

An Oracle White Paper
September 2009

Exposing WebCenter Services Task Flows as
WSRP Portlets and Ensemble Pagelets

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s products remains at the sole discretion of
Oracle.

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

Table of Contents
Introduction ... 1

Creating a WebCenter Application and Testing the Service Task Flows...................................... 2

Create a WebCenter Application... 2

Create Backend Server Connections.. 2

Add Service Task Flows to the Page and Test ... 4

Turning the Application into a Portlet Producer... 4

Create the Portlets .. 4

Add support for portlet geometry parameters ... 4

Wire WebCenter services task flow parameters to portlet parameters 6

Declaring Portlet Parameters .. 6

Binding Task Flow Parameters to URL Parameters ... 7

Add Trinidad Style Pop-up Dialog Support ... 7

Trinidad Style Pop-up Dialog Limitations... 7

Create a custom JSF phase listener to raise the dialog before the render response phase 8

Create a custom Trinidad DialogServiceImpl to capture requests to raise a Trinidad dialog and
prepare the dialog to be raised.. 9

Create a custom Trinidad RequestContextImpl to instantiate a custom Trinidad
DialogServiceImpl.. 9

Create a custom Trinidad RequestContextFactory to instantiate a custom Trinidad
RequestContextImpl .. 10

Create and register a servlet filter to set a custom Trinidad RequestContextFactory 10

Workaround for Trinidad pop-up dialog when consumed by a custom WebCenter application 10

Service Specific Tasks .. 11

Discussions Service Task Flows ... 11

Mail Service Task Flow.. 11

Turning the Application into a Pagelet Producer... 12

Add the Ensemble endpoint servlet filter .. 12

Add support for pagelet geometry parameters.. 12

Wire WebCenter services task flow parameters to URL parameters 13

Configure CSP Identity Asserter ... 13

Making the Producer Session Cookie Unique... 15

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 1

Introduction

This document serves as a guide for application developers wanting to expose WebCenter service
task flows as WSRP portlets or Ensemble pagelets, and reflects recommended best practices. To
help understand the process, we use the WebCenter Document Library service task flow as an
example throughout this document. The following outlines the high level tasks:

• Create a custom WebCenter application and test the service task flows

• Create producer endpoints:

• WSRP portlet endpoint

 Portletize pages containing WebCenter services task flows

 Add support for portlet geometry parameters

 Wire WebCenter services task flow parameters to portlet
parameters

 Add Trinidad pop-up support

• Ensemble pagelet endpoint

 Add the Ensemble endpoint servlet filter

 Add support for pagelet geometry parameters

 Wire WebCenter services task flow parameters to URL parameters

• Make the producer session cookie unique

The resulting WSRP portlets can be consumed by custom Oracle WebCenter applications, by
Oracle Portal 11g, and by Oracle WebLogic Portal. The Ensemble pagelets can be consumed by
Oracle WebCenter Ensemble and Oracle WebCenter Interaction.

In addition to this guide, a sample JDeveloper workspace is provided. To use the workspace,
unzip the SampleServicesProducer.zip and open the ServicesProducers/ServicesProducer.jws in
JDeveloper. This guide makes references to various classes within the sample workspace.

Creating a WebCenter Application and Testing the Service
Task Flows

Before turning a WebCenter service task flow into a portlet or pagelet, we recommend using the
service task flow on an ADF Faces page to check that the task flow functions as intended.
Depending on the intended use, one or multiple WebCenter service task flows can be combined
in a single portlet or pagelet.

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 2

Create a WebCenter Application
Follow the instructions provided in “Creating a WebCenter Application” in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter, to create an application in JDeveloper based on the
WebCenter Application Template. Figure 1 illustrates the Create WebCenter Application wizard used
for this task.

Figure 1 - Create WebCenter Application Wizard

Create Backend Server Connections

Follow the instructions provided in “Accessing Connection Wizards” of the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter, to create the required backend server connections
for the services. Figure 2 shows example settings for the Create Content Repository Connection
wizard.

