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About Hyperion Custom Authentication
A custom authentication module is a Java module that a customer develops and implements to
authenticate Hyperion users. Generally, Hyperion products use a login screen to capture the
user name and password, which are used to authenticate users. Instead of using Hyperion
authentication, you can write a custom authentication module to authenticate users belonging
to the user directory configured in an Hyperion environment.

Implementing a custom authentication module does not involve modifying Hyperion products.
You deploy the custom Java module on the server to seamlessly integrate your own
authentication module with Hyperion.

A custom authentication module may be used with both the thick clients (for example, Oracle's
Hyperion® Smart View for Office) and thin clients (for example, Oracle's Hyperion®
Workspace).

The custom authentication module uses the information a user enters when logging into an
Hyperion product. If enabled for a user directory, it authenticates users through the custom
authentication module. On successfully authenticating the user, the custom authentication
module returns the user name.

The following illustration presents a sample custom authentication scenario:

For example, you can use RSA SecurID infrastructure as the custom provider to ensure
transparent strong authentication to Hyperion products. The overview of steps:

1. The user enters credentials (generally, user name and password) to access an Hyperion
product. These credentials should uniquely identify the user to the provider used by the
custom authentication module. For example, if you are using an RSA SecurID infrastructure
to authenticate users, the user enters an RSA user ID and PIN (not an Hyperion user ID and
password).
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2. Using the search order (see Oracle Hyperion Enterprise Performance Management System
Security Administration Guide for details), Hyperion cycles through configured user
directories to locate the user.

● If the current user directory is not configured for custom authentication, Hyperion tries
to locate and authenticate the user through Hyperion authentication.

● If the user directory is configured for custom authentication, Hyperion delegates the
authentication process to the custom module.

3. If Hyperion delegates authentication to the custom module, the custom authentication
module accepts the credentials and uses its own logic to direct user authentication against
a custom provider; for example, RSA SecurID infrastructure.

4. If the custom authentication module authenticates the user against its provider, it returns
the user name to Hyperion, or it returns a Java exception.

The user name returned by the custom authentication module must be identical to a user
name in one of the user directories that is enabled for custom authentication.

● If the custom authentication module returns a user name, Hyperion locates the user in
a user directory that is enabled for custom authentication. At this stage, Hyperion does
not search the user directories that are not configured for custom authentication.

● If the custom authentication module throws an exception or returns a null user,
Hyperion continues to search for the user in the remaining user directories in the search
order. If a user that matches the credentials is not found, Hyperion displays an error.

Use Case Examples and Limitations
Custom authentication implementation scenarios include the following:

● Adding one-time password support

● Performing authentication against a Resource Access Control Facility (RACF)

● Adding Simple Authentication and Security Layer (SASL) bind to LDAP-enabled user
directories instead of simple LDAP binds

Authentication with challenge/response mechanism may not work well if you implement a
custom authentication module. Custom messages thrown by the custom authentication module
are propagated to the clients.
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Design and Coding Considerations

Subtopics

● Search Order

● User Directories and Custom Authentication Module

● CSSCustomAuthenticationIF Java Interface

Search Order
In addition to Native Directory, multiple user directories can be configured in Oracle's
Hyperion® Shared Services. After configuring, you should add external user directories to the
search order, which determines the sequence in which Shared Services cycles through the user
directories to locate users. You can modify the search order from Oracle's Hyperion® Shared
Services User Management Console. Excepting Native Directory, you can remove configured
user directories from the search order. Hyperion does not use the user directories that are not
included in the search order. See the Oracle Hyperion Enterprise Performance Management System
Security Administration Guide.

The search order determines the order in which Hyperion cycles through the user directories to
authenticate users. If the user is authenticated in a user directory, Hyperion stops the search and
returns the user. Hyperion denies authentication and returns an error if the user cannot be
authenticated against any user directories in the search order.

Impact of Custom Authentication on Search Order
The use of custom authentication affects how Hyperion security interprets the search order.

If the custom authentication module returns a user name, Hyperion locates the user only in a
user directory that is enabled for custom authentication. At this stage, Hyperion ignores user
directories that are not configured for custom authentication.

