ORACLE’
FUSION MIDDLEWARE

An Oracle White Paper
February 2013

Oracle Access Manager Mobile and Social

A Case Study — Piggy Bank

ORACLE

Oracle Access Manager Mobile and Social, A Case Study — Piggy Bank

INtrOdUCHION oo 1
Piggy Bank Use Casecccoviiiiiiiiiiii et e e e 2
Piggy Bank System ArchiteCture..........cccvvvviviiiii e 2
Mobile and Social Architecture........... ..o 3
Mobile and Social Configurationcoeevviiiiiniiin e 4
Enabling Mobile and Social Services........cccceevvviiiiiiiiiiiiiiiiiieeeeeeees 4
Creating the Mobile Application Profilecccovvveiiiiiiiiieins 5
Add the Application Profile to a Service Domain..........ccccccceeeennn. 8
OAM Configuration........ccoeveiiiiie e e 9
The Piggy BanKk AP’ ..coeeeeii e e e 11
Creating the Applicationcccoivieiiiiiiiiii e 12
Adding the Mobile and Social SDKcccovvviiiiiiiiieeeeeeee, 13
Using the Mobile and Social SDKccoovuiiiiiiiiieireeccee e 15
Creating the REST SErVICES ...uuuiiiiiiiiiiiieiiie e e e 18
REST Call EXamMPIES....ciiiieeiiieeiiici e 18
Implementing the REST ServiCescccoovvvvvviveiiiiiiiiieeeeeeeeinn 19
The “Get Balances” Serviet............ooooiiiiiiii s 19
The “Transfer” Servlet ... 20
Protecting the REST Services with OAMccoooviiiiiiiiiiiieeee 21
Extending the POC Use CaSesS......ccoceevvieeeiiiiiiiiie et e e 21
Customizing the Login SCreencoovevvviiiiiiiieieeeecee e 21
Device Fingerprinting and Jailbreak Detection............cccccceeeeeenn. 22
Strong Authentication............coiiiiiii 23
Introducing Transaction Risk SCOMNGccoovvvvviiiiiieeiiiree. 23
Using Oracle Enterprise Gateway.........ccccevvvvciiiiiieieieeciiiciee e 23

(076] [¢] 11110 o IR 24

Introduction

Oracle Access Management’s newly introduced Mobile and Social component
provides a simple means to integrate Mobile applications with the security
capabilities provided by Oracle’s Identity and Access Management platform.
The Mobile and Social feature extends Oracle Access Manager (OAM) and
Oracle Adaptive Access Manager (OAAM) to secure mobile “Apps” running on
iOS and Android devices and to secure services used by those Apps and
protected by OAM and OAAM. OAM Mobile and Social also integrates with
Oracle Enterprise Gateway to support use case where an Application Gateway
is necessary or required.

Oracle Identity and Access Management has built in auditing, monitoring and
platform level high availability capabilities. OAM Mobile and Social builds upon
this existing infrastructure, leveraging those capabilities with no additional work
on the part of developers or operations staff.

This white paper discusses the effort involved in executing a Proof of Concept
with a major international bank. While the PoC exercise was real and the
requirements described in this paper implemented, certain details have been
changed to protect the identity of the bank and its security architecture and
simplified for those new to OAM Mobile and Social.

The Proof of Concept detailed in this white paper involved three main tasks,
including (1) creating a simple electronic banking application; (2) the
REST/JSON services for the application; and (3) securing the application and
services with the Oracle IAM technology stack.

Piggy Bank Use Case

To demonstrate the Mobile and Social SDK and the Mobile and Social service, we created a custom
“App” for iPhone and two simple REST services to be used by the application. The App itself is a
simple e-banking application that allows a user to sign on, view savings and checking accounts, and
transfer money between those accounts. The REST services are used to return a list of bank accounts

with balances and process money transfers between accounts.

Piggy Bank System Architecture

The Piggy Bank architecture is very similar to most mobile application architectures — the mobile app
interacts with a number of REST services to perform “login”, “logout” actions and to execute
transactions. In the case of the Piggy Bank architecture, some of the services are provided by Oracle’s
Mobile and Social Access Service and others are custom developed. The application-specific services
list the user’s bank accounts and their balances and allow the user to transfer money from one account

to another.

The system architecture for this PoC is shown in the diagram below:

llo AM ”

core

WebGate

The client app communicates with the Mobile and Social Services through REST calls. Information on
wire protocol syntax, data and usage of these calls is available in the OAM documentation. Oracle
provides native libraries for common mobile platforms, which simplifies application configuration,
device fingerprinting, login, and logout and other services; this library is called the Mobile and Social
SDK and is available for download from OTN and/or E-Delivery. The Piggybank App uses the
Mobile and Social SDK for all communication. Developers can also interact directly with the REST

services.

The box marked “OAM” contains three main sets of services:

* Mobile and Social Services used by the client application through the Mobile and Social
(M&S) SDK

* Oracle Access Manager core services used by OAM WebGates to protect web servers,
communicate with LDAP directories to authenticate users and make authorization decisions,

when users attempt to access resources.

* Oracle Adaptive Access Manager services are used to fingerprint devices, support “black
listing” of lost or stolen devices and provide strong authentication via One Time Password
(OTP) or Knowledge-Based Authentication (KBA)

The box marked “Bank Svecs” contains a set of REST services, which in this case are written in Java

and are running inside another separate WebLogic Server instance.

An Oracle HTTP Server with an OAM WebGate is located between the Mobile device and the Bank
Services. The WebGate operates as a Policy Enforcement Point (checking whether the accessed
resource is protected, validating the user’s OAM session, and then checking whether the user is
authorized to access the resource) just as it would with any other WebGate-protected resource. The
only difference in this case is that the session information is provided by the M&S SDK rather than the
normal browser HT'TP redirection flow. The Mobile and Social SDK automatically manages the

security tokens needed to access resources protected by an OAM 11gR2 WebGate.

