
Providing High Availability to the
OpenStack Cloud Controller on Oracle Solaris
with Oracle Solaris Cluster
Release 1.0
O R A C L E W H I T E PA P E R | A P R I L 2 0 1 5

PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Table of Contents

Introduction 1

Oracle Solaris Cluster Features 3

Overview of the High Availability Cloud Controller Configuration 5

Oracle Solaris Cluster Framework and Infrastructure Setup 7

Configuration assumptions.. 8

Configure zpools on shared storage and a dataset per node for later usage.....................9

Zone cluster installation...9

OpenStack Components on the HA Cloud Controller 12

Database - MySQL..12

Configure cluster infrastructure objects for HA MySQL within zone cluster os-db......12

Install and configure the MySQL database within zone cluster os-db........................12

Configure the MySQL database as HA MySQL failover cluster resource os-mysql-rs

within zone cluster os-db... 16

Message Queue - RabbitMQ...19

Configure cluster infrastructure objects for HA rabbitmq within zone cluster os-mq...19

Configure rabbitmq using the cluster option with mirrored queues within zone cluster

os-mq.. 19

Configure rabbitmq as scalable cluster resources within zone cluster os-mq............20

Configure cluster infrastructure objects for OpenStack components running within zone

cluster os-api... 21

Keystone... 21

PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Create Keystone database within zone cluster os-db.. 22

Configure Keystone within zone cluster os-api.. 22

Configure the Keystone SMF service as a failover cluster resource within zone cluster

os-api...23

Glance...23

Create the Glance database within zone cluster os-db..25

Configure Glance services within zone cluster os-api..26

Configure Glance SMF services as failover cluster resources within zone cluster os-

api..27

Nova..28

Create the Nova database within zone cluster os-db...29

Configure Nova services within zone cluster os-api...29

Configure the Nova SMF services as failover cluster resources within zone cluster os-

api..30

Horizon..32

Configure the horizon/https services within zone cluster os-api.................................33

Configure horizon/https services as HA Apache scalable cluster resource within zone

cluster os-api... 33

Neutron... 34

Elastic Virtual Switch (EVS) Controller...34

Neutron server...37

Neutron L3 and Neutron DHCP agent... 39

Cinder..44

PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Create the Cinder database within zone cluster os-db...45

Configure the Cinder services within zone cluster os-api...45

Configure the Cinder SMF services as failover cluster resources within zone cluster

os-api...46

Cinder-volume services when using the ZFSSAISCSIDriver volume driver for the ZFS

Storage Appliance... 47

Configure the cinder-volume SMF services within zone cluster os-api......................47

Configure the cinder-volume SMF services as GDSv2 based failover cluster

resources within zone cluster os-api..48

Swift.. 49

Configure swift-proxy-server service within zone cluster os-api.................................50

Configure the swift-proxy-server SMF service as a failover cluster resource within

zone cluster os-api.. 50

OpenStack Components Not Running on the HA Cloud Controller 51

References 52

Appendix 53

SMF manifest for service system/cluster/osc-clpriv-ip-forwarding-disable.......................53

SMF method script for service system/cluster/osc-clpriv-ip-forwarding-disable...............54

SMF wrapper script to manage the cinder-volume services..55

PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Introduction

Oracle Solaris delivers a complete OpenStack distribution which is integrated with its core

technologies such as Oracle Solaris Zones, the ZFS file system, or its image packaging system (IPS).

OpenStack in Oracle Solaris 11.2 helps IT organizations to create an enterprise-ready Infrastructure as

a Service (IaaS) cloud, so that users can quickly create virtual networking and compute resources by

using a centralized web-based portal [1].

Any enterprise-type OpenStack deployment requires a highly available OpenStack infrastructure that

can sustain individual system failures [11],[12].

Oracle Solaris Cluster is deeply integrated with Oracle Solaris technologies and provides a rich set of

features which provide high availability to Oracle Solaris based OpenStack services [2].

The primary goals of the Oracle Solaris Cluster software are to maximize service availability through

fine-grained monitoring and automated recovery of critical services and to prevent data corruption

through proper fencing.

Figure 1 below depicts just one example on a highly available physical node OpenStack infrastructure

deployment. The two cloud controller cluster nodes in yellow represent the highly available OpenStack

cloud controller configuration described in the sections to follow. Of course, the OpenStack cloud

controller can be deployed on a larger cluster, based on the capacity required by the deployment and

on the qualified configurations documented within the Oracle Solaris Cluster 4 Compatibility Guide [3].

The usage of OpenStack Swift object storage nodes is optional. High availability for the Swift object

storage is achieved by Swift's clustering features by configuring a Swift ring [4]. Only the

swift-proxy-server service will be hosted by the HA cloud controller.

The clustered Oracle ZFS Storage Appliance (ZFS SA) is used to provide highly available shared

storage to the cloud controller cluster, and is also used to provide Cinder volume storage through the

corresponding Oracle ZFS Storage Appliance iSCSI Cinder driver [5].

1 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

This white paper describes further how to provide high availability to an OpenStack cloud controller

that is deployed on Oracle Solaris with Oracle Solaris Cluster.

2 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Figure 2: Basic HA node deployment

controller-01 controller-02

ZFS SA-02
shared storage
Cinder plugin

ZFS SA-01
shared storage
Cinder plugin

Swift Storage-01

Swift Storage-M

Nova compute-01

Nova compute-02

Nova compute-N

Nova compute-03

external network - Horizon users and floating IPs

internal network - includes EVS/Neutron-managed
multi-tenant networks

OpenStack
Dashboard

Figure 1: Basic HA node deployment

controller-01 controller-02

ZFS SA-02
shared storage
cinder plugin

ZFS SA-01
shared storage
cinder plugin

Swift Storage-01

Swift Storage-M

Nova compute-01

Nova compute-02

Nova compute-N

Nova compute-03

external network - Horizon users and floating IPs

internal network - includes EVS/neutron managed
multi-tenant networks

OpenStack
Dashboard

Oracle Solaris Cluster Features

The Oracle Solaris Cluster environment extends the Oracle Solaris operating system into a cluster operating

system. A cluster is a collection of one or more nodes that belong exclusively to that collection. The following

explains some of the key features offered by Oracle Solaris Custer and used in this example to provide high

availability to the OpenStack cloud controller services.

» Resources, Resource Groups, Resource Types, and the Resource Group Manager

The Resource Group Manager (RGM) subsystem manages applications put under Oracle Solaris Cluster control
and the resources that they require to function. More specifically, the RGM ensures that cluster applications have
the resources they need on the cluster nodes they are running. A cluster application is called a data service, often
abbreviated to just a service.