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 3

Figure 2 - Create Content Repository Connection Wizard

For development and testing, we recommend using the External Application option with
public or shared credentials to access the backend servers. For deployment to a production
environment, we recommend using the Identity Propagation option. Note that the backend
connections for a development environment are usually different from those used in a
production environment. The connections created in JDeveloper can be safely changed prior to
deployment in JDeveloper, alternatively during or after application deployment using the Fusion
Middleware Control.

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 4

Add Service Task Flows to the Page and Test

Create a JSF page and drop an <af:panelStretchLayout> onto the page inside the <af:form> tag.
The panelStretchLayout serves as a geometry container for the service task flow. Next, drop the
desired service task flow into the panelStretchLayout’s center facet. Since this page is used to
render the content of the portlet and pagelet, it is essential to run the page to make sure the task
flow works as intended. An example JSF page, doclib-document-library.jspx, is provided in the
sample workspace.

Turning the Application into a Portlet Producer

Create the Portlets

By this point, the service task flow should be running as intended on a page. The page is now
ready to be turned into a portlet. Follow the instructions in the Creating a Portlet from a JSF
Application chapter of the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter to
portletize the page you have just created. The How to Create a JSF Portlet Based on a Page section
provides step-by-step instructions for creating a portlet.

Add support for portlet geometry parameters

It's generally useful to control the dimension of a portlet on the page using the custom portlet
parameters width and height. This section describes how to add these parameters, and use them to
control the portlet dimensions.

First, declare the width and height parameters with the portlet. To do this, add the parameters to
the WEB-INF/oracle-portlet.xml file of the producer. For example:

 <portlet-extension>
 <portlet-name>DocumentLibraryPortlet</portlet-name>
 <navigation-parameters>
 <name>width</name>
 <type>String</type>
 <label xml:lang="en">width</label>
 <hint xml:lang="en">Portlet Width</hint>
 </navigation-parameters>
 <navigation-parameters>
 <name>height</name>
 <type>String</type>
 <label xml:lang="en">height</label>
 <hint xml:lang="en">Portlet Height</hint>
 </navigation-parameters>
 <portlet-id>adf_jsf__doclib-document-library_jspx</portlet-id>
 <allow-export>true</allow-export>
 <allow-import>true</allow-import>
 <require-iframe>true</require-iframe>
 <minimum-wsrp-version>2</minimum-wsrp-version>
 </portlet-extension>

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 5

When portlet parameters are passed from the portlet consumer, the parameters' name/value
pairs are added to the porletized page's URL as request parameters. The producer can fetch these
values from the URL in a backing bean. The sample workspace provides an example of a backing
bean called ProducerBean that has a property called portletSize. The value of the property is
a literal String of the format "width: xxx; height: yyy;" that can be used in the producer's
page as a CSS inlineStyle attribute. The sample workspace contains the following backing
bean as example, oracle.webcenter.sample.e20producer.ProducerBean.

Register the backing bean in faces-config.xml. For example:

...
<managed-bean>
 <managed-bean-name>ProducerBean</managed-bean-name>
 <managed-bean-class>
 oracle.webcenter.sample.e20producer.ProducerBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>
...

Here is how to use an Expression Language (EL) expression to get the portletSize property
of the ProducerBean. The return value of the EL expression is used on the portlet page in the
inlineStyle attribute of panelStretchLayout. The result is that panelStretchLayout
will be sized according to the width and height value specified in the portlet parameters. Since
panelStretchLayout wraps around the portlet content, this means that the portlet size is
constrained by the portlet width and height parameters.

 <af:form id="f1" usesUpload="true">
 <af:panelStretchLayout id="psl1" startWidth="0px" endWidth="0px"
 topHeight="0px" bottomHeight="0px"
 inlineStyle="#{ProducerBean.portletSize}">
 <f:facet name="center">
 ...

Again, the page should be tested before consuming it as portlet to ensure it renders as intended.
Geometry sizing can be tested simply by running the JSF page and providing the width and height
parameters on the URL. For example:

http://127.0.0.1:7101/ServicesProducer/faces/doclib-document-
library.jspx?width=100%25&height=600px

 
Note: Since the width and height parameters are passed as URL parameters, the value of these
parameters should be URL encoded. For example, width=100% should be specified as
width=100%25 where the % character is encoded as %25.

