

Extreme Performance Platform for Real-Time Streaming
Analytics
Achieve Massive Scalability on SPARC T7 with Oracle Stream Analytics

ORACL E WH I T E P A P E R | A P R I L 2 0 1 6

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Table of Contents

Disclaimer 1

SPARC T7 and M7 Servers 2

Oracle Stream Analytics on SPARC T7 3

Oracle Stream Analytics Architecture 4

Data Flow 4

Installation and Configuration of Test Environment 4

Prerequisite 5

Single OSA Instance 5

Multiple Instance Configuration 6

Benchmark 7

Performance Tuning 8

JVM Tuning 8

Solaris Tuning 9

Collecting Throughput Data 9

Benchmark Results 9

Conclusion 11

SPARC T7 and M7 Servers

Oracle’s SPARC T7 and M7 Servers built on SPARC M7 processors deliver

advanced security, deep integration from applications to cloud, and world record

performance. Forming the foundation of a new, open ecosystem, hardware and

software are converged, delivering unmatched customer value.

Most Advanced Security - Increasing risks and cyber threats make IT security

a high priority. Oracle’s SPARC T7 and M7 Servers with always-on memory

intrusion protection and comprehensive data encryption secure your data with no

performance penalty. Security in silicon features and Oracle Solaris protect data

in memory from unauthorized access and stop malware before it gets in.

Breakthrough Integration - By converging software functions into silicon,

Oracle’s SPARC T7 and M7 servers provide true integration from application to

processor. Acceleration of SQL queries for Oracle Database In-memory

processing provides outstanding efficiency for running OLTP and data analytics

simultaneously.

Extreme Performance - Running the SPARC M7 processor, the fastest in the

world, SPARC T7 and M7 servers deliver industry leading performance across a

wide range of applications. With 20 world record benchmarks, these new servers

are proven to be fast and efficient, and accomplish more in less time for your

enterprise applications and cloud services.

Whether you are running your enterprise applications on a traditional IT

infrastructure or implementing cloud services, Oracle’s SPARC Servers can

transform your business with advanced security, breakthrough integration, and

extreme performance. Engineered to meet cyber threats head on, SPARC

systems offer end-to-end data protection when you need it most. From scale-out

to scale-up systems, SPARC Servers are the best for Oracle Database and Java

applications and provide the greatest value for enterprise computing.

Oracle Stream Analytics on SPARC T7

Oracle Stream Analytics (OSA) is a platform that allows applications requiring

event-driven architecture to filter, query and process events in real-time with low

latency. It is built on industry standards including ANSI SQL, Spring DM and

OSGi. It has proven to be a high performance complex event-processing engine

that allows enterprises to maximize the value of high velocity data from various

data sources in real-time. With the ability to process fast data, Stream Analytics is

working greatly in a variety of industries. It performs real-time call detail record

monitoring in telecommunications industry. It allows financial service providers to

perform real-time risk analysis and financial transaction monitoring. Fraud

detection applications can be easily developed on the OSA platform. OSA’s

integrated Oracle Spatial capabilities allow it to perform real-time spatial

capabilities like mobile marketing. Due to its high performance, real-time

processing nature, OSA can be adapted to a large number of use cases in every

industry. At the heart of OSA is the built-in Oracle Continuous Query Language

(Oracle CQL) engine. It provides the ability to perform filtering, correlation,

aggregation, and pattern matching of the incoming real-time events while

connecting them with the persistent data from data stores and in-memory caches.

In this whitepaper, an application to detect DDoS attacks is taken as an example

to perform performance tuning and benchmarking on Oracle SPARC T7-4

system. The throughput of the benchmark result is reviewed and compared to that

of Oracle Exalogic Elastic Cloud X5-4 system.

Oracle Stream Analytics Architecture

Oracle Stream Analytics (OSA) adopts multi-layer software architecture. The Java

Virtual Machine (JVM) provides most fundamental support at the lowest level.

Above that is the OSGi framework, which manages the Java packages between

software modules and deals with class versioning and loading. Spring Dynamic

Modules lies above the OSGi framework, which is responsible for service

instantiation and dependency injection. Above that comes the OSA server

modules layer. This layer provides the core OSA functionality, including the CQL

engine, server management and input/output data handling. The highest level in

the architecture is the application layer.