Understanding the Custom Authentication Flow
The following use case scenarios are used to explore custom authentication flow:

● “Use Case Scenario 1” on page 4

● “Use Case Scenario 2” on page 6

● “Use Case Scenario 3” on page 6

Use Case Scenario 1

Table 1 details the Hyperion user directory configuration and search order used in this scenario.
This scenario assumes that the custom authentication module uses an RSA infrastructure to
authenticate users.
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Table 1 Setup for Scenario 1

User Directory Type and
Name

Search Order Custom
Authentication

Sample User Names Password1

Native Directory 1 Disabled test_user_1

test_user_2

test_user_3

password

LDAP-Enabled

SunONE_West

2 Disabled test_ldap1

test_ldap_2

test_user_3

test_ldap_4

ldappassword

LDAP-Enabled

SunONE_East

3 Enabled test_ldap1

test_ldap_2

test_user_3

ldappassword on SunONE and
RSA PIN in custom module

1For simplicity, it is assumed that all users use the same user directory password.

To initiate the authentication process, a user enters a user name and password in the login screen
of an Hyperion product.

In this scenario, the custom authentication module performs the following actions:

● Accepts a username and RSA PIN as the user credentials

● Returns a username in username@providername format or as username, for example,
test_ldap_2@SunONE_East or test_ldap_2 to Hyperion security.

Table 2 User interaction and results

User Name and Password Authentication Result Login User Directory

test_user_1/password Success Native Directory

test_user_3/password Success Native Directory

test_user_3/ldappassword Success SunONE_West (search order 2)1

test_user_3/RSA PIN Success SunONE_East (search order 3)2

test_ldap_2/ldappassword Success SunONE_West (search order 2)

test_ldap_4/RSA PIN Failure

Hyperion displays an authentication error.3

 

1The custom authentication cannot authenticate this user because the user entered Hyperion credentials. Hyperion can identify this user only
in a user directory that is not enabled for custom authentication. The user is not in Native Directory (search order number 1)but is identified in
SunONE West (search order number 2).
2Hyperion does not find this user in Native Directory (search order number 1) or SunONE West (search order number 2). The custom authentication
module validates the user against RSA Server and returns test_user_3@SunONE_EAST to Hyperion. Hyperion locates the user in
SunONE East (search order number 3), which is a custom authentication–enabled user directory.
3Oracle recommends that all users authenticated by the custom module be present in a custom authentication–enabled user directory included
in the search order. Login fails if the user name that is returned by the custom authentication module is not present in a custom authentication–
enabled user directory included in the search order.
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Use Case Scenario 2

Table 3 details the Hyperion user directory configuration and search order used in this scenario.
This scenario assumes that the custom authentication module uses an RSA infrastructure to
authenticate users.

In this scenario, the custom authentication module performs the following actions:

● Accepts a user name and RSA PIN as the user credentials

● Returns a user name, for example, test_ldap_2 to Hyperion security

Table 3 Setup for Scenario 2

User Directory Search Order Custom Authentication Sample User Names Password1

Native Directory 1 Disabled test_user_1

test_user_2

test_user_3

password

LDAP-Enabled, for
example, SunONE

2 Enabled test_ldap1

test_ldap2

test_user_3

ldappassword on SunONE and RSA PIN in
custom module

1For simplicity, it is assumed that all users use the same user directory password.

To initiate the authentication process, a user enters a user name and password in the login screen
of an Hyperion product.

Table 4 User interaction and results

User Name and Password Login Result Login User Directory

test_user_1/password Success Native Directory

test_user_3/password Success Native Directory

test_user_3/ldappassword Failure SunONE1

test_user_3/RSA PIN Success SunONE2

1Authentication of user against Native Directory fails because of password mismatch. Authentication of user using the custom authentication
module fails because password used is not a valid RSA PIN. Hyperion does not try to authenticate this user in SunONE (search order 2), because
custom authentication settings override Hyperion authentication in this directory.
2Authentication of user against Native Directory fails because of password mismatch. The custom authentication module authenticates the user
and returns the user name test_user_3 to Hyperion.

Use Case Scenario 3

Table 5 details the Hyperion user directory configuration and search order used in this scenario.
This scenario assumes that the custom authentication module uses an RSA infrastructure to
authenticate users.