The RGM uses specific agents to manage each data service. An RGM-managed resource is an instance of a
resource type that is defined cluster wide. Several resource types are pre-defined as either generic, such as a
logical hostname, or application specific, such as HA for MySQL. RGM-managed resources are placed into
groups, called resource groups, so that they can be managed as a unit. A resource group is migrated as a unit if a
failover or switchover is initiated on the resource group.

To allow orchestration of multiple resource groups and resources within the cluster, the RGM provides a rich set of
resource group affinities and resource dependencies types. They are used to specify the various relations that
exist between application resources, even distributed across global-cluster and zone-cluster nodes.

Optionally one can configure a set of load limits for each cluster node and assign load factors to resource groups.
When starting a resource group, the RGM chooses a node from the resource group's preferred node list that best
satisfies the configured load distribution policy.

» Global Cluster and Zone Clusters

In a cluster that runs on the Oracle Solaris Cluster framework, two types of clusters can exist: a global cluster that
exists by default, and zone clusters which can be added. A global cluster consists of the set of Oracle Solaris
global zones, while a zone cluster consists of a set of non-global zones (one per global-cluster node) that are
configured to behave as a separate “virtual” cluster.

The ability to run multiple zone clusters within a global cluster, and the rich set of resource group affinities and
resource dependencies provided by the RGM, enables deployment of multi-tiered applications, and securely
separates application layers from each other. The ability to automatically orchestrate application components to
orderly start and stop during normal operation, as well as during reconfigurations triggered by failures, is
preserved with zone clusters. Further, the ability of Oracle Solaris zones to configure resource management, such
as to specifically assign system resources like CPU and memory, can be leveraged with zone clusters.

» Failover, Scalable, and Multi-Master Applications

A cluster application that runs on only one node at a time is a failover application.A cluster application that runs an
instance on multiple nodes at a time is either a multi-master or scalable application. The later takes advantage of
Oracle Solaris Cluster built-in network load balancing.

» Failover and Scalable IP Addresses

The Oracle Solaris Cluster software provides two mechanisms through which client applications can access
services on the cluster: logical IP addresses (also called logical hostnames, abbreviated as LH) and global IP
addresses (also called shared addresses or scalable addresses, abbreviated as SA).

Logical IP addresses are used by failover services. Global IP addresses are used for scalable services that can
run on more than one node concurrently. The cluster framework provides a load balancing feature by the global
networking service for scalable outbound IP traffic, to distribute TCP and/or UDP client requests across the

3 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

configured nodes for a scalable service. The load balancer can be configured for the packet distribution
mechanism and load weights to be used.

» Failover and Scalable Mount Points

The SUNW.HAStoragePlus resource type is designed to make local and global file system configurations highly
available. You can also use the SUNW.HAStoragePlus resource type to synchronize the startup of resources
and device groups on which the resources depend.

The SUNW.ScalMountPoint resource type represents a scalable file-system mount point,where the file-system
type can be a QFS shared file system or a network-attached storage (NAS) device, such as an NFS share from
an Oracle ZFS Storage Appliance.

» Data Service for MySQL

Oracle Solaris Cluster provides a standard data service to manage a MySQL database, which implements a
mechanism for orderly startup and shutdown, fault monitoring, and automatic failover of the MySQL service.

» Data Service for Apache

Oracle Solaris Cluster provides a standard data service to manage the Apache web server as a failover or
scalable service for http and https access, which implements a mechanism for orderly startup and shutdown, fault
monitoring, and automatic failover.

» Data Service for Oracle Solaris Zones

This standard data service provides high availability for Oracle Solaris Zones through three components in a
failover or multi-master configuration:

 sczbt: The orderly booting, shutdown, and fault monitoring of an Oracle Solaris zone.

 sczsh: The orderly startup, shutdown, and fault monitoring of an application within the Oracle Solaris zone
 (managed by sczbt), using scripts or commands.

 sczsmf: The orderly startup, shutdown, and fault monitoring of an Oracle Solaris Service Management Facility
 (SMF) service within the Oracle Solaris zone managed by sczbt.

With Oracle Solaris Cluster 4.2, the sczbt component supports cold migration (boot and shutdown) of solaris
and solaris10 branded zones, and cold and warm migration for kernel zones on Oracle Solaris 11.2. Using
warm migration (suspend and resume of a kernel zone) can minimize planned downtime, for example, in case a
cluster node is overloaded or needs to be shut down for maintenance.

» Data Service for HA SMF Proxy Resources

Oracle Solaris Cluster includes three SMF proxy resource types that can be used to enable SMF services to run
with Oracle Solaris Cluster in a failover, multi-master, or scalable configuration. The SMF proxy resource types
enables you to encapsulate a set of interrelated SMF services into a single resource, the SMF proxy resource, to
be managed by Oracle Solaris Cluster. In this feature, SMF manages the availability of SMF services on a single
node. Oracle Solaris Cluster extends this capability to multiple nodes and helps to provide high availability and
scalability of the SMF services.

» Generic Data Service (GDSv2)

The Generic Data Service is a mechanism for making simple network-aware and non-network-aware applications
highly available by plugging them into the Oracle Solaris Cluster Resource Group Manager (RGM) framework.
This mechanism does not require coding a data service, which you typically must do to make an application highly
available. It can be used for cases where no standard data service is part of Oracle Solaris Cluster exists for a
given application.

More information about the Oracle Solaris Cluster capabilities can be found within the Oracle Solaris Cluster

Concepts Guide [2] and within the Oracle Solaris Cluster 4.2 documentation library [6].

4 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Overview of the High Availability Cloud Controller Configuration

Figure 2 below reflects the high-level setup of the HA OpenStack cloud controller. In this example, the services

running on the OpenStack cloud controller are organized within four runtime environments:

» Dedicated zone cluster to host the MySQL database (named os-db), used by all OpenStack components

» Dedicated zone cluster to host the central messaging service RabbitMQ (named os-mq), used by all OpenStack

components

» Dedicated zone cluster for all OpenStack services (named os-api) that can be run within a non-global Solaris

zone

» Global cluster to host the Elastic Virtual Switch (EVS) controller within a failover zone and the Neutron agent

services

This is an example on how to achieve secure isolation between services, and concurrently define all the required

dependencies for proper startup and stopping between services which is orchestrated by the cluster framework.

The granularity of service separation can be further increased, specifically within the OpenStack services hosted by
the os-api zone cluster. Additional zone clusters can be created and also distributed across multiple physical
cluster nodes, depending on runtime performance requirements for individual OpenStack services. Only services
that are required to run within the global zone context are configured within the global cluster.

The OpenStack cloud controller provides various API endpoints. From an initial setup perspective, high availability

needs to be considered already at installation time.

Oracle Solaris Cluster offers built-in HA data services for several OpenStack components (like MySQL, Apache),

which are used in this implementation.

