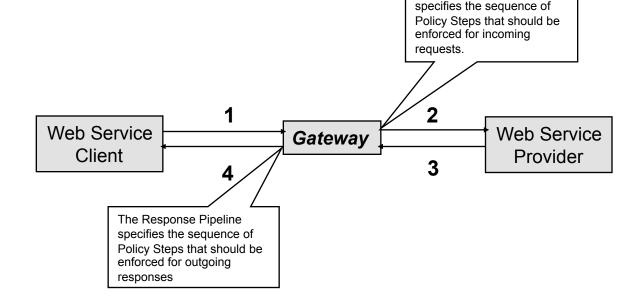


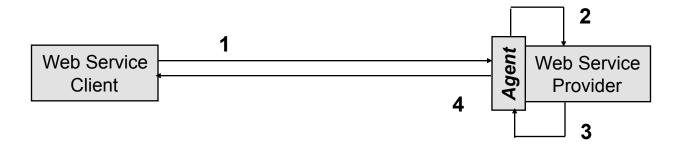
### ORACLE


### Oracle Web Services Manager (WSM) 10g: Use Case Scenarios

Marc Chanliau, Dir. Product Management Oracle Fusion Middleware

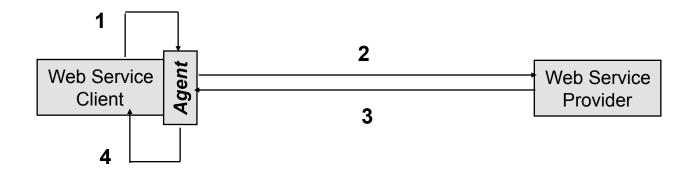
### **Agenda**

- Generic Oracle WSM Use Cases
- Identity Propagation Leveraging Oracle Access Manager (OAM)
- BPEL Process Support
  - SAML Token Propagation
  - Securing Asynchronous Service Calls
- Miscellaneous
  - Securing Oracle Database PL/SQL Web Services
  - Last-Mile Security
  - Limiting Extranet Access to Web Services


Protecting Access To Web Services
Using Gateway

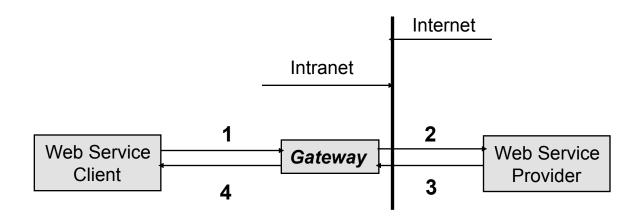


The Request Pipeline


- The Gateway secures access to one or more web services at the web service provider site
  - Step1: The client posts a request to a web service
  - Step2: The Gateway intercepts the request, applies security policies (e.g., decryption, signature verification, authentication, authorization), and forwards the request to the web service
  - Step3: The web service returns a response
  - Step4: The Gateway intercepts the response, applies security policies (e.g., encryption), and forwards the response to the client

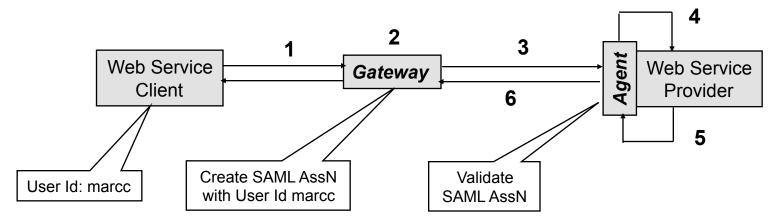
# Protecting Access to Web Service(s) Using Server-Side Agent




- The OWSM Agent protects access to a web service at the web service provider (server-side Agent)
  - Step1: The client posts a request to a web service
  - Step2: The Agent intercepts the request, applies security policies (e.g., decryption, signature verification, authentication, authorization), and passes the request to the web service
  - Step3: The web service returns a response
  - Step4: The Agent intercepts the response, applies security policies (e.g., encryption), and passes the response to the client

