

PATTERN MATCHING CAPABILITIES IN
ORACLE BAM
12.1.3
O R A C L E W H I T E P A P E R | S E P T E M B E R 2 0 1 4

PATTERN MATCHING CAPABILITIES IN ORACLE BAM 12.1.3

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

1 | ENTER TITLE OF DOCUMENT HERE

Table of Contents

Disclaimer 1

Introduction 3

Pattern Matching Use Case Scenario: 3

Preparing the Project 4

Importing the Project 5

Running a PatternMatch Dashboard 9

To run a PatternMatch dashboard, you must run through the following steps: 9

Creating Continuous Queries Using CQL Templates 10

Data Objects 10

Suggested Best Practice 12

Creating the PatternMatch Project 13

Continuous queries 14

Designing a KPI Alert Template 15

Designing a Trending Design Template 18

Designing a Missing Event Template 21

Designing a Monitor Count Template 25

Designing a Moving Aggregation Template 28

Designing a Top N Template 30

Designing a Duplicate Detection Template 33

Continuous Queries Monitoring 36

Designing a Fired KPI Alert Events Query 36

Designing Fired KPI Alert Output Events 37

Understanding Dashboards 38

PatternMatch Dashboard 38

2 | ENTER TITLE OF DOCUMENT HERE

StrPatternMatch Dashboard 40

You can create a strPatternMatch Dashboard using the procedure outlined for

creating the PatternMatch Dashboard, and add the following views to it. 40

Troubleshooting 41

Best Practices 42

3 | ENTER TITLE OF DOCUMENT HERE

Introduction
This whitepaper provides information on defining continuous queries and building dashboards to
actively monitor outputs using advanced Pattern Matching capabilities provided by Oracle BAM
12c. Continues Queries differ from traditional queries in that once a query registers, it runs until it
is de-registered. This makes continuous queries ideal for addressing real time monitoring with
temporal (the last moving 10 minutes, for example) and PatternMatch (e.g. trending, missing
event, etc.) capabilities.

Oracle BAM has seven most commonly used Out Of the Box (OOTB) Continuous Query
templates, which can be used to define complex PatternMatch scenarios without writing any CQL
statements. These templates are parameters-driven and CQL are generated and registered to the
BAM server, based on specific parameters. When a pattern is detected by the CQ, you can
associate an alert with it, which triggers a list of actions. For example, the outputs from these
queries can be daisy-chained to drive the dashboards so you can continuously monitor the
number of alerts generated by each of these queries.

For more information on Oracle CQL, see: Understanding Oracle CQL.

Oracle BAM uses OOTB templates for creating CQs, and supports both stream and relational
data objects. Stream Data is a type of data which always generates a ‘plus’ event; for example,
GPS data or stock price data that shows the current value of the event. This means, you can
insert data into a DO, but you cannot modify or delete them. Archived Relation Data is like
traditional relational data where CRUD operations can be performed. Archived Relation obtains
the initial state of the query from the database and then performs incremental computations on
top of it. Oracle BAM supports the following templates. Note that the Duplicate Detection
Template’ can only support a stream DO.

1. KPI Alert Template.

2. Duplicate Detection Template (supports only Stream DOs)

3. Trending Detection Template

4. Monitor Count Template

5. Moving Aggregation Template

6. Missing Event Template

7. Top N Template

As an example, you can use the KPI Alert Template to generate a query which fires each time the
KPI values cross a certain threshold. You can choose to display this using a line chart which
shows alert counts for each minute, or any other time value, for the last 10 minutes, or any other
time range.

Pattern Matching Use Case Scenario:

Consider a situation where you are monitoring product sales efficiency for a company, using
metadata from their in-house call center to detect emerging patterns or trends that may hamper
or enhance your sales process. This requires that you:

4 | ENTER TITLE OF DOCUMENT HERE

! Detect when the average call wait time for all the calls ‘closed’ in the last 2 minutes is

greater than a predefined threshold.
! Detect if the callProcessingTime is increasing by more than 10% for two consecutive

intervals.
! Detect when a call “Suspend” action is not directly followed by “Resume”.
! Identify if more than one event is detected in the past 2 minutes for the same

customerLocationId and productId pair.
! Continuously monitor the moving average of callProcessingtime in the last 2 minutes for

each productId.
! Continuously update the top 5 products with maximum call Processing Time in the last 2

minutes.
! Detect if more than one event arrives within 2 minutes of each other with the same

CustomerLocationId, productId and callStatus.

Apart from this, you must continuously monitor the count of these anomalies within the past 10
minutes. This document explains how the OOTB templates available in BAM 12c are used to
detect these patterns or trends and how this information is displayed on a dashboard so you can
track patterns in real time.

Preparing the Project
To start, you must ensure that the project environment is set up correctly as follows.

1. Copy the “samples” directory to ORACLE_HOME/soa/bam

2. Update ../common/setEnv.sh with proper info.

3. Update ../../bin/BAMCommandConfig.xml and add the following parameters
 (make sure to replace **password** with valid password):
<password>**password**</password>

4. Set environment variable JAVA_HOME.

5. If there's a previous installed project, clear all continuous queries. If you are importing a
PatternMatch project for the first time, you can ignore these steps:

I. Open BAM composer: http://<hostname>:<port>/bam/composer
II. Choose 'Administrator'

III. Click on 'Continuous Queries Monitoring'
IV. Under the 'Project' dropdown list, select 'PatternMatch'
V. Check on the 'select all' checkbox

VI. Click on 'Deactivate Query'
VII. Click on 'Drop Query'

5 | ENTER TITLE OF DOCUMENT HERE

Importing the Project
To import the project, execute: importPatternMatch.sh from
ORACLE_HOME/soa/bam/samples/bam-103-pattern-match. Then, check if all project artifacts
are ordered correctly, as shown in Figure 1.

