
hyperion.com

preliminary analysis
The first step in your analysis is to identify measures and

dimensions for the model. Even with increased dimensional
scalability of the ASO, it is preferable to include a dimension
into the model only if the analysis along that dimension is
required.

In addition, dependent dimensions should be modeled as
attribute dimensions or alternative hierarchies if possible.

A dimension is dependent if you can always determine the
member within that dimension when the member within
some other (primary) dimension is specified. For example,
consider a “Product” dimension with individual SKUs as the
lowest level. The packaging type for a product can be
determined by the SKU of that product. Thus, it is
recommended that you model the “Packaging Type”
dimension as an attribute or alternative hierarchy on the
product dimension, and not as a stand-alone dimension.

Whether you choose to use attributes or alternative
hierarchies depends on the following factors:

• If members of different levels need to be included into
groupings for the dependent dimension, choose alternative
hierarchy modeling. For example, if you want to classify
markets by size, and Large Market group includes several

large individual cities and several states, the “Market Size”
dependent dimension cannot be modeled as an attribute
dimension. Attributes can be associated only with members
of the same level.

• If a requirement exists for querying the members of the
primary dimension across members of the dependent
dimension, the dependent dimension should be imple-
mented as an attribute dimension. For example, if cars
can be classified by their color and model, and the
requirement is to be able to ask queries, such as “Give me
the sales of all red Civics in San Francisco,” the “Color”
should be an attribute dimension.

outline sizing
After the dimensions are identified, the following metrics
should be gathered, if possible:

• For every dimension, determine the number of stored
levels within every hierarchy on this dimension.1

Levels that consist only of label-only members are not
stored, and they do not affect the sizing calculations. For
example, consider the dimension Time with hierarchies
Year-Quarter-Month-Day and YearByWeek-Week-Day.
This dimension contains a total of six levels, four in the

tuning of aggregate storage databases
essbase 7.1.2

performance visibility for everyone in the enterprise

The main purpose of this paper is to discuss the sizing and tuning methods

available when designing, deploying and maintaining an Aggregate

Storage database throughout its lifecycle. We will explain how Aggregate

Storage uses resources such as disk space and memory at the various stages of

the database construction and maintenance, and provide directions on how to

optimize the performance and the resource usage. The reader should have

general knowledge of Essbase.

white paper

hyperion.com

2

first hierarchy and two additional levels in the second
hierarchy (Day level is shared between the hierarchies).

Notice that all levels of attribute dimensions count as
additional levels of their primary dimensions.

• Determine the total number of members across all dimen-
sions.

number of possible views
With these metrics, you can determine if the model fits the
limit on the number of possible views. The total count of
views, or level combinations, cannot exceed 252 in Essbase
7.1.2.

To find the total count of views in your model, multiply the
number of levels for every dimension. For example, a model
with five dimensions with 3, 5, 2, 1, and 3 levels, respectively,
has 3 x 5 x 2 x 1 x 3 for a total of 90 possible views. If the result
is less than 252 or 4,503,599,627,370,496, the model fits. If the
result is more, you must reduce the number of views. These
are options to reduce the number:

• Try to find dimensions that are currently modeled as inde-
pendent but could fit the dependent dimension criteria.

• Remove some dimensions or attempt to reduce the num-
ber of levels in some dimensions.

• Change one or more dimensions to be dynamically calcu-
lated. Dimensions that contain only dynamically calculated
hierarchies are treated as if they had only one level in the
calculation above. Notice that the dimension marked as
“Accounts” is always dynamically calculated.

Although we tested artificial databases with more than 250

potential views, the most complex real-world model we have
seen so far contained about 1,200,000,000 potential views.

outline memory consumption
The second thing to consider is whether the number of
members in the outline fits the available memory. Notice that
on 32-bit platforms, the amount of memory available to the
application is limited to 2 to 4 GB (depending on the
platform), even if more RAM is installed on the machine. Also,
you may need to set up the system to make as much memory
as possible available to the Essbase server process. The
memory addressability limits are as follows:

On 64-bit platforms, the limit is determined only by the
physical RAM installed.

white paper

2

Operating System

Windows 2000 Advanced Server,
2000 Datacenter, 2003

Linux

Solaris

HP-UX

AIX

Default Limit

2 GB

2 GB

3.5 GB

1.75 GB

2 GB

Maximum Limit

3 GB

2 GB

3.5 GB

3.5 GB

3 GB

hyperion.com 3

Of course, if the system does not have that amount of
physical memory or if there are multiple memory-hungry
processes running on the system, the actual amount of
memory that Essbase can use will be lower than the limit
indicated in the previous table.