Mobile and Social Architecture

OAM’s Mobile and Social services are layered on top of the existing OAM server and provide a
number of additional capabilities. The PiggyBank PoC utilized three of these capabilities — login,
logout, and access to a URL protected by an OAM WebGate.

To authenticate users the interaction is as follows:
* TheiOS Application calls the OAM Mobile and Social SDK via API calls.
¢ The M&S SDK makes calls to the Mobile and Social Services via REST over HTTP.

* The Mobile and Social Services in turn call the OAM services through the Oracle Access
Manager Protocol (OAP).

The architecture diagram below shows the interactions at a high level:

»”

IIOAMII

REST

M&S SDK

& Social
Services

Mobile and Social Configuration

Mobile and Social Services are installed as part of Oracle Identity and Access Management 11gR2. The
Administratot's Guide for Oracle Access Management discusses the configuration settings for Mobile

and Social in detail. This white paper does not discuss all possible settings; rather it focuses on those

used for the Piggy Bank App.

Enabling Mobile and Social Services

After installing the software the Mobile and Social services are enabled in the Oracle Access
Management Console by navigating to the System Configuration -» Available Services and clicking the

“Enable” button next to Mobile and Social.

.

Policy Configuration System Configuration

| Common Configuration

Actions v View v y

L> 8= Available Services
g &9 Common Settings

> [j Server Instances

(=3 Session Management
> @ Password Policy

1 &2 Certificate Validation
> [Data Sources

> 3 Plugins

O Welcome EE Available Services
) Available Services
The following is the list of services installed in your current deployment. Disabling a service willonly turn off that service and will not uninstall it from
the system.
Sarvice Name |Sralus
Access Manager
Access Manager provides Single Sign-On, authentication and coarse grained authorization % Disable |
i for enterprise ications.
Identity Federation

Identity Federation provides support for SAML and related protocoks to enable cross = @ Enable
domain Singlke Sign-On.
Security Token Service
Sacurity Token Service provides a standards based, centrali ismogtrust @ Enable
brokerage between in b
Mobile al

Mobik and Social providss lightweight mobik, cloud and social interfaces to Identity and % Disabke
Access via REST and OAuth/OpenID.

Once enabled the Mobile and Social Services need to be configured. On the left hand navigation panel

is a section for Mobile and Social:

Policy Configuration System Configuration

>| Common Configuration

>/ Access Manager || || |

2| Identity Federation

>| Security Token Serv is1
~| Mobile and Social

Actions v View + B2 X @ e »

Name

v Ej Service Domains s
1= 5 Default e
1> 5] MobikSarviceDomain

7 Sarvice Providers

[~ Authentication Service Providers

1 [(¥ Authorization Service Providers

1 [User Profie Service Providers
L (@ Security Handler Plugins

1 [Application Profiles
mn

wianaye puiy LU IS aliu appilbatiil Goinans. wianaye ue connmc

Most, but not all of the needed settings are located within the highlighted section of the administrative

console screenshot above.

Creating the Mobile Application Profile

There are a number of steps required to configure the interaction between the mobile application and

the Mobile and Social Services.

The first of these steps is to tell Mobile and Social about the mobile application. To do that we need to
create a Mobile Application Profile; this does two things: first it tells Mobile and Social about the
application and its configuration, and second it defines the configuration information that will be sent
to the Mobile and Social SDK embedded in the application.

To create the Application Profile click on Mobile Services on the left hand navigation panel and then
click the Create button under Application Profiles:

Policy Configuration System Configuration
> Common Configuration] Mobile and Social Home B
>| Access Manager Wi Oracle Management Mobile and Social - Mobile Services
Use Mobik Services to connect web, mobike, and desktop applications to an existing Identity i to provide izatk
2/ Identity Federation and basic user-profii directory services. Mobile Sarvices supports Orack Idantity Access Management (IAM) products and LDAP-compatible
>| Security Token Service back-end directory servers . Configure the following sections to define both the back-end services and the client applications that will consume
- those services.

| Mobile and Social
Actions v View v TBX W

[Z] Service Providers 6]

Name Vew~ [Create v 7 Edit 3¢ Debte (gf) Refresh
&2 Wobik and Social |Name |Type | Description
v [Mobie Services JWTAuthentication Authentication Out Of The Box Java Web Token (JWT) Authenticatiof ~ |
v @ Service Domains m UserProfile User profile Out Of The Box User Profie Service Provider
> Q Default MobikeOAMAuthentication Authentication Out Of The Box Mobik Orack Access Manager (OAM
1> & Mobik ServiceDomain Eow User profie
7 Sarvice Providars OAMAuthentication Authentication Out Of The Box Oracle Access Manager (OAM) Authe| v |
1~ (3 Authentication Service Providars ~| @, Service Profiles 6}
&> [Authorization Sarvice Providers View Create v 7 Edit 34 Dekte (g} Refresh
L= [User Profie Service Providers
. . Name ‘Type Service Endpoint Description
= Se Handler Plt |
s E;I curty Hander Plugins @3 MobikO, icat icat /mobikecamauthentication Out Of The Box Mobik Oracle Access N[A|
[, Jail Breaking Detection Policy a8 ovo User profie ot
7 [@ Internat Identity Servi : ’
v m nterme nty Sarvices @Q OAMAuthentication icatk icatk Out Of The Box Orack Access Manage||
Application Profile: ©
PRES RN RS @Q Mobilk JWT, icatk icatk /mobikjwtauthentication ~ Out Of The Box Mobile Java Web Token|
& i ation icatk /internetidentityauthenticat Out Of The Box Internet Identity Java Wy
| [@ Security Handler Plugins ®