6 | ENTER TITLE OF DOCUMENT HERE

Figure 1 – Example PatternMatch Project

7 | ENTER TITLE OF DOCUMENT HERE

The following Data objects must be present under Data Objects Oracle " callcenter

1. PATTERNMATCH_FACT (Archived Relation)
2. PATTERNMATCH_DIMENSION (Archived Relation)
3. PATTERNMATCH (Logical DO - a combination of PATTERNMATCH_FACT and

PATTERNMATCH_DIMENSION)
4. PATTERNMATCH_FACT_STREAM (Stream DO)

The project also contains the following pre-seeded DOs under oracle " writeback

1. BasedWriteBackDO
2. DupDetectionOutputDDO
3. KPIAlertOutputDDO
4. MissingEventOutputDDO
5. MonitorCntOutputDDO
6. MovAggrOutputDDO
7. TopNOutputDDO
8. TrendingDetectionOuputDDO

In the PatternMatch project, there are six continuous queries over logical DOs and seven
continuous queries over stream DOs.

1. KPI Alert Template
1. AverageCallWaitingTimeGreateThanThreshold over the logical DO

PATTERNMATCH
2. StrAvgCallWaitTimeGreaterThanThreshold over stream DO

PATTERNMATCH_FACT_STREAM
Both these queries have an alert action configured to write back the output to
KPIAlertOutputDDO.

2. Duplicate Detection Template (supports only Stream DOs)
1. StrDuplicateDetection over stream DO PATTERNMATCH_FACT_STREAM

This query has an alert action configured to write back the output to
DupDetectionOutputDDO

3. Trending Detection Template
1. CallProcessingTimeTrendingUp10Percent over the logical DO PATTERNMATCH
2. StrCallProcessingTimeTrendUp10PC over stream DO

PATTERNMATCH_FACT_STREAM
Both these queries have an alert action configured to write back the output to
TrendingDetectionOuputDDO

4. Monitor Count Template
1. MonitorDuplicatedEvents over the logical DO PATTERNMATCH
2. StrMonitDupEvents over stream DO PATTERNMATCH_FACT_STREAM

Both these queries have an alert action configured to write back the output to
MonitorCntOutputDDO

8 | ENTER TITLE OF DOCUMENT HERE

5. Moving Aggregation Template
1. MovingAverageForCallProcessingTime over the logical DO PATTERNMATCH
2. StrMovinAvgCallProcessTime over stream DO

PATTERNMATCH_FACT_STREAM
Both these queries have an alert action configured to write back the output to
MovAggrOutputDDO

6. Missing Event Template
1. MissingResumeCallDetection over the logical DO PATTERNMATCH
2. StrMisResumCallDetection over stream DO PATTERNMATCH_FACT_STREAM

Both these queries have an alert action configured to write back the output to
MissingEventOutputDDO

7. Top N template
1. Top5MaximumCallProcessingTime over the logical DO PATTERNMATCH
2. StrTop5MaxCallProcessTime over stream DO

PATTERNMATCH_FACT_STREAM
Both these queries have an alert action configured to write back the output to
TopNOutputDDO

The following Group Queries are defined over writeback DOs so they can use the output of the
continuous queries as event sources:

1. FiredKPIAlertEventsQuery & strFiredKPIAlertEventsQuery over KPIAlertOutputDDO

2. strFiredDupDtectionEventsQuery over DupDetectionOutputDDO over
DupDetectionOutputDDO

3. FiredTrendingEventsQuery and strFiredTrendingEventsQuery over
TrendingDetectionOuputDDO

4. FiredMonitorCountEventsQuery and strFiredMonitorCountEventsQuery over
MonitorCntOutputDDO

5. FiredMovingAggregationEventsQuery and strFiredMovingAggregationEventsQuery over
MovAggrOutputDDO

6. FiredMissingEventsQuery and strFiredMissingEventsQuery over
MissingEventOutputDDO

7. FiredTopNEventsQuery and strFiredTopNEventsQuery over TopNOutputDDO

Ensure that the following business views are present:

1. FiredKpiAlertOutputEvents & strFiredKpiAlertOutputEvents

1. strFiredDuplicateDetectionEvents

2. FiredTrendingEvents& strFiredTrendingEvents

3. FiredMonitorCountEvents & strFiredMonitorCountEvents

9 | ENTER TITLE OF DOCUMENT HERE

4. FiredMovingAggregationEvents & strFiredMovingAggregationEvents

5. FiredMissingEvents & strFiredMissingEvents

6. FiredTopNEvents & strFiredTopNEvents

Two dashboards PatternMatch and strPatternMatch should be present with their corresponding
business views.

For the Patternmatch dashboard, the following views must be present:

1. FiredKpiAlertOutputEvents

2. FiredTrendingEvents

3. FiredMonitorCountEvents

4. FiredMovingAggregationEvents

5. FiredMissingEvents

6. FiredTopNEvents

For the strPatternMatch dashboard, the following views must be present:

1. strFiredKpiAlertOutputEvents

2. strFiredDuplicateDetectionEvents

3. strFiredTrendingEvents

4. strFiredMonitorCountEvents

5. strFiredMovingAggregationEvents

6. strFiredMissingEvents

7. strFiredTopNEvents

Running a PatternMatch Dashboard

To run a PatternMatch dashboard, you must run through the following steps:

1. Populate data: Go to ORACLE_HOME/soa/bam/samples/bam-103-pattern-match and
execute:
startPatternMatch.sh <wls password>

This script will start populating both PATTERNMATCH (logical DO) and
PATTERNMATCH_FACT_STREAM (stream DO) which will in turn drive all the views in
PatternMatch strPatternMatch dashboards.

