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Relational database management systems have matured into powerful transaction processing
solutions capable of handling volumes of data in the terabytes. With this explosive growth in the
size of databases came the need for sophisticated analysis techniques to synthesize raw data
into actionable information. To satisfy these requirements, multidimensional databases such

as Hyperion® Essbase® OLAP Server evolved to provide a platform optimized for analytical,
rather than transactional, processing. This paper discusses analytical processing, comparing
SQL-based analysis with multidimensional systems and discussing the limitations of recent SQL
extensions intended to incorporate OLAP (online analytical processing) functionality.

What is Analytical Processing?

Consider a soft drink manufacturer that wants to analyze financial data to better understand
current performance and identify areas of opportunity. The basis for analysis is sales and
expense data for each product sold, during each month of the year, in each state in the U.S.
Numerical items like sales and cost of goods sold are referred to as measures, and ways of look-
ing at these items—such as by product, by market and by time—are called dimensions.
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A typical business view showing how financial data is organized for analytical processing.



The company has a number of processing requirements to support its analysis needs, which are:

Summarizations. Data for analysis is generally loaded at the lowest level of detail. In the
figure, for example, Sales, Cost of Goods Sold (COGS), Marketing, Payroll and Miscellaneous
Expenses are extracted from transactional systems for each individual product, in each month
and state. The company needs to be able to analyze data at various hierarchical levels of detail,
so states “roll up” into regions, time into quarters and products into categories. Measures can
also be hierarchical—for example, Sales and COGS “roll up” into Margin. Additive summariza-
tions like this are also referred to as consolidations. Nonadditive summarizations such as
Profit = Margin — Expenses or Margin% = Margin/Sales are also common.

Native Support for Business Analysis. Beyond simple summarization, there are a number of
more sophisticated analytical tasks that are quite common:

e Time-balance computations. Summarizing sales values for each quarter (a simple aggregation)
is different from summarizing inventories, which requires an awareness of the relationship
between different time periods. For example, the quarterly value for Opening Inventory is nor-
mally equal to the Opening Inventory value for January, while Ending Inventory for a particular
year is the same as the Ending Inventory for the last quarter. These computations should be
performed transparently at every level within time dimensions.

e Expense reporting: The ability to track actual and budgeted measures and monitor the vari-
ance between them is a fundamental business requirement. Budgeted measures represent
expenses, but are typically analyzed as positive quantities rather than debits. Tagging such
measures as expenses allows an intuitive handling of variance reporting.

e Automatic conversion from one currency denomination to another. For companies with global
operations, creating a single business view of performance requires the ability to integrate
financial data in multiple local currencies.

e Time series computations, such as year-to-date sales, and complex aggregations involving
rankings, moving ratios, median values, standard deviation, etc.

Richer Analysis Through Sophisticated Calculations. Hierarchies are often insufficient

to model business relationships. For instance, while the regional sales for a product is the

sum of sales across all states in the region, the same may not be true for payroll or budget
measures. Payroll can be a function of inflation and cost of living indices, while budget may

be a constant ratio of a product’s sales performance within a region. An analytical processing
solution must allow for complex calculations with a rich range of mathematical, financial, statisti-
cal and forecasting functions.

[terative Analysis. While the data to be analyzed is fairly static, the analysis process itself is
iterative and must allow for unlimited “what-if” scenarios. This involves changing data relation-
ships or updating values to determine how various changes would affect the bottom line. These
user-defined changes must be propagated to summaries in real time in order to allow accurate,
ad hoc analysis.

Real-Time Responses. Support for a combination of static and dynamic computations—both
simple consolidations and sophisticated calculations—is essential. Pre-computing all possible
summaries improves query performance significantly, but can increase the window when
information is unavailable.



Comparing SQL-based and
Multidimensional Analytical Processing

Although the individual transaction details that support analysis may come from relational database
management systems, the business view analysts use is a multidimensional description of informa-
tion. Numerical items or measures (e.g., sales) are described by various categories or dimensions
(e.g., time, geography, etc.), which are organized into hierarchies (e.g., month/quarter/year).

SQL-based relational database systems are based on set theory model, which is two-dimensional
in nature. Dimensions and hierarchies are usually captured in multiple separate tables and
processed through primary and foreign-key relationships. As a result, changes to dimensions
and hierarchies must be explicitly monitored, and appropriate SQL queries must be issued to
modify existing summaries whenever there is an update.

Access to relational data is value-based, which does not lend itself to preserving dimensional
locality in the way information is physically stored. For example, January, February and March
are dimensional siblings likely to be accessed together for analysis. However, relational data-
bases store information in sequential rows of transaction after transaction, with no awareness
of the groupings by which information will be retrieved and analyzed.

Because relational databases lack native support for analytical processing features such as hier-
archies, iterative analysis and dimensional operations, a layer of logic outside the database is
required to translate the multidimensional business model into a two-dimensional data model.
In other words, dimensions are an application concept, as opposed to being supported by the
data model itself.

Figure 2 shows a relational schema for the soft drink company’s financial data. Dimension tables
(Measures, Year, Product, Market and Scenario) capture hierarchical information required for
zoom-ins and rollups. A separate table, commonly referred to as the fact table, holds data values
that are related to the dimension tables through primary-key/foreign-key relationships. This
kind of schema is commonly referred to as a star schema, because of the way dimension tables
radiate out from the fact table. A variant of the star-schema—called a snowflake schema—is also
widely used to separate dimensional attributes into separate tables.

In contrast, multidimensional databases organize data in a way that preserves dimensional locality.
Access to data items is by position—determined by each data item’s dimensional coordinates—
rather than by value. Every measure is stored as a set of numeric values indexed by the members
of each dimension. Each point in the multidimensional “dataspace” is mapped to a corresponding
point on disk where the cell of information is stored. This is possible because dimension members
are fairly static and the number of possible points in the multidimensional space is known.
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A typical star schema used to represent multidimensional data in a relational database.

Such a storage mechanism is more efficient for analysis than relational tables, which require that
dimensional coordinates be enumerated for every cell value. In a multidimensional database,
only a numerical value is stored for each cell, since the physical location of that cell is described
by the dimension coordinates. The multidimensional business view is physically preserved in
the data model, ensuring dimensional locality and enabling more efficient computations of
rollup, zoom-in and slice/dice operations.



Analytical Advantages of
Multidimensional Databases

Multidimensional databases such as Hyperion Essbase offer a number of advantages over relational
databases in addressing the analytical processing requirements described earlier in this document.

Summarization

Additive consolidations are performed in SQL by using the ANSI-SQL ROLLUP operator. This operator
assumes a two-level hierarchy with only one parent and several children. Hence multilevel hierar-
chies are captured through explicit joins with dimension tables. Assuming all of the hierarchical
relationships illustrated on page 1 are additive, the following SQL is required to generate the summaries:

SELECT Tine.GENO as TineO, Tinme.GENL as Tinel, Tine. GEN2 as Tinme2,
Scenari 0. GENO as Scenari o0,
Mar ket . GENO as Market 0, Market.GENL as WMarket 1,
Mar ket . GEN2 as Mar ket 2,
Product. GENO as ProductO, Product.GEN1L as Productl,
Product. GEN2 as Product 2,
sun(fact.sal es) as sunsal es,
(other additive consolidations)
FROM fact, Tine, Scenario, NMarket, Product
WHERE
(fact. Tine = Tine. GEN2) AND
(fact. Scenario = Scenari o. GENO) AND
(fact. Market = Market.GEN2) AND
(fact.Product = Product.GEN2)
GROUP BY ROLLUP(Ti me. GENO, Time. GENL, Tine. CGEN2),
ROLLUP( Scenari 0. GENO) ,
ROLLUP( Mar ket . GENO, Market. GEN1, Market. GEN2),
ROLLUP( Product . GENO, Product.GENL, Product. GEN2)

This SQL-based approach to summarization has a number of limitations from an analytical
standpoint:

Sophisticated calculations are cumbersome or impossible with SQL. ANSI SQL constructs
such as ROLLUP and CUBE support intra-row operations involving additive consolidations only.
In other words, summarization along the measures dimension is the only kind of consolidation
that can be expressed, and this requires that the entire dimension appear as column values in
the fact table. Non-additive intra-row consolidations such as Variance = Actual-Budget are too
cumbersome to express in SQL. Inter-row calculations (i.e., calculations involving two or more
rows, such as: SalesContributionOfATimePeriod = SalesInTheTimePeriod/SalesInTheQuarter) are
impossible to express with any declarative ANSI SQL construct.

Multidimensional SQL operators are implemented inefficiently. SQL queries like the one
above are very expensive and cannot be executed in real time for even the smallest data sets. In
most relational database systems, ROLLUP operations are implemented by splitting the query
into several smaller units that are processed one at a time and unioned together. Materializing
the entire query through the creation of summary tables is an option, but is generally impracti-
cal because of the storage requirements. Selective materialization of summaries is another alter-
native, but this means each query must be analyzed before execution to determine which
summary tables may be used. Relational databases claim to optimize queries by automatically
routing them to the appropriate summary tables, but identifying which summary tables cover
what portions of a query is a complex task. It is not surprising, then, that empirical results
demonstrate this feature works best only for very simple queries.



To optimize query performance, database administrators must pay careful attention to data
distribution in each table, build the right kinds of indices with the appropriate sort orders,
ensure the proper join method (nested loops vs. sort merge vs. hash join) is used, allocate
sufficient temporary storage and determine how summaries are to be organized (in one table
or split across tables by level). This last requirement, in particular, is a complex function of
how often hierarchies are expected to change, which summaries need to be refreshed more
often and which summaries will be queried frequently. Administrators often must choose
between sluggish response times if the right summaries are not created, or lengthy windows
of unavailability while summaries are created and updated.

One reason for SQLs inefficient handling of multidimensional operations is that transaction
semantics of relational systems are more tuned to handle OLTP workloads. Analytical processing
differs from transactional processing, in that it is characterized by a combination of intensive
read activity, small “trickle” updates and long-running calculations. Transactional algorithms for
cache management, serialization, redundancy models, join operations and indexing methods are
not well-suited for analytical workloads.

Managing summary data with SQL is a painful, time-intensive process. Summaries are
typically separated into different tables for each combination of dimension levels. This allows the
system to route queries to the appropriate summary tables using application logic instead of rely-
ing on the relational optimizer, and simplifies determining which summaries must be refreshed
whenever dimensional or data updates occur. Unfortunately, this approach stops scaling even for
relative small analytical applications. For example, with six dimensions that each have four levels
of consolidation, there would be a total of 4**6 (4096) possible summary tables to manage.

In contrast to relational systems, multidimensional databases such as Hyperion Essbase have a
number of characteristics that make summarization easier and more powerful.

Hyperion Essbase enables symmetric dimensional calculations. Hierarchies are an integral
part of the Hyperion Essbase multidimensional data model. Members can be associated with
unary mathematical symbols (such as +, —, *, / and %), which automatically determine the par-
ent/child relationship. There is no distinction between inter-row and intra-row calculations.
Every dimension is treated symmetrically, which enables all types of sophisticated consolida-
tions to be expressed in the data model itself. Hyperion Essbase publishes a default calculation
order, but also allows users to specify their own order for asymmetric consolidations.

Hyperion Essbase provides native support for multidimensional operators. Rolling up

data is a native multidimensional operation. Cells are stored and accessed in a predefined order,
which preserves spatial locality and optimizes rollup performance. Additionally, Hyperion Essbase’s
patented categorization of dimensions into dense and sparse based on data distribution enables more
efficient storage and near uniform response times for every point in the multidimensional space.

Hyperion Essbase’s efficient storage structures, coupled with native support for consolidations,
make it possible to pre-compute most summaries in a reasonably short time. Hyperion Essbase
transparently handles query requests for summaries that have not been pre-computed by
dynamically calculating summaries as required. Unlike a relational database, selective pre-
computation does not require users to know whether or not specific summary tables exist when
they form queries. HyperionEssbase’s efficient storage layout provides better /0 throughput
(one page of a Hyperion Essbase multidimensional space may contain 10,000 cells, as opposed
to a page of a relational data fact table that may contain only 100 rows), which guarantees faster
computations and makes dynamic summarizations more practical.

Hyperion Essbase transparently manages summaries. Regardless of the number of
dimensions or levels in each dimension, summary management is completely transparent with
Hyperion Essbase. Unlike relational systems, there is no need to separate summaries into differ-
ent tables. Internal benchmarks show that implementing the OLAP Council’s APB-1 benchmark
using a relational database with the most recent ANSI SQL-99 extensions consumes up to 150



times more storage for summarization than does Hyperion Essbase. And Hyperion Essbase, with-
out any special tuning and using minimal resources, builds summaries up to 100 times faster
than a relational system—even when the relational system has parallelism enabled and all
resources dedicated to summary computation.

Hyperion Essbase automatically handles updates to dimensions and data values. Most
changes happen in real time with minimal user intervention, although support for deferred updates
also exists. Contrast this with relational database administrators who must track each and every
update and issue the appropriate SQL to incorporate updates into existing summary tables.

Native Support for Business Analysis

ANSI SQL supports only time series computations and aggregation operations involving rank-
ings, moving ratios and standard deviation. There is no declarative support for other accounting
analysis such as time-balance calculations, variance reporting, native currency conversions and
a rich repertoire of custom business analytic functions. All of these functions must be imple-
mented at the application level with a relational database.

In contrast, Hyperion Essbase allows any type of business calculation to be described in a com-
plete and intuitive calculation language. Even an average business user who is a database novice
can easily create sophisticated calculations and formulas composed of operators and built-in
functions. Formulas can be attached to a dimensional member and executed whenever a point
containing that member is encountered in the multidimensional space. For example, the opening
inventory for each product may be defined as being equal to the ending inventory for the prior
month. This relationship can be expressed in Hyperion Essbase as Qpeni ng | nventory =

@R OR(“Endi ng I nventory”), where @R CRis a Hyperion Essbase function that understands the
sequencing of months, quarters and years. Similarly, pr of i t %can be expressed as (Profit %

Sal es) .

Several other member relationship operations are supported; for example, the sales contri-
bution of cream sodas to the beverage category can be expressed as: @UVRANGE( Sal es,

@chi | dren( CreanfSodas) ) / @GBUVRANGE( Sal es, @evMor s(Product, 0)). @UVRANGE describes
the sum of a measure over a specified range, @hi | dr en( Cr eanBodas) is a member relation-
ship function that translates into the range (DietCream, DarkCream, VanillaCream) and
@evMors(Product, 0) identifies all leaf-level members along the product dimension.

Hyperion Essbase supports over 200 predefined routines including specialized mathematical func-
tions such as Avg, Min and Max; financial functions such as NetPresentValue, RateOfReturn and
CompoundGrowth; statistical functions such as Median, StdDev and Rank; moving ratios, linear
regression and correlations; powerful forecasting functions and functions that reference member
relationships created by dimension hierarchies (as in the above example). Every one of these func-
tions has unrestricted access to any point in the dimensional space, significantly enhancing the
expressive power of the calculation language. Expense reporting is as easy as tagging members
that require expense computation, making all subsequent consolidations involving those members
“expense aware.” Finally, Hyperion Essbase has native support for automatic currency conversion
to different denominations, an important requirement for most business analyses.

Richer Analysis Through Sophisticated Calculations

With recent ANSI SQL extensions that operate on multiple ranges of rows, many relational vendors
have claimed to be able to perform all of the OLAP functionality delivered by multidimensional
products such as Hyperion Essbase. In truth, all that these SQL OLAP aggregates have enabled is
the ability to express in a single query several intra-row aggregations that previously needed to be
split across several queries. The inefficiencies of aggregation operations, the inability to express
non-additive intra-row aggregations and the lack of support for even some simple business
requirements still plague SQL-based analysis. Further progress in this area is constrained by the
simple fact that a row-column based model cannot easily support a multidimensional view of data.



Relational implementations of analytical processing claim to manage sparsity simply because fact
tables only contain available data points. However, the lack of knowledge about each dimension’s
domain—except through explicit lookups of dimension tables—makes it practically impossible to
perform operations that are a function of data points being absent. For example, standard devia-
tion of sales across all products is sensitive to products with no sales to report. The concept of
logical aggregation groups in the SQL99 standard is an attempt to address this deficiency, but it
still suffers from domain sequencing limited to what is available through data types.

The following examples illustrate the rich analytical capability of Hyperion Essbase and its mul-
tidimensional calculation language. These queries either cannot be written in procedural SQL or
require extensive SQL coding.

1. Marketing expenses are captured at the product family and region level. This data must be
allocated down to each individual product and state, based on sales contribution. Input data
is available as follows:

Sales Marketing

New York Cola 300 Not available
Diet cola 200 Not available

Boston Cola 100 Not available
Diet cola 400 Not available
Colas 500 Not available

East Cola 400 Not available
Diet cola 600 Not available
Colas 1000 200

The requirement can be expressed as a formula:

Marketing = Sales / (@mdancestval (2, Market, 2, Product, 2, Sales)*
@dancestval (2, Market, 2, Product, 2, Marketing))

This formula is applied to every cell that has Marketing as a dimensional coordinate. @dancest val
() is a Hyperion Essbase function that returns ancestral members at a particular generation from a
specified dimension. In this example, ancestral values from the second generation of the Market
and Product dimensions are required. The last argument to @dancest val ( ) identifies the meas-
ure. This formula returns the following results:

Sales Marketing

New York Cola 300 60
Diet cola 200 40
Boston Cola 100 20
Diet cola 400 80
East Cola 400 80

Diet cola 600 120



2. Payroll expenses are a function of each geographic area. Payroll for a state in the Eastern or
Western region is calculated as 15% of the state’s sales contribution. Payroll for the Central
region is calculated as 11% of sales. For all other regions, payroll expenses equal sales * profit
for a particular product in January. This is specified with the following formula.

Payroll = 1f (@sidesc (East) OR @sidesc (West))
Sales * 0.15
else if (@sidesc (Central))
Sales * 0.11
el se
Sal es * Margi n->Jan

The @si desc() function operates on a dimensional hierarchy, returning all descendants of a
member including the member itself. The formula above is executed on all cells having Payroll
as a dimensional coordinate. Members along the Market dimension for each cell are used to
determine the value of Payroll. The Mar gi n->Jan statement is a cross-dimensional reference, a
powerful feature of Hyperion Essbase calculations that is not supported by declarative SQL.

Iterative Analysis

Analytical processing requires an iterative refinement of data and hierarchies to gain business
insight. Common operations include changing member relationships, adding or removing mem-
bers, changing consolidation types, loading new data for certain member combinations and
adding new levels to a hierarchy. Relational systems claim to propagate updates to summary
tables whenever base tables are updated, but this places several constraints on the type of SQL
allowed in summary table construction. In particular, summary tables created using CUBE and
ROLLUP operators cannot be automatically refreshed! This means almost all data and dimension
updates must be tracked by the administrator and manually propagated to relevant summaries.
Hyperion Essbase, on the other hand, propagates dimensional changes transparently and in
real time. Data updates trigger the required recalculations during the next refresh phase. The
recalculations are extremely efficient and largely incremental (i.e., only cells requiring recalcula-
tion are refreshed). This enables efficient and sophisticated “what-if” analysis in real time.

Real-Time Analysis

Selective pre-computation of summaries in relational systems requires the SQL optimizer to
determine whether or not summary tables can handle a given query. This is a complicated task,
and a user query must often be virtually identical to the query that created the summary table in
order to trigger the optimizer. Hyperion Essbase allows administrators to specify which cells will
be pre-computed and which will be dynamically calculated at query time. Additionally, Hyperion
Essbase’s powerful reporting language allows effortless construction of complex multidimen-
sional spreadsheets. On-the-fly calculations, currency conversions, value-based ordering and
top-n/bottom-n listings are just some of the functions that can operate on data retrieved by
Hyperion Essbase.
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Conclusion

Meaningful business analysis requires a multidimensional view
of data that has proven inefficient and cumbersome to express
using relational databases and SQL. Relational databases have
achieved transaction efficiency, but the multidimensional data
model is superior and more intuitive for analysis than the two-
dimensional relational model.

In an attempt to retrofit multidimensionality on top of rela-
tional databases, SQL has recently been enhanced with new
operators such as CUBE and ROLLUP. Support for statistical
and windowing aggregate functions such as moving average,
and for pre-computed summary tables have also been included
in recent ANSI SQL standards Despite all of these efforts,
multidimensional databases continue to offer significant
advantages due to their ease of use, superior performance,
naturally expressive calculation language and rich analytical
processing capabilities.