Data Flow

A typical data flow through an OSA application starts from incoming event data

streams. The data is converted and used by an adapter to create event objects

that can be obtained by any component that registered to listen to the adapter. A

channel is one of those components that can listen to adapters. Data goes

through the channel all the way to the CQL processor component, which is able to

efficiently process data using the query language (CQL). The output can be sent

to downstream listeners.

Installation and Configuration of Test Environment

We use Oracle Analytics (OSA) and Solaris 11.3 64 bits for the benchmark. One

socket of a T7 system is made to exhaust by running 200 OSA instances on it

simultaneously. A T7-4 system has a total of 4 sockets. Each OSA instance has

a dedicated load generator that simulates real-time incoming events and sends it

to the OSA instance. The workflow is explained in detail in the Benchmark

Section.

Prerequisite

There are a bunch of setup files required to be configured before deploying and

running OSA instances.

1. A compatible Java version.

2. Ready-to-compile source code of the Application, written in Java and CQL,

and it’s best to be placed at $OEP_HOME/.

3. Required load generator files, or event generator files that act as input to

the application, if required. OSA installation sets up a default load-

generator at $OEP_HOME/ocep_11.1/utils/load-generator. It could be

customized to suit the specific requirements.

Single OSA Instance

Compiling the source code packaged into a ‘wlevs.jar’ file with the appropriate

Java version and the required JVM arguments should start up an OSA instance.

In this specific app, the ‘defaultserver9002’ is the directory that has the

‘startwlevs.sh’ script to start up the server. Running this script will deploy an OSA

server which starts listening events at the specified receive port. These settings

are in the ‘config.xml’ file under the ‘config’ folder.

The next step is to generate event data and send it over to the receiving App

port.

Multiple Instance Configuration

For deploying multiple OSA instances with identical configuration, it’s easier to

follow the steps below for a smooth run – here, about 10 instances are configured

to run:

1. Copy defaultserver directory into ten copies named as defaultserver1,

defaultserver2H defaultserver10.

2. Once all the copies are made, modify the startwlevs.sh start-up script

under each domain directory to make sure the loadgen.port and

timesyc.port are different across the 10 domains.

3. Modify the config.xml under defaultserver*/config directory accordingly to

ensure each listens at a unique port.

4. Run “startwlevs.sh” in different terminals after the above configuration is

done to deploy the 10 instances of “Dns Generation App”.

5. Setup the load generator. For each of the ten OSA instances, ten load

generators should be created and run. Make sure each of the load

generators are configured to send data at the corresponding OSA instance

receive port. This will guarantee the data sent from different load generator

will feed into different OSA instances. For more details about benchmark,

see the subsequent sections.

Benchmark

The DNS generator application was mainly laid out to detect malicious IP

addresses that result in a Distributed Denial of Service (DDOS) attack on a

system. It is accomplished by counting the number of UDP packets received per

IP address and sorting the counters to figure out which IP sent the most packets.

To build a test scenario for the application, a dedicated load generator program is

built. This program reads from a list of files, which in turn contains several

randomized UDP packet information strings. The load generator parses these

files line by line, formats these strings into the apt UDP format and sends them

over the assigned socket. The load generation can be local or remote.

The OSA application instance is always in a listening mode. And, when it

receives data on the socket it is configured to, it starts incrementing the packet

counter. Different OSA instances are deployed with different sockets.

The packet counter is printed out in regular intervals as the throughput for testing

purposes.

Here is the Event Processing Network (EPN) flow of the DNS generator app. It

describes the high level components of the application and the communication

flow.

Performance Tuning

JVM Tuning

Before benchmarking, we performed JVM tuning to the OSA to let OSA run in an

optimal JVM environment. When tuning JVM, only one load generator and one

instance are used. The goal is to let an OSA instance accept as much incoming

data stream as possible at a unit time duration. The load generator is configured

to send data from 8,000 to 50,000 events/sec to find out the peak value that an

OSA instance can accept, which has turned out to be around 34,000 events/sec

with a JVM flag configuration shown below:

JVM_ARGS='-server –Xms8G –Xmx8G -XX:SurvivorRatio=2 -

XX:+UseCompressedStrings -XX:+OptimizeStringConcat -XX:+UseStringCache -

XX:-UseISM -XX:MaxPermSize=4G -XX:NewSize=5G -

XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass'

For the benchmark, about 200 instances were deployed on the T7 socket with a

1TB memory. To reduce the memory usage, the heap sizes are reduced to 2G

for each of the JVM instance, thus with a configuration of:

JVM_ARGS='-server -Xms2G -Xmx2G -XX:SurvivorRatio=2 -

XX:+UseCompressedStrings -XX:+OptimizeStringConcat -XX:+UseStringCache -

XX:-UseISM -XX:MaxPermSize=1G -XX:NewSize=1G -

XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass'

Solaris Tuning

Solaris SPARC comes with a feature that allows for the creation of processor

sets, which are basically virtual processor groups. Processes can be bound to

run exclusively on these sets.