10 | ENTER TITLE OF DOCUMENT HERE

2. Open the Patternmatch dashboard using the following url:
http://<host>:<port>/bam/composer/faces/proxypage?project=PatternMatch&dashboard=
PatternMatchDashboard

3. Open the strPatternmatch dashboard using the following URL:
http://<host>:<port>/bam/composer/faces/proxypage?project=PatternMatch&dashboard=
strPatternMatchDashboard

4. Once you are done, to stop data population, go to
ORACLE_HOME/soa/bam/samples/bam-103-pattern-match and execute:
stopPatternMatch.sh

Figure 2 – Sample PatternMatch dashboard

Creating Continuous Queries Using CQL Templates
This section outlines how each of the CQL templates is used to create continuous queries and
how outputs from the queries are used to drive real time dashboards.

Data Objects
PATTERNMATCH_FACT is an archived relation DO with the following columns. The contents of
an archived relation DO are saved in the database and CRUD operations are allowed.

11 | ENTER TITLE OF DOCUMENT HERE

Column Column Type Data Type
customerLocationId DIMENSION VARCHAR
productId DIMENSION VARCHAR
customerStatus DIMENSION VARCHAR
callPriority ATTRIBUTE INT
callProcessingTime MEASURE INT
callWaitTime MEASURE INT
callStatus ATTRIBUTE VARCHAR
callClosedTime DIMENSION DATETIME
callCreatedTime DIMENSION DATETIME

PATTERNMATCH_DIMENSION is also an archived relation DO with the following columns:

Column Column Type Data Type
customerLocationId ATTRIBUTE VARCHAR
customerLocationName ATTRIBUTE VARCHAR

Patternmatch is a Logical DO Logical DOs do not have underlying persistent stores. They are
always merges between existing DataObjects. PatternMatch is a merge between
PATTERNMATCH_FACT and PATTERNMATCH_DIMENSION using matching
‘customerLocationId’ as the join condition. It has the following columns.

Column Source DO Column

Type
Data Type

customerLocationId PATTERNMATCH_FACT DIMENSION VARCHAR
productId PATTERNMATCH_FACT DIMENSION VARCHAR
customerStatus PATTERNMATCH_FACT DIMENSION VARCHAR
callPriority PATTERNMATCH_FACT MEASURE INT
callProcessingTime PATTERNMATCH_FACT MEASURE INT
callWaitTime PATTERNMATCH_FACT MEASURE INT
callStatus PATTERNMATCH_FACT DIMENSION VARCHAR
callClosedTime PATTERNMATCH_FACT ATTRIBUTE DATETIME
callCreatedTime PATTERNMATCH_FACT ATTRIBUTE DATETIME
customerLocationName PATTERNMATCH_DIMENSION DIMENSION VARCHAR

Oracle BAM also supports the concept of Derived Data Objects. You can use an existing
DataObject and extend it by incorporating additional fields. Any data operation done on the
derived DO will be applied to the base DO as well. PATTERNMATCH_FACT_STREAM is a
stream DO. You can create it with either the ‘Archived’=true or the Archived=false condition. If
Archive=true, then the data is saved in the database. In this case,
PATTERNMATCH_FACT_STREAM has ‘Archived’=false enabled. It has the following columns:

12 | ENTER TITLE OF DOCUMENT HERE

Column Column Type Data Type
customerLocationId DIMENSION VARCHAR
productId DIMENSION VARCHAR
customerStatus DIMENSION VARCHAR
callPriority ATTRIBUTE INT
callProcessingTime MEASURE INT
callWaitTime MEASURE INT
callStatus ATTRIBUTE VARCHAR
callClosedTime DIMENSION DATETIME
callCreatedTime DIMENSION DATETIME
customerLocationNa
me

ATTRIBUTE VARCHAR

Suggested Best Practice

If you have Dimension DO where you expect the data to change rarely, then consider marking it a
‘Slow Changing Dimension’. If a DO is marked as a Slow Changing Dimension, the CQL query
will be optimized to not keep the fact DO tuples in memory. This can give you a considerable
performance advantage and reduce memory use. The trade off is that CQ Service restarts the
query each time it detects any event on the Slow Changing Dimension DO. Note that this
optimization kicks in only when a logical DO based on the Slow Changing Dimension DO is used
in the query, and not when the same DO is used directly, outside of a query. This option should
ideally be exercised only when you are sure that the changes to your Dimension DO will be very
infrequent, because frequent changes to the Dimension DO will result in frequent query restarts
and it can worsen performance.

13 | ENTER TITLE OF DOCUMENT HERE

Figure 3 – Enabling the Slow Changing Dimension option

Creating the PatternMatch Project
The project is a logical organization of work. You can create the project from Oracle BAM
Composer and add all the required Data Objects to the project.

Figure 4 – The ‘Create Project’ list item in BAM Composer

14 | ENTER TITLE OF DOCUMENT HERE

Figure 5 – The ‘Create BAM Project’ start screen

Once the project is created, click on the Data Objects link and add the required Data Objects into
the project.