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 6

Wire WebCenter services task flow parameters to portlet parameters

WebCenter service task flows have parameters that can be used to manipulate the behavior and
rendering of the task flows. In this section you will learn how to expose these task flow
parameters as portlet parameters.

Declaring Portlet Parameters

The first task is to identify the list of task flow parameters to expose them as portlet parameters
(in some cases it may be useful to expose only a subset for simplicity). This list of task flow
parameters requires corresponding portlet parameters. The portlet parameters are declared in the
producer's WEB-INF/oracle-portlet.xml file. The Document Library task flow, for example,
can expose the startFolderPath task flow parameter as shown below:

 <portlet-extension>
 <portlet-name>DocumentLibraryPortlet</portlet-name>
 <navigation-parameters>
 <name>startFolderPath</name>
 <type>String</type>
 <label xml:lang="en">Start Folder Path</label>
 <hint xml:lang="en">Start Folder Path</hint>
 </navigation-parameters>
 <navigation-parameters>
 <name>width</name>
 <type>String</type>
 <label xml:lang="en">width</label>
 <hint xml:lang="en">Portlet Width</hint>
 </navigation-parameters>
 <navigation-parameters>
 <name>height</name>
 <type>String</type>
 <label xml:lang="en">height</label>
 <hint xml:lang="en">Portlet Height</hint>
 </navigation-parameters>
 …
 </portlet-extension>

Binding Task Flow Parameters to URL Parameters

The next task is to bind the value of the task flow parameter to the URL parameter. This can be
achieved by setting the task flow parameter in the page definition. At runtime, the portlet
parameters' name/value pairs are injected into the portletized page's URL as parameters by the
Oracle JSF Portlet Bridge. The Document Library task flow, for example, can obtain the value
for startFolderPath from the corresponding URL parameter using the EL expression
${param.startFolderPath}. This expression is applied to the task flow parameter in the page
definition. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.52.61"
id="doclib_document_libraryPageDef"
 Package="view.pageDefs">
 <parameters/>
 <executables>

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 7

 <taskFlow id="doclibdocumentlibrary1" …>
 <parameters>
 …
 <parameter id="startFolderPath"
 value="${param.startFolderPath}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>
 </executables>
 <bindings/>
</pageDefinition>

 
Again, the page should be tested as-is before consuming it as portlet to ensure it renders as
intended. Parameters can be tested simply by running the JSF page and providing the
parameter’s name and value pair on the URL. For example:

http://127.0.0.1:7101/ServicesProducer/faces/doclib-document-

library.jspx?startFolderPath=%2Ftmp

Add Trinidad Style Pop-up Dialog Support

Trinidad Style Pop-up Dialog Limitations

The Oracle JSF Portlet Bridge does not currently support Trinidad-style pop-up dialogs.
Trinidad-style pop-up dialogs are used to display content in a separate browser pop-up window,
as opposed to inline pop-up dialogs that appear within the same browser window. Consequently,
for WebCenter services task flows that use Trinidad-style pop-up dialogs, an additional effort is
required.

For service task flows that do not use Trinidad-style pop-up dialogs, the tasks outlined in this
section are not required. The following services task flows do not require this additional support:

• Document Library - Recent Documents

• RSS Viewer

• Search Preferences

To work around the Trinidad style pop-up dialog limitation, the producer application requires a
custom implementation of a Trinidad dialog service to invoke the Trinidad dialog raised by the
bridged portlets. The following tasks are required to create and register this custom Trinidad
dialog service:

• Create a custom JSF phase listener to raise the dialog before the render response
phase

• Create a custom Trinidad DialogServiceImpl to capture a request to raise the
Trinidad dialog and prepare the dialog to be raised

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 8

• Create a custom Trinidad RequestContextImpl to instantiate a custom Trinidad
DialogServiceImpl

• Create a custom Trinidad RequestContextFactory to instantiate a custom
Trinidad RequestContextImpl

• Create and register a servlet filter to set a custom Trinidad
RequestContextFactory

Note: The following WebCenter service task flows are currently not supported across the
Oracle JSF Portlet Bridge. Capabilities of these task flows are also not supported when
surfaced via other WebCenter service task flows.

