
   

  ,
 

APRIL
2004

  

















































     

 

  

 





  

   

   

    

    

   

      

  

    

       

:

  

  

 

     

 

    

   

extract information from an Essbase database.
The output of an MDX query has the form of a
cube itself. The query captures both the output
specification and the dimensionality of the
resulting cube. MDX-related procedural APIs
allow a query to be submitted for execution and
the navigation of the query result consists of
member combinations and corresponding data
value A query and reporting application will
use these APIs to format and display the result.1

Report writer is also a declarative scripting
language that can be used to report on an
Essbase database. You can combine report
writer's selection, layout, and formatting com-
mands to build reports with different output
specifications.

In this section, we will provide a brief
overview of the two query interfaces compar-
ing and contrasting some commonly used
functions and execution paradigms.

MDX allows you to:

• Use declarative query as input and set of
structures as output

• Transfer more calculations and selections into
the query from the client

• Use the same set of APIs for data and metadata
queries

• Return cell properties and properties of the
members in the same query

• Automate analysis with fewer steps

In this document, we will provide an
overview of MDX, its critical implementation
aspects, and compare its interface with a report
writer language, highlighting similarities and
differences as relevant. We will also describe
specific details of MDX query execution
semantics through examples. A solution sec-
tion to demonstrate migration of existing
report writer-based queries into the MDX syn-
tax is included. All the example queries assume
the Sample: Basic database as the queried data
source.

  

  

MDX (Multidimensional Expressions) is a
declarative query language that can be used to



M
DX (Multidimensional Expressions) is a new data extrac-
tion mechanism introduced in Hyperion Essbase Analytic
Services release 7.0 (herein referred to as “Essbase”), that

provides a method for forming complex and robust multidimen-
sional queries.

[                  ]

HYPERION
ESSBASE
SERVER

REPORT SCRIPT

FORMATTED REPORT
OUTPUT IN TEXT

MDX QUERY

MDX QUERY
RESULT IN

BINARY

MDX
RELATED

API'S

CLIENT
APPLICATION

(e.g. END-USER
QUERY AND
REPORTING

TOOL)

REPORT WRITER
INTERFACE MDX INTERFACE

tion, on the other hand, provides several
variants that enable a more comprehensive
selection.

For example, Descendants (<member>,
<layer>, SELF) returns the members of a par-
ticular generation or a level in a sub-tree/sub-
hierarchy rooted at the <member>. To return
the same set of members in report writer, you
have to use Descendants (<member>).To
return all the members in the sub-tree rooted at
the member, use Gen or Lev command to
return all the members of a generation or a
level of the entire dimension, and, finally, use
the Link command with an And operator.

Another example is the MDX Uda function
that takes as its argument the root member of a
sub-hierarchy in a dimension of interest. The
function returns members with the specified
UDA in the sub-tree. The report writer UDA
command, in contrast, only works for the top-
most member of the dimension. As a result,
you have to use the Link command to prune
out members not in the sub-tree in the dimen-
sion of interest.

MDX also provides functions that have no
counterparts in the report writer interface,
such as the LastPeriods function, which can be
used to analyze a sales trend over the last n
months starting from a given month. Another
example is the ParallelPeriod function used to
compare same-period metrics in a prior year.
OpeningPeriod and ClosingPeriod can be used
to achieve Time Balance functionalities similar
to those provided by the custom TB First, TB
Last outline tags.

1. For more information on a complete list of
MDX functions implemented, please refer to

 

Report writer commands enable a report to be
defined in terms of columns and rows across
one or more pages. The equivalent construct in
MDX is the axis – columns, rows and pages are
considered three of the possible axes. A query
may have only one or two axes as well as three
or more (the maximum number that can be
used within a single query is 64). An optional
slicer axis defines a point of view for the query.

MDX does not support functionality similar
to the report-writer formatting commands
such as PAGEHEADING. The resultant data
structure is not a text report, and it is left to the
client application to format results for presen-
tation.

  

Both MDX and report writer support the
ability to display query output using either
member name or alias. MDX supports the dis-
play and use of both in the same query. As
described later, member attributes and cell
properties can also be presented to the client
through the MDX APIs.

 

Report writer member selection commands
enable construction of queries based on mem-
ber (hierarchical) relationships in an outline.
MDX supports a much richer set of functions
for the same purpose. For example, the mem-
ber relationship function, descendants, is
exposed in the report writer in two variants –
Descendants (all members in a sub-tree/sub-
hierarchy rooted at the member whose descen-
dants are desired) and Idescendants (same as
descendants but includes the rooted member in
the result set). The MDX Descendants func-



[                  ]

Unlike dynamic-calc members, calculated
members are not considered part of the Essbase
outline and will not be returned in functions
that return a set of members from metadata.
For example, the result of the MDX expression
Year.Members includes the member Qtr1,
which is a dynamic calc member. In contrast, a
MDX calculated member is defined only for
the duration of a query. It is not part of the
database outline, and metadata functions do
not include such members in their result sets.

Consider a calculated member definition
such as:

MEMBER [Year].[MyQtr] as 'Feb +
Mar + Apr'

The calculated member MyQtr will not
appear in the result of the function
Year.Members, which will be resolved based on
the database in Essbase. Therefore, a calculated
member has to be explicitly specified whenever
it is needed in a query.

For example, assume you must create a new
type of scenario that will indicate the difference
with the last quarter’s value.

the MAXL DML documentation in the Essbase
XTD Analytic Services 7.0 Technical Reference.



MDX, like report writer, supports both meta-
data and data-based sorting. An example of
metadata-based sorting is sorting by member
name or generation number. MDX functions
like Filter, TopCount, and others provide
functionality similar to report writer data range
commands to restrict the range of selected
data.



Whereas report writer allows custom calcula-
tions to be performed on the result set of a
query, MDX allows custom calculations to be
defined within the scope of a query itself and
produces the result in the output. This is
accomplished through calculated members. A
calculated member is a member with a specific
custom formula defined for the duration of a
query and is similar to a dynamic-calc member
defined in an Essbase outline. A calculated
member can use a rich set of computation and
referencing primitives.



[                  ]

WITH
MEMBER Scenario.[Qtr to Qtr Variance] AS
'IIF (Is (Year.CurrentMember, Qtr1),

0,
Year.CurrentMember - Year.CurrentMember.PrevMember

)'
SELECT
{ Scenario.Children, [Qtr to Qtr Variance] } on Columns,
Year.Children on Rows
WHERE (East, [100], Sales)

ber along Year dimension has a previous
member at that generation – for the first
member, for example January or Qtr1, IsValid
will return False. Thus, you can rewrite the
same formula so that it works on members of
all generations in Year dimension as follows.

Note that [Qtr to Qtr Variance] is specified
explicitly in the column axis. For Qtr1, there is
no previous quarter – so the calculated mem-
ber formula handles a special case for Qtr1 and
evaluates the [Qtr to Qtr Variance] as 0.

The expression IsValid (Year.CurrentMember.
PrevMember) returns True if the current mem-



[                  ]

East 100 Sales

Actual Budget Variance Variance % Qtr to Qtr Variance

Qtr1 6292 5870 422 7.1891 0

Qtr2 7230 6760 470 6.95266 938

Qtr3 7770 7300 470 6.43836 540

Qtr4 6448 5570 878 15.763 -1322

WITH
MEMBER [Scenario].[Qtr to Qtr Variance] as
'IIF (IsValid (Year.CurrentMember.PrevMember),
Year.CurrentMember - Year.CurrentMember.PrevMember,
0

)'
SELECT
{ Scenario.Children, [Qtr to Qtr Variance] } on Columns,
Year.Members on Rows
FROM Sample.Basic
WHERE (East, [100], Sales)

East 100 Sales

Actual Budget Variance Variance % Qtr to Qtr Variance

Year 27740 25500 2240 8.78431 0

Qtr1 6292 5870 422 7.1891 0

Jan 2105 1960 145 7.39796 0

Feb 2061 1920 141 7.34375 -44

Mar 2126 1990 136 6.83417 65

Qtr2 7230 6760 470 6.95266 938

Apr 2258 2110 148 7.01422 132

May 2347 2190 157 7.16895 89

Jun 2625 2460 165 6.70732 278

Qtr3 7770 7300 470 6.43836 540

Report writer interface lets you define the
query in a declarative fashion – but the report
writer output is in text. As a result, if you are
developing a custom application using the
report writer interface, you have to parse the
report output before you can do any applica-
tion-specific processing. You may have to use
special formatting commands, to identify
information like member name/alias/page
break etc. Providing an application with a
spreadsheet grid using the grid API requires a
number of API calls that use a number of data
structures in order to specify the query, which
can be complex when the query is not based on
plain, hierarchy operations. The only equiva-
lent of MDX is the Grid API’s free-form APIs
such as EssGBeginReport(). However, this
works only for limited kinds of reports and will
be deprecated in future Essbase releases. MDX
supports a powerful expressive language as well
as a set of APIs to introspect the contents of the
result set.

2. Transfer more calculations and selections
into the query from the client

One of the unique aspects of MDX is the ability
to write a query that can access sets of mem-
bers/data values that is completely different
from the set of members/values reported in the
final query output.

For example, assume you are responsible for
the Eastern Region, and you must analyze the
budgeted marketing dollars for products in Q2
that had Q1 sales in excess of $1,000. You wish
to return cells for Budget and Q2 for East based
on data from Actual and Q1 for East.

This query can be written in MDX as follows.

The addition of a calculated member in a
query does not affect the database outline and
hence no database restructuring is needed. In
addition, this new member (assuming it is
along dense dimensions) does not increase the
size of the big block – the unit of data that
Essbase server internally needs to allocate in
memory for calculating dynamic-calc data val-
ues -- and hence has no effect on the dynamic
calculation cache.

Readers familiar with the calculation lan-
guage in Essbase will notice similarities
between the behavior of certain calculation
functions and corresponding MDX functions.

Comparison of MDX to Essbase calculation
language is outside the scope of this document.
In the MDX Calculated Members and Security
section, we will describe other differences in
terms of the security model between a calculat-
ed member in an MDX query and a formula
attached to a dynamic calc member in the
Essbase outline.

In this section we provided an overview of
MDX with the report writer functionality as
the backdrop. We will now discuss why it may
be appropriate to transition your custom query
interfaces to use MDX.

  

If you are familiar with reports and are won-
dering why you may want to switch to MDX,
this section describes specific concepts in MDX
not available in reports.

1. Declarative query as input and set of struc-
tures as output



[                  ]

interfaces does not change, regardless of
whether you are interested in the actual data
values or just the metadata combinations. For
example, you may want to query for states in
the Eastern region, but are not interested in the
actual data values that may exist for those
states. In this case, you can execute the follow-
ing query in data-less mode:

The next query is a data query retrieving the
actual sales in Qtr1 for Colas in the Eastern-
regional states:

The entire query uses data for the Eastern
regions. The Filter() expression prunes out
those Level-0 products based on the Actual
Sales numbers in Qtr1 – note that the query
outputs the Budget numbers for Qtr2, whereas
the Actual values for Qtr 1 were used during
query execution.

In a subsequent section (MDX Query
Execution Order), we will describe in more
detail the concept of a query context as it
applies to MDX query execution.

1. Same set of APIs for data and metadata
queries

The querying syntax as well as output processing



[                  ]

SELECT
{(Budget, Marketing)} on Columns,
Filter (

Product.Levels(0).Members,
(Qtr1, Actual, Sales) > 1000

) on Rows
WHERE (East, Qtr2)

East Qtr2

Budget

Marketing

100-10 490

200-10 910

200-40 310

300-10 390

300-20 250

400-10 130

400-30 90

SELECT
Children (East) on Columns
FROM Sample.Basic

SELECT
Children (East) on Columns,
Children (Colas) on Rows
FROM Sample.Basic
WHERE (Qtr1, Actual, Sales)



[                  ]

Note that in both cases the query uses the
same children operator to query for states in
the Eastern region. The output processing is
also identical. Logically, an MDX-API based
client program may be interested in

a.) finding the number of tuples (known in
MDX as members and cross-members)on the
column axis(number of states in this case)

b.) finding the tuple at ith position (i.e. get
name of the ith state).

Invoking the function EssMdxSetDataLess()
before submitting a query for execution tells
the server that the query is interested in retriev-
ing just the metadata. Metadata queries may be
beneficial in certain types of screening. Note
that although a query may be interested in
obtaining only metadata, the selection criterion
for the metadata itself could be based on data.
For instance, a query may retrieve just those
Product-Market combinations for which quar-
ter-to-quarter variance is significant.

1. Property support: the ability to return cell
properties and properties of the members in
the same query

The MDX language includes constructs that
can be used to request Grid-API style cell-prop-
erties in the query output. Such properties
identify whether a cell is read-only, dynamical-
ly calculated etc. In addition, MDX has con-
structs that allow certain member properties to
be displayed in the output as well. MDX
extends the notion of properties to include
user-defined attributes (UDA) and attribute
dimensions in Essbase. For example, you can
request Color and Size properties for every
member of the Product dimension (Color and
Size are attributes of product) or if you want to

know whether a market is a “Major Market” for
every member from Market dimension in the
query result. Report writer does not support
cell-properties. You can get some of the mem-
ber properties (e.g. use {IndentGen} and parse
the output to figure out the generation
number). However, such a task is extremely
cumbersome and error-prone in report writer.
Neither Grid API nor report writer supports
the MDX style of exposing user-defined attrib-
utes or attribute dimensions as properties.

2. Automating analysis with fewer steps

You can write MDX queries to automate the
production of reports that would otherwise
need substantial human intervention. For
example, you may want to report on the mar-
kets at the regional level – you want the state
level details for the regions with a negative vari-
ance from last quarter. You might want to
report on the states with substantial (30% and
above for example) contribution to its region’s
sales. The richness of the MDX expression
model makes these queries straightforward.

   

3. MDX is not an end-user interface for churn-
ing out end-user reports from the Essbase
Server. Report writer has a rich formatting sup-
port and you can write a report to output the
query result in a presentable fashion. Of course,
you can also use the powerful Essbase spread-
sheet Add-in interface to design robust Excel
spreadsheets to retrieve data from Essbase.

On the other hand, MDX lets the user spec-
ify the query and supports a set of APIs to
navigate over the query results. The Essbase
Multidimensional Access Language (MAXL),

An axis consists of members retrieved from one
or more dimensions. Two different axes may
not select members from the same dimension
for output. However, an axis may internally use
a dimension that is already specified as an out-
put dimension in a different axis for computa-
tion/member-filtering purposes. In addition to
members and cross-members (referred to as
tuples in MDX), MDX introduces a new entity
called SET. A set is an ordered collection of
tuple(s). All tuples within a set must have the
same dimensionality and the dimension order
of members within each tuple in a set must be
identical.

MDX query execution involves independent
processing of the set definitions along each axis
present in the query and then returning the
data points at the intersection of all possible
combinations of members (member combina-
tions) from all axis. Let us define MDX context
as a calculation context that holds one member
from every dimension present in the cube.
Contents of MDX context are well defined by
the query execution semantics as explained
below.

MDX query execution begins with a default
MDX context. The context has the dimension
root members for all regular dimensions.
Hence,the smallest valid MDX query support-
ed in Essbase is “SELECT” which returns the
cell-value at the intersection of top members
from each dimension (and no members from
attribute dimensions). In Sample/Basic, the
intersection is (Year, Measures, Product,
Market, Scenario).

for example, chooses to display the query
results in a two-dimensional format. Use of
these APIs is required to create a reporting
interface.

4. MDX is not an interface for churning out
database exports, or very large production-type
reports from the Essbase Server. The report
writer interface supports streaming of the
result set. Neither the server nor the client
needs to hold on to the entire result set. You
may potentially write a report to back up a por-
tion of the database without needing the server
to go offline. The Grid API (used by the spread-
sheet interface) does not stream in the server
and in the client. As a result, when a large query
is executed, the server has to hold on to the
entire result set before sending it to the client.

MDX, on the other hand, supports server-
side streaming and as a result the server does
not need to hold on to the entire result set. The
server is capable of sending partial results to
the client. In order to provide easy navigation
over the query results, the API accumulates the
entire result, before returning control to the
caller. Even though the API stores the query
results in an optimized compressed form, the
client may not have enough memory to hold on
to the entire result set.

   

Recall that an MDX query consists of a data
request clause (SELECT), a context clause
(FROM) and an optional point-of-view clause
(WHERE). The SELECT clause determines the
axis dimensions and up to 64 different axes can
be specified in a single query. In practice, how-
ever, between 2 and 4 axes are more common.



[                  ]

Query:
SELECT
Result:
(Year, Measures, Product, Market, Scenario)
105,522

the MDX execution does not need the MDX
context to resolve the set definition.

In contrast, if the named set definition is the
following, then the TopCount function execu-
tion needs to use MDX context (since the set
construction is a function of data values in the
cube).

If the slicer specifies to use Qtr1, we will get
the top 2 children based on Qtr1 sales, whereas
if the slicer specifies to use Qtr2, we will get the
top 2 children based on Qtr2 sales.

Let us change the above query to add a slicer
clause as follows.

First, Children ([100]) will be resolved
directly from the outline into [100-10], [100-
20] and [100-30]. Next, the set will be pruned
to include just the top 2 products based on
their sales values.

In order to get any cell data values from
Essbase, we need the members from all regular
dimensions and, optionally, from attribute
dimensions. The sales value for [100-10] does
not resolve into one data point – representative
members from the missing dimension(s) are
required and hence are taken from the MDX
context.

Then the Slicer clause (i.e. singleton set def-
inition in the WHERE clause), if present, is
processed. Member(s) corresponding to the
dimension(s) present in the slicer override the
default context to form the new MDX context.
This new context is used for the rest of the
MDX query execution. Note that the slicer
clause can only specify singleton members
from each dimension.

For example, the following query

returns the data point at the intersection of
(Qtr1, East, Measures, Product, Scenario). Note
that Measures, Product and Scenario are the
root members of the respective dimensions not
explicitly specified in the query, and are part of
the POV by default.

MDX also has an optional WITH clause that
can be used to define calculated members and
named sets.

The named sets are processed in order in
which they are defined in the query. Note that
named set evaluations may or may not need the
MDX context. For example, if the named set
definition is



[                  ]

SELECT
WHERE (EAST, QTR1)

(East, Qtr1, Measures, Product, Scenario)
5,38
0

With
:

Set Favourite_Colas as ‘{[100-10],
[100-30] },
:

With
Set Favourite_Colas as 'TopCount
(Children ([100]), 2, Sales)'
:

With
Set Favourite_Colas as 'TopCount
(Children ([100]), 2, Sales)'
:
:
Where {(EAST, QTR1)}

So the comparison to find top 2 will take
place among the data values below:

(QTR1, Sales, [100-10], EAST, Scenario),

(QTR1, Sales, [100-20], EAST, Scenario),

(QTR1, Sales, [100-30], EAST, Scenario)

1. As an optimization the named-set defini-
tions are processed only if they are later refer-
enced in the query. If they’re not actually used,
Essbase spends no time building them.

After any necessary named sets are resolved,
the individual axis sets (i.e. set definitions along
multiple axes) are resolved. The axis set resolu-
tion may or may not require MDX context for
the same reason explained for named sets.

After all the axes sets are resolved (i.e. all the
member combinations/tuples are found for a
set), the final retrieval stage pulls data-values

for all possible combinations of members (i.e.
member combinations) from all the axes, using
MDX context, as needed.

Let us next consider a slightly more advanced
role that the MDX context plays using a class of
functions called Iterative functions.

An iterative function in MDX is a function
that works on a set of tuples performing an
operation on every tuple in an iterative fashion.
For example, the Sum function

SUM (<input-set>, <numeric-value-
expression>)

evaluates a numeric-value-expression for every
tuple in the input set, adds all these values up to
return the total. The following are some exam-
ples of MDX functions that operate on sets iter-
atively:



[                  ]

SUM MIN MAX

AVG NONEMPTYCOUNT FILTER

TOPCOUNT BOTTOMCOUNT TOPSUM

BOTTOMSUM TOPPERCENT BOTTOMPERCENT

ORDER GENERATE



[                  ]

All the functions listed above take an expres-
sion argument like SUM. However, the expres-
sion type is different for each function. For
example, the ORDER function requires either a
numeric or string expression, GENERATE takes
a set as the second argument and the FILTER
function takes a conditional expression. The
expression is numeric for the remaining func-
tions.

Logically, an iterative function works as follows:

1. For every tuple in input set

2. Begin

3. Save the current MDX context (C1)

4. Create new MDX context (C2) overriding
the iterating tuples on C1.

5. Evaluate the expression using C2

6. :

7. : Iterative function specific tasks e.g.
cumulatively add the values in case of SUM

8. Restore the saved context (C1) i.e. the cur-
rent MDX context at this point is C1.

9. End

Now, let us consider an example to illustrate
the above logic in steps. The following query
sorts the Colas (i.e., Children of [100]) based on
Actual Sales in Qtr1 and displays the sorted
colas’ Budgeted Sales and Marketing in Qtr2

The ORDER function is specified in the set
‘Children ([100])’ (i.e. {[100-10], [100-20],
[100-30]}) to iterate upon.

The expression used for ordering is '(Qtr1,
Actual)' – a numeric expression that needs to be
computed for each element of the set. The fact
that the cell value of (Qtr1, Actual) is required
is implicit because it is a numeric expression.
Recall that each axis in an MDX query is evalu-
ated independently. Thus, the context at the
beginning of the execution (using the above
logic) of the ORDER function is the tuple
([Qtr2], [Measures], [Product], [Market],
[Scenario]) where Qtr2 is obtained from the
slicer clause.

In the first iteration the [Product] is replaced
in context with [100-10], the first member in
the set. Thus the tuple for the first iteration of
ORDER is ([Qtr2], [Measures], [100-10],
[Market], [Scenario]).

The numeric value expression is evaluated
with this context, and thus the expression trans-
lates into the retrieval of the data point ([Qtr1],
[Measures], [100-10], [Market], [Actual]).

The second iteration starts with the same
MDX Context as the first iteration, namely,
([Qtr2], [Measures], [Product], [Market],
[Scenario]). This time, [100-20] will replace
[Product] to form the new MDX context.

SELECT
CrossJoin ({Budget}, {Marketing,
Sales}) on Columns,
Order (Children ([100]), (Qtr1,
Actual)) on Rows
WHERE (Qtr2)

Qtr2 Market

Budget Budget

Marketing Sales

100-30 450 3400

100-20 1160 8800

100-10 1800 17230

So the expression evaluation will use
([Qtr2], [Measures], [100-20], [Market],
[Scenario]) as the context and thus the expres-
sion translates into retrieval of the data point
([Qtr1], [Measures], [100-20], [Market],
[Actual]).

The ORDER function finally sorts input
tuples based on these values and arranges these
tuples in ascending order (the default order).

All other iterative functions operate similar-
ly. After evaluating the expression, the action
taken depends on the function. In case of
ORDER, the action is to sort tuples in input set
based upon values evaluated. In case of SUM,
the action is to add up all the value. In case of
GENERATE the action is to create an output set
by performing a “UNION” of all sets.

Continuing the discussion on current con-
text, it is worthwhile to point out a special func-
tion called CURRENTMEMBER (which is no
different from the corresponding calculator
language function) which takes as input a
dimension and is used to refer to the member
present in the current MDX context during the
course of execution.

The calculated member evaluation is like any
other numeric expression evaluation.
Depending on the context in which such a
member is used, it can be resolved either at axes
resolution time or during the final retrieval
stage. For example, consider the query:

To return ([100-10], [Revised Budget]) cell
value, the expression ‘Budget * 0.5’ will be eval-
uated in the context of ([Qtr1], [Sales], [100-
10], [East], [Scenario]).

To return ([100-20], [Revised Budget]) cell
value, the same expression will be evaluated in
the context of ([Qtr1], [Sales], [100-20], [East],
[Scenario]).

Next, we explore the notion of
SOLVE_ORDER, a construct that enables
removal of potential ambiguities in a query
execution.

   

_

A SOLVE_ORDER clause can be specified fol-
lowing the definition of a calculated member to
disambiguate the order of evaluation of calcu-
lated members in a query that has more than
one such definition. We illustrate the use of
such a clause by means of an example.

Q1 and M are two calculated members
defined on Year and Measures dimensions
respectively in the following query.



[                  ]

With
Member [Scenario].[Revised Budget] as 'Budget * 0.5'
:
:
SELECT
{Actual, [Revised Budget]} on Columns,
Children ([100]) on Rows
FROM (Qtr1, Sales, East)

We have a question as to whether to calculate
the (M, Q1) cell by the M formula or by the Q1
formula.

Let us compute the data value at the intersec-
tion (Q1, M, Product, Market, Actual) using the
query execution rules we have learned thus far.
There are two potential ways in which the data
value can be computed: , using the definition of
the calculated member Q1 or the definition of M.

If the formula for Q1 is evaluated first, then
the result will be calculated as follows:

Value of (Q1, M, Product, Market, Actual) =

Value of (Jan, M, Product, Market, Actual) +

Value of (Feb, M, Product, Market, Actual) +

Value of (Mar, M, Product, Market, Actual)

In this case, the value would be calculated as
55.1 + 55.38 + 55.26 = 165.74

If, however, the formula for M is evaluated
first, then the result will be calculated as follows:

Value of (Q1, M, Product, Market, Actual) =

Value of (Q1, Margin, Product, Market,
Actual) * 100 /

Value of (Q1, Sales, Product, Market, Actual)

In this case, the value would be calculated as
52943 * 100 / 95820 = 55.25

As can be seen from the above two examples,
there is a need for disambiguation and the solve
order clause enables override of the calculation
order to achieve the desired end result. In the
presence of SOLVE_ORDER clause, Formula
corresponding to the member with highest
solve order will be evaluated first. So, if the
above query were altered as follows,



[                  ]

WITH
MEMBER [Year].[Q1] as ‘Jan + Feb + Mar’
MEMBER [Measures].[M] as ‘Margin * 100 / Sales’
SELECT
{M} on Columns,
{Q1} on Rows
Where (Product, Market, Actual)

Product Market Actual

Margin Sales M = Margin * 100/Sales

Jan 17,378 31,538 55.1

Feb 17,762 32,069 55.38

Mar 17,803 32,213 55.26

Q1 = Jan + Feb + Mar 52,943 95,820 ???

WITH
:
MEMBER [Year].[Q1] as ‘Jan + Feb + Mar’, SOLVE_ORDER = 10
MEMBER [Measures].[M] as ‘Margin * 100 / Sales’, SOLVE_ORDER = 20
:

then the result will be 55.25, which is desired in
this example.

The default SOLVE_ORDER of a calculated
member is assumed to be 0.

If multiple members at the intersection have
the same SOLVE_ORDER (or no explicit
SOLVE_ORDER clause is present), for example,

then the tie is resolved using the order of
respective dimensions as they appear in the
Outline.

Thus, in the above example, since the Year
dimension appears before Measures in the
Outline, the formula for Q1 will be evaluated
first and the resulting value will be 165.74. If
you run the example query without specifying
the SOLVE_ORDER, both the members are
assumed to have SOLVE_ORDER 0 and the tie
has to be resolved using dimension informa-
tion. Hence, the result will be the same in previ-
ous case, 165.74.

    

Recall that MDX supports calculated members
to define dynamic calculations.

Calculated members are similar to custom
formulas that can be attached to dynamic-calc
members defined in the outline. The advantage
of using a calculated member is that no outline

change is required, nor is the cube structure
impacted to execute the custom calculation.
While calculated members are functionally sim-
ilar to custom member formulas, there is an
important difference in data access privileges
between the two.

In the case of dynamic-calc members, the
administrator defines the member and the cal-
culation formula associated with the member.
Since the administrator is also responsible for
enforcing user-level metadata and data security
through appropriate filter definitions, it is
assumed that the administrator is cognizant of
security requirements for the dynamically cal-
culated members as well. Thus, the formula
associated with a dynamically calculated mem-
ber does not enforce metadata or data security-
members and cell data which is otherwise
hidden from the user can be used in the calcu-
lation.

In MDX, in contrast, the end-user can define
the calculation in a query. The administrator
may not know about the formula and the
dependent data-accesses during query execu-
tion. Therefore, the MDX implementation
ensures that execution of a calculated member
formula only uses data and metadata that the
user has access to. The value of any data-point
referred by the formula execution that the user
has no access to is assumed to be MISSING.

For example, while evaluating a calculated
member formula, if the Budgeted Sales for Qtr2
is not accessible to the user (suppressed via a
data security filter), it will be assumed to be
MISSING.



[                  ]

:
MEMBER [Year].[Q1] as ‘Jan + Feb +
Mar’, SOLVE_ORDER = 10
MEMBER [Measures].[M] as ‘Margin *
100 / Sales’, SOLVE_ORDER = 10
:

   

Functions such as <IDesc and <Gen in report
writer and Descendants() and Members() in
MDX return a collection of members. Between
a report script and an equivalent MDX query,
there is a difference in the order in which mem-
bers are returned in the result set. Whereas the
report writer interface returns members of the
dimension tree in an order where all children of
members appear before the parent, MDX meta-
data-based set-functions return members in an
order where the parent appears before the chil-
dren. The MDX function Hierarchize (<set>,
POST) allows you to reorder the elements of
<SET> in post-order form if desired.

   

  

Report writer and other interfaces like Grid-
API use dynamic time series (DTS) members
defined in the outline along with another time
dimension member that specifies the latest
time-period. MDX does not recognize DTS
members defined in the Essbase outline direct-
ly. However, MDX can return the same value as
returned by requests such as Q-T-D(Aug) (i.e.
sum of the values up to month of August in the
current Quarter) through functions such as
QTD(), YTD(), etc.. These functions take the
time dimension member (that one would spec-
ify to identify the latest time period in the
report writer interface) as an argument.
Internally, MDX uses the generation number
for the corresponding Essbase member Q-T-
D/Y-T-D. For example, the MDX expression
QTD(Aug) returns the set of all time dimension
members of the generation of Aug up to and

including Aug, that fall in the quarter that
includes Aug.

We can define a calculated member to return
sum/min/max/average of the values for the set
returned by the set expressions QTD(), YTD(),
etc. Defining a calculated member to Sum over
the set returned by MDX QTD() function is
logically equivalent to Q-T-D followed by
<LATEST latestmember syntax in report writer.
For example:

WITH

MEMBER Measures.[QTD Margin] AS
'Sum (QTD(), Margin)' ...

You can alternately use PeriodsToDate
(<Layer>, <member>) in place of xTD() func-
tions. For example, if you have a generation
named Quarter already in your database, then
PeriodsToDate (Quarter, Aug) is equivalent to
QTD (Aug). Note that PeriodsToDate works on
any dimension whereas the xTD() functions
can work only on a Time dimension.

  

There are major differences in the way sort-
ing commands work in MDX and report writer.
In report writer, there are different commands
to sort the members of a dimension and the
rows of a report. In MDX, there is one function
ORDER (<set>, <expression>) that performs
all sorting. It evaluates the input value expres-
sion iteratively for every tuple in the set, and the
expression can provide names, generation or
level numbers, property or cell values to com-
pare. Furthermore, sorting on multiple criteria
can be carried out by nesting calls to Order. For
example, the following report snippet and
MDX snippet are logically equivalent:



[                  ]

However, the report writer sorting com-
mands are stateful. That is, once a sort com-
mand is specified in a script, the sorting
requirement will be applicable to all subsequent
member selection commands in the script. The
MDX Order() function, on the other hand, is
applied to the input set to the function, and the
result of the Order() function is a sorted set.
Any other set expressions appearing in the same
MDX query will not be effected by the presence
of a prior ORDER command. Thus while
<SORTNONE functionality is required in
report writer language, such a command is
meaningless in MDX.

Secondly, report writer sorting commands
are applied to the members added with a
member command such as <Children,
<Descendants, etc. The MDX Order() function
works for the entire input set, regardless of how
it was created. For example,

in report writer returns members in the follow-
ing order: Nov, Feb, Jan, Mar.

Whereas

returns the members in the following order:
Feb, Jan, Mar, Nov

The MDX expression

returns the members in the order{Nov, Feb, Jan,
Mar}, since the Order() function is only applied
to the children of Qtr1.

    

We will compare report writer commands such
as RESTRICT/TOP/BOTTOM /ORDERBY that
are used to accomplish filtering with correspon-
ding functionality in MDX.

The report writer retrieves all the data values
as specified in the query and then executes the
data- related filtering commands on the result.
In other words, these commands are post-
processing operations in report writer.

On the other hand, equivalent MDX func-
tions are executed as a part of the individual
axis processing. Since each of the axis is
processed independently, the context of the exe-
cution may not be intuitive from report writer
user’s perspective. Context processing rules
described in section <> apply for MDX execu-
tion.

Consider a simple example,

The set definition along rows will be execut-
ed independently of the contents of what is
specified on Columns. Since the <numeric



[                  ]

<SORTGEN
<IDESCENDANTS Market

ORDER (DESCENDANTS (Market),
Market.CURRENTMEMBER. GEN_NUMBER)

<SORTMBRNAMES
Nov
<Children Qtr1

Order ({ Nov, Children(Qtr1)},
Year.CurrentMember.Member_name)

{ Nov, Order (Children (Qtr1),
Year.CurrentMember.Member_name)}

SELECT
CrossJoin ({Qtr1, Qtr2}, {Sales})
on Columns,
TopCount (Market.Levels(0).Members,
5) on Rows
From Sample.Basic

value expression>, which is used to identify the
top 5 members along Markets, is not specified,
TopCount function will retrieve the value using
the current context of execution. In this partic-
ular case, the root member along Measures
dimension will be used for evaluation, which is
different from Sales specified on the columns.

Secondly, each of these report writer com-
mands can be used once in a script in effect. If
two or more different commands (TOP/BOT-
TOM and ORDERBY) are specified, then all of
them have to work on the same row dimension
grouping. On the other hand, the equivalent
MDX functions have no dependency among
each other. For example, TOPCOUNT imple-
mentation has no assumption about the opera-
tions/functions used to create the input set.

Lastly, the report writer TOP/BOTTOM and
ORDERBY commands work on a group of
members from the innermost row dimension
by default, though the grouping dimension can
also be input explicitly. The equivalent MDX
functions TOP(/BOTTOM)COUNT or
ORDER have no such assumption about the
dimension grouping. For example, the follow-
ing report will get Top 5 Products for every
market.

Whereas the MDX expression

TopCount (

CrossJoin (Children (Market),
Descendants (Product)),

5,

(Budget, Dec)

)

will return only 5 tuples of (Market, Product)
combinations.

In order to get the same result as the above
report script i.e. top 5 Products for every
Market member, use Generate function as
shown in the following MDX query:



[                  ]

<Sym
<Column (Scenario, Year)
Actual Budget
Jan Dec
<Top (5, @DataCol(4))
<Row (Market, Product)
<children Market
<Idescendants Product
!

SELECT
CrossJoin ({Actual, Budget},
{Jan, Dec}) on Columns,
Generate (

Children (Market),
CrossJoin (

{Market.CurrentMember},
TopCount (

Descendants (Product),
5,
(Budget, Dec)

)
)) on Rows

The Generate function will iterate through
each child of Market, and for each of those will
combine (using CrossJoin) that market child
with the top 5 descendants of Product.

     

 

Any multidimensional query language must
have first class support to handle processing of
missing or non-existent cell values.

The SUPMISSINGROWS command in report
writer suppresses the display of all rows that
contain only #MISSING values.

The equivalent construct in MDX is the NON
EMPTY clause, which, if present on an axis spec-
ification will result in suppression of the
tuple(s) that contain only #MISSING values for
all possible combination of tuples from other
axes.

SUPMISSINGROWS only works for dimen-
sions formatted to appear along rows, whereas
the NON EMPTY clause can be specified for any
axis. For example, NON EMPTY on columns will
check and suppress, if needed, tuples present
along the columns. In addition, NON EMPTY
can be specified for any combination of the axes
present in the query.



[                  ]

Measures

Actual Actual Budget Budget

Jan Dec Jan Dec

East Product 1732 2037 2080 2120

East 100 924 1026 960 990

East 100-10 837 867 860 830

East 400 466 501 600 580

East 200-40 267 383 310 400

West Product 2339 2448 2980 2710

West 300 755 971 830 950

West 200 752 820 850 860

West Diet 663 629 850 730

West 100 378 223 830 530

South Product 997 1141 1330 1270

South 100 329 432 540 640

South 100-10 244 327 370 460

South Diet 355 404 490 430

South 200 480 496 520 390

Central Product 2956 3154 3550 3570

Central Diet 1080 1064 1340 1300

Central 200 751 753 1060 1220

Central 100 724 792 900 890

Central 300 790 824 930 810

Secondly, SUPMISSINGROWS logic works
on every page in the report. On the other hand,
NON EMPTY functionality logically works on all
possible member combinations on all axes.

Consider an example,

The SUPMISSINGROWS will cause display of
only the eligible Products per Market page in
the report. (It may so happen that one product
suppressed in one page (market) is displayed on
another page (market), depending on the data
distribution). By contrast, NON EMPTY logical-
ly takes into account all possible member com-
binations on other axes.

For example:

NON EMPTY will suppress the products
missing for every (Scenario, Measure) combina-
tion specified in the query for all the markets. It
may so happen that one product has all missing
values for some markets, but not the others.
Such a product is not suppressed from the out-
put as the product has at least one non-
MISSING value for at least one market.

Conceptually, the Report writer output can
be viewed as outputting a multi-cube structure,
whereas the MDX output is a hypercube.



[                  ]

<Page (Market)
<Children Market
<Row
<Idescendants Product
{SUPMISSINGROWS}
<Column (Scenario, Measures)
Actual Budget
Sales COGS Profit

!

SELECT
Crossjoin ({Actual, Budget}, {Sales, COGS, Profit}) on Columns,
NON EMPTY Descendants (Product) on Rows,
Children (Market) on Pages
From Sample.Basic



[                  ]

<COLUMN
<PAGE
<ROW

<ASYM
<SYM

On COLUMNS
On ROWS
On PAGES
On CHAPTERS
On SECTIONS
On AXIS (n) where n is the axis number

Report writer supports up to 3 axes. MDX
supports up to 64 axes. The first five axes
are named as COLUMNS (0), ROWS (1),
PAGES (2), CHAPTERS (3) and SECTIONS
(5) respectively. The axes numbering
increases from faster to slower moving
axes.

Operations like suppress missing or filtering
can only be done on member combinations
along Row in report writer.

MDX treats all axes uniformly in the sense
that all such operations are valid for sets on
any axis.

MDX lets you define the set in any way you
want.

For example, the MDX set expression
“{(Actual, Sales), {Budget, Profit)}” is logi-
cally equivalent to the report-script snippet
“<ASYM
Actual Budget
Sales Profit”.

Whereas “CROSSJOIN ({Actual, Budget},
{Sales, Profit})” along columns will produce
a symmetric output like report snippet
“<SYM
Actual Budget
Sales Profit”.

MDX does not need to assume symmet-
ric/asymmetric columns, as it deals with the
way the set is defined.

  

   





[                  ]

<ALLINSAMEDIM mbrName

<ALLSIBLINGS mbrName

<ANCESTORS mbrName
<ATTRIBUTE attMbrName

<CHILDREN mbrName
<CURRENCY

targetCurrency
<DESCENDANTS mbrName

<DIMBOTTOM mbrName

<DIMTOP mbrName

GEN name, dimension
LEV name,dimension

<GEN(dimension,genNumber)
<LEV(dimension,levNumber

<IANCESTORS mbrName
<ICHILDREN mbrName

<IDESCENDANTS mbrName
<IPARENT mbrName
<LATEST mbrName

<LINK (extractionCommand
[operator extractionCommand])

<MATCH
("Member"|"Gen"|"Level","Pattern")

<OFSAMEGEN mbrName
<ONSAMELEVELAS mbrName

<PARENT mbrName
<TODATE (formatString,

dateString)
<UDA (dimName, udaStr)

<WITHATTR (dimName, "opera-
tor", value)

[mbrName].DIMENSION.members or
[mbrName].Members
[mbrName].Siblings or Siblings
([mbrName])

Attribute ([attMbrName])

[mbrName].Children or Children
([mbrName])
Descendants ([mbrName],
[mbrName].GENERATION, AFTER)
[mbrName].DIMENSION.Levels(0).Mem
bers
Ancestor (mbrName,
mbrName.Dimension.Generations(1))
[name].Members

dimension.GENERATIONS(genNumber
).Members
dimension.LEVELS
(levNumber).Members

{CHILDREN ([mbrName], mbrName }
Descendants([mbrName])
{[mbrName], [mbrName].PARENT}

UNION, INTERSECTION, EXCEPT,
EXTRACT

[mbrName].GENERATION.Members
[mbrName].LEVEL.Members
[mbrName].PARENT
TODATE (formatString, dateString)

UDA (dimName, udaStr)
WITHATTR (member,
STRING_LITERAL,
[signed_numeric_literal |
character_string_literal])

No equivalent MDX construct available in 7.0

No equivalent MDX construct available in 7.0

Please see the section on MDX member Ordering.

In case of MDX, the name refers to user defined
Generation / Level Name. Default generation/level
names like Gen0, Gen1, Lev0, Lev1 are not supported
in MDX. Use
dimension.Generations(genNumber).Members
Or dimension.Levels(levelNumber).Members syntax to
select members of a particular generation or level.

No equivalent MDX construct available in 7.0

Please see the section MDX and Sorting.

MDX does not support D-T-S members in ESSBASE.
Please see the section MDX and Dynamic Time Series
Members Support.

No equivalent MDX construct available in 7.0

  

   



[                  ]

<SORTNONE

<SORTASC
<SORTDESC

<SORTGEN
<SORTLEVEL

<SORTMBRNAMES
<SORTALTNAMES

ORDER (<set>, <value_expres-
sion>, BASC | BDESC)

The value expression has to be
written using
<dimension>.CURRENTMEM-
BER.property
Where property
can be
GEN_NUMBER LEVEL_NUMBER
MEMBER_NAME,
MEMBER_ALIAS

Equivalent MDX construct not required.

Please see the section MDX and Sorting

 

   



[                  ]

<ORDERBY

<RESTRICT

<TOP

<BOTTOM

ORDER (<set>,
<numeric_value_expression>,
BASC|BDESC)

FILTER (<set>,
<conditional_expression>)

TOPCOUNT
(set , index
[,numeric_value_expression])

BOTTOMCOUNT (set , index
[,numeric_value_expression])

Please see the section MDX and Advanced
Filtering Options.

Please see the section MDX and Advanced
Filtering Options

Please see the section MDX and Advanced
Filtering Options

Please see the section MDX and Advanced
Filtering Options

     

   



[                  ]

SUPMISSINGROWS

All other report writer
format commands

like WIDTH, ZERO-
TEXT etc.

NON EMPTY Please see the section MDX and
Suppression of Missing Values in Output

MDX does not support any formatting com-
mands.

 

   



[                  ]

All Column or Row
Calculation com-

mands

MDX does not support any such com-
mands. Calculated members can be used
to perform custom calculations in query.

    

   

[                  ]



OutMbrAlt

OutAltMbr

OutAlt

OutAltNames

OutAltSelect

Use the Api EssMdxSetMbrIdType and
specify the property MEMBER_NAME or
MEMBER ALIAS in DIMENSION PROPER-
TIES clause for every axis. The current alias
table will be used to return the alias.

Use the Api EssMdxSetMbrIdType and
specify the property MEMBER_NAME or
MEMBER ALIAS in DIMENSION PROPER-
TIES clause for every axis. The current alias
table will be used to return the alias.

Use the Api EssMdxSetMbrIdType to set
ESS_MDX_MEMBERIDTYPE_ALIAS. The
current alias table will be used to return the
alias.

Not needed in MDX.

No equivalent MDX construct available in
7.0.

     

   

 
  ,    ..

Hyperion is the global leader in Business Performance

Management software. More than 9,000 customers – includ-

ing 91 of the FORTUNE 100 – rely on Hyperion software to

translate strategies into plans, monitor execution and provide

insight to improve financial and operational performance.

Hyperion combines the most complete set of interoperable

applications with the leading business intelligence platform to

support and create Business Performance Management

solutions. A network of more than 600 partners provides the

company’s innovative and specialized solutions and services.

Named one of the FORTUNE 100 Best Companies to

Work For 2004, Hyperion employs approximately 2,600

people in 20 countries. Distributors represent Hyperion in an

additional 25 countries. Headquartered in Sunnyvale,

California, Hyperion – together with recently acquired Brio

Software Inc. – generated combined annual revenues of $612

million for the 12 months ending June 30, 2003. Hyperion is

traded under the Nasdaq symbol HYSL. For more informa-

tion, please visit www. hyperion.com, www.hyperion.com/

contactus or call 800 286 8000 (U.S. only).

© 2004 Hyperion Solutions Corporation. All rights reserved. “Hyperion,” the Hyperion “H” logo and Hyperion’s product names are trademarks of Hyperion. References to other
companies and their products use trademarks owned by the respective companies and are for reference purpose only. 4247_0204

                                 ,       

      .   .       .         .        .   .   



1 Note that Hyperion also supports the production of MDX results in XML format through its sup-
port for XML for Analysis (XMLA). XMLA opens up new possibilities in the integration of
Essbase-held information in an enterprise. This paper will not discuss XMLA; please refer to the
XML for Analysis API Reference in the Essbase Deployment Services technical documentation.