Each T7 socket has 32 cores with 8 threads each. i.e., a total of 256 threads or

virtual processors (or ‘vcpu’s). 200 of these processors are bound to each of the

200 OSA instances, thus, utilizing 25 cores of the T7 socket. Thus, all the

execution of the OSA instance is restricted to that particular thread. At the same

time, the other three sockets of the T7-4 i.e. about 750 threads are bound

together into one processor set. On this processor set, the 200 load generators

for the 200 OSA instances are run. The load generators need about ~2.5 vcpus

per instance for an optimal performance.

Collecting Throughput Data

As the application keeps receiving the UDP packets, the number of packets

received is collected in regular intervals. This number is averaged out and printed

in batches, every 5 seconds for each of the load generators. The throughput for

all the load generators is again combined to generate an average throughput per

load generator.

Benchmark Results

The following table shows the data collected for different test configurations done

at a core-by-core level. The maximum throughput achieved with the 200 OSA

instances on one T7-4 socket is 1.505 million operations per second. The same

tests were conducted on an Intel Xeon based X5-4 server, for a comparative

standard.

The following table shows the performances of both the T7-4 and the X5-4
sockets.

Machine Cores Instances Sending Rate Throughput/Instance CPU util(%) JVM Heap UDP buffer Net throughput

X5 1 2 25000 24500 4.44 8G 1G 49000

2 4 23000 22200 8.88 8G 1G 88800

3 6 22000 20700 13.33 8G 1G 124,200

4 8 20000 19500 17.77 8G 1G 160,000

6 12 19000 18000 30 8G 1G 216,000

8 16 18000 17000 35.5 8G 1G 272,000

10 20 17500 16800 44.44 8G 1G 336,000

12 24 17000 16200 53.33 8G 1G 384,000

18 36 15000 14500 85 8G 1G 522,000

T7 1 8 10000 9682 2.65 2G 1G 77456

2 16 10000 9663 4.06 2G 1G 154608

3 24 9000 8920 6.09 2G 1G 214080

4 32 9000 8750 10.62 2G 1G 280,000

6 48 9000 8600 15.93 2G 1G 412,800

8 64 9000 8369 21.25 2G 1G 535,616

10 80 9000 8300 26.56 2G 1G 664,000

12 96 9000 8196 33.01 2G 1G 786,816

18 144 9000 8045 50.62 2G 1G 1158480

25 200 9000 7527 70.3 2G 1G 1,502,000

As illustrated, the T7-4 clearly outperforms the X5-4 in terms of performance with

a world record result running an Oracle Stream Analytics (OSA) benchmark on

real world customer workload. A single SPARC M7 processor of a SPARC T7-4

server running OSA achieved a throughput result of 1.505 million ops/sec. The

SPARC M7 processor achieved 2.9 times the throughput of an x86 Intel Xeon

Processor E7-8895 v3 based server. Oracle Stream Analytics benefits from large

number of SPARC M7 processor hardware strands or virtual CPUs and Oracle

Solaris scheduling to increase throughput. End-to-end optimized Oracle Stream

Analytics and Java on SPARC M7 processor provides low cost solution to

customers to quickly process real time events.

Conclusion

This whitepaper reviews the Oracle Stream Analytics (OSA) architecture along

with some core features that OSA are equipped with. The main focus of this paper

is to provide readers an idea of how OSA performs on Oracle SPARC T-7 system.

Note that the benchmark used in this whitepaper uses only one socket of the T7-4

machine. Comparing the data collected from Exalogic X5-4 machine, T7 performs

much better with respect to performance using high volumes of incoming data

coupled with good scalability. For enterprises that require applications with high

throughput and scaling, OSA and T7 can provide a satisfying platform.

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615

April 2016]

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