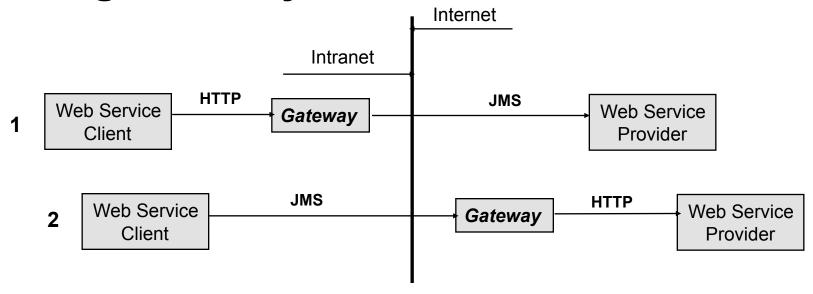
# Requesting Access To Web Service(s) Using Client-Side Agent




- The OWSM Client-Side Agent enforces web services policies from within the same web application as the service client
  - Step1: The client posts a request to a web service
  - Step2: The Agent intercepts the request, applies security policies (e.g., encryption, etc.), and passes the request to the web service
  - Step3: The web service processes the request and returns a response
  - Step4: The Agent intercepts the response, applies security policies (e.g., decryption), and passes the response to the client

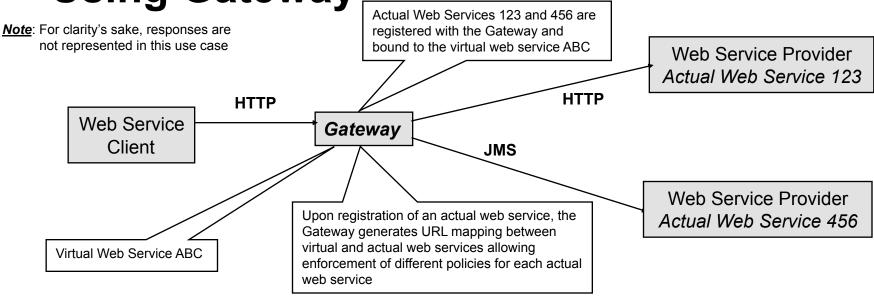
## Accessing External Web Services Using Gateway as a Proxy Server




- The purpose is to allow access to external web services only to specific web service clients making a request from within the corporate intranet
  - Step1: The client (within the corporate intranet's boundaries) posts a request to an external web service
  - Step2: The Gateway intercepts the request, applies security policies (e.g., authentication, authorization), and forwards the request to the web service
  - Step3: The web service returns a response
  - Step4: The Gateway intercepts the response, applies security policies, and forwards the response to the client

# Mapping Credentials Using Gateway and Server-Side Agent



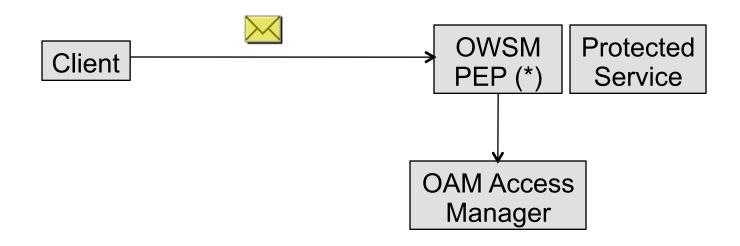

- The web service client and the web service provider don't support the same type of credentials
  - Step1: The client makes a web service request using basic credentials ("marcc")
  - Step2: The Gateway intercepts and authenticates the request
  - Step3: Upon successful authentication, the Gateway inserts a SAML assertion in a WS-Security header that it posts to the web service provider as part of a SOAP message
  - Step4: The Agent validates the SAML assertion and passes the request to the web service
  - Step5: The web service returns a response intercepted by the Agent for security
  - Step6: The Agent returns the response to the web service client directly or via the Gateway

# Mediating Heterogeneous Protocols Using Gateway



- The web service client and the web service provider don't support the same protocol
  - In case 1, the Gateway resides within the Intranet and translates an outgoing HTTP request into JMS
  - In case 2, the Gateway resides outside the Intranet and provides access to HTTP-based web services from JMS-based requests