Out of the memory available, roughly 50 MB will be used
by Essbase code and fixed-size data structures. Also, some
memory will be required for the ASO cache, which will be
covered later in this paper.

The memory requirements of the outline members depend
on multiple factors. You can use 150 bytes per member,
however, as a rough and somewhat pessimistic estimate.

For a more precise estimate, first you must calculate the
average memory required for the member name and aliases.
This memory requirement for one member can be calculated
as total length of the name and all aliases of this member in
bytes, plus (number-of-aliases + 1) x 4 bytes.

The per-member memory amount can then be calculated
as (90+average-memory-for-names) bytes. In addition to that,
every member that has a shared copy requires an additional 50
bytes. Also, attribute dimensions introduce additional
memory requirements, which can be calculated as follows:
assume that the primary dimension has M members and has
N associated attribute dimensions. Then the memory
requirement for the attribute mapping will be roughly M x N
x 6 bytes.2

Memory used by the member names can be freed by
enabling namespace paging (see the documentation for
PRELOADALIASNAMESPACE and
PRELOADMEMBERNAMESPACE configuration
parameters); however, the performance of the data loads, and
to a lesser degree queries, will be impacted. You may also
consider using Hybrid Analysis to store the lower level of
details of the largest dimension in the relational database.

about building the aso outline
The process of dimension building in Essbase consists of two
stages. The first stage begins with the server opening the
existing outline for editing, using the same outline API
available to the client applications. At this point, two copies of
the existing outline are in memory: one in read-only format
and one in editing format. Then the input data stream is
processed and new members are added to the new outline.
Accordingly, the memory requirement during dimension
build should be calculated based on the number of members
equal to (2 x old-number-of-members)+number-of-the-
additional-new-members.3

The first stage ends with outline verification, and the new
outline is written down to a separate outline file with an OTN
extension.

In the second stage, the new outline is loaded in read-only
mode and the restructuring process takes place. During that

process, both new and old outlines are resident in memory.
Also, an additional set of data structures occupy
approximately 25 bytes per member.

It is always best to try and combine as many outline
changes as possible using incremental dimension build, so that
there is only one restructuring phase for all changes. If one
restructuring phase is not possible for any reason, it is
recommended that you build the large dimension as the last
step after the small one, so that at no point, two copies of the
large dimension are in memory.

In most cases, it is much faster to modify an existing
outline with new changes than to build an outline from
scratch.4 When a very large outline already exists in the server,
however, it may be impossible to load a small portion of new
members into it, because there will be no memory for the two
copies of the outline during build and restructuring. It may
still be possible to build the new outline completely, end-to-
end from source data.

When modifying a large outline of an existing database, it
may be helpful to restart the application before the build.
Because the ASO cache is allocated on demand and not needed
during dimension build, memory used by the ASO cache is
freed for the build and restructuring processing.

To provide a rough idea of dimension build performance,
on a test workstation5 a dimension with 3,000,000 members
was built from a text file in five minutes.6 The largest
production outline that we are aware of at this point contains
about 10 million members.

When building dimensions with multiple hierarchies and
shared members using parent-child data, you will have to keep
in mind that ASO applications require that the primary
member appear before its shared copies. This means that the
parent-child pairs should be ordered so that the first hierarchy
is built completely before the build of the secondary hierarchy
begins.

data sizing and the aso cache
The following information is needed to estimate the amount
of disk storage required for the ASO database:7

• Number of rows in the input table or text files
• Number of measure columns in a single row
• If possible, average number of non-null, nonzero measures

per row
This number can be approximated by using a sample of

rows. Unless there is a requirement to distinguish between
zeros and missing values in the database, replacing zeros with
missing values reduces the size of the database.