• Relationship

• People Picker

Create a custom JSF phase listener to raise the dialog before the render response phase

This custom JSF phase listener contains logic to invoke the dialog window. It should be called
immediately before the render response phase, and not in the invokeApplication phase
where Trinidad typically attempts to raise pop-up dialogs. The reason the logic is invoked before
the render response phase is because the ExternalContext.encodeResourceURL() API
used in the code to raise a browser dialog across a portlet request is available only with the
renderResponse phase (not in the invokeApplication phase). This logic takes as input the
target URL to show in the dialog, the window width, and the window height. A Javascript
snippet is constructed to invoke a browser dialog based on these parameters. The Javascript
snippet is returned to the browser as part of the response and executed by the browser to raise
the dialog window. The sample workspace contains the following phase listener as example,
oracle.webcenter.sample.e20producer.JSFPhaseListener.

Register the phase listener in faces-config.xml like this:

<lifecycle>
 <phase-listener>
 oracle.webcenter.sample.e20producer.JSFPhaseListener
 </phase-listener>
</lifecycle>

Create a custom Trinidad DialogServiceImpl to capture requests to raise a Trinidad
dialog and prepare the dialog to be raised

The existing behavior of the
org.apache.myfaces.trinidadinternal.context.DialogServiceImpl must be
replaced to use the custom behavior. More specifically, instead of raising the dialog right away in
the invokeApplication phase (that's when the launchDialog() method is called), the URL
and widow size should be retrieved and passed to the custom phase listener where the dialog is
actually raised before the renderRepsone phase. These dialog-related properties are passed using

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 9

the windowProperties Map object in the request map. The sample workspace contains the
following class as example,
oracle.webcenter.sample.e20producer.DialogServiceImpl.

Create a custom Trinidad RequestContextImpl to instantiate a custom Trinidad
DialogServiceImpl

Trinidad org.apache.myfaces.trinidadinternal.context.DialogServiceImpl is
instantiated by
org.apache.myfaces.trinidadinternal.context.RequestContextImpl.
Unfortunately, there is no mechanism with which to supply a custom dialog service to be
instantiated instead of the out-of-the-box Trinidad DialogServiceImpl. Therefore, a custom
RequestContextImpl needs to be created to instantiate a custom DialogServliceImpl.
Note that the package of this class should be
org.apache.myfaces.trinidadinternal.context in order for it to access members from
the parent class
org.apache.myfaces.trinidadinternal.context.RequestContextImpl. The sample
workspace contains the following class as example,
org.apache.myfaces.trinidadinternal.context.ServicesProducerRequestContex

tImpl.

Create a custom Trinidad RequestContextFactory to instantiate a custom Trinidad
RequestContextImpl

The class
org.apache.myfaces.trinidadinternal.context.RequestContextFactoryImpl
currently registers Trinidad's own
org.apache.myfaces.trinidadinternal.context.RequestContextImpl. To replace
the existing behavior, create a custom RequestContextFactory to instantiate a custom
Trinidad RequestContextImpl. The sample workspace contains the following class as
example,
oracle.webcenter.sample.e20producer.ServicesProducerRequestContextFactory

.

Create and register a servlet filter to set a custom Trinidad RequestContextFactory

Create a servlet filter and in the init() method call the Trinidad RequestContextFactory to set
the custom factory you have created. The sample workspace contains the following class as
example, oracle.webcenter.sample.e20producer.ServicesProducerFilter.

Register the servlet filter in web.xml. Make sure this filter is placed BEFORE other filters and
servlets in web.xml.

<filter>
 <filter-name>ServicesProducerFilter</filter-name>
 <filter-class>

 oracle.webcenter.sample.e20producer.ServicesProducerFilter

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 10

 </filter-class>
</filter>

Workaround for Trinidad pop-up dialog when consumed by a custom WebCenter
application

The following workaround is required in order for Trinidad pop-up dialogs to work across
portlet bridge when consumed in WebCenter custom applications. This workaround is NOT
required when consumed in Oracle Portal 11g.