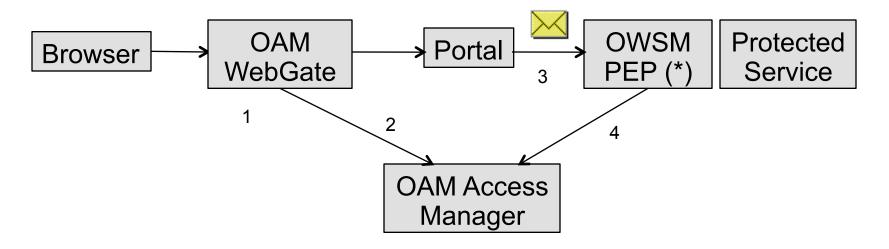
Virtualizing Web Services Using Gateway




- The OWSM Gateway provides web services virtualization
  - Actual web services are bound to a virtual service (the Gateway)
  - Users first access the virtual web service and based on their roles, users may access selected actual web services
  - The transport protocol can also be virtualized, for example, all users access a virtual web service through one protocol (e.g., HTTP) and the virtual service can pass the request to an actual web service using a different protocol (e.g., JMS)
  - Users can create multiple versions of a virtual web service and redirect an older version of the virtual web service to a new version

### **Agenda**

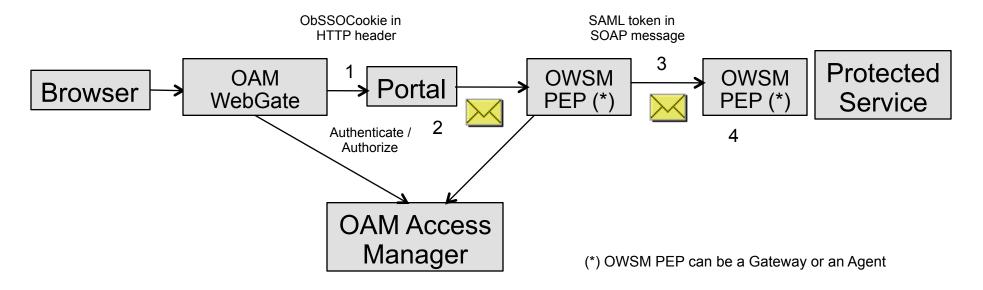
- Generic Oracle WSM Use Cases
- Identity Propagation Leveraging Oracle Access Manager (OAM)
- BPEL Process Support
  - SAML Token Propagation
  - Securing Asynchronous Service Calls
- Miscellaneous
  - Securing Oracle Database PL/SQL Web Services
  - Last-Mile Security
  - Limiting Extranet Access to Web Services


### AuthN / AuthZ Using Standard OAM Step



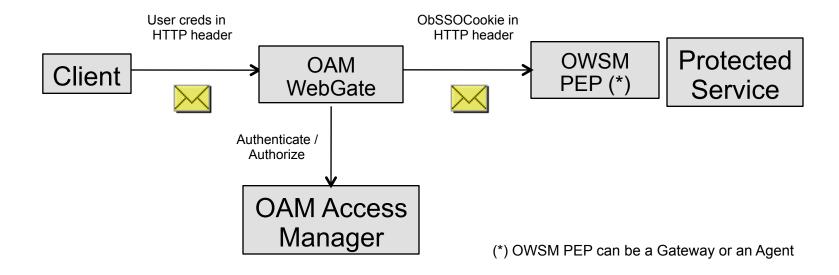
(\*) OWSM PEP can be a Gateway or an Agent

- Client sends user credentials in HTTP or SOAP header
  - Credentials can be ObSSOCookie, username/password, SAML assN, x509 cert, 2 way SSL cert
- PEP authenticates/authorizes using these credentials against OAM's Access Manager


### From Web Application to Web Service Same Security Domain



#### (\*) OWSM PEP can be a Gateway or an Agent

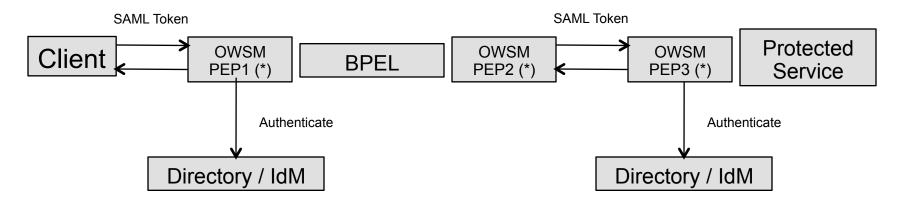

- 1. Browser user logs into a portal web application protected by OAM's WebGate
- 2. OAM authenticates user and creates session cookie (ObSSOCookie)
- 3. The portal app needs to be customized to read the ObSSOCookie and insert it into a SOAP header
- 4. OWSM's PEP verifies ObSSOCookie against OAM's Access Manager, and authorizes access to web service endpoint