Most OpenStack components are managed by one or more corresponding SMF services on Oracle Solaris. If

Oracle Solaris Cluster does not offer the corresponding HA data service, for most of those SMF services the data

service for HA SMF Proxy resources is used to provide HA for those components.

The generic approach to provide HA for OpenStack SMF services can be summarized as follows:

» Failover services (stateful active/passive)

- Configure either a SUNW.HAStoragePlus or SUNW.ScalMountPoint cluster resource to store dynamic file
system content
- Configure a SUNW.LogicalHostname resource for the service endpoint(s)
- Configure a SUNW.Proxy_SMF_failover resource for each SMF service

» Scalable service (stateless active/active)

- Ensure static content is replicated identical across all cluster nodes or zones
- Configure a failover resource group with SUNW.SharedAddress resource for the service endpoint(s)
- Configure a scalable resource group with a SUNW.Proxy_SMF_scalable resource for each SMF service
The cluster load balancer is used to distribute client access between the scalable SMF services.

Other OpenStack components that need to access the highly available OpenStack endpoints have to be configured

to use the logical hostname that is managed by the cluster.

5 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

6 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Figure 2: HA OpenStack cloud controller

MySQL Zone Cluster - os-db

MySQL DB

RabbitMQ Zone Cluster - os-mq

RabbitMQ instance 1

MySQL LH

RabbitMQ SA

OpenStack Service Zone Cluster -
os-api

keystone

horizon

apache

OpenStack LH

OpenStack SA

nova-scheduler

glance-db
glance-api

nova-api-ec2

glance-scrubber

neutron-server

nova-certnova-objectstore

nova-api-osapi-compute

nova-conductor

glance-registry

cinder-scheduler

MySQL Zone Cluster - os-db

MySQL DB

RabbitMQ Zone Cluster - os-mq

MySQL LH

OpenStack Service Zone Cluster -
os-api

keystone

horizon

apache

OpenStack LH

OpenStack SA

nova-scheduler nova-api-ec2

nova-certnova-objectstore

nova-conductor

MySQL storage

OpenStack Service
 storage

LH = Logical Hostname
SA = Shared Address

Cloud Controller Node 1 - cc-node-a Cloud Controller Node 2 - cc-node-bshared storage

global cluster global cluster

RabbitMQ instance 2 RabbitMQ SA

nova-api-osapi-compute

cinder-db

cinder-api

glance-db glance-api

glance-scrubber

neutron-server

glance-registry

cinder-scheduler cinder-db

cinder-api

sczbt - failover solaris zone

EVS controller EVS controller IP

sczbt - failover solaris zone

EVS controller EVS controller IPEVS controller
 zone storage

neutron-l3-agent

neutron-dhcp-agent

neutron agent
 storage

neutron-l3-agent

neutron-dhcp-agent

cinder-volume w/ ZFS SA driver cinder-volume w/ ZFS SA driver

swift-proxy-server swift-proxy-server

ZFS SA iSCSI
cinder driver storage

When customizing the various OpenStack components' configuration files for a failover service, directories and file

system paths that point to /var/lib/<component>/ hosting dynamic data have to be changed to point to a

directory on shared storage that is managed by the cluster. IP addresses for the various services have to be defined

and configured to use the logical or scalable cluster IP in those configuration files as well. This is done to make sure

that the failover service is switched together with the storage data and service IP-address.

The following Table 1 outlines the example mapping of cluster-managed IP addresses to the OpenStack services:

Logical Hostname network port OpenStack service runs in

os-db-lh 3306/tcp MySQL database zone cluster os-db

os-mq-sa (SA) 5672/tcp RabbitMQ zone cluster os-mq

os-api-lh 5000/tcp keystone AUTH_URL zone cluster os-api

os-api-lh 35357/tcp keystone SERVICE_ENDPOINT identity zone cluster os-api

os-api-lh 8776/tcp cinder-api zone cluster os-api

os-api-lh 9292/tcp glance-api zone cluster os-api

os-api-lh 8773/tcp nova-api-ec2 zone cluster os-api

os-api-lh 8080/tcp swift-proxy-server zone cluster os-api

os-api-lh 9696/tcp neutron-server zone cluster os-api

os-api-lh 8774/tcp nova-api-osapi-compute zone cluster os-api

os-api-lh 9191/tcp glance-registry zone cluster os-api

os-api-lh 3333/tcp nova-objectstore zone cluster os-api

os-api-sa (SA) 80/tcp horizon dashboard (apache) zone cluster os-api

os-api-sa (SA) 443/tcp horizon dashboard (apache) zone cluster os-api

os-evscon-lh 22/tcp EVS controller failover solaris zone

67/tcp neutron-dhcp-agent Global Zone

53/tcp neutron-dhcp-agent Global Zone

Table 1: Cluster IP address and port mapping to OpenStack services

When configuring Keystone, endpoints for the various OpenStack service components are defined. To change a

specific standard OpenStack service into a highly available service with Oracle Solaris Cluster, the Keystone

endpoint needs to be configured to use the highly available IP address managed by the cluster framework.

Oracle Solaris Cluster Framework and Infrastructure Setup

Instructions in this white paper provide details on how to set up the OpenStack components under Oracle Solaris

Cluster control. As a prerequisite, the Oracle Solaris Cluster Image Packaging System (IPS) packages need to be

installed on the Oracle Solaris systems, which should form the cluster, and the Oracle Solaris Cluster framework has

to be configured. The Oracle Technology Network provides technical resources for Oracle Solaris Cluster [7],

specifically the article “How to Install and Configure a Two-Node Cluster" [8] and the Oracle Solaris Cluster Software

Installation Guide [9].

7 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Configuration assumptions

This white paper assumes that the following configuration is used for HA OpenStack cloud controller cluster nodes:

» At least two physical systems are configured as a global cluster with Oracle Solaris 11.2 SRU 7 and Oracle

Solaris Cluster 4.2 SRU 3 or newer. You can install more nodes in the cluster as required. In this example the
global cluster node names are cc-node-a and cc-node-b.

» The Image Packaging System publishers for Oracle Solaris (solaris) and Oracle Solaris Cluster (ha-cluster)

are already configured for the corresponding support repositories on the cluster nodes.

» Oracle Solaris Cluster 4.2 SRU 3 or later is installed and configured with the ha-cluster-full group package.

» This example uses the OpenStack Havana release, which is delivered by Oracle Solaris 11.2.

» Each node has two spare network interfaces to be used as private interconnects, also known as transports, and

at least two network interfaces configured as IPMP group sc_ipmp0, which is connected to the public cluster
network and is also used for the OpenStack service endpoints. Further network adapters (protected by either
IPMP or IP aggregation) can be configured as a dedicated network between the cloud controller and nova
compute nodes that are managed by Neutron and the EVS. In this example, an aggregation aggr1 is used to
configure a tagged VLAN for that purpose.

