

API Gateway JMS Appendices

Copyright © 2013 Oracle

Published: May 2013

Applies To

API Gateway 11.1.2.x

Contents

Appendix A : Message Type—API Gateway in Provider Mode

Serializations from API Gateway Message to JMS Message

Appendix B: Message Extraction Method—API Gateway in Consumer Mode

Appendix C: Threading

Consumer Threads

Producer Threads

Appendix D: Session Context Cache

Appendix E: Acknowledgement

Appendix F: Reconnection

Appendix A : Message Type—API Gateway in Provider Mode
The Message Type option in the Messaging System filter enables the specification of the data type to be

serialized and sent in the JMS message to the JMS provider. The option selected depends on what part of

the message will be sent to the consumer. For example, to send the message body, select the option to

format the body according to the rules defined in the SOAP over JMS recommendation. Alternatively, to

serialize a list of name-value pairs to the JMS message, choose the option to create a MapMessage.

Serializations from API Gateway Message to JMS Message

When writing messages to the queue, the API Gateway extracts the content of the JMS message from a

configured attribute. The following options are available:

● Use the content.body attribute to create a message in the format specified in SOAP over

JMS: This results in a message placed on the queue that adheres to the SOAP over JMS

recommendation (http://www.w3.org/TR/soapjms/). This is a

javax.jms.BytesMessage, which is placed on the queue, and has a JMS property

containing the content type (text/xml).

● Map a Java object stored in a message attribute on the whiteboard to the corresponding JMS

message type: This results in a message placed on the queue where the JMS message type

is dependent on the type of object stored in the named attribute. Use the following table as a

guide:

Named attribute contains Results in following JMS Message on the queue

java.lang.String javax.jms.TextMessage

byte[] javax.jms.BytesMessage

java.util.Map javax.jms.MapMessage

java.lang.Serializable javax.jms.ObjectMessage

javax.jms.Message javax.jms.Message

Appendix B: Message Extraction Method—API Gateway in Consumer

Mode
The Extraction Method field on the JMS Consumer screen includes the following possible options:

● Create a content.body attribute based on the SOAP over JMS draft specification: This assumes

that a BytesMessage has been received, and one of the JMS properties contains a content-type

field with a value of text/xml. This results in a content.body attribute being populated on

the whiteboard of the API Gateway, and its value is a com.vordel.mime.XMLBody.

● Insert the JMS message directory into the attribute named below: This results in a

javax.jms.Message being placed on the whiteboard. The expectation here is that a scripting

filter is available in the policy that is called by the JMS consumer, which extracts information

from the javax.jms.Message object.

http://www.w3.org/TR/soapjms/

● Populate the attribute below with the value inferred from message type to Java: This results in a

Java object being placed on the whiteboard in the named attribute. The type of object placed on

the whiteboard is determined by the following table:

API Gateway receives JMS Message of type
Attribute of the following type placed on

whiteboard

javax.jms.TextMessage java.lang.String

javax.jms.BytesMessage byte[]

javax.jms.MapMessage java.util.Map

javax.jms.ObjectMessage java.lang.Object

When the JMS Consumer populates the whiteboard, it invokes the configured policy for processing the

message. If the received JMS message contains a ReplyTo field, the API Gateway automatically sends

the result of calling the policy to the source (queue or topic) in the ReplyTo field.

The JMS message sent to the ReplyTo source uses the reverse mechanism that was read from the queue.

If the consumer reads a JMS message, and populates a named attribute with a value inferred from the

message type to Java (TextMessage == String, and so on), when the policy completes, it looks for

this attribute, and infers the JMS response message type based on the object type stored in the attribute.

Appendix C: Threading

Consumer Threads

By default, the API Gateway’s JMS consumer has only a single thread listening for messages on the

queue. If the volume of messages arriving at the queue is greater than a single thread can process, you

can increase the number of threads listening on the queue by increasing the Listener Count to the

required number of threads. This option is available in the JMS Session under the API Gateway process in

the Policy Studio tree.

Producer Threads

When running without "Shared JMS session" option on the Messaging System filter each thread running

in the API Gateway will establish a connection to the JMS server. By default there are a potential of 1024

threads that can process incoming messages, which means a possible 1024 connections to the JMS

server. In order to limit the number of connections to a JMS server it can be done by reducing the

number of threads that the API Gateway will use. To reduce the maximum number of threads edit the

instance service.xml file located in the groups/group-x/instance-y/conf directory of the API

Server installation and restarting the instance. (e.g. for 64 thread maximum)

 <SystemSettings tracelevel="INFO" secret="${secret}"

serviceID="${serviceID}" groupID="${groupID}"

serviceName="${serviceName}" groupName="${groupName}"

 domainID="${domainID}" title="API

Gateway" maxThreads="64" <!-- add this

line --> />

Appendix D: Session Context Cache
There is a maximum number of concurrent JMS sessions per JMS filter. By default, up to 8

sessions per filter are cached. The default can be changed by setting the environment

variable V_JMS_CONTEXTCACHE_SIZE before starting the API Gateway. e.g.

Linux

export V_JMS_CONTEXTCACHE_SIZE=10

Windows set

V_JMS_CONTEXTCACHE_SIZE=10

Appendix E: Acknowledgement
AcknowledgeMode is set by the check box "allow duplicates" on the configured JMS session.

Example:

if true = Session.DUPS_OK_ACKNOWLEDGE

else Session.CLIENT_ACKNOWLEDGE)

DUPS_OK_ACKNOWLEDGE

This acknowledgment mode instructs the session to lazily acknowledge the delivery of messages. This is

likely to result in the delivery of some duplicate messages if the JMS provider fails, so it should only be

used by consumers that can tolerate duplicate messages. Use of this mode can reduce session overhead

by minimizing the work the session does to prevent duplicates.

CLIENT_ACKNOWLEDGE

With this acknowledgment mode, the client acknowledges a consumed message by calling the message's

acknowledge method. Acknowledging a consumed message acknowledges all messages that the session

has consumed.

When client acknowledgment mode is used, a client may build up a large number of unacknowledged

messages while attempting to process them. A JMS provider should provide administrators with a way to

limit client overrun so that clients are not driven to resource exhaustion and ensuing failure when some

resource they are using is temporarily blocked.

Appendix F: Reconnection
API Gateway will only attempt to reconnect JMS during the following events

:1. At startup of the API Gateway if it fails to connect to the JMS queue

 2. At deployment of a new configuration if it fails to connect to the JMS queue

Once a connection has been established (which happens in either of the above 2 events) it is then up to

the JMS provider to reconnect.