View + Create 7 Edit ¢ Dekte () Refresh
Jlame Description |
OaamSecurityHandlerPlugin
DefaultSecurityHandlerPlugin

v/ @ Application Profi @
View + Create 24 Dekte) Refresh
| Name Description |
PiggyBank
vl Q Service Domains @ B
Vew+ [Create 7 Edit 3¢ Dekte () Refresh
j INama | Nascrintion 1~

A new tab will appear with the new Application Profile. Enter a name and, since this is a mobile
application, check the box next to Mobile Configuration:

@ *Name | PiggyBank *

Description

v|Attributes

Atrbutes g v | e Add 3§ Delete

I Name Value

Mobik clientRegHandke.base Secrat

DLLDADAEE L=l Select this to specify the Mobile Configuration settings for this

Jail Breaking Detection Er Application Profile

@ Mobik Configuration (]| Enabled *

Please note: it is best to check the Mobile Configuration checkbox at this point (i.e. before clicking
the Create button to save the Application Profile). Clicking this checkbox on a newly created
Application Profile behaves slightly differently than checking it on an existing Application Profile for

various reasons. For now it is best to simply check that box before proceeding.

After setting the Application Profile as a Mobile Configuration a number of other options will
automatically appear and default settings will be populated. For now the only settings we need to adjust
are (1) the “Attribute” named “baseSecret” and the (2) “Apple iOS Bundle ID”.

The baseSecret is near the top of the configuration pane:

v|Attributes

AUbutSS yigw o | e Add 3§ Debete

‘Name lVaIue
Mobik clientRegHandk baseSecret | seeeee

You can set this value to any value you like, but you should take note as it will be used when creating

the mobile application. The M&S documentation describes this setting as:

* Mobile.clientRegHandle.baseSecret is a mandatory attribute used by the server
as a private secret to sign each Client Registration Handle for this application.

The iOS Bundle is located within the Platform Specific Settings near the bottom of the configuration

pane:

v|Platform Specific Settings

URL Scheme

Appk iOS Bundke ID | OrackATeam.PiggyBank *

Android Package

Android Application
Signature

The iOS Bundle needs to match the “Bundle Identifier” within the XCode project, which is detailed in
a later section. As with the baseSecret the value you enter here will be needed in a later step so it is

important to take note of the value you select.

* Apple iOS Bundle ID - Type the unique Bundle ID that is configured in the mobile client
application. Each iOS mobile application has a unique Bundle ID.

If you are unfamiliar with XCode and Application Bundles for now simply enter your company name,
a dot, and a short name for your application. As shown in the image above we used

“OracleATeam.PiggyBank”.

Finally, click the Create button at the top of the pane to save the new Application Profile:

Create Application ProfiL.. &
Application Profile Configuration -* Create | Cancel

*Required

()

®Informa1ion
You have unsaved changes.

@ *Name | PiggyBank

Description

The Application Profile should now appear within the Application Profiles section of the Mobile and

Social configuration:

v| [&] Application Profiles ®
Vew v [Create 7 Edit 3¢ Dekte () Refresh
[Name [Description |
PiggyBank

The Application Profile does two things — it stores the configuration information that the Mobile and
Social SDK embedded in the mobile App will need to interact with the Mobile and Social Services and
it describes the mobile App to Mobile and Social so that M&S can provide that information to the
SDK.

Add the Application Profile to a Service Domain

A Service Domain simply groups one or more mobile applications, described by Application Profiles
we created above, and applies a common configuration to those Application Profiles.

When you install Mobile and Social two Service Domains are automatically created. Those Service
Domains are intended as “defaults” and contain settings that are appropriate for the most common
types of applications customers create. The existing Service Domain named “MobileServiceDomain”
contains a configuration that is appropriate for this mobile banking App.

Open the MobileServiceDomain and add the “PiggyBank” Application Profile as shown below:

Policy Configuration System Configuration

>/ Common Configuration & WobikeServiceDomain B
>/ Access Manager Service Domain Configuration Apply | Revert
>/ identity Federation “Required
>/ Security Token Service

v| Mobile and Social Name | Mobik ServiceDomain

PR aP ER | > Description [abik Service Domain

Name ‘
&7 Mobik and Social Settings
v [Mobik Sarvices

v [service Domains *Type @ Mobik Application O Desktop Application
1> 5 pefaut ’ Credential for Registering an Application O User Password @ User Token
&> 5J MobikSarviceDomain
v [B Sarvice Providers * Authentication Scheme Mobilke Service Authentication j

1> [Authentication Service Providers
1> [Authorization Sarvice Providars
= User Profie Service Providars Application Profiles
1 [Security Handler Plugins
[, Jail Breaking Detection Policy
7 [@) Internet Identity Services

Sacurity Handler Plugin Name ~|

Appliation Profies vigw | s Add Q Browse Applcation Profies 3¢ Remove | SSO Agent Priority @ Move Up Q@ Move

. Mobik Single Sign-On (SSO) Configuration
L liz] Application Profies Application Profile Name 1‘ — g‘ L = o) 'g. = !
PFarticipate in Single Sign-On ‘Agent Priority
PiggyBank I None ~

@ D)

The remaining settings are likely appropriate for most first Mobile and Social-enabled applications.

OAM Configuration

As described above when the M&S SDK sends a username and password to the M&S Services, the
M&S Services in turn send those credentials to the OAM Server to be validated. Mobile and Social
sends those credentials to the core OAM server via an OAP connection. As with any OAP connection,
the client (in this case M&S) needs to have an agent identity and a protected resource. When you
installed OAM an agent identity and the necessaty resource was automatically created and
preconfigured. You should not need to make any changes to this configuration but it is useful to

understand what is going on inside should you need to troubleshoot.