For clarity in scenarios such as this, Oracle recommends that your custom authentication module
return the user name in username@providername format; for example,
test_ldap_4@SunONE.
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Table 5 Setup for Scenario 3

User Directory Search Order Custom Authentication Sample User Names Password1

Native Directory 1 Enabled test_user_1

test_user_2

test_user_3

RSA PIN

LDAP-Enabled, for
example, MSAD

2 Disabled test_ldap1

test_ldap4

test_user_3

ldappassword

LDAP-Enabled, for
example, SunONE

3 Enabled test_ldap1

test_ldap4

test_user_3

ldappassword on SunONE and RSA PIN
in custom module

1For simplicity, it is assumed that all users use the same user directory password.

To initiate the authentication process, a user enters a user name and password in the login screen
of an Hyperion product.

Table 6 User interaction and results

User Name and Password Authentication Result Login User Directory

test_user_1/RSA PIN Success Native Directory

test_user_3/RSA PIN Success Native Directory

test_user_3/ldappassword Success MSAD (search order 2)

test_ldap_4/ldappassword Success MSAD (search order 2)

test_ldap_4/RSA PIN Success SunONE (search order 3)

User Directories and Custom Authentication Module
To use the custom authentication module, user directories that contain Hyperion user and group
information can be individually configured to delegate authentication to the custom module.

Hyperion users who are authenticated using a custom module must be present in one of the
user directories included in the search order (see “Search Order” on page 4). Also, the user
directory must be configured to delegate authentication to the custom module.

The identity of the user in the custom provider (for example, 1357642 in RSA SecurID
infrastructure) may be different from the user name in the user directory (for example, jDoe in
an Oracle Internet Directory) configured in Shared Services. After authenticating the user, the
custom authentication module must return the user name jDoe to Hyperion.
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Note: As a best practice, Oracle recommends that the user name in the user directories
configured in Hyperion be identical to those available on the user directory used by the
custom authentication module.

CSSCustomAuthenticationIF Java Interface
The custom authentication module must use the CSSCustomAuthenticationIF Java interface
to integrate with Hyperion security framework. It must return a user name string if custom
authentication is successful or a an error message if authentication is not successful. For the
authentication process to be completed, the user name returned by the custom authentication
module must be present in one of the user directories included in Shared Services search order.
Hyperion security framework supports the username@providerName format.

Note: Ensure that the user name that the custom authentication module returns does not
contain an * (asterisk) because Hyperion security framework interprets it as a wildcard
character while searching for users.

See “Sample Code 1” on page 8 for CSSCustomAuthenticationIF interface signature.

Your custom authentication module can be a single class file. It must be included in
CustomAuth.jar. The package structure is unimportant.

For detailed information about the CSSCustomAuthenticationIF interface, see Security API
documentation.

Authenticate Method
The authenticate method from CSSCustomAuthenticationIF supports custom
authentication. The authenticate method accepts credentials (user name and password) that
the user entered while trying to access the Hyperion as input parameters. This method returns
a string (user name) if custom authentication is successful. It throws a
java.lang.Exception if authentication is not successful. The user name returned by the
method should uniquely identify a user in one of the user directories included in Shared Services
search order. Hyperion security framework supports the username@providerName format.

See “Sample Code 1” on page 8 for authenticate method signature.

Note: To initialize resources; for example, a JDBC connection pool, use the class constructor.
Doing so improves performance by not loading resources for every authentication.

Sample Code 1
The following code snippet is an empty implementation of the custom module.

package com.hyperion.css.custom;
import java.util.Map;
import com.hyperion.css.common.CSSCustomAuthenticationIF;
import org.apache.log4j.Logger; // imports Log4j's Logger
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  public class CustomAuthenticationImpl 
               implements CSSCustomAuthenticationIF {
    //Get the Logger to log exception or debug information
    //Log information is written to the Shared Services security log 
    static Logger logger=Logger.getLogger 
                         ("com.hyperion.css.commonustom.CustomAuthenticationImpl");
      public String authenticate(Map context,String userName,
                                 String password) throws Exception{
        try{
          //Custom code to find and authenticate the user goes here.
          //The code should do the following:
          //if authentication succeeds:
                //set authenticationSuccessFlag = true
                //return authenticatedUserName
          // if authentication fails:
                //ensure debug is enabled using logger.isDebugEnabled()
                //log an authentication failure
                //throw authentication exception
        }
        catch (Exception e){
          //Custom code to handle authentication exception goes here
          //Create a new exception, set the root cause
          //Set any custom error message
          //Return the exception to the caller
        }
        return authenticatedUserName;
        }
  }

Input parameters are as follows:

● context: A map that contains key-value pair of locale information

● user name: An identifier that uniquely identifies the user to the user directory where the
custom module authenticates the user. The user enters the value of this parameter while
logging into an Hyperion product.