» The IP addresses used for the cluster nodes, zone cluster nodes, logical hostnames, and shared addresses

resolve properly on all nodes and zones to the host aliases used in this example:
cc-node-a, cc-node-b, os-db-z1, os-db-z2, os-db-lh, os-mq-z1, os-mq-z2, os-mq-sa,
os-api-z1, os-api-z2, os-api-lh, os-api-sa, os-evscon-lh.

» An Oracle ZFS Storage Appliance is configured on the cluster to provide shared storage. For more information,

see "How to Install an Oracle ZFS Storage Appliance in a Cluster." [10].

» The cluster hardware is a supported configuration for Oracle Solaris Cluster 4.2 software. For more information,

see the Oracle Solaris Cluster 4 Compatibility Guide [3].

» The global cluster nodes are configured as NTP clients, to synchronize time from a common source [9].

» The path /usr/cluster/bin has been added to the PATH variable defined within the root user .profile on

all cluster nodes and zone cluster nodes.

» Throughout the examples, the short name for the cluster commands are used, for example, clrs instead of

clresource. A list of cluster commands and their corresponding short names can be viewed by executing
cluster list-cmds -v.

» Conventions on the command output:

» When a shell prompt is shown as:

cc-node-a# command

execute command on only the specific node shown, cc-node-a.

» When a shell prompt is shown as:

all global nodes# command

execute command on all global cluster nodes.

8 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

» When the shell prompt is shown as:

both os-db zones# command

execute command on both the zone cluster nodes as shown, in this example os-db-z1 and os-db-z2.

Configure zpools on shared storage and a dataset per node for later usage

Configure a zpool named os-db_zp with mount point /failover/os-db to host the OpenStack MySQL

database:

cc-node-a# zpool create -m /failover/os-db os-db_zp <shared storage device 1 cxtydz>
cc-node-a# zpool export os-db_zp

Configure a zpool named os-api_zp with mount point /failover-os-api to host the data for OpenStack

services configured as failover services:

cc-node-a# zpool create -m /failover/os-api os-api_zp \
 <shared storage device 2 cxtydz>
cc-node-a# zpool export os-api_zp

Configure a zpool named os-gz-api_zp with mount point /failover/os-gz-api to host the data for the

neutron-l3-agent and neutron-dhcp-agent services:

cc-node-a# zpool create -m /failover/os-gz-api os-gz-api_zp \
 <shared storage device 3 cxtydz>
cc-node-a# zpool export os-gz-api_zp

Configure a dedicated dataset with mount point /zones for the zone cluster node zonepath within the rpool on all

global cluster nodes:

all global nodes# zfs create -o mountpoint=/zones rpool/zones

Zone cluster installation

Create zone cluster os-db, which will host the HA MySQL configuration. The zone cluster nodes are named

os-db-z1 and os-db-z2. The zone cluster is allowed to use the logical hostname os-db-lh and zpool

os_db_zp:

cc-node-a# vi /var/tmp/os-db.txt
create
set brand=solaris
set zonepath=/zones/os-db
set ip-type=shared
set enable_priv_net=true
set autoboot=true
add node
set physical-host=cc-node-a
set hostname=os-db-z1
add net
set address=os-db-z1
set physical=sc_ipmp0
end
end
add node
set physical-host=cc-node-b
set hostname=os-db-z2
add net

9 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

set address=os-db-z2
set physical=sc_ipmp0
end
end
add net
set address=os-db-lh
end
add dataset
set name=os-db_zp
end
commit
exit

cc-node-a# sysconfig create-profile -o /var/tmp/os-db.xml -g \
 location,identity,naming_services,users
 => go through the interactive session and provide input about DNS/LDAP/etc
 and root user information, as required
 => this creates /var/tmp/os-db.xml/sc_profile.xml

cc-node-a# clzc configure -f /var/tmp/os-db.txt os-db

cc-node-a# clzc install -c /var/tmp/os-db.xml/sc_profile.xml os-db

cc-node-a# clzc boot os-db
 => on both nodes: zlogin -C -e @ os-db
 and verify the zone boots correctly on each node

Create zone cluster os-mq, which will host the HA RabbitMQ configuration. The zone cluster nodes are named

os-mq-z1 and os-mq-z2. The shared address os-mq-sa will be used for this zone cluster:

cc-node-a# vi /var/tmp/os-mq.txt
create
set brand=solaris
set zonepath=/zones/os-mq
set ip-type=shared
set enable_priv_net=true
set autoboot=true
add node
set physical-host=cc-node-a
set hostname=os-mq-z1
add net
set address=os-mq-z1
set physical=sc_ipmp0
end
end
add node
set physical-host=cc-node-b
set hostname=os-mq-z2
add net
set address=os-mq-z2
set physical=sc_ipmp0
end
end
add net
set address=os-mq-sa
end
commit
exit

cc-node-a# clzc configure -f /var/tmp/os-mq.txt os-mq

Note: You can re-use the sysconfig profile used to setup zone cluster os-db

10 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

cc-node-a# clzc install -c /var/tmp/os-db.xml/sc_profile.xml os-mq

cc-node-a# clzc boot os-mq
 => on both nodes: zlogin -C -e @ os-mq
 and verify the zone boots correctly on each node

Create zone cluster os-api, which will host the OpenStack services for the cloud controller configuration. The zone

cluster nodes are named os-api-z1 and os-api-z2. The zone cluster is allowed to use the logical hostname

os-api-lh, the shared address os-api-sa, and zpool os_api_zp:

cc-node-a# vi /var/tmp/os-api.txt
create
set brand=solaris
set zonepath=/zones/os-api
set ip-type=shared
set enable_priv_net=true
set autoboot=true
add node
set physical-host=cc-node-a
set hostname=os-api-z1
add net
set address=os-api-z1
set physical=sc_ipmp0
end
end
add node
set physical-host=cc-node-b
set hostname=os-ap-z2
add net
set address=os-api-z2
set physical=sc_ipmp0
end
end
add net
set address=os-api-lh
end
add net
set address=os-api-sa
end
add dataset
set name=os-api_zp
end
commit
exit

cc-node-a# clzc configure -f /var/tmp/os-api.txt os-api

Note: You can re-use the sysconfig profile used to setup zone cluster os-db
cc-node-a# clzc install -c /var/tmp/os-db.xml/sc_profile.xml os-api

cc-node-a# clzc boot os-api
 => on both nodes: zlogin -C -e @ os-api
 and verify the zone boots correctly on each node

11 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

OpenStack Components on the HA Cloud Controller

Database - MySQL

Within a multi-node configuration of OpenStack on Oracle Solaris, the backend database is typically MySQL. The

following OpenStack components store data within the MySQL database and are thus dependent on it:

» Keystone

» Glance (glance-db)

» Nova (nova-conductor, nova-scheduler, nova-cert, nova-api-osapi-compute)

» Neutron (neutron-server)

» Cinder (cinder-db)

» Heat (heat-db)

Providing HA for the MySQL database is critical for these OpenStack services to operate properly.