The Application Profile described above uses the “MobileOAMAuthentication” Authentication
Service Provider. An Authentication Service Provider is simply a means for OAM to verify user
credentials. As discussed above this Authentication Service Provider uses OAP to talk to OAM, which

in turn checks the user’s username and password against the configured LDAP directory.

That provider contains the configuration information needed by M&S to communicate with the core

OAM server. If you examine that Authentication Service Provider you will see the Webgate ID is

preset as “accessgate-oic’:
Policy Configuration System Configuration

| Common Configuration
>/ Access Manager

>/ Identity Federation

>| Security Token Service
| Mobile and Social
Actions v View ~ X W

Name

&2 Wobik and Social Sattings
v [l Mobik Services
1 [Service Domains
v Service Providars
7 [[@ Authentication Sarvice Providers
1> & JwTAuthentication
> MobileO AMAuthe ntication
1 [OAMAuthentication
1> (&2 MobikJWTAuthentication
>3 Internetidentity Authentication
1 [¥ Authorization Service Providars
1> [User Profie Service Providers
1 [Security Handler Plugins
&, Jail Breaking Detection Policy
7 [@ Internet Identity Services
= Application Profiles

MobileOAMAuthentication

Service Provider Configuration

Name

Description

Service Provider Java Class

| Attributes

Attributes

v|Webgate Agent

MobilkOAMAuthentication

Out Of The Box Mobik Orack Access Manager (OAM)

Authentication Service Providar

Save Revert

*Required

orack security.idaas.rest.provider.token.MobilkOAMTokenService Provider v

View v | op Add 3§ Dekte

&

| Name Value
OAM_VERSION OAM_11G
DEBUG_VALUE 0
TRANSPORT_SECURITY OPEN
OAM_SERVER_1
OAM_SERVER_1_MAX_CONN
OAM_SERVER_2
OAM_SERVER_2_MAX_CONN 4

colkocated.cam

e _

Encrypted Password

You should not need to change this value.

true

Show in clear text

Mobile and Social connects to the OAM server with this Webgate 1D and sends the username and

password in an authentication request for the resoutce /OICAuthentication.

If you open the IAM Suite domain and search for that resource you will see that it uses the
OICAuthenticationPolicy and the OICAuthorizationPolicy:

Policy Configuration System Configuration

%ﬂ Browse

view - () EARIRS IS
7/ [shared Components
v {% Resource Type
@ HTTP
(&) TokenSarviceRP
@ wi_authen
[5 Host Identifiers
v Aulhen!icalion Schemes
nony mous Scheme
BasicFAScheme
BasicScheme
BasicSessionkssScheme
AAuthScheme
edarationMTScheme
‘ederationScheme

AM10gScheme

diz OAMAdmin Console Scheme
@ A1ACabkAma

O Welcome % Application Domains @ 1amsuite

@

Application Domains

5% Resources E Authentication Policies E. Authorization Policies

IAM Suite Resources

v|Search

Resource Type | wl_authen j

Host Idantifier

Resource URL

Authentication Policy

Authorization Policy

New Resource

»

Search Results
Actions v View v

Serial Number | Resource Type

B/7X

Authentication Policy

Resource URL

Detach

Authorization Policy

1 wl_authen

0IC, OIC,

y OICAuthorizationPolicy

The “OICAuthenticationPolicy” is pre-configured to use the LDAPScheme, as shown below:

Policy Configuration System Configuration

— B isute OIcAuthentn. @
Vew -~ () ERRS 4 Authentication Policy i Apply
v ﬁ Shared Components o -
- *Name | OICAuthenticationPolicy Success URL
v {tf} Resource Type
@ HrTe Description | protacted resource policy for OIC Resources Failure URL
fﬂ TokenServiceRP
[ﬂ wi_authen
5 Hest Idantifiars
v Aulhenlca(bn Sohemes IAu(hen(m(ion Scheme | LDAPScheme .1] I
& Anonymous Scheme
{8 BasicFAScheme Besoumes
[#8 Basicscheme
[RN 6% Resoumes & %

The Authentication Scheme is primarily used as any Authentication Scheme would be for any other
resource — it defines the sort of credentials that are required and how the OAM server validates those

credentials.

What all this means is that once you configure the LDAPScheme for regular web resources protected
by conventional WebGates you should not need to do anything more; Mobile and Social will use that
same configuration to authenticate users. It also means that if you want to configure Mobile and Social
to authenticate a different user population you can simply adjust the Authentication Scheme in the
OICAuthenticationPolicy.

For the purposes of this paper we will assume that OAM has been properly configured to

authenticate users.

The Piggy Bank “App”

The OAM Mobile and Social SDK is distributed as a set of native libraries for each of the supported
platforms. The Piggy Bank application we created was written for iOS but could just as easily be
written for any other mobile platform supported by the SDK.

The Piggy Bank Application is a simple “three screen” application. The first screen has a single button
— “Login” which, when tapped causes the second screen to appear. The second screen is the login
screen on which a user enters their username and password. Once authenticated the user is shown the
third screen, which displays the user’s bank accounts and allows them to transfer money between

accounts:

Carrier & 2:23PM (= Carrier & 2:30 PM - Carrier & 2:29 PM 1]

Cancel g Login

Your accounts

Enter your credentials
Savings:
10000001

Balance $99,901.00
Password eeeeccee Checking:
10000002
Balance $100,099.00

Login testuser1

Transfer $ 100

Welcome to Piggy Bank | FromSavings to Checking |

OUEOENONOCEEE—
= A[s[ol s W[

¢ B0ENDOD = IS

o Bl - A

The first screen is part of the core application logic and was created with XCode’s Interface Builder.

