the documents are read from and written to memory
streams.
XML Test measures the throughput of a system processing XML documents. For streaming parsers it just involves
parsing through each document without any writing or serialization. XML Test reports one metric: Throughput -
Average number of XML transactions executed per second. It can be configured using the following parameters:

• Number of threads - This is tuned to maximize CPU utilization and system throughput.
• PullParserFactory - Implementation of parser used to parse through the document.
• StreamUsage – Whether stream parsers are being tested.
• RampUp - Time allotted for warm-up of the system.
• SteadyState - The interval when transaction throughput is measured.
• RampDown - Time allotted for ramp down, completing transactions in flight.
• XmlFiles - The actual XML documents used by XML Test.

XML Test reads these properties at initialization into an in-memory structure that is then accessed by each thread to
initiate a transaction as per the defined mix. To keep things as simple as possible, XML Test is a single-tier system where
the test driver that instantiates an XML transaction is part of each worker thread. A new transaction is started as soon as a
prior transaction is completed (there is no think time). The number of transactions executed during the steady state period
is measured. The throughput, transactions per second (TPS) is calculated by dividing the total number of transactions by
the steady state duration. The average response time for each transaction is also calculated.

Running XMLTest
Different XML documents have different characteristics that are particular to the context in which they are used. For
example some documents may have a high number of elements and others may have a higher number of attributes etc.
The XMLTest runs performed try to take this characteristic into account. Since different XML document were used with
differing number of elements, element names, number of attributes and number of nested elements, no access was
performed by looking for specific element names or attributes since there were no common element names and attributes
among all of the XML documents. Each document was parsed by instantiating an XMLStreamReader, and iterating
through each eventType. The cursor APIs defined in JSR-173 are used for StAX parsing in XMLTest. For the case of
XPP3 parser, the XMLPullParser class was instantiated instead of the XMLStreamReader to get the eventType. Each run
was completed with two agents (two threads) to fully saturate the server's dual CPUs and the TPS was averaged over 10
iterations for each document. The only runtime argument used was "-server".

4. XMLTest

Hardware and Software Configuration
Run Characteristics Software Machine Details
Ramp Up: 300sec JWSDP1.5 SunFire 280r machine
Steady State: 600 sec JDK1.5 2 USIII+ 1015MHz
Ramp Down: 30 sec Solaris 9 4096MB RAM
Table 1: Hardware, Software, Benchmark configuration details

Other StAX Implementations
Implementation JAR File / Release Location
BEA wls_stax.jar http://dev2dev.bea.com/technologies/stax/index.jsp

Oracle xmlpull.jar,
xmlparserv2.jar http://www.oracle.com/technology/tech/xml/xdk/staxpreview.html

RI stax-1.1-dev.jar http://stax.codehaus.org/
XPP3 xpp3-1.1.3.4.M.jar http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/index.html
Woodstox wstx.jar http://www.cowtowncoder.com/proj/woodstox/index.html
Table 2. Other JSR-173 parsers

Performance Results
The performance of the five parsers was measured over a large number of XML documents. The results are presented in
the following figures categorized on the basis of size. Figures 1 and Figure 2 shows the parser results in documents
sized from 500 KB to 4 MB, Figure 3 and 4 from 50-100K, and Figure 5 and 6 from 5K to 10K.

In Figure1, SJSXP (stippled bar) is shown to be faster than the BEA, Oracle, and RI implementations of StAX parser.
SJSXP is as fast as XPP3 and Woodstox parsers except in the case of saml-500k and inv500k.xml. Closer inspection of
these documents' structure does not reveal any factor that explains the difference in parser performance (see Table 3 for
document characteristics).

4. XMLTest

Figure 1. Throughput for parsers with documents sized from 500K to 4 MB

Document Size (KB) # Elements # Attributes Depth # Unique elements Avg Att/Element
factbook.xml 4140 55453 0 6 199 0.00
1000k.xml 996 14369 13737 6 51 0.96
Chemistry 1830 13082 35266 8 17 2.70
inv1000.xml 903 15075 14059 6 51 0.93
500k.xml 498 7364 6863 6 51 0.93
saml-
1000k.xml 1017 13523 17486 6 8 1.29
star-500k.xml 490 11503 6 7 37 0.00
gaml-
500k.xml 603 4222 11516 8 17 2.73
Table 3: Characteristics of XML Documents of 'Large' size

Fact
book

1000k Chem-
istry

Inv100
0

500k saml-
1000k

star-
500k

gaml-
500k

saml-
500k

Inv500
0

10

20

30

40

50

60

BEA
Oracle
RI
Woodstox
SJSXP
XPP3

XML Document

Th
ro

ug
hp

ut
 (T

ra
ns

ac
tio

n
 P

er
 S

ec
on

d)

4. XMLTest

Figure 2 displays the ratio of the throughput of SJSXP divided by the throughput of the competitor parser. A throughput
greater than 1 indicates a faster performance of SJSXP relative to the competitor, while a ratio of less than 1 indicates a
slower one. For example, for the last document in the chart, inv500.xml, SJSXP is roughly 2.5X faster than BEA, but
0.93X that of XPP3. The XPP3 ratio is shown above the bars to help distinguish values close to 1 because of the small
scale. To aid in determining values less than 1, the ratio is shown for the XPP3 parser.