The HA MySQL data service is used to provide HA for the MySQL database [14]. This data service provides a

variety of supported MySQL topologies. This example shows on how to configure MySQL as a failover database.

Based on requirements to distribute load for the database, other supported topologies may be used.

Configure cluster infrastructure objects for HA MySQL within zone cluster os-db

Configure the resource group os-db-rg, logical hostname os-db-lh-rs, and HA zpool os-db-hasp-rs

resources within zone cluster os-db for HA MySQL:

os-db-z1# clrt register SUNW.HAStoragePlus
os-db-z1# clrg create os-db-rg

os-db-z1# clrslh create -g os-db-rg -h os-db-lh os-db-lh-rs

both os-db zones# mkdir -p /failover/os-db

os-db-z1# clrs create -t SUNW.HAStoragePlus -g os-db-rg -p zpools=os-db_zp \
 os-db-hasp-rs
os-db-z1# clrg online -eM os-db-rg

Install and configure the MySQL database within zone cluster os-db

Install the MySQL binaries and set up the database by using file system /failover/os-db on the HA zpool

os-db_zp and the IP-address os-db-lh under cluster control:

both os-db zones# pkg install mysql-55 mysql-55/client

cc-node-a# zfs create os-db_zp/mysql

os-db-z1# mkdir /failover/os-db/mysql/logs
os-db-z1# mkdir /failover/os-db/mysql/innodb
os-db-z1# cp /etc/mysql/5.5/my.cnf /failover/os-db/mysql/

os-db-z1# vi /failover/os-db/mysql/my.cnf
--- my.cnf.orig Thu Jul 3 11:02:56 2014
+++ my.cnf Thu Jul 3 11:07:24 2014
@@ -18,7 +18,7 @@

12 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

 [client]
 #password = your_password
 port = 3306
-socket = /tmp/mysql.sock
+socket = /tmp/os-db-lh.sock

 # Here follows entries for some specific programs

@@ -25,7 +25,7 @@
 # The MySQL server
 [mysqld]
 port = 3306
-socket = /tmp/mysql.sock
+socket = /tmp/os-db-lh.sock
 skip-external-locking
 key_buffer_size = 16K
 max_allowed_packet = 1M
@@ -45,6 +45,8 @@
 #skip-networking
 server-id = 1

+bind-address=os-db-lh
+
 # Uncomment the following if you want to log updates
 #log-bin=mysql-bin

@@ -59,18 +61,18 @@
 #binlog_direct_non_transactional_updates=TRUE

 # Uncomment the following if you are using InnoDB tables
-#innodb_data_home_dir = /var/mysql/5.5
-#innodb_data_file_path = ibdata1:10M:autoextend
-#innodb_log_group_home_dir = /var/mysql/5.5
+innodb_data_home_dir = /failover/os-db/mysql/innodb
+innodb_data_file_path = ibdata1:10M:autoextend
+innodb_log_group_home_dir = /failover/os-db/mysql/innodb
 # You can set .._buffer_pool_size up to 50 - 80 %
 # of RAM but beware of setting memory usage too high
-#innodb_buffer_pool_size = 16M
-#innodb_additional_mem_pool_size = 2M
+innodb_buffer_pool_size = 16M
+innodb_additional_mem_pool_size = 2M
 # Set .._log_file_size to 25 % of buffer pool size
-#innodb_log_file_size = 5M
-#innodb_log_buffer_size = 8M
-#innodb_flush_log_at_trx_commit = 1
-#innodb_lock_wait_timeout = 50
+innodb_log_file_size = 5M
+innodb_log_buffer_size = 8M
+innodb_flush_log_at_trx_commit = 1
+innodb_lock_wait_timeout = 50

 [mysqldump]
 quick

both os-db zones# cd /etc/mysql/5.5
both os-db zones# mv my.cnf my.cnf.orig
both os-db zones# ln -s /failover/os-db/mysql/my.cnf .

os-db-z1# chown -R mysql:mysql /failover/os-db/mysql

13 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-db-z1# /usr/mysql/5.5/bin/mysql_install_db --user=mysql \
 --datadir=/failover/os-db/mysql --basedir=/usr/mysql/5.5
Installing MySQL system tables...
OK
Filling help tables...
OK

To start mysqld at boot time you have to copy
support-files/mysql.server to the right place for your system

PLEASE REMEMBER TO SET A PASSWORD FOR THE MySQL root USER !
To do so, start the server, then issue the following commands:

/usr/mysql/5.5/bin/mysqladmin -u root password 'new-password'
/usr/mysql/5.5/bin/mysqladmin -u root -h os-db-z1 password 'new-password'

Alternatively you can run:
/usr/mysql/5.5/bin/mysql_secure_installation

which will also give you the option of removing the test
databases and anonymous user created by default. This is
strongly recommended for production servers.

See the manual for more instructions.

You can start the MySQL daemon with:
cd /usr/mysql/5.5 ; /usr/mysql/5.5/bin/mysqld_safe &

You can test the MySQL daemon with mysql-test-run.pl
cd /usr/mysql/5.5/mysql-test ; perl mysql-test-run.pl

Please report any problems with the /usr/mysql/5.5/scripts/mysqlbug script!

os-db-z1# /usr/mysql/5.5/bin/mysqld --defaults-file=/failover/os-db/mysql/my.cnf \
 --basedir=/usr/mysql/5.5 --datadir=/failover/os-db/mysql \
 --user=mysql --pid-file=/failover/os-db/mysql/mysql.pid &

140704 11:15:20 [Note] Plugin 'FEDERATED' is disabled.
140704 11:15:20 InnoDB: The InnoDB memory heap is disabled
140704 11:15:20 InnoDB: Mutexes and rw_locks use GCC atomic builtins
140704 11:15:20 InnoDB: Compressed tables use zlib 1.2.3
140704 11:15:20 InnoDB: Initializing buffer pool, size = 16.0M
140704 11:15:20 InnoDB: Completed initialization of buffer pool
InnoDB: The first specified data file /failover/os-db/mysql/innodb/ibdata1 did not
exist:
InnoDB: a new database to be created!
140704 11:15:20 InnoDB: Setting file /failover/os-db/mysql/innodb/ibdata1 size to
10 MB
InnoDB: Database physically writes the file full: wait...
140704 11:15:20 InnoDB: Log file /failover/os-db/mysql/innodb/ib_logfile0 did not
exist: new to be created
InnoDB: Setting log file /failover/os-db/mysql/innodb/ib_logfile0 size to 5 MB
InnoDB: Database physically writes the file full: wait...
140704 11:15:20 InnoDB: Log file /failover/os-db/mysql/innodb/ib_logfile1 did not
exist: new to be created
InnoDB: Setting log file /failover/os-db/mysql/innodb/ib_logfile1 size to 5 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: 127 rollback segment(s) active.
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created