● password: The password set for the user in the user directory where the custom module
authenticates the user. The user enters the value of this parameter while logging into an
Hyperion product.

Sample Code 2
The following sample code demonstrates custom authentication of users using user name and
password contained in a flat file. You must initialize user and password lists in the class
constructor to make this work.

package com.hyperion.css.security;
import java.util.Map;
import java.util.HashMap;
import com.hyperion.css.common.CSSCustomAuthenticationIF;
import java.io.*;

public class CSSCustomAuthenticationImpl implements CSSCustomAuthenticationIF{
  //get the Logger to log Exception or other info useful for debugging
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  /*static Logger logger = Logger.getLogger
    ("com.hyperion.css.custom.CSSCustomAuthenticationImpl"); */
  static final String DATA_FILE = "datafile.txt";
/**
  * authenticate method includes the core implementation of the
  * Custom Authentication Mechanism. If custom authentication is 
  * enabled for the provider, authentication operations
  * are delegated to this method. Upon successful authentication,
  * this method returns a valid user name, using which System 9
  * retrieves the user from a custom authentication enabled provider.
  * User name can be returned in the format username@providerName, 
  * where providerName indicates the name of the underlying provider 
  * where the user is available. authenticate method can use other 
  * private methods to access various core components of the 
  * custom authentication module.
  *   @param context
  *   @param userName
  *   @param password
  *   @return
  *   @throws Exception
*/
Map users = null;
public CSSCustomAuthenticationImpl(){
  users = new HashMap();
  InputStream is = null;
  BufferedReader br = null;
  String line;
  String[] userDetails = null;
  String userKey = null;
  try{
     is = CSSCustomAuthenticationImpl.class.getResourceAsStream(DATA_FILE);
     br = new BufferedReader(new InputStreamReader(is));
     while(null != (line = br.readLine())){
        userDetails = line.split(":");
          if(userDetails != null && userDetails.length==3){
            userKey = userDetails[0]+ ":" + userDetails[1];
            users.put(userKey, userDetails[2]);
          }
      }
     }
  catch(Exception e){
        
        }
  finally{
     try{
        if(br != null) br.close();
        if(is != null) is.close();
     }
     catch(IOException ioe){
        ioe.printStackTrace();
     }
  }
}
/* Use this authenticate method snippet to return username from a flatfile */

public String authenticate(Map context,String userName, String password)throws 
Exception{
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  //UserName : user input for the userName
  //Password : user input for password
  //context  : Map, can be used to additional information required by 
  //           the custom authentication module.
        
  String authenticatedUserKey = userName + ":" + password;

  if(users.get(authenticatedUserKey)!=null)
     return(String)users.get(authenticatedUserKey);
  else throw new Exception("Invalid User Credentials");
    }

/* Refer to this authenticate method snippet to return username in 
   username@providername format */

public String authenticate(Map context,String userName, String password)throws 
Exception{

  //UserName : user input for userName
  //Password : user input for password
  //context  : Map, can be used to additional information required by 
  //           the custom authentication module.

  //Your code should uniquely identify the user in a custom provider 
  //and in a configured user directory in Shared Services. system 9 
  //Security expects you to append the provider name to the user name.
  //Provider name must be identical to the name of a custom 
  //authentication-enabled user directory specified in Shared Services.

  //If invalid arguments, return null or throw exception with 
  //appropriate message and set authenticationSuccessFlag = false    

  String authenticatedUserKey = userName + ":" + password;
  if(users.get(authenticatedUserKey)!=null)
     String userNameStr = (new StringBuffer())
                           .append((String)users.get(authenticatedUserKey))
                           .append("@").append(PROVIDER_NAME).toString();
            return userNameStr;
  else throw new Exception("Invalid User Credentials");
    }
}

Data File for Sample Code 2
Ensure that the data file is named datafile.txt, which is the name used in the sample code,
and that it is included in the Java archive that you create.