The size of an ASO database depends on the number of
non-empty cells, which equals the number of rows multiplied
by the average number of non-empty measures per row. Each
cell occupies roughly 10 to 30 bytes of disk space, depending
on the degree of compression.

white paper`

hyperion.com

2

compression dimension
Essbase uses the dimension marked as “Accounts” to compress
the cells by storing multiple cell values with a single key.
Essbase cannot compress data if none of the dimensions are
marked as “Accounts,” so it is recommended that you always
designate the compression dimension.

Usually the dimension that corresponds to different values
in the input rows makes a good choice of compression
dimension. For example, if the values for 12 months come in
a single database record and the outline has a Time dimension
with these 12 months, chances are that Time is a good choice
for the compression.

Often, multiple measures come in a single record instead,
and an “Accounts” tag should be placed on the Measures
dimension. Generally speaking, you should pick the densest
dimension. The dimension is a good choice if for every
combination of the members of other dimensions, either none
or all members of the compression dimension have data. Also,
Essbase can store as many as 16 cells with a single key, so a
dense dimension with 10 level zero members will provide
better opportunity for compression than a dimension with
only 2 members.

For a better estimate of the database size, you need to know
the key length for the database as well as the average number
of cells that can be stored with a single key. The key length in
bits is displayed in the ASO database properties. Round the
number of bits up to the next multiple of 64 and divide by 8
to get the number of bytes used by the key. The most common
key sizes are 8, 16, and 24 bytes.

Assuming that the “Accounts” dimension in the model is
completely dense and corresponds to measures in the fact
table, the number of cells stored with a single key is simply the
number of measures. The number of bytes per cell may then
be calculated as (key-length-in-bytes + 8 x number-of-
measures) / number-of-measures.

For example, a database with a typical key length of 16 and
6 measures per row of the fact table will use (16 + 8 x 6)/6 or
about 11 bytes per cell. If for half the rows the last 4 measures
are not present, the average number of cells per key will be (2
+ 6)/2 = 4, and the number of bytes per cell will be (16 + 8 x
4)/4 or 12 bytes.

If none of the dimensions is marked as “Accounts,” you
should use 1 as the number-of-measures parameter. Thus, in
the example, if the dimension of measures is not marked as
“Accounts,” the space requirement will be (16 + 8 x 1)/1 or 24
bytes per cell.

You can sometimes achieve better compression by
rearranging the members of the “Accounts” dimension in the
order of increasing rarity, so that the level zero members that
always have data occur first in the outline, and the members
that hardly ever have data occur last.

After the aggregation, the size of the database increases.
You have control over the amount of space used by aggregate
views; in most cases, 50 percent or smaller increase in the
database size after aggregation provides good query
performance.

allocation of disk space for aso data files
The ASO kernel stores data in tablespaces. Two tablespaces are
of interest to the server administrator: “default” and “temp.”
The “default” tablespace is used to store cube cells, both level-
zero and aggregated cells. The “temp” tablespace is used for
intermediate storage of cells during data load, aggregation,
and large queries.

Each tablespace contains one or more file locations; the
notion of a file location more or less corresponds to the notion
of a volume in the Block Storage kernel. You can change the
file locations of the two tablespaces using application
properties in Essbase Administration Services (unlike Block
Storage, ASO tablespaces are logically considered to be a part
of the application, not a database).

For every location, you can specify the physical path where
the data files will be created, the maximum size of each
individual file, and the total space that all the files at that
location are allowed to occupy. Essbase starts creating files in
the second file location of a tablespace only after it exhausts
the disk space or hits the total space limit in the first location.

It is recommended that you allocate space for “default” and
“temp” tablespaces on different physical disk devices, if
possible.

data load performance
Data loads from multiple data sources or files should always be
combined into a single ASO data load using an ASO load
buffer. Multiple data loads are accumulated in the buffer and
then moved to the final storage location in a single operation.