14 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

140704 11:15:21 InnoDB: Waiting for the background threads to start
140704 11:15:22 InnoDB: 5.5.31 started; log sequence number 0
140704 11:15:22 [Note] Server hostname (bind-address): 'os-db-lh'; port: 3306
140704 11:15:22 [Note] - 'os-db-lh' resolves to '10.134.96.132';
140704 11:15:22 [Note] Server socket created on IP: '10.134.96.132'.
140704 11:15:22 [Note] Event Scheduler: Loaded 0 events
140704 11:15:22 [Note] /usr/mysql/5.5/bin/mysqld: ready for connections.
Version: '5.5.31' socket: '/tmp/os-db-lh.sock' port: 3306 MySQL Community Server
(GPL)

The following is only needed for the mysql_secure_installation script:
os-db-z1# cd /tmp
os-db-z1# ln os-db-lh.sock mysql.sock
os-db-z1# export PATH=${PATH}:/usr/mysql/5.5/bin
os-db-z1# /usr/mysql/5.5/bin/mysql_secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL
 SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MySQL to secure it, we'll need the current
password for the root user. If you've just installed MySQL, and
you haven't set the root password yet, the password will be blank,
so you should just press enter here.

Enter current password for root (enter for none):
OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MySQL
root user without the proper authorisation.

Set root password? [Y/n] y
New password: <mysqlrootpassword>
Re-enter new password: <mysqlrootpassword>
Password updated successfully!
Reloading privilege tables..
 ... Success!

By default, a MySQL installation has an anonymous user, allowing anyone
to log into MySQL without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n] Y
 ... Success!

Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n] n
 ... skipping.

By default, MySQL comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y/n] Y
 - Dropping test database...
 ... Success!
 - Removing privileges on test database...

15 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

 ... Success!

Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.

Reload privilege tables now? [Y/n] Y
 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your MySQL
installation should now be secure.

Thanks for using MySQL!

os-db-z1# /usr/mysql/5.5/bin/mysql -S /tmp/os-db-lh.sock -uroot \
 -p'<mysqlrootpassword>'
mysql> use mysql;
Database changed
mysql> GRANT ALL ON *.* TO 'root'@'os-db-z1' IDENTIFIED BY '<mysqlrootpassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL ON *.* TO 'root'@'os-db-z2' IDENTIFIED BY '<mysqlrootpassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> UPDATE user SET Grant_priv='Y' WHERE User='root' AND Host='os-db-z1';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 Warnings: 0

mysql> UPDATE user SET Grant_priv='Y' WHERE User='root' AND Host='os-db-z2';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> GRANT ALL ON *.* TO 'root'@'os-db-lh' IDENTIFIED BY '<mysqlrootpassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> UPDATE user SET Grant_priv='Y' WHERE User='root' AND Host='os-db-lh';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Configure the MySQL database as HA MySQL failover cluster resource os-mysql-rs within zone cluster
os-db

Configure the MySQL database instance as cluster resource os-mysql-rs within resource group os-db-rg:

os-db-z1# mkdir /failover/os-db/cluster-config
os-db-z1# cd /failover/os-db/cluster-config
os-db-z1# cp /opt/SUNWscmys/util/ha_mysql_config .
os-db-z1# cp /opt/SUNWscmys/util/mysql_config .

os-db-z1# vi ha_mysql_config
RS=os-mysql-rs
RG=os-db-rg
PORT=3306
LH=os-db-lh-rs
SCALABLE=
LB_POLICY=
RS_PROP=
HAS_RS=os-db-hasp-rs

ZONE=
ZONE_BT=

16 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

PROJECT=

BASEDIR=/usr/mysql/5.5
DATADIR=/failover/os-db/mysql
MYSQLUSER=mysql
MYSQLHOST=os-db-lh
FMUSER=fmuser
FMPASS=
LOGDIR=/failover/os-db/mysql/logs
CHECK=YES
NDB_CHECK=

os-db-z1# vi mysql_config
MYSQL_BASE=/usr/mysql/5.5
MYSQL_USER=root
MYSQL_PASSWD=
MYSQL_HOST=os-db-lh
FMUSER=fmuser
FMPASS=
MYSQL_SOCK=/tmp/os-db-lh.sock
MYSQL_NIC_HOSTNAME="os-db-z1 os-db-z2 os-db-lh"
MYSQL_DATADIR=/failover/os-db/mysql
NDB_CHECK=

os-db-z1# /opt/SUNWscmys/util/mysql_register \
 -f /failover/os-db/cluster-config/mysql_config
sourcing /failover/os-db/cluster-config/mysql_config.

MySQL version 5 detected on 5.11.

Enter the MySQL admin password. => <mysqlrootpassword>

Re enter the MySQL admin password.

Check if the MySQL server is running and accepting connections.

Enter the MySQL fault monitor user password. => <fmuserpassword>

Reenter the MySQL fault monitor user password.

Add faultmonitor user (fmuser) with its password with Process, Select, Reload, and
Shutdown privileges to user table for MySQL database for host os-db-z1.

Add SUPER privilege for fmuser@os-db-z1.

Add faultmonitor user (fmuser) with its password with Process, Select, Reload, and
Shutdown privileges to user table for MySQL database for host os-db-z2.

Add SUPER privilege for fmuser@os-db-z2.

Add faultmonitor user (fmuser) with its password with Process, Select, Reload, and
Shutdown privileges to user table for MySQL database for host os-db-lh.

Add SUPER privilege for fmuser@os-db-lh.

Create test-database sc3_test_database.

Grant all privileges to sc3_test_database for faultmonitor-user fmuser for host os-
db-z1.

Grant all privileges to sc3_test_database for faultmonitor-user fmuser for host os-
db-z2.

17 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Grant all privileges to sc3_test_database for faultmonitor-user fmuser for host os-
db-lh.

Flush all privileges.

MySQL configuration for HA is done.

os-db-z1# kill -TERM $(cat /failover/os-db/mysql/mysql.pid)

os-db-z1# /opt/SUNWscmys/util/ha_mysql_register \
 -f /failover/os-db/cluster-config/ha_mysql_config -e
Sourcing /failover/os-db/cluster-config/ha_mysql_config and create a working copy
under /opt/SUNWscmys/util/ha_mysql_config.work.
 remove the working copy /opt/SUNWscmys/util/ha_mysql_config.work.