Continuous queries
This section outlines each OOTB Template in detail. Here are some CQL terms used in this
document with their respective explanations:

1. Stream DO: Stream represents an event stream, which only supports an insert operation.
Events arriving on a stream DO are processed by any Continuous Queries over the
stream DO currently registered with BAM, but the data is not saved.

2. Archived Stream: Archived Stream DO is essentially a stream DO but the data is saved in
the database. The amount of data replayed to a newly registering or restarting continuous
query is based on settings in the DO.

3. Archived Relation: An Archived Relation obtains the initial state of the query from the
database and allows incremental computation on top of it.

4. Rolling Window: A Rolling Window of N minutes implies that the query will consider only
events that have arrived in the last N minutes. When time progresses, events that arrived
before N minutes will ‘fall off’ the window, i.e., they will no longer affect the output of the
query. The “Use rolling window” option is made mandatory for all CQL Template queries
over Archived Relations. For more details, see Best Practices.

5. Update Interval: An update interval can be used to throttle the output of the query. If you

do not specify one, the query will give you an output each time there is a change. If you
specify an update interval, the output is provided only at those intervals.

To create a continuous Query using a CQL Template, open the project and click on the “Business
Queries” link. Enter a name and display name; make sure “Continuous Query” is selected by
default and click “Create”.

15 | ENTER TITLE OF DOCUMENT HERE

Figure 6 – Creating a continuous query

Steps specific to each template are detailed below. Ensure that the check box “Activate
Continuous Queries :<Query_Name>” is checked before you save the query.

Designing a KPI Alert Template
The goal is to design a query which will, for each product ID, fire an alert when the average call
wait time for all the calls ‘closed’ in the last two minutes is greater than 100(Norm)+10(Allowed
deviation). This is achieved using a KPI Alert Template. This template supports all types of DOs.

Over Logical DO (Query: AverageCallWaitingTimeGreateThanThreshold)

Data Object: PatternMatch

• Filter

! Branch: all are true - callStatus is equal to "CLOSED"
• Measure

! Measure field: callWaitTime
! Aggregation Function: Average
! Group By productId
! Use rolling window = true with Range Length = 2 minute based on

callCreatedTime
• Threshold

Criteria: Measure is greater than (Norm + Deviation)
Norm Definition: Constant, 100
Deviation definition: Scalar, 10

• Alert Event

Output all fields
• Action

16 | ENTER TITLE OF DOCUMENT HERE

Insert Event output into KPIAlertOutputDDO, and use the following mapping:

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
GroupFieldString1 productId
Measure MEASURE
Norm NORM
AllowedDeviation ALLOWED_DEVIATION
ActuralDeviation ACTUAL_DEVIATION

Figure 7 – Creating a continuous query using the KPI Alert Template.

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows:

CREATE QUERY PatternMatch.AverageCallWaitingTimeGreateThanThreshold as
ISTREAM(SELECT AVG(callWaitTime) AS MEASURE , 100.0 AS NORM , 10.0 AS
ALLOWED_DEVIATION , AVG(callWaitTime) - 100.0 AS ACTUAL_DEVIATION , productId AS
productId , 'PatternMatch' AS PROJECT_NAME ,

17 | ENTER TITLE OF DOCUMENT HERE

'AverageCallWaitingTimeGreateThanThreshold' AS QUERY_NAME FROM
PatternMatch.PATTERNMATCH[RANGE 2 minute ON callCreatedTime] AS T WHERE
(callStatus="CLOSED") GROUP BY T.productId HAVING AVG(T.callWaitTime) - 100.0 > 10.0)
destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"
Over Stream DO (StrAvgCallWaitTimeGreaterThanThreshold)

Data Object: PATTERNMATCH_FACT_STREAM
To continue, follow the same procedure as the one outlined for the KPI Alert template query over
Logical DO.

Figure 8 – Creating a continuous query using the KIP Alert Template, over a stream DO.

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows:

CREATE QUERY PatternMatch.StrAvgCallWaitTimeGreaterThanThreshold as
ISTREAM(SELECT AVG(callWaitTime) AS MEASURE , 100.0 AS NORM , 10.0 AS

18 | ENTER TITLE OF DOCUMENT HERE

ALLOWED_DEVIATION , AVG(callWaitTime) - 100.0 AS ACTUAL_DEVIATION , productId AS
productId , 'PatternMatch' AS PROJECT_NAME , 'StrAvgCallWaitTimeGreaterThanThreshold'
AS QUERY_NAME FROM PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2 minute]
AS T WHERE (callStatus="CLOSED") GROUP BY T.productId HAVING AVG(T.callWaitTime) -
100.0 > 10.0) destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Trending Design Template
The goal is to detect if the callProcessingTime is increasing by more than 10% for two
consecutive intervals. The trending detection template is used to achieve this. This template
works with all types of Dos.

Over Logical DO (Query: CallProcessingTimeTrendingUp10Percent)

Data Object: PatternMatch

• Filter

! None: No filters specified for this query.

• Measure

! Measure Field: callProcessingTime

! Aggregation Function: None
The callProcessingTime field is observed for changes, so an aggregation
function need not be specified. On the other hand, if you want to detect, say,
trends in Sum of callProcessingTime or Average of calllProcessingTime, then
you must specify appropriate aggregation functions.

! Partition By: productId
Trends are identified for each productId independently.

! Use rolling window = true with Range Length = 2 minute based on
callCreatedTime. In this example, the ‘update interval’ field isn’t used. Generally,
if an aggregation function is applied in trend detection, the ‘update interval’ field
can help.