For more information on using ASO load buffers from
MAXL scripts, see the documentation of “alter database create
load_buffer” and “import database … to/from load_buffer”
MAXL commands. When using the Administration Services
GUI to load data into the ASO database, multiple data sources
or files correspond to different lines in the data load dialog
box; Administration Services uses the load buffer
automatically to combine them.

Data load temporarily uses space in the “temp” tablespace;
the amount of space required is about the same as the
estimated database size.

ASO cache size has an effect on data load performance. For
small databases with 2 million input cells or fewer, the default
ASO cache size of 32 MB is sufficient. For a larger database
with 20 million cells, 64 or 128 MB cache is more appropriate.
For a database with 1 billion cells or more, the cache size may
be set as high as 512 MB or 1 GB if the available memory

white paper

4

hyperion.com 5

permits it. On machines with less than 4 GB of physical
memory, however, it is usually a good idea to keep ASO cache
size lower than 25 percent of the available physical memory to
leave more space for the OS file cache.

Performance of the data load is very much hardware-
dependent. The first stage when the data is being loaded into
the buffer is usually CPU-bound, especially when using plain
text or SQL load with load rules. Text substitutions, field
splits/joins and white space truncation rules are fairly
expensive and should be avoided if possible. The buffer
commit stage is often IO-bound and may benefit from
allocating the storage for “temp” and “default” tablespaces on
different physical drives.

To provide an example of data load performance, the data
load of 679 million cells on the test workstation took 63
minutes.8 Database size after the load was 9.36 GB. Many
production models cross the 1-billion-input-cells mark.

aggregation performance
The time required to aggregate an ASO database depends
mostly on the database size and the specified amount of
storage allocated for the aggregate views. The same database
with 679 million cells was aggregated to the default stopping
size in 40 minutes,9 to the total database size of 11.0 GB.

By default, ASO uses two threads to perform view
aggregation in parallel whenever possible. You can increase the
number of parallel threads up to eight by using the
CALCPARALLEL setting in the Essbase configuration file. It is
recommended that you increase the parallelism setting to the
number of CPUs available for the calculation. In some tests,
CALCPARALLEL set to eight provided benefits even on four
CPU machines, so setting it higher than the number of CPUs
could be worth a try.

Cache size configured for the data load should also provide
good aggregation performance; however, when increasing the
number of calculation threads, you may also need to increase
the cache size, because cache memory will need to be divided
between more threads.

Calculation may use “temp” tablespace for intermediate
aggregation results, so allocating “temp” and “default”
tablespaces on different physical devices may help the
performance, although it is of less importance than for the
data load.

query performance
On a very small database (500 K cells or fewer), queries may be
reasonably fast even with no aggregate views. On a larger data
set, it is necessary to create aggregate views to improve query
response time. The amount of disk space allocated for
aggregate views can be controlled by the administrator. If no
amount is specified, Essbase attempts to determine a good
value for this parameter; however, notice that this default

setting is only provided as a first estimate for tuning. It is
always a good idea to test query performance for several
aggregate sizes and choose the one that provides the optimal
balance between the aggregation time and the query response
time for your particular database.

When selecting aggregate views, Essbase assumes that all
possible level combinations in the database are equally
important to users and are queried equally often. In most
cases, the selection of aggregate views can be improved by
providing Essbase with information about the actual queries
that users run by switching to query-based view selection.

An even more important reason to use query-based view
selection is that the standard selection never considers any
views aggregated along alternative hierarchies. All
aggregations are performed along the first stored hierarchy
within a dimension. In contrast, query-based view selection
will consider and select views aggregated along alternative
hierarchies modeled using shared members, and alternative
hierarchies modeled using attribute dimensions,10 as long as
these hierarchies are queried during the test run.

It is recommended that you start from selecting and
materializing a minimal set of aggregate views using the
standard selection. These views will improve performance of
test queries and will enable the completion of the test query
run in a reasonable time. Also, these views will help queries
that were not included in the test run.

After this minimal aggregation is materialized, you can
turn on query tracking and run enough queries to represent
the common query load for your model. Query tracking has a
very low overhead, so it is also possible to deploy the database
in production with query tracking turned on.