Enter the password for the faultmonitoring user. => <fmuserpassword>

Re enter the password for the faultmonitoring user.

Encrypt the password.

os-db-z1# cd
os-db-z1# clrg switch -n os-db-z2 os-db-rg

os-db-z2# /opt/SUNWscmys/util/ha_mysql_register \
 -f /failover/os-db/cluster-config/ha_mysql_config -e
Sourcing /failover/os-db/cluster-config/ha_mysql_config and create a working copy
under /opt/SUNWscmys/util/ha_mysql_config.work.
 remove the working copy /opt/SUNWscmys/util/ha_mysql_config.work.

Enter the password for the faultmonitoring user.

Re enter the password for the faultmonitoring user. => <fmuserpassword>

Encrypt the password.

os-db-z1# clrg switch -n os-db-z1 os-db-rg

os-db-z1# clrt register SUNW.gds
os-db-z1# /opt/SUNWscmys/util/ha_mysql_register \
 -f /failover/os-db/cluster-config/ha_mysql_config
Sourcing /failover/os-db/cluster-config/ha_mysql_config and create a working copy
under /opt/SUNWscmys/util/ha_mysql_config.work.
Registration of resource os-mysql-rs succeeded.
 remove the working copy /opt/SUNWscmys/util/ha_mysql_config.work.

os-db-z1# clrs enable os-mysql-rs

Once MySQL is started, under cluster control enable and disable the MySQL service by enabling and disabling the

os-mysql-rs cluster resource through the Oracle Solaris Cluster CLI or BUI.

Example to enable the MySQL service through the CLI:

os-db-z1# clrs enable os-mysql-rs

Example to disable the MySQL service through the CLI:

os-db-z1# clrs disable os-mysql-rs

More information about the HA MySQL data service can be found within the HA for MySQL data service guide [14].

18 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Message Queue - RabbitMQ

Oracle Solaris provides RabbitMQ as message queue software for the OpenStack configuration. The following

OpenStack components make use of messages queues stored and managed by the rabbitmq SMF service and

are thus dependent on it:

» Glance (glance-api)

» Nova (nova-conductor, nova-scheduler, nova-cert, nova-api-osapi-compute)

» Neutron (neutron-server, neutron-l3-agent , neutron-dhcp-agent)

» Cinder (cinder-scheduler , cinder-api)

Providing high availability for the rabbitmq service is critical for those OpenStack components to operate properly.

There are also OpenStack services running outside the HA cloud controller, which make use of the rabbitmq

service (such as nova-compute).

The rabbitmq SMF service can be made HA by using its own capability to cluster rabbitmq instances [17|, and to

then configure mirrored messages queues [18]. That way, each instance has knowledge and content for each

queue. Load balancing is delivered through the usage of the SUNW.SharedAddress resource type (provided by the

Oracle Solaris Cluster built-in load balancer). Thus, all rabbitmq clients only need to be configured for one IP

address (os-mq-sa); HA is transparent for them. The rabbitmq instances can be started through the

SUNW.Proxy_SMF_scalable resource type as a scalable service.

Configure cluster infrastructure objects for HA rabbitmq within zone cluster os-mq

Configure the failover resource group os-mq-sa-rg for the shared address resource os-mq-sa-rs within zone

cluster os-mq, which will be used by the highly available rabbitmq service later on:

os-mq-z1# clrg create os-mq-sa-rg
os-mq-z1# clrssa create -g os-mq-sa-rg -h os-mq-sa os-mq-sa-rs
os-mq-z1# clrg online -eM os-mq-sa-rg

Configure rabbitmq using the cluster option with mirrored queues within zone cluster os-mq

Install the rabbitmq binaries and create an Erlang cookie, which can be used by both rabbitmq instances, and

configure rabbitmq with the cluster option and mirrored queues on both zone cluster zones os-mq-z1 and os-

mq-z2. The rabbitmq service will make use of the scalable IP-address os-mq-sa which is managed by the os-

mq-sa-rs cluster resource:

both os-mq zones# pkg install rabbitmq

Just create an erlang cookie that can be used by both instances by enabling
and disabling the rabbitmq SMF service on one node, then copy that cookie to
the other node.
os-mq-z1# svcadm enable rabbitmq
os-mq-z1# svcadm disable rabbitmq
os-mq-z1# scp /var/lib/rabbitmq/.erlang.cookie os-mq-z2:/var/lib/rabbitmq/

os-mq-z2# chown rabbitmq:bin /var/lib/rabbitmq/.erlang.cookie
os-mq-z2# chmod 400 /var/lib/rabbitmq/.erlang.cookie

os-mq-z1# vi /etc/rabbitmq/rabbitmq-env.conf
NODENAME=rabbit@os-mq-z1
NODE_IP_ADDRESS=os-mq-sa
CONFIG_FILE=/etc/rabbitmq/rabbitmq

19 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-mq-z2# vi /etc/rabbitmq/rabbitmq-env.conf
NODENAME=rabbit@os-mq-z2
NODE_IP_ADDRESS=os-mq-sa
CONFIG_FILE=/etc/rabbitmq/rabbitmq

Create a persistent cluster config for the rabbitmq instances:
both os-mq zones# vi /etc/rabbitmq/rabbitmq.config
[{rabbit,
 [{cluster_nodes, {['rabbit@os-mq-z1', 'rabbit@os-mq-z2'], disc}}]}].

both os-mq zones# chown rabbitmq:bin /etc/rabbitmq/rabbitmq.config

both os-mq zones# svcadm enable rabbitmq

Configure mirrored queues within the rabbitmq cluster:
os-mq-z1# su - rabbitmq
rabbitmq@os-mq-z1$ rabbitmqctl set_policy HA '^(?!amq\.).*' '{"ha-mode": "all"}'
Setting policy "HA" for pattern "^(?!amq\\.).*" to "{\"ha-mode\": \"all\"}" ...
...done.

rabbitmq@os-mq-z1$ exit

Confirm the rabbitmq cluster is running correctly:
both os-mq zones# su - rabbitmq -c "rabbitmqctl cluster_status"
Cluster status of node 'rabbit@os-mq-z1' ...
[{nodes,[{disc,['rabbit@os-mq-z1','rabbit@os-mq-z2']}]},
 {running_nodes,['rabbit@os-mq-z2','rabbit@os-mq-z1']},
 {partitions,[]}]
...done.

Cluster status of node 'rabbit@os-mq-z2' ...
[{nodes,[{disc,['rabbit@os-mq-z1','rabbit@os-mq-z2']}]},
 {running_nodes,['rabbit@os-mq-z1','rabbit@os-mq-z2']},
 {partitions,[]}]
...done.