Use the following as the contents of the flat file that is used as the custom user directory to
support the custom authentication module implemented by Sample Code 2 (see “Sample Code
2” on page 9).

xyz:password:admin
test1:password:test1@LDAP1
test1:password:test1
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test1@LDAP1:password:test1@LDAP1
test1@1:password:test1
user1:Password2:user1@NTLM1
user1_1:Password2:user1
user3:Password3:user3
DS_User1:Password123:DS_User1@MSAD1
DS_User1:Password123:DS_User1
DS_User1@1:Password123:DS_User1

Use the following as the contents of the flat file that is used as the custom user directory if you
plan to return user name in username@providername format.

xyz:password:admin
test1:password:test1
test1@1:password:test1
user1_1:Password2:user1
user3:Password3:user3
DS1_1G100U_User61_1:Password123:DS1_1G100U_User61
DS1_1G100U_User61_1@1:Password123:DS1_1G100U_User61
TUser:password:TUser

Deploying the Custom Authentication Module
Only one custom module is supported for an Hyperion deployment. You can enable custom
authentication for one or more user directories in the search order.

The custom authentication module must implement the public interface
CSSCustomAuthenticationIF, which is defined in the com.hyperion.css.common
package. This document assumes that you have a fully functional custom module that defines
the logic for authenticating users against the user provider of your choice. After you develop and
test a custom authentication module, you must implement it in Hyperion environment.

Overview of Steps
To implement the custom authentication module, complete the following steps:

● Stop Hyperion products including Shared Services and any systems that use Shared Services
APIs.

● Copy custom authentication module to the classpath. See “Deploying the Custom
Authentication Module” on page 13.

● Deploying Shared Services to the application server

● Update user directory configurations. See:

❍ “Enabling Custom Authentication Module” on page 16

❍ “Disabling Custom Authentication for a Specific External User Directory” on page
17

❍ “Enabling Custom Authentication for Native Directory” on page 18
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● Complete the deployment of the custom authentication module for Hyperion products that
depend on Shared Services to manage security.

● Start Hyperion products and processes.

Prerequisites
● A fully tested Java archive named CustomAuth.jar, that contains custom authentication

module libraries. CustomAuth.jar must implement the public interface
CSSCustomAuthenticationIF, defined in com.hyperion.css package as a part of the
standard Shared Services APIs.

● Access to Shared Services as Shared Services administrator

Deploying the Custom Authentication Module
To deploy the custom authentication module, you must add the custom authentication module
Java archive (CustomAuth.jar) to the classpath of Shared Services. You must also add the
archive to the classpath of Hyperion products that depend on Shared Services for managing
security. Add the custom authentication module Java archive in the following locations:

● A common location on each non-J2EE Hyperion product host machines. See “Adding
Custom Authentication Module to Common Location on Hyperion Host Machines” on
page 14.

● Classpath of Hyperion J2EE components.

For non-J2EE applications, perform product-specific procedures. See:

❍ “Adding a Custom Module to the Reporting and Analysis Core Services Classpath” on
page 14

❍ “Adding a Custom Module to the Essbase Classpath” on page 15

❍ “Adding a Custom Module to the Financial Management Classpath” on page 15

● Configure Shared Services to use the custom authentication module. See “Shared Services
Procedures ” on page 16

Note: After deploying a custom authentication module, review “Documentation Update:
Hardening System 9 Security” in the Hyperion Shared Services Release 9.3.3.0.00 Readme
for information on securing Hyperion products, including the procedure to regenerate
SSO Encryption Key.

To view the most recent version of this Readme, see the 9.3.x documentation library on
Oracle Technology Network (OTN).
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Adding Custom Authentication Module to Common Location on Hyperion
Host Machines
Add the custom module Java archive (CustomAuth.jar) to HYPERION_HOME/common/CSS/
VERSION_NUM/lib on each machine that hosts a non_J2EE Hyperion product. Generally, this
common location is identified in the application classpath.

➤ To add the custom authentication module to the common location:

1 Stop all Hyperion products.

2 On each Hyperion product host machine, copy the custom authentication module Java archive into
HYPERION_HOME/common/CSS/VERSION_NUM/lib.

Adding Custom Authentication Module to J2EE Application Classpath
Use this section to add the custom authentication module Java archive to the classpath of System
9 J2EE Web applications. The following are not J2EE Web applications.

● Oracle's Hyperion® Essbase® – System 9

● Oracle's Hyperion® Reporting and Analysis – System 9 Core Services

● Oracle's Hyperion® Financial Management – System 9

Note: After adding a custom module to the classpath, you must perform additional Shared
Services procedures to make custom authentication operational. See “Shared Services
Procedures ” on page 16.

