
1 Oracle OAuth Service 

Oracle OAuth Service 
 

O R A C L E  W H I T E  P A P E R   |   M A R C H  2 0 1 5  

 

 

 

 
 

  



2 Oracle OAuth Service 

Disclaimer 

The following is intended to outline our general product direction. It is intended for information 

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 

material, code, or functionality, and should not be relied upon in making purchasing decisions. The 

development, release, and timing of any features or functionality described for Oracle’s products 

remains at the sole discretion of Oracle. 

  



3 Oracle OAuth Service 

 

 
Introduction 4 

OAuth 2.0 Overview 4 

OAM OAuth 2.0 Service – Features 5 

Securing Mobile Clients 8 

Additional Differentiations 11 

Sample Use Case 12 

Conclusion 15 

 
  



4 Oracle OAuth Service 

Introduction 

 

The OAuth 2.0 Service in Oracle Access Management 11g R2PS2 provides organizations with a 

standards-based solution that allows their users to securely share or access resources with 

partners / SaaS providers.  

The OAuth protocol was originally designed and has achieved wide acceptance in that regard as 

the de-facto standard that enables users to grant third-party access to their resources without 

sharing their passwords and while also providing a means to grant limited/scoped access to those 

resources. Since this initial capability, OAuth has also quickly become the preferred method to 

provide tokenized authentication and access control between any type of client (including mobile 

devices and other services) to a service. 

The Oracle Access Manager (OAM) OAuth 2.0 service is a standards compliant OAuth 2.0 

authorization service implementation that supports the following roles defined by OAuth: 

 Resource Server: The server hosting the protected resources, capable of accepting and 

responding to resource requests using access tokens. 

 Client: An application making protected resource requests on behalf of the resource owner 

and with its authorization.  The term client is not specific to a particular entity, for example 

the client could be an application that executes on a server or mobile device. 

 Authorization Server: The server issuing access tokens to the client after successfully 

authenticating the resource owner and obtaining authorization. 

Besides providing new or existing Oracle IAM on-premise customers with a standards-based 

solution to securely share or access resources with partners/SaaS providers, following are some 

other compelling drivers addressed by the OAM OAuth 2.0 service: 

 Provide a standards compliant token based authentication service that can be leveraged by 

third-party services including Oracle Public Cloud hosted applications and services.  

 Support identity propagation use cases where application clients are required to 

impersonate end users and standards based tokens are the natural choice.  

 Provide standards compliant authentication and authorization for RESTful Identity Services 

for the OAM Mobile & Social Service that offers a rich set of access management features 

as a service model to different types of client applications such as mobile applications, 

SaaS providers and Rich Internet Applications.  

OAuth 2.0 Overview 

 

In the traditional client-server authentication model, the client accesses a protected resource on the 

server by authenticating with the server using the resource owner's credentials.  In order to provide 

third-party applications access to protected resources, the resource owner shares their credentials 

with the third-party.  This creates several problems and limitations: 



5 Oracle OAuth Service 

 Third-party applications are required to store the resource-owner's credentials for future 

use typically a password in clear-text. 

 Servers are required to support password authentication despite the security weaknesses 

created by passwords. 

 Third-party applications gain overly broad access to the resource-owner's protected 

resources leaving resource owners without any ability to restrict duration or access to a 

limited subset of resources. 

 Resource owners cannot revoke access to an individual third-party without revoking access 

to all third parties and must do so by changing their password. 

OAuth 2.0 addresses these issues by introducing an authorization layer and separating the role of 

the client from that of the resource owner.  In OAuth 2.0, the client requests access to resources 

controlled by the resource owner and hosted by the resource server and is issued a different set of 

credentials than those of the resource owner. Instead of using the resource owner's credentials to 

access protected resources, the client obtains an access token - a string denoting a specific scope, 

duration, and other access attributes. An authorization server with the approval of the resource 

owner issues access tokens to third-party clients. The client uses the access token to access the 

protected resources hosted by the resource server.  