When enough queries are recorded for you to consider it a
representative set, run the selection based on query data and
materialize the selected views. Query tracking can be turned
on or off by right-clicking the database name in
Administration Services or by using “alter database
enable/disable query_tracking” MAXL commands. The
aggregation wizard contains a check box that switches Essbase
to query-based view selection. In MAXL scripts, you can use
the “based on query_data” clause of the view selection and
aggregation commands.

Notice that the query tracking data is lost when you load
additional cells, materialize any views, or shut down the
application.

In most cases, the ASO cache configured as described
previously in the data load section should work fine for
queries. In most cases, increasing the size of the ASO data
cache does not improve query performance more than 10 to
15 percent, because the operating system performs its own
caching of files.

One exception is when the ASO kernel needs to store
intermediate results of a query on a disk temporarily, because

white paper`

hyperion.com

2

there is not enough space for the results in the ASO cache. For
the default 32 MB ASO cache, this happens when the query
retrieves more than about 90,000 non-missing cells.11 The
threshold number of cells increases proportionally to the
configured cache size, so for a 64 MB cache, that number will
be approximately 180,000 cells, and so on. If possible, consider
increasing the ASO cache size so that Essbase can store all
retrieved cells in memory.

The retrieval buffer size setting has very little effect on the
performance of reports and spreadsheet queries in ASO mode.
MDX query performance, however, may still be affected by the
size of the retrieval buffer.

Complexity of formulas on the queried members is a
major factor in query performance. Formulas that need to be
executed in cell mode are usually expensive to compute;
common examples of such formulas are the ones that contain
IIF expressions or cross-dimensional tuple references. Essbase
lists all members with cell-mode formulas in the application
log.

Hyperion Visual Explorer uses MDX to retrieve data from
Essbase. To identify queries that take a very long time, you can
refer to the HVE log, usually stored on the client machine, in
the directory “%HOMEDRIVE%%HOMEPATH%\My
Documents\My HVE Repository.”12

maintenance of aso applications
The following topics describe the operations that usually
follow the initial creation in the lifecycle of an ASO
application.

modification of aso outlines
Any change in the outline causes a restructuring process when
the outline is saved on the server. In Release 7.1.2, data is
preserved in the following cases:

• When a member is renamed or an alias of a member is
changed

• When changes are made on a dynamically calculated
member

Changing attribute associations in any way clears all
aggregate views, but the input data is preserved.

When a member is deleted from an ASO outline, the record
for that member is marked for deletion, but not physically
removed from the file. To shrink the outline file after deleting
large sets of members, you can use the “Compact Outline”
operation in the Essbase Administration Services console.

incremental data loads
When you load data into an ASO database that already has
cells loaded into it, Essbase switches to incremental data load
mode. An incremental data load is executed as a transaction;
that is, either all data is loaded to the database, or the database
remains in the state that it was in before the beginning of the
data load. Essbase merges the incoming data with the existing

data and writes the combined data to a new location within
the “default” tablespace. Also, every existing aggregate view is
updated by the incoming data and also written to a new
location.

At the end of the data load, the space previously occupied
by the old data is marked as free. It is not always possible,
however, to return this space to the operating system, so the
total size of the Essbase data files can be as large as two times
the old size, plus the size of the incremental data set. Limiting
the file size for the file locations in the “default” tablespace
increases the chances that the files can be truncated returning
the space to the operating system.13

Notice that at some point in the incremental data load
process, disk space requirements can be as large as two times
the original size of the ASO database for the “default”
tablespace plus three times the size of the incremental data
stream (2x in the “temp” tablespace and 1x in the “default”). It
is very important to ensure that there is sufficient space on the
disk, because peak disk usage occurs very close to the end of
the data load process. Performing the data load just to find out
if the disk has enough space can be time-consuming.

If you load multiple files without using a load buffer, every
step will be a separate incremental data load, resulting in worse
than possible performance.

reselection of aggregate views
Aggregate view selection can be stored in aggregation scripts
to be used later. As outline changes build up and new data is
loaded into the database, however, the selection may gradually
become obsolete and provide less optimal query performance.
At some point, it is a good idea to rerun the selection and
replace the old aggregation scripts with new scripts. You may
want to consider doing this when the increase in the data
volume since the last view selection reaches 20 to 50 percent.