➤ To add a custom authentication module to the classpath for Hyperion J2EE applications:

1 Ensure that Hyperion products are not running.

2 On the server that hosts Hyperion application, copy custom authentication Java archive into the
classpath. The classpath is generally HYPERION_HOME/deployments/APP_SERVER/
PRODUCT_CODE/webapps/APP_CONTEXT/WEB-INF/lib.

For example, the classpath of Shared Services deployed on Tomcat 5 is HYPERION_HOME/
deployments/Tomcat5/SharedServices9/webapps/interop/WEB-INF/lib.

Adding a Custom Module to the Reporting and Analysis Core Services
Classpath
Make sure that custom authentication module is copied into the Workspace classpath. See
“Deploying the Custom Authentication Module” on page 13.

➤ To enable Reporting and Analysis Core Services custom authentication:

1 Make sure that Workspace and Reporting and Analysis Core Services are shut down.
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2 Make sure that the custom authentication module Java archive is available in HYPERION_HOME/
common/CSS/9.3.1/lib on the machine where Oracle's Hyperion® Reporting and Analysis –
System 9 Core Services is deployed.

3 Add the custom authentication Java archive to the classpath.

a. Using a text editor, open HYPERION_HOME/common/workspacert/9.3.1/bin/
workspace.app.

b. Add an entry such as the following for the custom authentication Java archive:

${home}/common/CSS/9.3.1/lib/CustAuth.jar, where CustAuth.jar
indicates the name of the custom authentication module Java archive.

c. Save and close workspace.app.

Adding a Custom Module to the Essbase Classpath
To enable custom authentication, you must add the custom authentication class files to the
Oracle's Hyperion® Shared Services Java archive (css-9_3_1.jar) that Essbase uses.

➤ To add a custom module to the Essbase classpath:

1 Make sure that Essbase Server is shut down.

2 On the machine that hosts Oracle's Hyperion® Essbase® – System 9 Server, add the custom
authentication module to css-9_3_1.jar .

a. Create a backup copy of HYPERION_HOME/common/CSS/9.3.1/lib/
css-9_3_1.jar

b. Using the jar command, extract the contents of HYPERION_HOME/common/CSS/9.3.
1/lib/css-9_3_1.jar into a temporary directory; for example, temp1.

c. Copy the custom authentication module class files into the temporary directory where
you extracted the contents of css-9_3_1.jar.

Note: Be sure to copy the class files into the directory appropriate for your package
structure. If you used com.yourcompany.customauth package, make sure that
your class files are copied to com/yourcompany/customauth within the
temporary directory.

d. Using the jar command, recreate css-9_3_1.jar using the contents of the temporary
directory. Make sure that the directory structure is maintained in css-9_3_1.jar.

3 Copy css-9_3_1.jar from the preceding step to HYPERION_HOME/common/CSS/9.3.1/
lib, replacing the existing file.

Adding a Custom Module to the Financial Management Classpath
To add a custom module to the Financial Management classpath, you must update the Windows
registry with the location and name of the of the custom module.
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➤ To add a custom module to the Financial Management classpath:

1 Stop all Financial Management processes, especially CASSecurity.exe.

2 Make sure that the custom authentication module Java archive is available in HYPERION_HOME/
common/CSS/9.3.1/lib.

3 In Windows registry, append the location of the custom module Java archive; for example,
%HYPERION_HOME%\COMMON\css\9.3.1\lib\customAuth.jar to the Oracle's Hyperion®
Financial Management – System 9 value data of the following key. Be sure to use a semicolon (;) to
separate the existing value data from the path that you append.

HKEY_LOCAL_MACHINE\SOFTWARE\Hyperion Solutions\Hyperion Financial

Management\Server\Authentication\ClassPath

Shared Services Procedures

Subtopics

● Enabling Custom Authentication Module

● Disabling Custom Authentication for a Specific External User Directory

● Enabling Custom Authentication for Native Directory

Enabling Custom Authentication Module
By default, custom authentication is not enabled in Hyperion. After you enable its use, Hyperion
security automatically picks up the custom authentication module if its class file uses the
expected default class name (CustomAuthenticationImpl) and package
(com.hyperion.css.custom) structure. The name of the Java archive that contains the class
file is not relevant (suggested name is customAuth.jar). In this scenario, you need not specify
the custom authentication class name as described in this discussion.