• Trending

! Change greater than 10%

! Consecutive interval 2

19 | ENTER TITLE OF DOCUMENT HERE

• Output

! Select all available fields

• Action

Insert Event output into TrendingDetectionOuputDDO, and use the following mapping:

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
GroupFieldString1 T.productID
EndPointTrendingValue T.endCallProcessingTime
StartPointTrendingDecimalValue T.callProcessingTime

Figure 9 – Create a continuous query using the Trending Detection Template

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows:

CREATE QUERY PatternMatch.CallProcessingTimeTrendingUp10Percent as SELECT
T.callProcessingTime , T.endcallProcessingTime , T.productId , 'PatternMatch' AS
PROJECT_NAME , 'CallProcessingTimeTrendingUp10Percent' AS QUERY_NAME FROM (
SELECT productId , callCreatedTime , callProcessingTime , endcallProcessingTime FROM (
ISTREAM(SELECT productId , callCreatedTime AS callCreatedTime , callProcessingTime AS

20 | ENTER TITLE OF DOCUMENT HERE

callProcessingTime , callProcessingTime AS endcallProcessingTime FROM
PatternMatch.PATTERNMATCH[RANGE 2 minute ON callCreatedTime] AS S)) AS P ORDER
BY callCreatedTime) AS Q MATCH_RECOGNIZE (PARTITION BY productId MEASURES
C.callProcessingTime AS endcallProcessingTime,A.callProcessingTime AS
callProcessingTime,A.productId AS productId ALL MATCHES PATTERN (A B+ C) DEFINE B AS
B.callProcessingTime>1.1*prev(B.callProcessingTime) and count(*) <= 2, C AS
C.callProcessingTime>1.1*last(B.callProcessingTime) and count(*) = 3) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true”

Over Stream DO (Query: StrCallProcessingTimeTrendUp10PC)

Data Object: PATTERNMATCH_FACT_STREAM

To continue, follow the same procedure as outlined in the Trending Detection Template Query
over Logical DO.

Figure 10 – Creating the StrCallProcessingTimeTrendUp10PC query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows:

CREATE QUERY PatternMatch.StrCallProcessingTimeTrendUp10PC as SELECT
T.callProcessingTime , T.endcallProcessingTime , T.productId , 'PatternMatch' AS

21 | ENTER TITLE OF DOCUMENT HERE

PROJECT_NAME , 'StrCallProcessingTimeTrendUp10PC' AS QUERY_NAME FROM (
ISTREAM(SELECT productId , callProcessingTime AS callProcessingTime , callProcessingTime
AS endcallProcessingTime FROM PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2
minute] AS S)) AS Q MATCH_RECOGNIZE (PARTITION BY productId MEASURES
C.callProcessingTime AS endcallProcessingTime,A.callProcessingTime AS
callProcessingTime,A.productId AS productId ALL MATCHES PATTERN (A B+ C) DEFINE B AS
B.callProcessingTime>1.1*prev(B.callProcessingTime) and count(*) <= 2, C AS
C.callProcessingTime>1.1*last(B.callProcessingTime) and count(*) = 3) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Missing Event Template
The goal is to design a query that can detect when a call “Suspend” action is not directly followed
by “Resume”. This is achieved using the Missing Event Template which supports all types of
DOs.

Over Logical DO (Query: MissingResumeCallDetection)

Data Object: PatternMatch

• Filter

! None No filter specified.

• Measure

! productId

You can select any additional fields that you wish to expose in the query output.

! Partition by: productId
This implies that that the PatternMatching is done independently for each
productId. Consider the following order of events
productId, callStatus
1, Suspend
2, Open -> This will not trigger an output because productId one and two
are tracked separately
1, Resume
2, Suspend
1, Closed->This will not trigger an output because productId one and two
are tracked separately
2, On Hold " This will trigger an output because for productId=2, ‘Suspend’
was followed by ‘On Hold’ instead of ‘Resume’

! Use rolling windows = true, Range Length two minutes, based on
callCreatedTime.

22 | ENTER TITLE OF DOCUMENT HERE

• Events

! Pattern: Event A is not followed directly by event B
The other options available are “Event C is missing between event A and Event
B” and “Event A is not followed by Event B in specific duration”

• Output

Output all fields

• Action

Insert Event output into MissingEventOutputDDO, and use the following mapping

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
MeasureString1 T. B_productId
MeasureString2 T.B_callStatus

23 | ENTER TITLE OF DOCUMENT HERE

Figure 11 – Setting up the MissingResumeCallDetection Query

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows:

CREATE QUERY PatternMatch.MissingResumeCallDetection as SELECT T.A_callStatus ,
T.B_callStatus , T.A_productId , T.B_productId , 'PatternMatch' AS PROJECT_NAME ,
'MissingResumeCallDetection' AS QUERY_NAME FROM (SELECT callCreatedTime , callStatus
, productId FROM (ISTREAM(SELECT callCreatedTime , callStatus , productId FROM
PatternMatch.PATTERNMATCH[RANGE 2 minute ON callCreatedTime] AS S)) AS P ORDER
BY callCreatedTime) AS Q MATCH_RECOGNIZE (PARTITION BY productId MEASURES
A.callStatus AS A_callStatus,NOTB.callStatus AS B_callStatus,A.productId AS
A_productId,NOTB.productId AS B_productId ALL MATCHES PATTERN (A NOTB) DEFINE A
AS (callStatus='SUSPEND'),NOTB AS (NOT(callStatus='RESUME'))) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m

24 | ENTER TITLE OF DOCUMENT HERE

dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"
Over Stream DO (StrMisResumCallDetection)

Data Object: PATTERNMATCH_FACT_STREAM

To continue, use the same procedure as the one outlined for the Missing Event Template Query
over Logical DO.