The second screen is the default login screen provided with the Mobile and Social SDK; the screen
shots above show the default Login screen but it is trivial to replace the login screen with another of
your own design (information on how to customize this screen is included later in this paper). The

third screen, like the first, is part of the core application and was created with Interface Builder.

Creating the Application

When creating the application in XCode, Apple’s development environment for iOS, the first
important step is to ensure that the Bundle Identifier matches the value previously entered when
creating the Mobile Application Profile in Mobile and Social. In the case of PiggyBank that string is
“OracleATeam.PiggyBank”.

XCode creates the bundle identifier by concatenating two strings — the Company Identifier and the

Product Name, as shown below:

Choose options for your new project:

\\

Product Name IPiggyBank

Organization Name | Chris Johnson

Company Identifier |OracleATeam

- Bundle Identifier OracleATeam.PiggyBank

Class Prefix |OracleATeam

Devices | Universal sl

@ Use Storyboards
@ Use Automatic Reference Counting
[_J Include Unit Tests

| Cancel | | Previous I[Next]

Once you have created the application you can change the Bundle Identifier if needed, but not the

Application Name:

. PiggyBank

'] target, i0S SDK 6.0 PROJECT
PiggyBank

TARGETS
/- . PiggyBank

Adding the Mobile and Social SDK

. Summary ‘ Info Build Settings

ios mliaﬂm Target

Bundle Identifier | OracleATeam.PiggyBank

Version |10 | Build |
Devices
Depl Target | 6.0 v

To add the Mobile and Social SDK to the Project simply drag the folder from Finder to the Project in

Xcode:

e 1 target, I0S SIMNE pamms_s
v PiggyBank
@ OracleATeamAppDelegate.h
@ OracleATeamAppDelegate.m
MainStoryboard_iPhone.storyboard
MainStoryboard_iPad.storyboard

|h| OracleATeamViewController.h

PROJECT
PiggyBank

TARGETS

/- . PiggyBank

In the presented dialog, check the “Copy items...” checkbox and the checkbox next to the PiggyBank

target. Then click Finish.

13

Choose options for adding these files

Destination @Copy items into destination group's folder (if needed)

)\

Folders (®)Create groups for any added folders
‘_:)Create folder references for any added folders

Add to targetsl@ A, PiggyBank
)

| Cancel \[Finish]

The first checkbox causes Xcode to copy the files into the project. The second checkbox causes Xcode
to add those files into the build so that when you compile the project they are included in the App

executable.

The final, and most often forgotten, step is to add two linker flags under the Build Settings. The SDK

documentation includes this text block:

Important:

Before linking your project, add as a single line both the -ObjC and -all_load linker flags to
your project. Without these flags your application will crash with a "selector not recognized"
runtime exception.

Because libIDMMobileSDK extends pre-existing classes with categories, the linker does not
know how to associate the object code of the core class implementation with the category
implementation. This prevents objects created in the resulting application from responding to
a selector that is defined in the category.

For background information and steps that describe how to add flags to your project, see the
following page:

http://developer.apple.com/library/mac/#qa/qa1490/

To add those flags first click on the Project, then click the Target, then click the "Build Settings" tab
and find the "Other Linker Flags" row. Edit it and add -ObjC -all_load to any existing values. In simple
or new applications there may not be any settings yet there. The screen capture below shows the

settings for PiggyBank after they have been properly updated:

e 006 5 PiggyBank.xcodepr
@ @ msank . iPhone 6.0 Si] n { Running PiggyBank on iPhone 6.0 S
Run Stop Scheme Breakpoints. Project_44
| ®© & = » B [m)| < >|[Nrggysank ‘
& Wﬁ N PROJECT } Summary Info | Build Settings | Build Phases Build Rules
v (] PiagyBank [pigyBank [easic B Levels Q-

TARGETS fSetting

7\ PiggyBank

Targeted Device Family

JApplications
No 3
iPhone ¢

¥ Linking

Other Linker Flags

-ObjC -all_load

v Deployment
Info.plist File
Product Name

Installation Directory
Wrapper Extension

iggy iggy
PiggyBank

app

fo.plist

Strip Linked Product
¥ Search Paths

I RaaTnBerr o TDhens ctrrnard

Using the Mobile and Social SDK

The Mobile and Social SDK is quite easy to use. The PiggyBank app uses three main services of the
SDK - one to initialize the SDK, one to “login” to OAM, and one to “logout” from OAM. Each of
the calls takes a number of parameters and performs its work asynchronously. Once the operation is
complete the SDK calls back to your application to notify it that the action has completed. For the
PiggyBank application I placed all of my code that interacts with the M&S SDK in a single class to

make it easier to see and understand, but you are free to include the logic wherever you like.

It should be noted that the Mobile and Social SDK includes a number of other services that are not

needed for this very basic application. A complete list of services is available in the documentation.

Initialization

To initialize the SDK you simply ‘alloc’ an instance of the OMMobileSecurityService as shown below
and call initWithURL:

NSURL * url = @"http://login.piggybank.oracleateam.com:8000";
NSString * appName = @"PiggyBank";
NSString * oicDomain = @"MobileServiceDomain";

[[OMMobileSecurityService alloc]
initWithURL:url
appName:appName
domain:oicDomain
delegate:self];

OMMobileSecurityService xmobileServices =

The delegate is the class that the M&S SDK will call back to when the SDK has been initialized or if
the initialization fails. The delegate should have a didReceiveApplicationProfile method as shown

below:

- (void)didReceiveApplicationProfile: (NSDictionary *)applicationProfile
error: (NSError x)error
{

NSLog(@"didReceiveApplicationProfile");

If the SDK was able to reach the server and retrieve the profile, the profile information will be
returned in applicationProfile. Application developers using the SDK are not required or expected to

do anything with the profile information; it is available for advanced use cases. The “error” will be
populated only in cases where the server can’t be reached or there was some problem retrieving the

profile.

“Login”

Once the Mobile and Social SDK has been initialized the App is free to call the SDK to initiate the
login process. To do that the App calls the startAuthenticationProcess method:

NSError *xerr = nil;
err = [self.mss startAuthenticationProcess:nil
presenterViewController:self];

The startAuthenticationProcess initiates a login process that continues asynchronously. The “err”
return code returned is used only to indicate a fatal error starting that process and should not be
encountered in normal cases. The presenterViewController is the delegate notified of either a success
or failure of the authentication.

When the method is called the login screen (prompting for username and password) will appear. After
the user submits their credentials the SDK will send them to the M&S Server and wait for a response.
When the response is received the SDK will process it and then notify the App by calling the delegate
passed in as presenterViewController.

The SDK notifies the delegate by calling this method:
— (void)didFinishAuthentication: (OMAuthenticationContext x)context
error: (NSError x)error
{

NSLog(@"didFinishAuthentication");

Once the user is “logged in” the iOS app should be able to access OAM-protected resources.

Making REST calls

While simply verifying a user’s username and password is interesting and potentially useful, most
mobile Applications do much more than that. Mobile Apps usually make calls to servers on the
Internet or Intranet to retrieve information or execute transactions. And the most common way Apps

interact with services is to make REST calls over HTTP.

In iOS Apps developers create an HTTP request (an NSURLRequest object) and then call the
sendAsynchronousRequest method of NSURLConnection. The code would look somzething like this:

NSURLRequest*xrequest =[NSURLRequest requestWithURL:url];
NSOperationQueuexqueue =[[NSOperationQueue alloc] init];

[NSURLConnection sendAsynchronousRequest:request
queue:queue
completionHandler:”~(NSURLResponsexresponse,NSDataxdata,NSErrorserror)

1;

The caller is then responsible for parsing the resulting return data in the completion handler.

The OAM Mobile and Social SDK offers a slightly simpler interface, which automatically manages
inserting the correct OAM session identification information in HTTP request. This interface is a

method in OMRestRequest called executeRESTRequestAsynchronously and is called as shown below:

NSMutableURLRequest * request = [NSMutableURLRequest
requestWithURL:urll];

OMRESTRequest * omr = [OMRESTRequest alloc];
[omr initWithMobileSecurityService:mss
delegate:self];

[omr executeRESTRequestAsynchronously: request
convertDataToJSON: FALSE];

Note: There is a synchronous version of the same method (called executeRESTRequest) but the

Asynchronous method is recommended by Oracle and preferred by most developers.

When the method is called the SDK returns to the application immediately, the REST request is sent
asynchronously, and once the result is received the delegate is notified. The SDK notifies the delegate
that the request is complete by calling the didFinishExecutingRESTRequest method. The method

signature is shown below along with an example of how to process the resulting data:

- (void) didFinishExecutingRESTRequest: (OMRESTRequest *) RESTRequest

s (
data: (id) data
urlResponse: (NSURLResponse *) urlResponse
error: (NSError x) error
asyncHandle: (OMAsyncOpHandle *) handle

if (error !'= nil)

NSLog(@"Error: %@", [error localizedDescription]);
NSLog(@"Error: %d — %@", error.code, error.description);
NSLog(@"Response data: %@", data);
[self.restNotificationDelegate notifyRESTErrorl];

}

else

{
// Convert the response data to a string.
NSString xresponseString = [[NSString alloc] initWithData:data

encoding:NSUTF8StringEncoding];

// View the data returned - should be ready for parsing.
NSLog(@"HTTP Response string: %@", responseString);

In the sample method implementation above the HTTP response body is simply logged via NSLog.

In the example above convertDataTo]SON is set to FALSE — which matches the behavior of the
previous example using NSURLConnection. Since most REST interfaces used by mobile apps use
JSON for their requests and responses the Mobile and Social SDK also simplifies application code by
including an option to parse the returned string as a JSON representation and turn it into an

NSDictionary*. In that case “data” would contain an NSDictionary *.
Ty ry

Creating the REST Services

The REST services used by the PiggyBank “App” are quite simple. As discussed above only two
services were created — one returns a list of accounts and their balances, the other allows the user to
transfer money between accounts. The REST services could be written in any language and can run in
any web server, but for the purposes of this PoC they were run inside a WebLogic container as a very
simple J2EE web application. The google-gson library was used to transform from HTTP requests to

Java classes and from Java classes to JSON format for the response.

REST Call Examples

The “get balances” call is the simpler of the two requests but the more complicated response. A nearly

complete HT'TP request/response pair is shown below:

GET /PiggyBankServices/balances HTTP/1.1
Host: services.piggybank.oracleateam.com:8000
Accept-Encoding: gzip, deflate

Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json

{
"Accounts": [
{"accountNumber":"10000001","accountType" :"SAVINGS","accountBalance":100000.0},
{"accountNumber":"10000002","accountType" :"CHECKING","accountBalance":100000.0}
1
¥
In the interest of space some extraneous HTTP headers were removed from the request and response.

The HT'TP request is simply an HT'TP GET to /PiggyBankServices/balances. The response contains a
JSON data representation of an array of accounts, each of which has an account number, type and
balance. As you can see in the above example the user has two accounts — a savings account and a
checking account, each with a unique “accountNumber”, and each with an “accountBalance” of
100000.0.

The “transfer” service is a slightly more complicated request since JSON data is sent. A sample is

shown below:

POST /PiggyBankServices/transfer HTTP/1.1
Host: services.piggybank.oracleateam.com:8000
Content-Type: application/json

Accept: application/json

{"fromAccount":"10000001","toAccount":"10000002","amount":" 100"}
HTTP/1.1 200 0K

Content-Type: application/json

{"transferResult":"true"}

In this case the HTTP request is a POST to the transfer service’s URL. The JSON data in the request
contains three items — the “from” and “to” accounts and an amount. The service processes the request

and returns back either “true” or “false” to the client in the HTTP response.

Implementing the REST Services

The REST services were implemented as two very simple Servlets — one for “get balances” and one for
“transfer”. As described above the Servlets are running inside a WebLogic server instance and are
protected by a WebGate. When the mobile App makes an HTTP request to the Servlet the request
passes through a web server with an OAM WebGate. The WebGate and the M&S SDK negotiate
passing the user identity securely and then the HT'TP request is passed along to WebLogic. The OAM
Identity Asserter inside WebLogic then establishes the JAAS Subject and Principals based on the user
identity included in the HTTP request by the WebGate. The Servlet can then easily retrieve the
username by simply calling getRemoteUser or by examining the JAAS Subject. Both Servlets rely on
the google-gson library to parse and generate JSON formatted data.

The “Get Balances” Servlet

The core logic of the “get balances” Servlet code is as quite simple — the Servlet retrieves the username
from WebLogic, gets the list of accounts for the user, and then converts that to JSON with a single call
to google-gson. The (slightly simplified) code is shown below:

public class Balances extends HttpServlet {
public void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

response.setContentType("application/json");
PrintWriter out = response.getWriter();

String userName = request.getRemoteUser();

BankUser bankUser = BankUsers.getUser(userName);
List accounts = bankUser.getAccounts();

Map<String,Object> responseData = new HashMap<String,0Object>();
responseData.put("Accounts", accounts);

Gson gson = new Gson();
String json = gson.toJson(responseData);

out.println(json);
out.close();

¥

Note: The above code is fully functional; the only changes from the actual code were the removal of

error detection and sanity checks.

The “Transfer” Servlet

Similarly the “transfer” service code is quite simple — it parses the incoming request from JSON into a

Java class and then processes the transfer request. That code is shown below:

public class Transfer extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType("application/json");
PrintWriter out = response.getWriter();
String result = "false";
String reason = null;
try {
Reader reader = new InputStreamReader(request.getInputStream(),
"UTF-8");
JsonReader jsonReader = new JsonReader(reader);
TransferRequest transfer = gson.fromJson(jsonReader,
TransferRequest.class);
// sanity checks removed
// actual transfer logic
result = "true";
}
catch (AccountNotFoundException anfe) {
reason = anfe.getMessage();
}
catch (InsufficientBalanceException ibe) {
reason = ibe.getMessage();
}
Map<String,Object> responseData = new HashMap<String,Object>();
responseData.put("transferResult", result);
if (null != reason) {
responseData.put("Reason", reason);
Gson gson = new Gson();
String json = gson.toJson(responseData);
out.println(json);
out.close();
}

In the above code if the transfer succeeds the transferResult is set to true. If a failure occurs an
exception will be thrown and caught, in which case the transferResult will be false and a Reason will be
added to the response indicating the cause of the failure. In either case the result is transformed to

JSON by calling gson.toJson() and then sent as text in the HTTP Response by out.println().

20

Protecting the REST Services with OAM

Once the REST services have been deployed they need to be protected with OAM both for actual
security from rogue attackers and so that the user identity is populated. The REST services are simply
Servlets and so protecting them with OAM is the same as any other web resource protected with a
WebGate — simply create the resources and choose an appropriate Authentication Policy. The default

policies created when you register a new WebGate via “oamreg” are perfectly adequate.

This PoC environment used the /** and /.../* wildcard resources and the LDAPScheme as shown

below:

Authentication Policy Apply
* Name | Protected Resource Policy Success URL
Description Policy set during domain creation. Add resources to this policy Failure URL

to protect them.

* Authentication Scheme | LDAPScheme j

Pesonrces

{5 Resources + X
EResource Type [Host Identifier IF!esource URL Query String Name Value list
HTTP piggybank Lot

(HTTP piggybank

With these policies the REST services are protected by Oracle Access Manager and the user identity
acquired by the App is automatically propagated to the bank services.

Extending the PoC Use Cases

The basic system described above is a complete, if minimal, implementation needed to demonstrate the
capabilities of the Mobile and Social Services and the associated client-side SDK. The basic system
created for this PoC and white paper can be extended in a number of interesting ways using the
services offered by the Oracle IAM platform.

Customizing the Login Screen

The default login screen provided by the Mobile and Social SDK is intentionally generic and the
Mobile and Social SDK was built with the assumption that customers would want to customize the
login screen. Customization is not limited to simply changing words or images - customers have
complete control of the login screen. You can include your own images, wording, branding, and have
complete control of the layout; in other words you can do anything you can do with any other iOS
UlView.

Customizing the Login screen requires two steps — writing the Objective C code to implement the
Login screen and then adjusting the call to “startAuthenticationProcess” to pass an instance of the new
screen to the SDK.

21

Implementing the Objective C Code

Complete documentation of how to create and use a custom login screen, and an example of how to
do so are included in the product documentation. At a high level the process begins with the crteation
of a new class implementing the OMAuthView interface (defined in OMAuthView.h). The
OMAuthView interface is in turn a UITableView with a few extra items. When you implement your
custom OMAuthView you have complete control — add whatever controls, text, images and other Ul
components you need. The only absolute requirement is that your OMAuthView include a method

that returns the username and password in an NSDictionary. For example:

— (NSDictionary x)retrieveAuthData

{
[self.authData setValue:self.usernameField.text forKey:OM_USERNAME];
[self.authData setValue:self.passwordField.text forKey:OM_PASSWORD];
return self.authData;

¥

If you decide to use your own Login and Cancel buttons rather than those automatically provided by
the OMAuthView you will need to implement a number of other methods. The documentation and
OMAuthView.h file discusses this in detail.