Any outline change that modifies the number of levels in
any dimension in the outline invalidates all existing view
selection scripts; an attempt to use an old script on the new
outline results in an error.

Backup
Because text export is not supported for ASO applications, the
only way to back up an ASO database is to make a copy of all
application and database files when the server is not running.
ASO does not support backups of a running application. If
files in the application are located outside of the application
directory, the files in those locations must be backed up as
well.

An archive copy of an ASO application can always be
restored to a different machine with the same operating
system if the application uses only predefined file locations
within the application directory. You will need to create an
ASO application and database manually with the same names

white paper

6

hyperion.com

as on the source machine, and then shut down the server and
override all files in the application directory with the archive
copy.

If the application uses any custom file locations, the
directory structure on the target machine must be the same as
on the source machine. In other words, if on the source
machine a custom file location was created on drive E, and on
the target machine there is no drive E, then it is not possible to
restore the application to that machine.

Unlike ASO data files, ASO outline files are portable across
different operating systems and machine architectures.

footnote

1 If the model includes a hierarchy encoded in parent-child
tables, determining the number of levels in this hierarchy is
somewhat tricky. If the number of levels is not known, the
easiest way to determine it may be to build the hierarchy in
Essbase.

2 This formula actually overestimates the memory
requirements for all cases except when there is an attribute
dimension with more than 216 members.

3 Strictly speaking, the per-member memory requirements for
the editable and read-only formats differ; however, they are
close enough to be considered equal for the estimation
purposes.

4 Performance of restructuring may be affected when the
number of children per single parent in the outline is very
high. This effect becomes noticeable starting from
approximately 100,000 members per parent. If the number of
children is even higher, it may be faster to rebuild the outline
from scratch instead of updating the existing one.

5 IBM Intellistation ZPro, 2x 2.7 GHz Intel CPUs, 1 GB RAM,
single 10,000 RPM SCSI hard drive, Windows 2000 Advanced
Server, Essbase 7.1.2, ASO cache set to 256 MB.

6 This result included a 234-second dimension build of a
single large dimension and 26 seconds of restructuring from a
small starting outline.

7 Notice that the size of input text files is almost useless for the
estimation of the ASO database size. That is because the
number of data values stored in a megabyte of text file can
vary dramatically depending on the text file format and other
factors.

8 Tested using export files from a Block Storage database.
1810s loading three files into the load buffer, 1965s buffer
commit.

9 Not including the time used by the view selection process;
aggregation time only. Using the default two-thread
aggregation.

10 Even when using query-based view selection, Essbase does
not materialize views for queries that restrict the values based
on multiple attributes of the same dimension. For example, if
the dimension “Product” has attributes “Caffeinated” and
“Package Type,” queries such as “select total sales for all
caffeinated products” may be resolved from a view that
contains pre-aggregated values for caffeinated-true and
caffeinated-false. In contrast, a query similar to “select total
sales for all non-caffeinated products sold in bottles” will be
resolved dynamically from the lowest level of the “Product”
dimension. If the performance of such queries is still
unacceptable after query-based view selection, the only choice
is to fall back on modeling alternative hierarchies as full-
fledged dimensions.

11 This is just an estimate, and the exact threshold may vary
significantly based on the query. To determine whether a given
query uses temporary on-disk storage, restart the application
and run the query. If a file is created in the “temp” tablespace,
the query needed to store cells on the disk during execution.

12 HOMEDRIVE and HOMEPATH are environment variables
set for every user by the operating system.

13 On Windows by default, there is no practical limit on the file
size, so you may want to set the limit in file location settings to
be 1 or 2 GB. On UNIX platforms, Essbase always limits the
file size to 2 GB, but you can lower the limit further.

white paper

     
     ,  

 ..  . .

© Copyright 2005 Hyperion Solutions Corporation. All rights reserved. “Hyperion,” the Hyperion “H” logo, and Hyperion’s product names are trademarks of Hyperion. References to
other companies and their products use trademarks owned by the respective companies and are for reference purpose only. 4822_0605