1. Deploy the producer application to a WebLogic Managed Server.

2. Locate wsrp_mime_cs_mappings.properties in the deployed application's WEB-INF
directory (for example,
.../system11.1.1.1.32.53.04/DefaultDomain/servers/DefaultServer/tmp/_

WL_user/TestDialog_application1/896d1u/war/WEB-

INF/wsrp_mime_cs_mappings.properties)

3. Open wsrp_mime_cs_mappings.properties in an editor and add the following to
the end of the file: *=ISO-8859-1

4. Bounce the Managed Server.

Note: The approach suggested in the Add Trinidad Style Pop-up Dialog Support section does
not currently fully implement the Trinidad dialog functionality. For example, the ability to pass
back return values is not implemented. What is implemented is the bare-bone capability to raise a
specified dialog with a specified dimension and parameters.

Service Specific Tasks

Discussions Service Task Flows

Three of the WebCenter Framework Discussion task flows require additional JSTL snippets in
the page in order for the create forum/topic functionality to work correctly when portletized.
These service task flows are Discussion Forums, Discussion – Sidebar View, Discussion
Watched Forums. The following JSTL snippet (in bold) must be added to the top of the pages
using these task flows. Without the required snippets, the create forum/topic dialog will not
appear when invoked.

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rtc="http://xmlns.oracle.com/WebCenter/collab/rtc"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <c:set value="true" var="includeCFmPupFragment" scope="session"/>
 <c:set value="true" var="includePTpPupFragment" scope="session"/>
 <f:view>

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 11

 <af:document id="d1">
 …

 

Mail Service Task Flow

The WebCenter Framework Mail task flow requires additional web.xml configuration for the
read mail functionality to work correctly when portletized. The following context-param must
be added to the web.xml of the producer application. Without this context parameter with the
correct value, the pop-up window to read the selected mail will not display the body of the mail
content correctly.

 <context-param>
 <param-name>
 oracle.adf.view.rich.security.FRAME_BUSTING
 </param-name>
 <param-value>never</param-value>
 </context-param>

Turning the Application into a Pagelet Producer

In order to consume the service task flows in Ensemble, the pages we've created containing the
service task flows need to be wrapped with an iframe. Just like the portlets, the iframe has to be
sizable according to the width and height parameters. This section shows how to create a servlet
endpoint that exposes the service task flows wrapped with an iframe.

Add the Ensemble endpoint servlet filter

The first task is to create a servlet endpoint for the producer that exposes the page with the
service task flows within an iframe. This servlet endpoint URL looks like this:

http://<ProducerHost>:<ProducerPort>/<ProducerContextRoot>/<Servle

tEndpointName>?id=<ServiceTaskFlowName>&width=<PageletWidth>&heigh

t=<PageletHeight>

Each service endpoint will have different serviceId parameters. The servlet endpoint is used in
defining the pagelets. Behind the servlet endpoint is a servlet filter class. The sample workspace
contains the following filter class as example, oracle.webcenter.sample.e20producer.ServicesProducerFilter.

This servlet filter can be registered in the web.xml like this:

<filter>
 <filter-name>ServicesProducerFilter</filter-name>
 <filter-class>
 oracle.webcenter.sample.e20producer.ServicesProducerFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>ServicesProducerFilter</filter-name>
 <url-pattern>/services</url-pattern>
</filter-mapping>

 

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 12

The endpoint to use with Ensemble, for example the document library pagelet, could looks like
this:

http://127.0.0.1:7101/ServicesProducer/services?id=doclib-

document-library&width=100%25&height=600px

Add support for pagelet geometry parameters

In the ServicesProducerFilter class, the width and height for the pagelet are retrieved from
the request parameter and used to set the geometry of the iframe. This in turn sizes the pagelet
accordingly.

Wire WebCenter services task flow parameters to URL parameters

In the ServicesProducerFilter class, any request parameters from the pagelet are duplicated
as-is onto the iframe's source URL. Since service task flows pick up parameter values directly
from the iframe's source URL, request parameters from the pagelet are passed automatically to
service task flow parameters.

Configure CSP Identity Asserter
An identity assertion provider is provided with the WebCenter R1 release, which will accept the
request coming from the Ensemble/Aqualogic UI (or any Web 2.0 client) and assert the identity
from it. The Ensemble proxy sends the request, in the form of an encoded and zipped ALI token
(the ALI token is simply a SAML 2.0 token), in the header itself. The WLS server passes this
request to the CSP ID provider. The ID provider internally parses and validates the token (using
OSDT API's), fetches the username and passes the identity (i.e., the username) to the
Loginmodule for authentication. If an identity with the same username exists in the WLS security
realm, the WLS asserts the user (i.e., identity) and thus the client's request is honored and gains
access to the requested resource.