Figure 2: Ratio Bar Chart for 'Large' Document sizes

When testing documents of 'medium' size (50K to 100K) in Figure 3, SJSXP (stippled bar) continues to outperform BEA,
Oracle and the Reference Implementations but again is behind XPP3 and Woodstox for certain documents (inv50.xml,
saml-50k.xml, inv100.xml, periodic.xml). Table 4 reveals these documents' characteristics. Again, there seems to be no
clear differentiator that explains the optimum class of document on which each parser performs optimally.

Fact
book

1000k Chem-
istry

Inv100
0

500k saml-
1000k

star-
500k

gaml-
500k

saml-
500k

Inv500
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

1.15
0.93 0.96 0.88 1.01 0.89 1.01 1.00 0.87 0.93

BEA
Oracle
RI
Woodstox
XPP3

XML Document

SJ
SX

P
TP

S
/ C

om
pe

tit
or

 T
PS

4. XMLTest

Figure 3. Throughput for parsers with document sized from 50K to 100K.

Document Size (KB) # Elements # Attributes Depth # Unique elements Avg Att/Element
100k.xml 101 1484 1375 6 51 0.93
soap2.xml 132 4501 999 9 10 0.22
50k.xml 51 749 689 6 51 0.92
inv100.xml 95 1575 1459 6 51 0.93
inv50.xml 50 825 759 6 51 0.92
saml-50k.xml 52 679 880 6 8 1.30
Table 4. Characteristics of XML Documents of 'Medium' Size

100k Soap2 Periodic 50k Inv100 Inv50 saml-
50k

0

100

200

300

400

500

600

BEA
Oracle
RI
Woodstox
SJSXP
XPP3

XML Document

Th
ro

ug
hp

ut
 (T

ra
ns

ac
tio

n
Pe

r S
ec

on
d)

4. XMLTest

Figure 4 shows the ratio of the relative performance of SJSXP as compared to the competitors. The magnitude by which
SJSXP outperforms BEA, Oracle and RI is easily visible here. However, it can be seen that SJSXP can lag behind as
much as 0.75x compared to Woodstox and XPP3 for a given document size (soap2.xml). In Figure 4, a value greater than
1 signifies faster relative performance of SJSXP relative to the competitor, while value less than 1 signifies slower parser
performance. To aid in determining values less than 1, the ratio is shown for the XPP3 parser

Figure 4 : Ratio Bar Chart for 'Medium' Document sizes

100k Soap2 Periodic 50k Inv100 Inv50 saml-
50k

0.00
0.50

1.00
1.50
2.00

2.50
3.00
3.50

4.00
4.50

5.00
5.50
6.00

6.50

0.95
0.75 0.92 1.04 0.86 0.91 0.80

BEA
Oracle
RI
Woodstox
XPP3

XML Document

S
JS

XP
 T

P
S

 /
C

om
pe

tit
or

 T
PS

4. XMLTest

Finally, in the 'small' category of documents sized 5K-12K, Figure 5 shows the relative performance. SJSXP (stippled
bar) again outperforms BEA, Oracle and RI. Woodstox and XPP3 parsers are faster in certain documents compared to
SJSXP. Figure 6 shows the magnitude of the relative performance of the SJSXP compared to the competitors. SJSXP
performance is slighly slower than woodstox implementation in this class of documents so the ratio of woodstox is
shown above the bar in this figure. Table 5 reveals further document characteristics of the documents of the 'small' size
but fails to identify the factor that explains the difference in XML parser performance.

Figure 5. Throughput for parsers with documents sized from 5 to 12K.

Document Size (KB) # Elements # Attributes Depth # Unique elements Avg Att/Element
10k.xml 11 149 129 6 51 0.87
inv10.xml 14 225 199 9 51 0.88
5k.xml 6 89 73 6 51 0.82
star-10k.xml 12 255 6 7 37 0.02
jsptl-conf-
jx.xml 11 218 0 6 21 0.00
soap.xml 7 92 73 9 54 0.79
Table 5. Characteristics of XML Documents of 'Small' Size.