### From Web Application to Web Service Different Security Domains



- 1. Browser user logs into a portal web application protected by OAM's WebGate
- 2. When Portal calls an external web service, the portal app needs to be customized to read Obssocookie from the portal session and insert it into a SOAP header
- 3. OWSM PEP reads Obssocookie from the SOAP header, converts it into a SAML assN, and inserts the SAML assN into SOAP header
- OWSM PEP verifies SAML token and allows access (instead of OWSM, another PEP could be used)

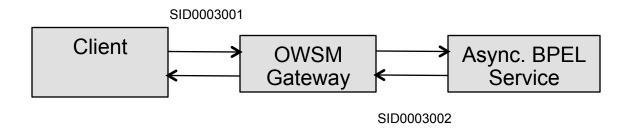
### OAM (WebGate) for Access Control, WSM for Decryption, Sig. Verification, Monitoring




- Client sends SOAP message with username/password in HTTP header
- OAM Webgate intercepts SOAP request, and authenticates/authorizes user access
- OWSM PEP decrypts the message, verifies the signature, and performs monitoring
   Note: ?wsdl should be unprotected in OAM

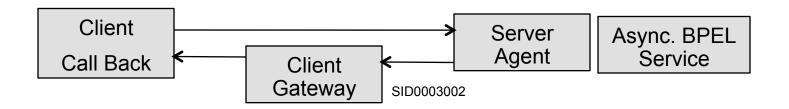
### **Agenda**

- Generic Oracle WSM Use Cases
- Identity Propagation Leveraging Oracle Access Manager (OAM)
- BPEL Process Support
  - SAML Token Propagation
  - Securing Asynchronous Service Calls
- Miscellaneous
  - Securing Oracle Database PL/SQL Web Services
  - Last-Mile Security
  - Limiting Extranet Access to Web Services


### **SAML Token Propagation**



(\*) OWSM PEP can be a Gateway or an Agent


- OWSM PEP1 validates SAML token, and inserts a custom SOAP header with user information extracted from SAML token, through a custom step
- BPEL process reads the custom SOAP header, and assigns it to a global variable for propagation
- Before BPEL calls out an external web service, it reads the global variable, and inserts it as a custom SOAP header into the outgoing message
- OWSM PEP2 reads the custom SOAP header through a custom step, and then uses "Insert SAML token" step to generate and add SAML token to SOAP header
- OWSM PEP3 validates the SAML token

# Securing Asynchronous Service Calls Using Server-Side Gateway Only



- Register web service in the gateway, e.g. SID0003001 (SID is the service Id)
- Register callback in the gateway, e.g. SID0003002
- Add XML transform step in policy pipeline for SID0003001 that transforms ReplyTo WS-Addressing header to SID0003002

### Securing Asynchronous Service Calls Using Server Agent and Client-Side Gateway



- Register callback in the client gateway, e.g. SID0003002
- Add XML transform step in request policy pipeline for server agent to transform ReplyTo WS-Addressing header to SID0003002

### **Agenda**

- Generic Oracle WSM Use Cases
- Identity Propagation Leveraging Oracle Access Manager (OAM)
- BPEL Process Support
  - SAML Token Propagation
  - Securing Asynchronous Service Calls
- Miscellaneous
  - Securing Oracle Database PL/SQL Web Services
  - Last-Mile Security
  - Limiting Extranet Access to Web Services

#### Securing Oracle Database PL/SQL Web Services



- Client sends credentials with the request to the Gateway
- Gateway authenticates the user against LDAP or any other authentication source
- Once the user is authenticated, Gateway inserts fixed database credentials into HTTP header of the outgoing request

### **Last-Mile Security**

- Last-mile security can be achieved through one of the following
  - Gateway and server agent combination
  - 2-way SSL (client-authentication) between gateway and service
  - Network access control such that only the gateway machine can talk to the web service machine

#### **Limiting Extranet Access to Web Services**

- Virtualize the web service using gateway
- Front end gateway with OHS
- Restrict access to the virtualized service by
  - Controlling access in OHS or
  - Using OAM Webgate

#### **More Information**

- OTN
  - http://www.oracle.com/technology/products/webservices\_manager/index.html
- Internal Wiki
  - http://aseng-wiki.us.oracle.com/asengwiki/display/ASPMOWSMJPS/OWSM+PM
- Blog
  - <a href="http://ws-security.blogspot.com">http://ws-security.blogspot.com</a>