Below is the sequence of events:

1. Ensemble proxy sends request as an ALI (SAML) token
2. WLS server checks if the ID provider exists for the given token type
3. CSP ID provider asserter parses and verifies the token
4. ID provider maps the username with a WLS username
5. WLS calls the LoginModule and authenticates the user
6. Request is honored

Here are the changes required for the producer. The main change is specifying the login config
to be CLIENT-CERT based. This is required so that our ID asserter is invoked.

• Ensure that the security constraint are correctly added to the resource that you want to
secure. For example:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AuthenticatedPages</web-resource-name>

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 13

 <url-pattern>/welcomeservlet</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
 </security-constraint>
 

• Set login config to be client certificate based

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name/>
 </login-config>
 <security-role>
 <description>
 Any valid user with an identity store account.
 </description>
 <role-name>valid-users</role-name>
 </security-role>

In addition to specifying the login config, the certificate required for secured communication
between the producer and Ensemble needs to be loaded into the WebLogic server.

• Obtain the CSP certificate that the Ensemble proxy uses for secure communication. This
is typically done out of band, through e-mails or some other means. You can get the
certificate from the Ensemble proxy administrator.

• Load the certificate into the WebLogic server trust key store using the keytool command.
For example: $JAVA_HOME/bin/keytool -import -keystore <Trust_KS_DIR>/CustTrust.jks
-trustcacerts -alias WEBCENTER_CSP_ID_ASSERTER_ALIAS -file export.cert -storepass
welcome1 -noprompt

• Restart the admin server and access the WebLogic administration console as the weblogic
administrator. For example: http://myhost.us.oracle.com:7001/console

• Configure the Keystore as follows:

• In WLS Console App, go to Environmet -> Server. Select the Server instance
where the producer app is deployed.

• Click on Keystore tab.

• From the Keystore drop down select Custom and Trust Store type.

• In the Trust section, correctly specify the Custom Trust Keystore filename and
password, is any . This is the same file where you imported the client certificate in
the earlier Example: <Trust_KS_DIR>/CustTrust.jks

• Configure the CSP Id Asserter

• In WLS Console App, go to Security Realms -> myrealm -> Providers Tab ->
Authentication sub tab (first sub tab).

Oracle White Paper—Exposing WebCenter Services Task Flows as WSRP Portlets and Ensemble Pagelets

 14

• Click on New -> Give name as CSPIdentityAsserter (the name can be anything)

• From the Type Drop Down, select CSPIdentityAsserter

• OK you way out.

• You can control the logging by setting the properties under Logging tab for this server.

• Restart the server (both admin and managed servers if any).

• Verify that your changes have been persisted. Open domain_home/config/config.xml
and it should contain the following fragment.

<sec:authentication-provider 
   xmlns:ext="http://www.bea.com/ns/weblogic/90/security/extension" 
   xsi:type="ext:csp-identity-asserterType"> 
  <sec:name>CSPIdentityAsserter</sec:name> 
</sec:authentication-provider>   
 

Note: Sometimes the changes are not saved correctly, i.e. the config.xml does not contain the
xsi:type="ext:csp-...." Attribute. This is probably because of some WLS bug. If this happens, the
server restart will fail. To fix this, remove the above fragment from the config.xml, restart, and
redo the configuration again.

Making the Producer Session Cookie Unique

When portlets or pagelets are consumed on a portal page, the cookies set by the portlets can
collide with cookies from other portlets, or even the portal depending on implementation.
Therefore, it is recommended to set the producer application's cookie-path to something unique
to prevent it from defaulting to "/" which often leads to cookie collisions. For example, the
cookie path can be set in weblogic.xml like this:

<session-descriptor>
 <cookie-path>/WebCenterServices</cookie-path>
</session-descriptor>

Exposing WebCenter Services Task Flows as
WSRP Portlets and Ensemble Pagelets
August 2009
Author: Ken Young

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and
the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

0109