The scenario sketched out above is commonly referred to as a 3-legged OAuth flow as it involves a 

resource owner approving a request for resources however the 2-legged OAuth flow i.e. a scenario 

that does not directly involve a resource owner and includes an interaction only between a client 

and a resource server is also gaining traction in the marketplace for service-to-service 

communication.  This use case involves an OAuth Client that has essentially been preapproved to 

access resources.  This model fits the service-to-service model, especially when the requesting and 

resource services are connected by organization or close partnership and therefore resource owner 

approval is either assumed or not required. 

The OAM OAuth 2.0 service is built to support both 3-legged and 2-legged OAuth 2.0 flows as an 

OAuth 2.0 authorization server and also offers several compelling differentiations to enable the 

OAuth 2.0 Client and the OAuth 2.0 Resource Server roles. 

OAM OAuth 2.0 Service – Features 

 

Authorization Service 

The OAM OAuth 2.0 authorization service endpoint is used to interact with the resource owner and 

obtain an authorization grant. The OAM OAuth 2.0 authorization service endpoint needs to verify 

the identity of the resource owner before issuing an authorization grant. Since resource owner 

identity verification is outside the scope of the OAuth 2.0 specification, OAM OAuth 2.0 uniquely 

leverages its built-in integration with OAM and provides the ability to use any of the OAM 



6 Oracle OAuth Service 

authentication schemes for user authentication as well as uses OAM for user session and cookie 

management.  

Token Service and Supported Grant types 

When an OAuth Client makes a POST request to the OAM OAuth 2.0 token service endpoint, the 

service validates the client credentials if the client type is confidential or was issued client 

credentials, validates the requested scope based on configuration as well as user consent and 

returns an access token for the following grant types: 

 Authorization Code 

 Resource Owner Credentials 

 Client Credentials 

 Extension Grant type to support JWT tokens 

Support for these Grant types by the token service allows the OAM OAuth 2.0 service to fully 

support the following OAuth 2.0 flows for confidential clients: 

1. Authorization Code Flow: The Authorization Code Flow is suitable for OAuth clients that 

can interact with the resource owner’s user-agent (typically a browser), and that can 

receive incoming requests from the OAuth 2.0 authorization server i.e. this flow is suitable 

for web server based OAuth clients. In this flow after the resource owner approves access, 

the Web server OAuth client receives a callback with an authorization code and passes 

back the authorization code to the OAuth 2.0 authorization server to obtain an access 

token response. 

2. Resource Owner Password Credentials Flow:  This flow also called the username-

password authentication flow as the client token request to obtain an access token is sent 

in an HTTP POST to the OAM OAuth token service endpoint and contains the resource 

owner’s username and password. It uses a grant type that is suitable for clients capable of 

obtaining the Resource Owner's credentials (username and password, typically using an 

interactive form) and where the Resource Owner has a trust relationship with the client (for 

example, the device operating system or a highly privileged application) 

3. Client Credentials Grant Flow:  This flow is also called the 2-legged OAuth flow as the 

client requests an access token using only its client credentials (or other supported means 

of authentication). The client can also request access to resources of another Resource 

Owner that has been previously arranged with the Authorization Server (the method of 

which is beyond the scope of the specification). 

Client Registration 

The OAM OAuth 2.0 Service allows an administrator to use the OAM console to register OAuth 

Clients with redirection URIs. The OAuth Service issues a client identifier for each client – a unique 

string that represents registration information provided for the OAuth client.  

Scope Management 



7 Oracle OAuth Service 

The OAM OAuth 2.0 Service provides the ability to specify specific scope definitions for a resource 

server and enforces scope checking when handling both authorization service endpoint requests 

and token service endpoint requests. It also uniquely allows a seamless mapping of OAM protected 

resources to OAuth 2.0 resource scopes. 

User Authentication and Consent Management 

For user authentication, the OAM OAuth 2.0 service uniquely supports all authentication schemes 

provided by OAM and also leverages OAM for user session/cookie management and protection of 

the consent page. 

Refresh Access Token 

The OAM OAuth 2.0 service returns a refresh token together with an access token in the token 

response where applicable. When an OAuth Client makes a refresh request to the token endpoint 

with a valid refresh token, the OAM OAuth 2.0 service performs client authentication for confidential 

clients or for any client that was issued client credentials, validates the refresh token and issues the 

requested token to the client. 

Administration 

The OAM OAuth 2.0 Service provides administrators with comprehensive and easy configuration 

options to configure several aspects of the service using the OAM Console including: 

 OAuth Authorization/Token Service Profiles 

 OAuth Access Service Providers 

 OAuth Client Profiles 

 Resource Servers configuration 

Mobile OAuth 

Since mobile clients (i.e. native apps on mobile devices) are public/non-confidential clients, the 

OAM OAuth2.0 service requires that mobile applications need to be first registered with OAM to use 

the service. The OAM OAuth 2.0 Mobile OAuth flow uniquely couples mobile application registration 

and device identification with a traditional 3-legged OAuth flow to provide trusted access for mobile 

clients.  

 
 
 



8 Oracle OAuth Service 

Securing Mobile Clients 

 

Several OAuth Clients are consumer applications that cannot keep the client secret confidential 

(application password or private key). These OAuth Clients are called public clients or non-

confidential clients. Mobile Client applications i.e. native applications on mobile devices are also 

categorized as public clients because when a native application is first downloaded from an app 

store to a device it has the client credentials that uniquely identify the client application baked into 

the application. Since all users that download the native application have access to the binary, a 

malicious user could easily decompile the client credentials out of the binary and insert their own 

credentials. During an OAuth flow when the access code gets exchanged for the access token this 

leads to a major vulnerability as there is now no secure means of really identifying who is actually 

receiving and using the access token. Hence, providing a mechanism to secure the mobile 

application on the device in order to ensure trusted access is a key requirement specifically for 

enterprise mobile applications that routinely require access to sensitive data. Following sections 

describe key innovations in the OAM OAuth 2.0 Service’s Mobile OAuth flow to facilitate secure 

access for mobile OAuth Clients: 

Mobile Application Registration and Mobile Device Identification 

The OAM OAuth 2.0 Service provides built-in support that provides a mechanism for mobile 

applications to be first registered with OAM to use OAuth Access Services. Security is enforced for 

mobile applications by creating a client profile and issuing client tokens specific to the application on 

a device. The user provides explicit authorization to register each mobile OAuth application. In the 

OAM OAuth 2.0 Service, mobile application registration is modeled uses the same paradigm as the 

OAuth protocol flow where mobile application registration is modeled as a scope for which the user 

needs to provide explicit consent. As a result of the mobile application registration the application is 

issued a client token. The mobile application always submits this client token as an input parameter 

for accessing OAM OAuth 2.0 Service end points.  Furthermore, the OAM OAuth 2.0 service also 

allows easy coupling of device identification with mobile application registration where mobile 

devices and applications can be checked against fraud and security using a built-in integration with 

Oracle Adaptive Access Manager (OAAM). The mobile application passes device claims along with 

the client token for accessing OAM OAuth 2.0 Service end points and the OAM OAuth2.0 Service 

provides a configuration to make certain claims as mandatory and certain claims as optional.  

Secure token delivery 

Modern mobile operating systems provide a notification service mechanism that is meant to notify 

the application with some data and the receipt of the data confirms that the application is a valid 

application. The native mobile OS application notification mechanisms provide an extra level of 

assurance for confirming application identity. Unfortunately, this level of assurance varies on 

different mobile OS platforms. Apple Push Notification Service (APNS) currently provides better 

security characteristics than  Google Cloud Messaging (GCM) as it can ensure that the receiver of 

the message is the proper client application authenticated with proper private certificates to decrypt 



9 Oracle OAuth Service 

the message as well as that the application runs on a real device (instead of an emulator). 

However, while GCM can guarantee that the messages are only routed to the same application on 

the same device which initiates the OAuth protocol request, it cannot ensure the message receiver 

runs on a real physical device and it cannot properly ensure the client application is the authentic 

one i.e. in GCM a malicious application can bake in the real app’s sender ID and server registration 

interface –allowing the malicious application to receive notifications meant for the real application.  

The OAM OAuth 2.0 Service provides support to leverage native mobile OS notification service 

mechanisms (APNS/GCM) as a level of assurance to confirm mobile application identity and then 

augments these mobile OS notification services with configuration options to use standard, hybrid 

and advanced modes that allow varying levels of security to deliver tokens/codes based on a 

combination of HTTP(S) and push mechanisms during client registration and token/code requests in 

the Mobile OAuth flow.  It also provides a splitting logic mechanism to the authorization codes/client 

tokens sent to the client application such that the code is sent partially in an HTTP request 

response and partially over the OS specific notification mechanism and the client must combine the 

data sent over notification mechanism and HTTP response to get the authorization code/token.  

Using a Pre-Authorization code 

In a classic OAuth scenario, the Authorization endpoint is not protected by any security credentials, 

during or before authorization code creation. The operation on the endpoint where the authorization 

code or the client token is produced can be compromised in a Mobile OAuth scenario if a fake 

device profile was submitted during a Mobile OAuth request (during client registration or afterwards 

while requesting for an Authz Code) or if the user password that is used during mobile application 

registration was compromised.  

The OAM OAuth 2.0 Service introduces a Pre-Authz Code to provide an extra layer of protection for 

the Authorization endpoint in a Mobile OAuth Scenario. A Mobile Client needs to acquire the Pre-

Authz Code first as the pre-requisite before interacting with OAuth Authorization endpoint. This Pre-

Authz Code can be used exactly once similar to the Authz Code. Furthermore, in order to ensure 

that only the original client application (where authorization requests originated from) can obtain the 

Pre-Authz code, splitting logic is applied and only the original client application requests the second 

portion of those security codes/tokens through the Mobile OS specific communication channel 

(APNS/GCM). 

Server Side Device Store and Server Side SSO for Mobile Applications 

As mentioned earlier, the OAM OAuth 2.0 Service performs mobile application registration and 

mobile device identification to first secure the mobile application on the device during the Mobile 

OAuth flow to ensure trusted access from the Mobile OAuth Client. However, this core functionality 

comes with a price i.e. that the data handles that correspond to the registered device and per 

application session information must be stored and updated. 

In order to efficiently solve the problem mentioned above, the OAM OAuth 2.0 Service introduces a 

server side device store feature. Examples of security material stored in the server side device store 

include User Tokens (JWT or OAM) and OAAM specific handles for the mobile application such as 



10 Oracle OAuth Service 

a “oaam.device” handle and a “oaam.session” handle. The built-in use of a server side store 

provides the following benefits: 

 Secure token Sharing: Some of the tokens and security material (e.g. user tokens and the 

“oaam.device” handle) need to be shared among multiple client applications. If those 

applications are from different application vendors / publishers, there is no effective and 

secure way to share those tokens and keep them in sync within those mobile applications  

 Higher security:  Even when a device or a client application is compromised the token 

values never get leaked as these tokens are never sent back to the client. 

 Significantly decreased burden on the Mobile Application: Instead of asking a mobile client 

application to manage all these security materials and keep their lifecycle in sync, this logic 

is handled securely on the server side in a centralized fashion.   

A key innovation provided by the use of a server side device store in the OAM OAuth 2.0 Service is 

built-in Single Sign On (SSO) for Mobile OAuth Client applications.  The client token obtained during 

mobile application registration contains a device hardware ID that serves as an “Index Key” to a 

server side device store entry and the client token itself serves as a “Security Key” to access 

security-sensitive data inside that particular server side device store entry. After identifying a server 

side device store entry with a hardware ID in the device profile, the server side device store logic 

retrieves security data from the server side store and can detect the presence of a valid user 

session in the context of an OAuth request allowing secure SSO across multiple client applications 

for the user. 

 

 

 



11 Oracle OAuth Service 

Additional Differentiations 

 

Following are some additional key features provided by the OAM OAuth 2.0 Service that leverage 

its built-in integration with OAM and provide higher levels of security and flexibility for enterprise 

usage: 

1. Multi-Tenancy support for Cloud deployments 

2. Supports multiple target applications through a single OAuth Service end-point  

3. Token Expiry time customization based on each Target Application requirements  

4. Static and Dynamic user profile attributes in OAuth Access Tokens  

5. Extensions Support  

6. Supports OAuth Assertion specifications for SAML bearer & JWT tokens  

7. Built-in integration with OAM during resource owner authentication and consent allowing:  

8. Leveraging any supported OAM authentication scheme(s) 

9. Fraud Detection & Strong Authentication 

10. Single Sign On and Session Management  

11. OAM Resource Protection 

12. Allow protecting OAM webgate resources with OAuth tokens.  

13. Common OAM configuration, deployment and infrastructure 

 

  



12 Oracle OAuth Service 

Sample Use Case 
 

Scenario Description 

Avitek Retail is a large multi brand retail enterprise. In addition to several other products, Avitek 

Retail also sells shoes and accessories from different competing brands in their retail outlets. Avitek 

Retail’s warehouse managers must ensure that adequate inventory levels are maintained to meet 

customer demand and they typically need access to supplier catalogs to replenish inventory.  

Avitek Retail- an Oracle Access Manager customer has built its own inventory replenishment 

application that is used by its warehouse managers. Avitek Retail originally built its inventory 

replenishment application as a web based application but has also recently made it available as a 

mobile native application for both the iOS and Android platforms that can be downloaded from 

iTunes or the Google Play app stores. 

In our scenario, ABC Designer Shoe Inc provides a catalog of designer shoes as a REST service 

that requires a valid OAuth 2.0 access token. This catalog needs to be accessed by Avitek Retail’s 

Inventory Replenishment application. From an OAuth perspective then we have the following 

scenario: 

 OAuth 2.0 Server: Oracle Access Manager 11gR2PS2 deployed at Avitek Retail 

 OAuth 2.0 Client: Avitek Retail’s Inventory Replenishment application  

 OAuth Resource Server: ABC Designer Shoe Catalog 

 Resource Owner: Tom Dole- Warehouse Manager at Avitek Retail who owns the shoe 

catalog provided by ABC Designer Shoe Inc to Avitek Retail. 

 

3-legged OAuth Flow with Authorization Code Grant Type 

 

 

 



13 Oracle OAuth Service 

1. Tom Dole (ABC Shoe Inc Catalog Resource Owner and Avitek Retail Warehouse 

Manager) attempts to access the Inventory Replenishment application( OAuth Client) and 

requests that it access resources at a different site (ABC Designer Shoe Inc Catalog 

Resource Server) 

2. The Inventory Replenishment application (OAuth client) invokes the authorization server 

endpoint on the OAM OAuth 2. 0 authorization server at Avitek Retail.  

3. The OAM OAuth 2.0 Authorization server at Avitek Retail redirects the Inventory 

Replenishment application (OAuth Client) via user-agent redirection for user authentication 

and presents Tom Dole with a consent page on successful authentication.   

4. On receiving Tom Dole’s consent, the OAM OAuth 2.0 Authorization server at Avitek Retail 

sends an authorization code to the Inventory Replenishment application (OAuth Client) 

5. The Inventory Replenishment application (OAuth Client) uses the authorization code to 

retrieve an OAuth Access Token from the OAM OAuth 2.0 Authorization Server by 

POSTing to the OAM OAuth 2.0 Authorization server token endpoint at Avitek Retail 

6. The Inventory Replenishment application (OAuth Client) presents the Access Token to the 

ABC Designer Inc Shoe Catalog (OAuth Resource Server) 

7. The ABC Designer Shoe Inc Catalog (Resource Server) validates the token with the OAM 

OAuth 2.0 Authorization server at Avitek Retail 

8. The ABC Designer Shoe Inc Catalog (Resource Server) provides the requested content to 

the Inventory Replenishment application (OAuth Client)  

 

Mobile OAuth Flow 

 

 



14 Oracle OAuth Service 

 

1. Tom Dole (ABC Shoe Inc Catalog Resource Owner and Avitek Retail Warehouse 

Manager) attempts to access the Inventory Replenishment application (Mobile OAuth 

Client). 

2. The Inventory Replenishment application (Mobile OAuth client) requests a pre-

authorization code with a device token from the OAM OAuth 2.0 Server. 

3. The OAM OAuth 2.0 Server returns pre-authorization code over APNS(iOS)/GCM 

(Android). 

4. The Inventory Replenishment application (Mobile OAuth Client) sends a registration 

request with device claims and pre-authorization code to the OAM OAuth 2.0 Server.  

5. The OAM OAuth 2.0 server uses user-agent redirection, authenticates the user, checks for 

device security, gets user consent for Mobile OAuth Client registration  ( - if Tom Dole is 

accessing the app for the first time on the mobile device) and returns a client token over 

APNS/GCM to the Mobile OAuth Client. 

6. The traditional OAuth flow starts now. The OAuth server checks for device security and 

depending on the configuration,  presents the user with a consent page for accessing the 

ABC Shoe Designer Inc Catalog 

7. The OAM OAuth 2.0  authorization server sends an authorization code to the Inventory 

Replenishment application (Mobile OAuth client) 

8. The Inventory Replenishment application (Mobile OAuth client) requests for an access 

token from the OAuth authorization server by sending the authorization code, client token 

and device claims. 

9. The OAM OAuth 2.0 server returns access token with optional refresh token to the 

Inventory Replenishment application (Mobile OAuth Client) 

10. The Inventory Replenishment application (Mobile OAuth Client) presents the Access Token 

to the ABC Shoe Designer Inc Catalog (OAuth 2.0 Resource Server) 

11. The ABC Shoe Designer Inc Catalog (OAuth 2.0 Resource Server) validates the token with 

the OAM OAuth 2.0 Authorization Server 

12. The ABC Shoe Designer Inc Catalog (OAuth 2.0 Resource Server) provides the requested 

content to the Inventory Replenishment application (Mobile OAuth Client)  

  



15 Oracle OAuth Service 

Conclusion 

 

The Oracle Access Manager OAuth 2.0 Service provides a fully standards compliant OAuth 2.0 

authorization Server with support for both 3-legged and 2-legged OAuth flows and enables the 

OAuth 2.0 Client and the OAuth 2.0 Resource Server roles. It uniquely provides several compelling 

differentiations and innovations for mobile OAuth 2.0 clients (such as native applications on mobile 

devices) specifically for extranet access in enterprise scenarios.  These include built-in support for 

mobile application registration and device identification during the OAM OAuth 2.0 mobile flow 

ensuring trusted access from mobile devices and built-in server side single sign on for mobile 

OAuth clients. It is ideally suited for enterprise scenarios that may require higher levels of security 

during an OAuth flow and would benefit from built-in OAM integrations provided by the OAM OAuth 

2.0 service



 

  



 

 

2 | Oracle OAuth Service 
 

 

Oracle OAuth Service 

Author: Kanishk Mahajan  

March 2015 

 

 

Oracle Corporation, World Headquarters  

500 Oracle Parkway 

Redwood Shores, CA 94065, USA 

 

 

Worldwide Inquiries         

Phone: +1.650.506.7000 

Fax: +1.650.506.7200 

 

 
 
Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 
means, electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.0115 
 
 

 

C O N N E C T  W I T H  U S  

 
blogs.oracle.com/oracle 

 
facebook.com/oracle 

 
twitter.com/oracle 

 
oracle.com 

 

 

 

 

 



 

 

3 | Oracle OAuth Service 
 

  



 

 

4 | Oracle OAuth Service 

 

 
 

 
 