Figure 12 – Setting up the StrMisResumCallDetection Query

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows.

CREATE QUERY PatternMatch.StrMisResumCallDetection as SELECT T.A_callStatus ,
T.B_callStatus , T.A_productId , T.B_productId , 'PatternMatch' AS PROJECT_NAME ,

25 | ENTER TITLE OF DOCUMENT HERE

'StrMisResumCallDetection' AS QUERY_NAME FROM (ISTREAM(SELECT callStatus ,
productId FROM PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2 minute] AS S))
AS Q MATCH_RECOGNIZE (PARTITION BY productId MEASURES A.callStatus AS
A_callStatus,NOTB.callStatus AS B_callStatus,A.productId AS A_productId,NOTB.productId AS
B_productId ALL MATCHES PATTERN (A NOTB) DEFINE A AS (callStatus='SUSPEND'),NOTB
AS (NOT(callStatus='RESUME'))) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Monitor Count Template
The goal is to design a query that will indicate if more than one event is detected in the past 2
minutes for the same customerLocationId and productId pair. This is achieved using Monitor
Count Template which supports all types of Dos.

Over Logical DO (Query: MonitorDuplicatedEvents)

Data Object: Patternmatch

• Filter

! None. No filter specified.

! Measure

! Measure Field: Callstatus
You will get a comma separated list of all call statuses in the output field
AGGcallStatus.

! Group By: customerLocationId, productId
The count of each of these pairs is monitored separately.

! Count: Greater than 1
You have the option to specify a variety of options like greater than, less than,
equal to, and so on.

! Use rolling window: yes, Range length two minutes, based on callCreatedTime.

• Output

Output all fields

• Action

Insert Event output into MonitorCntOutputDDO, and use the following mapping.

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME

26 | ENTER TITLE OF DOCUMENT HERE

GroupFieldString1 T. customerLocationId
GroupFieldString2 T. productId
MeasureString2 T. AGGcallStatus

Figure 13 – Setting up the MonitorDuplicatedEvents Query

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows.

CREATE QUERY PatternMatch.MonitorDuplicatedEvents as SELECT T.monitor_count ,
T.AGGcallStatus , T.customerLocationId , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'MonitorDuplicatedEvents' AS QUERY_NAME FROM (ISTREAM(SELECT count(*) AS
monitor_count , listAggWrapper(listAgg(callStatus),", ") AS AGGcallStatus , customerLocationId
AS customerLocationId , productId AS productId FROM PatternMatch.PATTERNMATCH[RANGE
2 minute ON callCreatedTime] AS S GROUP BY S.customerLocationId,S.productId HAVING
COUNT(*) > 1)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m

27 | ENTER TITLE OF DOCUMENT HERE

dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"
Over Stream DO (StrAvgCallWaitTimeGreaterThanThreshold)

Data Object: PATTERNMATCH_FACT_STREAM

To continue, follow the same procedure as outlined for the Monitor Count Template Query over
Logical DO.

Figure 14 – Setting up the StrMonitDupEvents Query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows.

CREATE QUERY PatternMatch.StrMonitDupEvents as SELECT T.monitor_count ,
T.AGGcallStatus , T.customerLocationId , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'StrMonitDupEvents' AS QUERY_NAME FROM (ISTREAM(SELECT count(*) AS monitor_count
, listAggWrapper(listAgg(callStatus),", ") AS AGGcallStatus , customerLocationId AS
customerLocationId , productId AS productId FROM

28 | ENTER TITLE OF DOCUMENT HERE

PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2 minute] AS S GROUP BY
S.customerLocationId,S.productId HAVING COUNT(*) > 1)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Moving Aggregation Template
The goal is to design a query that will output the moving average of callProcessing time in the last
two minutes for each productId. This is achieved using the Moving Aggregation Template, which
supports all types of DOs.

Over Logical DO (Query: MovingAverageForCallProcessingTime)

Data Object: PatternMatch

• Filter

! None. No filter specified.

• Measure

! Measure field: callProcessingTime (Average)

The other options are max, min, count and sum. You can select multiple
aggregation functions for the same field.

! Group By: productId
! Use rolling window = True; Range length -two minutes, based on

callCreatedTime.

• Output

! All fields.

• Action

Insert Event output into MovAggrOutputDDO, and use the following mapping.

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
GroupFieldString1 T.productId
AggregationValue1 T.AVGcallProcessingTime

29 | ENTER TITLE OF DOCUMENT HERE

Figure 15 – Setting up the MovingAverageforCallProcessingTime Query

Click the preview icon to see what the final query generated by the template looks like. In this
case, the CQL statement is as follows.

CREATE QUERY PatternMatch.MovingAverageForCallProcessingTime as SELECT
T.AVGcallProcessingTime , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'MovingAverageForCallProcessingTime' AS QUERY_NAME FROM (ISTREAM(SELECT
AVG(callProcessingTime) AS AVGcallProcessingTime , productId AS productId FROM
PatternMatch.PATTERNMATCH[RANGE 2 minute ON callCreatedTime] AS S GROUP BY
S.productId)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"
Over Stream DO (Query Name: StrMovinAvgCallProcessTime)

Data Object: PATTERNMATCH_FACT_STREAM

To continue, follow the same procedure as outlined for the Moving Aggregation Template Query
over Logical DO.