B
E
AL D oc ument

Tr
ans

ac
tion

 pe
r s

e

10k Inv10 5k star-10k Jsptl-conf-jx soap
0

500

1000

1500

2000

2500

3000

3500

BEA
Oracle
RI
Woodstox
SJSXP
XPP3

XML Document

Th
ro

ug
hp

ut
 (T

ra
ns

ac
tio

n
pe

r s
ec

on
d)

4. XMLTest

In Figure 6, a value greater than 1 signifies faster relative performance of SJSXP relative to the competitor, while value
less than 1 signifies slower parser performance. This time, the ratio is shown for Woodstox parser to aid in determining
values less than 1

Figure 6. Ratio Bar Chart for 'Small' Document size

10k Inv10 5k star-10k Jsptl-
conf-jx

soap
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

1.53
0.84

1.58
0.97 0.69 0.80

BEA
Oracle
RI
Woodstox
XPP3

XML Document

SJ
SX

P
TP

S
/ C

om
pe

tit
or

 T
PS

5. Summary

Chapter 5

Summary
SJSXP performance is consistently faster than BEA, Oracle and RI for all of the documents described here in this study.
However, it lags behind Woodstox and XPP3 in some document sizes and in the best cases, exhibits similar performance
compared to these two parsers. The total number of elements, attributes, and the maximum depth of nested elements, the
number of unique elements and average number of attributes were also calculated for each XML document but there
seemed to be no clear correlation between any of these characteristics and difference in relative parser performance.
It is worthy to note that XPP3 is based on XmlPullParser APIs and not JSR-173 compliant. XPP3 is a parsing API that
will work with small devices (J2ME compatible). XmlPull defines only one interface to represent XML pull parser with
one exception. It has a very small memory footprint and can be used as a building block for higher level APIs. It is
designed to be a small lightweight parser for fast performance.

SJSXP on the other hand is a fully JSR-173 compliant streaming parser that has symmetrical bi-directional APIs that can
both read and write XML documents using the same representation of XML. Its performance is only slightly behind that
of a parser designed for speed even though it has more functionality. Specifically, it has two main styles of interfaces
which aims to serve two basic functions: to allow users to read and write XML as efficiently as possible (cursor API) and
to be easy to use, event based, easy to extend and allow easy pipelining (event iterator API). The cursor APIs for XML
has two interfaces: XMLStreamReader and XMLStreamWriter while the event iterator APIs has two main interfaces:
XMLEventReader and XMLEventWriter.

SJSXP introduces a new Streaming APIs for XML (StAX) which is a standardized Java based API for pull-parsing XML.
StAX has two basic functions: to allow users to read and write XML as efficiently as possible and be easy to use (cursor
API), and be easy to extend and allow for easy pipelining (event iterator API). Pull parsing differs from the traditional
SAX based iteration and DOM based tree model, in that it is optimized for speed and performance. StAX is often
referred to as “pull parsing.” The developer uses a simple iterator based API to “pull” the next XML construct in the
document. The Java WSDP 1.6 includes an EA implementation of Sun Java Streaming XML Parser Version 1.0 but will
become a part of Java platform in Java SE 6.0.

Readers are welcome to disucss and send their feedback about this paper on the Java Web Services performance
community[11] online at http://performance.dev.java.net/

5. Summary

References
[1] Java WSDP
To access this resource online, go to http://java.sun.com/
[2] JSR 173: Streaming API for XML
To access this resource online, go to http://www.jcp.org/en/jsr/detail?id=173
[3] Reference implementation of the StAX API
To access this resource online, go to http://dev2dev.bea.com/technologies/stax/index.jsp
[4] Oracle StAX Pull Parser Preview
To access this resource online, go to http://www.oracle.com/technology/tech/xml/xdk/staxpreview.html
[5] Streaming API for XML (StAX) Reference Implementation homepage
To access this resource online, go to http://stax.codehaus.org/
[6] Xml Pull Parser 3rd Edition (XPP3)
To access this resource online, go to http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/index.html
[7] WoodStox
To access this resource online, go to http://www.cowtowncoder.com/proj/woodstox/index.html
[8] XMLTest 1.0, a White Paper
To access this resource online, go to http://java.sun.com/performance/reference/whitepapers/WS_Test-1_0.pdf
[9] XMLTest 1.0 source code and samples
To access this resource online, go to http://java.sun.com/performance/reference/codesamples/
[10] XMLTest 2.0 source code and samples
To access this resource online, go to http://xmltest.dev.java.net/
[11] Java Web Services Performance Community forum
To access this resource online, go to http://performance.dev.java.net/

Ordering Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the United States,
Canada, Europe, or Japan, you can purchase documentation sets or individual manuals through this program.

Accessing Sun Documentation Online

The docs.sun.com web site enables you to access Sun technical documentation online. You can browse the
docs.sun.com archive or search for a specific book title or subject. The URL is http://docs.sun.com/

Sun Microsystems, Inc. Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

©2005 Sun Microsystems, Inc. All right reserved Sun, Sun Microsystems, the Sun logo, Java, SJSSXP, JVM are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries." Sun logo, Java , JVM sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays

