

BUILD AND DEPLOY SOA

PROJECTS FROM DEVELOPER

CLOUD SERVICE TO SOA

CLOUD SERVICE

Ashwini Sharma

1 CONTENTS

1. Introduction .. 2

2 Prerequisites ... 2

3 Patch the SOA Server Installation ... 3

4. Use Oracle Developer Cloud Service to Create a New Project ... 3

5. Clone the Project... 6

6. Populate the Local Maven Repository .. 8

7. Populate the Oracle Developer Cloud Service Maven Repository ... 9

8. Maven Deploy to SOA Servers on the Local Machine ... 11

9. Maven Deploy to Oracle SOA Cloud Service From Local Machines .. 12

10. Build Your Project on Oracle Developer Cloud Service and Deploy to Oracle SOA Cloud Service . 13

11. Issues with Certificates ... 18

1. INTRODUCTION

In the scenarios below, this document describes how to build and deploy SOA composite projects from a

local Maven repository on your network to Oracle SOA Cloud Service and from Oracle Developer Cloud

Service to Oracle SOA Cloud Service.

2 PREREQUISITES

Install Git, JDK, and Maven, and set up the environment on a local Linux box within your company

network.

1. Download Git from:

https://git-scm.com/

2. Download JDK 1.8 or later from:

http://download.oracle.com/otn-

pub/java/jdk/8u151tub12/e758a0de34e24606bca991d704f6dcbf/jdk-8u151-linux-x64.tar.gz)

3. Download Maven version 3 or later from:

 http://www-us.apache.org/dist/maven/maven-3/3.5.0/binaries/apache-maven-3.5.0-bin.tar.gz)

4. Download and extract the above files in a directory (for example, /tmp/installed/)

5. Export the following variables:

a. JAVA_HOME=/tmp/installed/jdk1.8.0_151

(Replace the path with the directory where you extracted the JDK)

b. MAVEN_HOME=/tmp/installed/apache-maven-3.5.0

(Replace the path with the directory where you extracted maven)
c. PATH=$JAVA_HOME/bin:$MAVEN_HOME/bin:$PATH

d. Use the which command to verify that the above variables are set properly:

i. % which java

(Should display /tmp/installed/jdk1.8.0_151/bin/java on Linux)

ii. % which mvn

(Should display /tmp/installed/apache-maven-3.5.0/bin/mvn on

Linux)

6. Set up the SOA server on the local machine in order to get build files from the local SOA server

and upload them to the local Maven repository. Once this is done, sync the local Maven

repository with the remote Maven repository. The next section describes how to patch the

Oracle Middleware Home directory on the SOA server.

7. After you install SOA, export the following variables:

a. MW_HOME=soaInstallationDirectory/Oracle/Middleware/Oracle_Home

b. ORACLE_HOME=soaInstallationDirectory/Oracle/Middleware/Oracle_Home

https://git-scm.com/
http://download.oracle.com/otn-pub/java/jdk/8u151tub12/e758a0de34e24606bca991d704f6dcbf/jdk-8u151-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u151tub12/e758a0de34e24606bca991d704f6dcbf/jdk-8u151-linux-x64.tar.gz
http://www-us.apache.org/dist/maven/maven-3/3.5.0/binaries/apache-maven-3.5.0-bin.tar.gz

3 PATCH THE SOA SERVER INSTALLATION

The following patches must be applied based on the SOA version installed. Three patches are provided

for the SOA Installation, one each for releases 12.2.1.3.0, 12.2.1.2.0 and 12.2.1.1.0.

12.2.1.3.0 Patch #: 29142661 (12.2.1.3.181223 BP)

12.2.1.2.0 Patch #: 26647800

12.2.1.1.0 Patch #: 26673376

To install the patches, follow the instructions in Patching Your Environment Using OPatch.

4 USE ORACLE DEVELOPER CLOUD SERVICE TO CREATE A NEW PROJECT

The following steps describe how to create a new project in Oracle Developer Cloud Service. For

additional information refer to Using Oracle Developer Cloud Service.

Note: If you have already created a project with Oracle Developer Cloud Service and have uploaded the

required SOA projects to the repository, then skip to the next section.

1. Log in to the Oracle Developer Cloud Service console and create a new project.

2. Name the project “DeveloperCloudServiceExamples”

https://docs.oracle.com/middleware/12213/lcm/OPATC/GUID-56D6728D-5EDC-482B-B2E4-DDB20A64FA32.htm#OPATC143
https://docs.oracle.com/en/cloud/paas/developer-cloud/csdcs/getting-started-oracle-developer-cloud-service.html

Click Next

3. Choose the Initial Repository template. Use an existing Git Repository to bootstrap your project.

4. Enter https://github.com/oracle-soa-odcs/DeveloperCloudServiceExamples in the Import existing

repository field. This repository contains sample SOA projects that you can use for this exercise. You

can replace it with your repository URL and import your projects into Oracle Developer Cloud

Service.

https://github.com/oracle-soa-odcs/DeveloperCloudServiceExamples

5. Click Finish and wait for Oracle Developer Cloud Service to set up the repository. When it

finishes you will be at the projects landing page.

5 CLONE THE PROJECT

After you create your project, the source code of SOA projects resides within Oracle Developer Cloud

Service's Git source repository. In order to work on it locally, use the following steps to download the

contents of the remote Git repository into your local Git repository.

Note: The version of the design time for SOA must match the version of the runtime. If you use Oracle

SOA Cloud Service 12.2.1.2, then the design time must also be 12.2.1.2. The following examples are for

the 12.2.1-3-0 release. If you use an older release, you must modify the value of the

com.oracle.soa.plugin-version attribute in the pom.xml file located in the

DeveloperCloudServiceExamples/version/HelloWorldExample/common/ directory.

1. From the project’s landing page in Oracle Developer Cloud Service console, find the Git URL.

2. Clone the above repository into your local machine. Run the following command to make the

clone, but change the URL to reflect your Oracle Developer Cloud Service project’s repository URL:

% git clone https://wd-ops-
soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer3430

1-orclwdasdz14soa/s/developer34301-

orclwdasdz14soa_developercloudserviceexamples_21100/scm/developer

cloudserviceexamples.git

You should see the following output after you run the clone command. (You will be prompted

for a password.):

Cloning into 'DeveloperCloudServiceExamples'...

remote: Counting objects: 231, done

remote: Finding sources: 100% (231/231)

remote: Getting sizes: 100% (108/108)

Receivremote: Total 231 (delta 107), reused 229 (delta 107)

Receiving objects: 100% (231/231), 134.44 KiB | 0 bytes/s, done.

Resolving deltas: 100% (107/107), done.

3. If you are behind a proxy, use one of the following commands to inform Git about the proxy

information:

git config --global http.proxy myproxy.mycompany.com:80

[git config --global proxyUrl:proxyPort]

4. The clone command creates a subdirectory called DeveloperCloudServiceExamples that

acts as your local repository. Any change that you make in this repository must be pushed to the

remote repository on Oracle Developer Cloud Service in order for the change to be reflected and be

buildable or deployable from Oracle Developer Cloud Service.

https://wd-ops-soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer34301-orclwdasdz14soa/s/developer34301-orclwdasdz14soa_developercloudserviceexamples_21100/scm/developercloudserviceexamples.git
https://wd-ops-soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer34301-orclwdasdz14soa/s/developer34301-orclwdasdz14soa_developercloudserviceexamples_21100/scm/developercloudserviceexamples.git
https://wd-ops-soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer34301-orclwdasdz14soa/s/developer34301-orclwdasdz14soa_developercloudserviceexamples_21100/scm/developercloudserviceexamples.git
https://wd-ops-soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer34301-orclwdasdz14soa/s/developer34301-orclwdasdz14soa_developercloudserviceexamples_21100/scm/developercloudserviceexamples.git
https://wd-ops-soacs_ww%40oracle.com@developer.us2.oraclecloud.com/developer34301-orclwdasdz14soa/s/developer34301-orclwdasdz14soa_developercloudserviceexamples_21100/scm/developercloudserviceexamples.git

6 ENABLE CONFIGURE OVERWRITE PROPERTY FOR RELEASE ARTIFACTS

You must enable the Configure Overwrite Property for Release Artifacts option in the Oracle

Developer Cloud Service project before execution of the maven-sync plugin. See the following

documentation to enable the Configure Overwrite Property for Release Artifacts option for the Maven

Repository:

https://docs.oracle.com/en/cloud/paas/developer-cloud/csdcs/use-projects-maven-

repository.html#GUID-64CF3DE2-1552-440E-A704-DBAC39387523

7 POPULATE THE LOCAL MAVEN REPOSITORY

There are multiple ways in which the local maven repository can be populated with JAR files from the

MW_HOME directory of the local SOA Server. The Maven repository is the location that contains the JAR

files required for Maven to compile and package your source code.

This section describes how to populate the local Maven repository from the MW_HOME directory of

your SOA Installation.

A new Oracle Developer Cloud Service Project contains an empty repository (remote repository). You

must populate the local Maven repository and then sync the local Maven repository with the remote

Maven repository. This is a one-time setup that populates all the required files and JARs in the remote

repository. Once the remote repository is populated, developers can use the Oracle Developer Cloud

Service repository to get the binaries required for compilation in their local machines

Before populating the local Maven repository, please ensure that the SOA installation has been patched

as described in the previous step.

Use the Oracle Maven Synchronization Plug-in to synchronize the Maven repository with MW_HOME.

This plug-in introspects the MW_HOME directory and uploads the pom.xml file and referenced binary

into the repository. To perform this operation, follow these steps:

1. Ensure that the Maven settings.xml file contains proxy configuration settings. Running the

Maven command for first time downloads several artifacts from the Maven central repository.

Your system may require a proxy to connect to Maven central. For this update the

$MAVEN_HOME/conf/settings.xml file contains proxy information.

2. Use the following command to install the Oracle Maven Synchronization Plug-in from

MW_HOME. Note that the version might be different, 12.2.1 is used here. Also note the

directory change; you want to be in a directory without a POM or with a bland POM otherwise

Maven attempts to evaluate it.

% cd calculator-demo/

% mvn install:install-file \

https://docs.oracle.com/en/cloud/paas/developer-cloud/csdcs/use-projects-maven-repository.html%23GUID-64CF3DE2-1552-440E-A704-DBAC39387523
https://docs.oracle.com/en/cloud/paas/developer-cloud/csdcs/use-projects-maven-repository.html%23GUID-64CF3DE2-1552-440E-A704-DBAC39387523

-DpomFile=$MW_HOME/oracle_common/plugins/maven/com/oracle/

maven/oracle-maven-sync/12.2.1/oracle-maven-sync-12.2.1.pom

-Dfile=$MW_HOME/oracle_common/plugins/maven/com/oracle/

maven/oracle-maven-sync/12.2.1/oracle-maven-sync-12.2.1.jar

3. Once the plug-in is installed, run it with the following command:

For release 12.2.1.2:

% mvn –s $MAVEN_HOME/conf/settings.xml com.oracle.maven:

oracle-maven-sync:12.2.1-2-0:push -DoracleHome=$MW_HOME

For release 12.2.1.3:

% mvn –s $MAVEN_HOME/conf/settings.xml com.oracle.maven:

oracle-maven-sync:12.2.1-3-0:push -DoracleHome=$MW_HOME

Note: Execute the following command from a directory that doesn’t contain pom.xml. Also,

change the version number as appropriate for your environment.

This command takes a while to run because it copies JAR files from MW_HOME into the local

Maven repository.

4. Once the sync completes, you should be able to run the following command:

% cd DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/

HelloWorldApp/Project1

% mvn clean compile

The next section describes how you can populate the remote Maven repository. The Oracle Developer

Cloud Service remote Maven repository has to be populated only once, after that the developer can use

the Oracle Developer Cloud Service remote repository to download the JARs required to build and

deploy on local machines.

8 POPULATE THE ORACLE DEVELOPER CLOUD SERVICE MAVEN REPOSITORY

There is more than one way to populate the Oracle Developer Cloud Service remote Maven repository,

this document describes how to use the previously installed Oracle Maven Synchronization Plug-in to

populate the remote repository.

To use the Oracle Maven Synchronization Plug-in with remote servers, you must first define the

<repository> and <server> tags in settings.xml.

Include a <server> tag in the Maven settings.xml file. A sample is listed below:

<server>

 <id>MyMavenRepository</id>

 <username>clara.coder@oracle.com</username>

 <password>f@nt@5t1c</password>

</server>

You can enter the password as it is or encrypt it using Maven encryption. The recommended approach is

to use Maven to encrypt it.

Add a profile to the Maven settings.xml file. This profile is used to populate the remote Maven

repository. The following is a sample of the profile:

<profile>

 <id>RemoteMavenRepository</id>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>MyMavenRepository</id>

 <name>Remote Maven Repository for your DevCS project</name>

 <!-- CHANGE ME! -->

 <url>URL to your ORACLE DEVELOPER CLOUD SERVICE Maven Repository. This can be

 obtained from Oracle Developer Cloud Service Landing Page</url>

 <layout>default</layout>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>MyMavenRepository</id>

 <name>Remote Maven Plugin Repository for your DevCS project</name>

 <!-- CHANGE ME! -->

 <url>URL to your ORACLE DEVELOPER CLOUD SERVICE Maven Repository. This can be

 obtained from Oracle Developer Cloud Service Landing Page</url>

 <layout>default</layout>

 </pluginRepository>

 </pluginRepositories>

 </profile>

Remember that the <id> used in <repository> and <pluginRepository> should match that

of the <id> used in the <server> tag.

Now you can run the Oracle Maven Synchronization Plug-in again using the profile described above:

For release 12.2.1.2:

% mvn –s $MAVEN_HOME/conf/settings.xml com.oracle.maven:oracle-maven-

sync:12.2.1-2-0:push -DoracleHome=$MW_HOME –P RemoteMavenRepository -

DserverId=MyMavenRepository

For release 12.2.1.3:

% mvn –s $MAVEN_HOME/conf/settings.xml com.oracle.maven:oracle-maven-

sync:12.2.1-3-0:push -DoracleHome=$MW_HOME –P RemoteMavenRepository –

DserverId=MyMavenRepository

Note: Be sure not to execute the following command from a directory that contains a pom.xml file.

This command can take many hours to complete.

The Oracle Developer Cloud Service Maven repository can be accessed without a proxy if your

company’s network policy permits. Accessing Oracle Developer Cloud Service without using a proxy can

enhance performance while populating the Maven remote repository. To access the repository without

a proxy, add the Oracle Developer Cloud Service Maven repository URL to <nonProxyHosts> in

settings.xml. For example:

<proxy>

 <id>optional</id>

 <active>true</active>

 <protocol>http</protocol>

 <host>YOUR_ORGANIZATION_PROXY_HOST</host>

 <port>PROXY_PORT</port>

 <nonProxyHosts>DEV_CS_MAVEN_REPOSITORY_URL</nonProxyHosts>
</proxy>

9 MAVEN DEPLOY TO SOA SERVERS ON THE LOCAL MACHINE

Prerequisites:

1. SOA must be installed on the local machine.

2. The SOA server must be up and running.

3. Copy the file cacerts from $JAVA_HOME/jre/lib/security/ and put it into the
DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/HelloWor

ldApp/certificates/ folder. You will use this file as a trust store to store certificates

required to deploy to Oracle SOA Cloud Service (in case Oracle SOA Cloud Service requires a

certificate be used in the client side to access Oracle SOA Cloud Service).

The certificate has to be installed in the keystore that you use (as mentioned above). You will

push these changes to Oracle Developer Cloud Service.

In
DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/common/pom.xm

l, there are profiles called soaDeployEnv_DEV, soaDeployEnv_TEST, and

soaDeployEnv_PROD. As you can guess by their names, these profiles contain deployment

information for various environments. Modify and use soaDeployEnv_DEV in this example.

The file
DeveloperCloudServiceExamples//12.2.1.3/HelloWorldExample/common/pom.x

ml also contains several properties that you might have to change to reflect the correct values.

Here are a few of them:

com.oracle.soa.plugin-version: Should have a value of 12.2.1-3-0 (for the 12.2.1-3-0

Release)

soaServerDeployProtocol: Should be set to HTTP or HTTPS according to the SOA Server

configuration.

In the profile section, modify the values described in the profile soaDeployEnv_DEV and set the

values for the local server:

soaServerHost: The host where the Oracle SOA Cloud Service server is running. The host where OTD

is running if OTD is present.

soaServerPort: If the deploy protocol is HTTP, then use port 80 on the SOA managed server, if the

protocol is HTTPS use 443. If you are deploying to a SOA server on a local machine, you can use port

7002.

soaServerUsername: The user name used to log in to Oracle Enterprise Manager Fusion

Middleware Control Console.

soaServerPassword: The password used to log in to Oracle Enterprise Manager Fusion Middleware

Control Console.