30 | ENTER TITLE OF DOCUMENT HERE

Figure 16 – Setting up the StrMovinAvgCallProcessTime Query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows.

CREATE QUERY PatternMatch.StrMovinAvgCallProcessTime as SELECT
T.AVGcallProcessingTime , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'StrMovinAvgCallProcessTime' AS QUERY_NAME FROM (ISTREAM(SELECT
AVG(callProcessingTime) AS AVGcallProcessingTime , productId AS productId FROM
PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2 minute] AS S GROUP BY
S.productId)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Top N Template

31 | ENTER TITLE OF DOCUMENT HERE

The goal is to design a query that will indicate the top five products with the maximum
callProcessingTime in the last two minutes. This is achieved using Top N Template, which
supports all types of DOs.

Over Logical DO (Query: Top5MaximumCallProcessingTime)

Data Object: Patternmatch

• Filter

! None. No filter specified.

• Measure

! Measure Field: callProcessingTime
! Aggregation Function: Max
! Group By: productId
! Top N: 5

Here, you can specify the number of top rows you want in the output.
! Use rolling window: True; Range length 2 Minute, based on callCreatedTime

• Output

Output all fields.

• Action

Insert Event output into TopNOutputDDO, and use the following mapping.

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
GroupFieldString1 T. productId
TopNValue T. MAXcallProcessingTime

32 | ENTER TITLE OF DOCUMENT HERE

Figure 17 – Setting up the Top5MaximumCallProcessingTime Query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows.

CREATE QUERY PatternMatch.Top5MaximumCallProcessingTime as SELECT
T.MAXcallProcessingTime , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'Top5MaximumCallProcessingTime' AS QUERY_NAME FROM (RSTREAM(SELECT
S.productId , S.MAXcallProcessingTime FROM (SELECT productId , MAX(callProcessingTime)
AS MAXcallProcessingTime FROM PatternMatch.PATTERNMATCH[RANGE 2 minute ON
callCreatedTime] AS Q GROUP BY Q.productId) AS S ORDER BY S.MAXcallProcessingTime
DESC ROWS 5)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"
Over Stream DO (Query Name: StrTop5MaxCallProcessTime)

Data Object: PATTERNMATCH_FACT_STREAM
To continue, follow the same procedure as the one outlined for the Top N template Query over
Logical DO.

33 | ENTER TITLE OF DOCUMENT HERE

Figure 18 – Setting up the StrTop5MaxCallProcessTime Query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows.

CREATE QUERY PatternMatch.StrTop5MaxCallProcessTime as SELECT
T.MAXcallProcessingTime , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'StrTop5MaxCallProcessTime' AS QUERY_NAME FROM (RSTREAM(SELECT S.productId ,
S.MAXcallProcessingTime FROM (SELECT productId , MAX(callProcessingTime) AS
MAXcallProcessingTime FROM PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2
minute] AS Q GROUP BY Q.productId) AS S ORDER BY S.MAXcallProcessingTime DESC
ROWS 5)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

Designing a Duplicate Detection Template
The goal is to design a query that will provide an output if more than one event arrives within two
minutes of each other with the same CustomerLocationId, productId and callStatus. This is
achieved using the Duplicate Detection Template. This template supports only Stream DOs and

34 | ENTER TITLE OF DOCUMENT HERE

does not currently support filters. The use of the rolling window is mandatory and the update
interval field is not supported.

Over Stream DO (StrDuplicateDetection)

Data Object: PATTERNMATCH_FACT_STREAM

• Measure

! Measure fields: customerLocationId, productId, callStatus
! Use Rolling window: True; Range length: two minutes

• Output

! Output All fields

• Action

Insert Event output into DupDetectionOutputDDO, and use the following mapping.

DataObject column Event Output Field
ProjectName PROJECT_NAME
QueryName QUERY_NAME
GroupFieldString1 T.customerLocationId
GroupFieldString2 T.productId
MeasureString1 T.callStatus

35 | ENTER TITLE OF DOCUMENT HERE

Figure 19 – Setting up the StrDuplicateDetection Query

Click the preview icon to see what the final query generated by the template looks like. In this
case the CQL statement is as follows.

CREATE QUERY PatternMatch.StrDuplicateDetection as SELECT T.callStatus ,
T.customerLocationId , T.productId , 'PatternMatch' AS PROJECT_NAME ,
'StrDuplicateDetection' AS QUERY_NAME FROM (ISTREAM(SELECT S.callStatus ,
S.customerLocationId , S.productId FROM
PatternMatch.PATTERNMATCH_FACT_STREAM[NOW] AS
D,PatternMatch.PATTERNMATCH_FACT_STREAM[RANGE 2 minute] AS S WHERE
D.callStatus=S.callStatus AND D.customerLocationId=S.customerLocationId AND
D.productId=S.productId GROUP BY S.callStatus,S.customerLocationId,S.productId HAVING
COUNT(*)>1)) AS T destination
"combined:jms:queue/oracle.beam.cqservice.mdbs.alertengine:queuecf/oracle.beam.cqservice.m
dbs.alertengine;jms:queue/oracle.beam.cqservice.mdbs.reportcache:queuecf/oracle.beam.cqserv
ice.mdbs.reportcache?batch=true"

36 | ENTER TITLE OF DOCUMENT HERE

Continuous Queries Monitoring
You can use the Continuous Queries Monitoring screen to see Active queries. This is accessed
from the Continuous Queries Monitoring link on the Administrator panel. This page gives you the
following details:

! Name of the query
! Status
! Server on which the query is currently running and the complete CQL Statement.

Figure 20 – Continuous Queries Monitoring Screen.

Designing a Fired KPI Alert Events Query
The goal is to design a group query which will give the count of events fired by the CQL
‘AverageCallWaitingTimeGreateThanThreshold’ for each minute. The continuous query’s output
is constantly written back to KPIAlertOutputDDO, so this is achieved by creating a group query on
KPIAlertOutputDDO with adequate filters on ProjectName and QueryName. The auto populated
field ‘DATAOBJECT_CREATED’ is present in every DO and it will always contain the time at
which the record was created.

Data Object: /oracle/writeback/KPIAlertOutputDDO

37 | ENTER TITLE OF DOCUMENT HERE

Measure (Y-axis)

• Norm(Count)

Dimensions (X-axis)

• DATAOBJECT_CREATED

! Time Grouping: Use Time Series
! Time Unit: Minute
! Continuous time series: true
! Quantity: 1

Filters

• Branch :All Are True

! ProjectName is equal to ‘PatternMatch’
! QueryName is equal to ‘AverageCallWaitingTimeGreateThanThreshold’

Figure 21 – Time Grouping Feature

You can design the other group queries by repeating the procedure outlined for the previous
queries. Ensure that you select the appropriate Data Object and set the correct Query name in
the filter condition “QueryName is equal to”.

Designing Fired KPI Alert Output Events
The goal is to create an Active business view using a line chart based on the query
FiredKPIAlertEventsQuery. The View must be an active view, which means it must show the data
for the last 10 minutes, or any other specified time value, and keep updating automatically.

Business Query: FiredKpiAlertOutputEvents

38 | ENTER TITLE OF DOCUMENT HERE

Category: Line, View Type: Line

• Run Time-interaction

! Click on “Run time interaction” and click on Active Data tab.
! Check “Turn this query into a continuous query”
! Check “Use time window”
! Sliding Range based on DATAOBJECT_CREATED
! Range Length: 10 minutes
! Update interval: 1 second

This converts the Group SQL query into a continuous query with the range being 10 minutes and
slide being one second.

Figure 22 – Setting up the FiredKpiAlertOutputEvents Query

You can design all business views using the aforementioned procedure. Ensure that you select
appropriate query names from the drop down.

Understanding Dashboards

PatternMatch Dashboard
The goal is to create a dashboard with six views to show the output rate of all Continuous Queries
based on the PatternMatch Logical DO. From the PatternMatch Project, create a Dashboard
using the“Type 8” Style template as shown in Figure 23.

39 | ENTER TITLE OF DOCUMENT HERE

Figure 23 – Creating a PatternMatch Dashboard

Then, drag and drop the following views into one of the cells in the dashboard as shown in Figure
24.

• FiredKpiAlertOutputEvents
• FiredMissingEvents
• FiredMonitorCountEvents
• FiredMovingAggregationEvents
• FiredTrendingEvents
• FiredTopNEvents

40 | ENTER TITLE OF DOCUMENT HERE

Figure 24 – PatternMatch Dashboard with Various Business Views

The business views are now added to PatternMatch Dashboard.

StrPatternMatch Dashboard
You can create a strPatternMatch Dashboard using the procedure outlined for creating the
PatternMatch Dashboard, and add the following views to it.

! strFiredKpiAlertOutputEvents
! strFiredMissingEvents
! strFiredMonitorCountEvents
! strFiredMovingAggregationEvents
! strFiredTopNEvents
! strFiredTrendingEvents

Add an extra cell in the bottom row to accommodate the additional
strFiredDuplicateDetectionEvents

41 | ENTER TITLE OF DOCUMENT HERE

Figure 25 – Adding a New Cell to accommodate the additional strFiredDuplicateDetectionEvents.

Figure 26 – The strPatternMatch Dashboard

Troubleshooting

1. If your artifacts are not imported:

• Verify that samples/common/setEnv.sh has correct values for all parameters
• Verify that the correct password is specified in <password></password> tag of

bin/ BAMCommandConfig.xml
• Check for any specific errors in console or in log files that are generated in the

bin directory, for example, bamcommand.log.*

2. If you get errors while populating data:

42 | ENTER TITLE OF DOCUMENT HERE

• Verify that samples/common/setEnv.sh has correct values for all parameters

3. If the dashboard is not showing any data:

• In case of PatternMatch Dashboard not showing any data, check if the

PATTERNMATCH_DIMENSION DO has the following data:

• customerlocationId,customerLocationName
US, United States
CA, CANADA

The PATTERNMATCH_FACT DO is populated with data to ensure that the
dimension side is not empty. This ensures that the PatternMatch Logical DO is
populated with data, thereby satisfying the join condition. If the two
aforementioned rows are not present in the dimension DO, you must add them
manually and try again.

• Ensure that the writeback DOs are populated with new data every minute. If not,
open the Continuous Queries Monitoring screen and check if all the 13 CQL
Template queries are Active. If not, navigate to the designer, open each query
individually, and save it again with the “Activate Continuous Query” checkbox
checked

Best Practices
For queries over Archived Relation DOs (or Derived or Logical DOs built on top of Archived
Relations), depending on your expected input event rates, ensure that you specify an appropriate
“Range Length”. If you specify a large value, those many events must be fetched from the
database which can result in serious performance implications. In such cases, the “use rolling
window” option is checked by default and you cannot change it. This avoids an overload in
fetching records from the database while starting the query.

1 | ENTER TITLE OF DOCUMENT HERE

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0914

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