If you use a custom class name or package structure in the Java archive, you must enter the fully
qualified Java class name of the custom authentication class in CSS.xml.

Note: By default, all configured user directories other than Native Directory are enabled to use
the custom authentication module, if available.

See “Sample CSS.xml” on page 19 for sample CSS.xml

➤ To enable custom authentication module:

1 Using a text editor, open HYPERION_HOME/deployments/APP_SERVER/
SharedServices9/config/CSS.xml.

2 Optional: If you are using a custom class name or package structure, create an entry similar to the
following. This entry must be outside the <spi> definition.

<customModules>
     <authenticateModule>FQCN of Custom Authentication class
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     </authenticateModule>
</customModules>

Note: The expected value in the <authenticateModule> tag is the fully qualified class
name of the custom authentication class that implements the
CSSCustomAuthenticationIF interface. For example,
com.mycompany.custom.MyCustomAuthentication.

3 Save CSS.xml.

Disabling Custom Authentication for a Specific External User Directory
By default, all the providers except Native Directory are enabled to use the custom authentication
module, if available. If custom authentication is to be disabled for any of the configured external
user directories, you must make the necessary configuration changes by editing CSS.xml. See
“Sample CSS.xml” on page 19 for sample CSS.xml.

➤ To disable custom authentication for an external user directory:

1 Using a text editor, open HYPERION_HOME/deployments/APP_SERVER/
SharedServices9/config/CSS.xml.

2 Include the following tag inside the definition of each external user directory for which custom
authentication is to be turned off.

<authenticationModuleEnabled>false</authenticationModuleEnabled>

For example, your user directory definition may be as follows after adding this tag:

       <ldap name="LDAP1">
             <vendor>Sun One LDAP</vendor> 
             <trusted>true</trusted> 
             <url>ldap://myServer:4816/dc=hyperion,dc=com</url> 
             <authType>simple</authType> 
             <maxSize>0</maxSize> 
             <identityAttribute>nsuniqueid</identityAttribute> 
             <identityAttributeType>String</identityAttributeType> 
             <user>
                  <url>ou=People</url> 
                  <loginAttribute>uid</loginAttribute> 
                  <fnAttribute>givenName</fnAttribute> 
                  <snAttribute>sn</snAttribute> 
                  <emailAttribute>mail</emailAttribute> 
                 <objectclass>
                      <entry>person</entry> 
                      <entry>organizationalPerson</entry> 
                      <entry>inetorgperson</entry> 
                 </objectclass>
             </user>
             <group>
                  <useGroups>true</useGroups> 
                 <url /> 
             </group>
             <authenticationModuleEnabled>false</authenticationModuleEnabled> 
         </ldap>
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3 Save CSS.xml.

Enabling Custom Authentication for Native Directory
You can enable custom authentication for Native Directory by updating CSS.xml. See “Sample
CSS.xml” on page 19 for sample CSS.xml

➤ To enable custom authentication for Native Directory

1 Using a text editor, open HYPERION_HOME/deployments/APP_SERVER/
SharedServices9/config/CSS.xml.

2 Include the following tag inside the Native Directory definition.

<authenticationModuleEnabled>true</authenticationModuleEnabled>

For example, your Native Directory definition may be as follows after adding this tag:

<native name="Native Directory">
     <password>{CSS}xxxXXXXcgiE/dGr8rFdvQLcA==</password> 
     <authenticationModuleEnabled>true</authenticationModuleEnabled>
</native>

3 Make sure that custom authentication is enabled. See “Enabling Custom Authentication Module” on
page 16

4 Save CSS.xml.

Testing Your Deployment
If Native Directory is not configured for custom authentication, do not use Native Directory
users to test custom authentication.

Note: It is your responsibility to identify and correct any issues with the custom authentication
module. Oracle assumes that your custom module works flawlessly to map a user from
the user directory used by the custom module to a user on a custom authentication-
enabled user directory available in Hyperion search order.

To test your deployment, log into Hyperion using user credentials from the user directory; for
example, an RSA SecurID infrastructure, used by the custom module. These credentials may be
different from the Hyperion credentials.