The following commands deploy the Project1 composite into the local SOA server Installation:

% Cd DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/

HelloWorldApp/Project1

% mvn clean pre-integration-test –P soaDeployEnv_DEV

10 MAVEN DEPLOY TO ORACLE SOA CLOUD SERVICE FROM LOCAL

MACHINES

Please read the above section and modify the values for the soaDeployEnv_TEST profile with the

values replaced for Oracle SOA Cloud Service.

Execute the following command:

% mvn clean pre-integration-test –P soaDeployEnv_TEST

-Djavax.net.ssl.trustStore=path to your cacert file

The –Djavax.net.ssl.trustStore parameter should only be added when Oracle SOA Cloud

Service is accessible over HTTPS and requires a certificate.

Please refer to Section 11 for information about installing a certificate to a trust store.

11 BUILD YOUR PROJECT ON ORACLE DEVELOPER CLOUD SERVICE AND

DEPLOY TO ORACLE SOA CLOUD SERVICE

This step requires you to configure a build job in the Oracle Developer Cloud Service console. The

following steps guide you thru this configuration.

1. From the Oracle Developer Cloud Service landing page, navigate to the Build tab

2. Click New Job to create a new job. Name it something memorable such as

“DevCS_To_SOACS_Test”.

3. Click Configure.

4. In the Main tab select JDK 8 from the dropdown list.

5. In the Build Parameters tab, check the This build is parameterized checkbox and then select

String Parameter from the Add Parameter dropdown menu. Enter MW_HOME as the name and

${MIDDLEWARE_HOME_SOA_12_2_1} as the value.

This value is required by common/pom.xml.

6. In the Source Control tab, click Git and choose the only repository from the dropdown menu.

Click Add on the right side of the Branches section. You should see a branch called "master" on

the Branch Specifier dropdown menu.

7. In the Triggers tab, keep the default settings. You will manually trigger this job for the time

being:

8. In the Environment tab keep the default settings.

9. In the Build Steps tab, click Add Build Step and select Invoke Maven 3. Enter the information as

it appears below:

The JVM option that specifies javax.net.ssltrustStore can be set according to the

location of cacert file in your project.

Define the profile "UseProxy" on
DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/common/p

om.xml:

<profile>

 <id>UseProxy</id>

 <properties>

 <http.proxyHost>${env.HTTP_PROXY_HOST}</http.proxyHost>

 <http.proxyPort>${env.HTTP_PROXY_PORT}</http.proxyPort>

 <https.proxyHost>${env.HTTPS_PROXY_HOST}</https.proxyHost>

 <https.proxyPort>${env.HTTPS_PROXY_PORT}</https.proxyPort>

 <http.nonProxyHosts>${env.NO_PROXY}</http.nonProxyHosts>

 </properties>

</profile>

10. In the Post Build tab, keep the default settings.

11. In the Advanced tab, keep the default settings.

12. Click Save.

13. Make sure all the changes made in the local repository are pushed to the remote repository on

Oracle Developer Cloud Service, then click Build Now.

14. When prompted to confirm MW_HOME is ${MIDDLEWARE_HOME_SOA_12_2_1}, click Build.

12 ISSUES WITH CERTIFICATES

Currently there is an issue whereby deploying to Oracle SOA Cloud Service requires a certificate. If the

Oracle SOA Cloud Service server uses HTTPS and requires a certificate to be installed at the client side,

then it has to be done in a cacert file that’s located at
DeveloperCloudServiceExamples/12.2.1.3/HelloWorldExample/HelloWorldApp

/certificates/cacert

The certificate from the Oracle SOA Cloud Service server has to be imported into the cacert file and

then the file is pushed to the Oracle Developer Cloud Service Git repository.

The absolute path to this file has to be provided as a parameter to the key

javax.net.sslTrustStore.

The following command installs a certificate to the trust store:

% keytool -import -alias SOACSCertificate -file certificateFileName -keystore
cacerts -storepass changeit