Using the Custom View for Login

Once the OMAuthView code has been written, the call to startAuthenticationProcess needs to be
adjusted to use the new view, by using the authView field with the authnRequest, which is passed to
startAuthenticationProcess. In the sample code above we passed nil for this parameter. To use the
new custom OMAuthView simply allocate your custom OMAuthView and set that property to an
instance of that view; the Mobile and Social SDK will then use your custom view instead of the default
one. The code below shows how to do this:

OMAuthenticationRequest * authnRequest = nil;

authnRequest = [[OMAuthenticationRequest alloc] init];

PiggyBankAuthView *myLoginView = [[PiggyBankAuthView alloc] init];
authnRequest.authView = myLoginView;

[self.mss startAuthenticationProcess:authnRequest
presenterViewController:presenter];

Device Fingerprinting and Jailbreak Detection

The Mobile and Social Setver includes the ability to acquire a “device fingerprint” and/or detect
whether the device has been “Jailbroken” (for iOS devices) or “rooted” (for Android devices). With
this feature enabled, device information including the GPS coordinates, WLAN MAC address and
others are collected by the SDK and passed to the Mobile and Social Server at login time. This
information is then passed to OAAM and can be used to deny authentication or for a number of other
purposes (see below). One example use of this feature might be for an employer to prohibit their

employees from using the employer’s custom Apps on a jailbroken iPhone for security reasons.

22

Strong Authentication

In addition to simply denying access as discussed above the integration between Mobile and Social and
Oracle Adaptive Access Manager (OAAM) can be used to perform stronger authentication. With this
feature enabled users can be challenged for a One Time Password (OTP) delivered by email or SMS or
for answers to their Knowledge-based authentication (IKBA) challenge questions stored in OAAM.

When enabled the user is prompted to login as normal and then, if the OAAM policies require further
authentication, the user is shown another screen with the challenge from OAAM. As with the login
screen this challenge screen is completely customizable; the authnRequest passed to
startAuthenticationProcess has a kbaView field. Customers can create that custom view and then pass
it into the method in the same was as the authnView. The “KBA” screen is used for both KBA and
OTP challenges — in the latter case the challenge question is simply a fixed string asking for the one

time password.

Introducing Transaction Risk Scoring

In an internet-facing environment, determining the risk associated with a particular transaction may be
important. For example if a user were to use the PiggyBank App to transfer a large amount of money
from one account to another while in a physical location they have never visited before, the bank
might consider that action more risky. Generally banks would not want to block the transaction but
risky transactions might warrant some other action to confirm the user’s identity before actually

executing the transaction.

Oracle Adaptive Access Manager (OAAM) is designed to use multiple bits of context information to
help determine the risk level of a particular transaction, inform an application of the risk level, and
advise the application to take some action to reduce the risk. In the example above OAAM might
instruct the application to perform an OTP or KBA to confirm the user’s identity before allowing the

transfer.

If the PiggyBank application were a real electronic banking application, adding calls from the
REST/JSON services to OAAM might be an important part of the bank’s approach to mitigating risk
both for the bank and for customers.

Using Oracle Enterprise Gateway

Oracle Enterprise Gateway (OEG) is a service gateway designed to be securely deployed in the DMZ
as a way to safely expose business services to the Internet. OEG allows administrators to expose

existing or new services without writing code or altering existing services.

In the PiggyBank PoC use case we could have replaced the Oracle HTTP Server plus WebGate and
the custom REST services with OEG. Using OEG in place of OHS would have allowed us to expose
REST services to the mobile apps and internally call already existing SOAP services on the bank’s
internal network. This change would also have allowed the gateway to easily call out to OAAM, OES

or to other systems before calling those SOAP services, and could do so without additional code.

23

Conclusion

While the PiggyBank application is quite simple, it illustrates the power and capabilities of the Oracle
Identity and Access Management platform including Oracle Access Manager, Oracle Adaptive Access
Manager and some of the Mobile and Social Services. By using the OAM Mobile and Social SDK a
fully functional mobile e-Banking application was created and secured in a very short time, without the
need to install and configure any additional software and without the need to write complex code to

secure the mobile App and its communication to the services it uses.

A customer with an existing security infrastructure based on Oracle Access Manager and Adaptive
Access Manager can easily deploy Oracle Mobile and Social to extend the same security capabilities to
mobile applications. By using the Mobile and Social SDK customers can seamlessly integrate security

into their native Apps on popular mobile platforms including iOS and Android.

Oracle OAM Mobile and Social supports a number of other capabilities including authentication via
Social sites, REST services for access to user profiles, Single Sign-On across mobile apps and more.
For more information about the other features of the Mobile and Social product please refer to the

Mobile and Social page on Oracle.com at http://www.oracle.com/technetwork/middleware/id-

mgmt/overview/oamms-1696162.html

The Oracle Identity and Access management platform utilizes the High availability and scalability
features of WebLogic server and the Identity and Access Management platform and thus any
deployment of Mobile and Social needs no additional infrastructure to provide enterprise application

requirements like scalability, reliability and high availability.

24

ORACLE

Oracle Access Manager Mobile and Social, A
Case Study — Piggy Bank

February 2013

Author: Christopher Johnson

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

@ | Oracle is committed to developing practices and products that help protect the environment

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 0112

Hardware and Software, Engineered to Work Together