Your implementation can be considered successful if Hyperion products allow you to access
their resources. An error indicating that the user was not found is not always an indicator of an
unsuccessful implementation. In such cases, verify that credentials you entered are present in
the custom user store and a matching user is present in one of the custom authentication-enabled
user directories in Hyperion search order.

➤ To test custom authentication:

1 Make sure that Hyperion products are running.
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2 Launch Oracle's Hyperion® Shared Services User Management Console or Oracle's Hyperion®
Workspace.

3 Log in as a user defined on the user directory, used by the custom authentication module.

a. In Username, enter your user identifier; for example, an RSA User ID.

b. In Password, enter a password; for example, an RSA PIN.

c. Click Login.

4 Verify that you can access Hyperion product resources.

Sample CSS.xml
In the following sample CSS.xml:

● Native Directory is enabled to use custom authentication.

● External user directory LDAP1 is not enabled to use custom authentication

● External user directory MSAD1 is configured to support custom authentication

<?xml version="1.0" encoding="UTF-8" 
<css>
    <hub location="http://myServer.hyperion.com:58080">
         <dirPort>58089</dirPort> 
    </hub>
    <spi>
         <provider>

             <native name="Native Directory">
                  <password>{CSS}4N6lVcgiE/dGr8rFdvQLcA==</password> 
                  <authenticationModuleEnabled>false</authenticationModuleEnabled>
            </native>

         <ldap name="LDAP1">
             <vendor>Sun One LDAP</vendor> 
             <trusted>true</trusted> 
             <url>ldap://myServer:4816/dc=hyperion,dc=com</url> 
             <authType>simple</authType> 
             <maxSize>0</maxSize> 
             <identityAttribute>nsuniqueid</identityAttribute> 
             <identityAttributeType>String</identityAttributeType> 
             <user>
                  <url>ou=People</url> 
                  <loginAttribute>uid</loginAttribute> 
                  <fnAttribute>givenName</fnAttribute> 
                  <snAttribute>sn</snAttribute> 
                  <emailAttribute>mail</emailAttribute> 
                 <objectclass>
                      <entry>person</entry> 
                      <entry>organizationalPerson</entry> 
                      <entry>inetorgperson</entry> 
                 </objectclass>
             </user>
             <group>
                  <useGroups>true</useGroups> 
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                 <url /> 
            </group>
            <authenticationModuleEnabled>false</authenticationModuleEnabled> 
         </ldap>

        <msad name="MSAD1">
             <vendor>Microsoft</vendor> 
             <trusted>true</trusted> 
             <url>ldap://myServer-3:389/DC=ctgdev03,DC=hyperion,DC=com</url> 
             <userDN>cn=Administrator,CN=Users,DC=ctgdev03,DC=hyperion,DC=com</userDN> 
             <password>{CSS}Gvhy1I2E/N6wF7kt6Jzq3Q==</password> 
             <authType>simple</authType> 
             <maxSize>0</maxSize> 
             <identityAttribute>ObjectGUID</identityAttribute> 
             <identityAttributeType>Octet String</identityAttributeType> 
             <user>
                 <url>OU=Performance</url> 
                  <loginAttribute>cn</loginAttribute> 
                  <fnAttribute>givenName</fnAttribute> 
                  <snAttribute>sn</snAttribute> 
                  <objectclass>
                      <entry>person</entry> 
                      <entry>organizationalPerson</entry> 
                      <entry>user</entry> 
                  </objectclass>
             </user>
             <group>
                  <useGroups>true</useGroups> 
                  <url /> 
             </group>
             </msad>

         </provider>
    </spi>
    <searchOrder>
         <el>Native Directory</el> 
         <el>LDAP1</el> 
         <el>MSAD1</el> 
    </searchOrder>
    <token>
         <timeout>480</timeout> 
    </token>
    <logger>
         <priority>WARN</priority> 
    </logger>
    <customModules>
         <authenticateModule>com.hyperion.css.security.CustomAuthenticationImpl
</authenticateModule>
    </customModules>
</css>

Tips and Tricks
After the authentication steps, Hyperion security checks the retrieved user name in a custom
authentication-enabled user directory included in the search order before verifying user roles.
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If you have configured the same user directory twice, one as custom authentication-enabled and
the other as custom authentication-disabled, ensure that you provision the user from the right
provider depending on whether the user logs in with an LDAP password or custom
authentication credentials.
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