Disable the manual started rabbitmq SMF service:
both os-mq zones# svcadm disable rabbitmq

Configure rabbitmq as scalable cluster resources within zone cluster os-mq

Create the scalable cluster resource group rabbitmq-rg with resource os-rabbitmq-rs, using the

SUNW.Proxy_SMF_scalable resource type to manage rabbitmq as a scalable service. The cluster load

balancer is configured to use the shared address os-mq-sa with TCP port 5672, with an even client access

distribution between the rabbitmq instances:

os-mq-z1# clrg create -S rabbitmq-rg

both os-mq zones# mkdir -p /opt/HA-OpenStack/etc
both os-mq zones# vi /opt/HA-OpenStack/etc/rabbitmq-svclist.txt
<svc:/application/rabbitmq:default>,</lib/svc/manifest/application/rabbitmq.xml>

os-mq-z1# clrt register SUNW.Proxy_SMF_scalable

os-mq-z1# clrs create -d -g rabbitmq-rg -t SUNW.Proxy_SMF_scalable \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/rabbitmq-svclist.txt \
 -p Resource_dependencies=os-mq-sa-rs -p Port_list="5672/tcp" \
 -p Load_balancing_policy="Lb_weighted" \
 -p Load_balancing_weights="1@1,1@2" os-rabbitmq-rs

20 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-mq-z1# clrs enable os-rabbitmq-rs

os-mq-z1# clrg online -eM rabbitmq-rg

Once rabbitmq is started under cluster control, enable and disable the rabbitmq service by enabling and

disabling the os-rabbitmq-rs cluster resource through the Oracle Solaris Cluster CLI or BUI.

Configure cluster infrastructure objects for OpenStack components running within zone cluster
os-api

Configure the resource group os-api-rg with the logical hostname resource os-api-lh-rs and HA zpool

resource os-api-hasp-rs, and the resource group os-api-sa-rg with the shared address resource os-api-

sa-rs for all OpenStack components running within zone cluster os-api:

os-api-z1# clrg create os-api-rg

os-api-z1# clrslh create -g os-api-rg -h os-api-lh os-api-lh-rs

both os-api zones# mkdir -p /failover/os-api
os-api-z1# clrt register SUNW.HAStoragePlus
os-api-z1# clrs create -t SUNW.HAStoragePlus -g os-api-rg -p zpools=os-api_zp \
 os-api-hasp-rs

os-api-z1# clrg online -eM os-api-rg

os-api-z1# clrg create os-api-sa-rg
os-api-z1# clrssa create -g os-api-sa-rg -h os-api-sa os-api-sa-rs

os-api-z1# clrg online -eM os-api-sa-rg

Keystone

The Keystone identity service provides authentication and authorization services between users, administrators, and

OpenStack services. Keystone is required to be available for all OpenStack components, therefore high availability

for this service is essential.

The following SMF service will be managed by the HA SMF proxy failover resource:

» svc:/application/openstack/keystone:default

In order for Keystone to use the configured cluster objects, the following configuration files and options need to be

amended:

configuration file option value to use
/etc/keystone/keystone.conf admin_token ADMIN

bind_host os-api-lh
log_dir /failover/os-api/keystone/log
connection mysql://keystone:<keystonepassword>@os-db-lh/keystone

Table 2: Keystone configuration parameters

In addition, other parameters not related to the HA setup may be amended as required [1].

The communication endpoints for the various OpenStack services configured within Keystone need to use the highly

available IP addresses managed by the cluster for those services. In this example, the endpoints use the IP address

that corresponds to os-api-lh.

21 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Create Keystone database within zone cluster os-db

Create the Keystone database within MySQL and ensure that the Keystone user has access from all nodes and

zones that are required to connect to the Keystone database. Access to the Keystone database needs to be directed

to the logical hostname os-db-lh:

os-db-z1# mysql -h os-db-lh -u root -p
mysql> CREATE DATABASE keystone;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' IDENTIFIED by \
 '<keystonepassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED BY \
 '<keystonepassword>';
Query OK, 0 rows affected (0.00 sec)

Configure Keystone within zone cluster os-api

Install the Keystone packages within zone cluster os-api and amend the configuration file as described within the

OpenStack installation guide [1] and Table 2:

both os-api zones# pkg install keystone mysql-55/client \
 library/python-2/python-mysql-26 library/python-2/sqlalchemy-26

both os-api zones# vi /etc/keystone/keystone.conf
=> amend configuration parameters as described in [1] and table 2

Create directories used by keystone on shared storage:
os-api-z1# mkdir /failover/os-api/keystone
os-api-z1# mkdir /failover/os-api/keystone/log
os-api-z1# chown -R keystone:keystone /failover/os-api/keystone

run db_sync for keystone on os-api zone cluster
os-api-z1# su - keystone -c "keystone-manage db_sync"

os-api-z1# svcadm enable keystone

os-api-z1# su - keystone -c "keystone-manage pki_setup"

Sync the ssl config across zone cluster nodes:
os-api-z1# cd /etc/keystone
os-api-z1# tar cpf ssl.tar ssl ec2rc

os-api-z2# cd /etc/keystone
os-api-z2# scp os-api-z1:/etc/keystone/ssl.tar .
os-api-z2# tar xpf ssl.tar

both os-api zones# rm /etc/keystone/ssl.tar

The Keystone package provides the sample script /usr/demo/openstack/keystone/sample_data.sh to

populate the Keystone database with an administrative user using the SERVICE_TOKEN and SERVICE_ENDPOINT

environment variables, the various OpenStack component users with their password, and the corresponding

communication endpoints. Regardless of whether you set up the endpoints using the sample script or do it manually,

you have to ensure that the logical hostnames that are configured with the corresponding cluster resources are

used, as summarized in Table 1.

22 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

For this example, the OS_AUTH_URL variable needs to be defined as http://os-api-lh:5000/v2.0 and

CONTROLLER_PUBLIC_ADDRESS , CONTROLLER_ADMIN_ADDRESS , and CONTROLLER_INTERNAL_ADDRESS need

to be set to os-api-lh.

You can verify the configured Keystone endpoints:

os-api-z1# su - keystone -c "env SERVICE_ENDPOINT=http://os-api-lh:35357/v2.0 \
 SERVICE_TOKEN=ADMIN keystone endpoint-list"

Disable the manually started Keystone SMF service:

os-api-z1# svcadm disable keystone

Configure the Keystone SMF service as a failover cluster resource within zone cluster os-api

Configure the Keystone SMF service as SUNW.Proxy_SMF_failover resource os-keystone-rs within

resource group os-api-rg, using the logical hostname os-api-lh and zpool os-api_zp. Within the global

cluster, define a resource dependency on the HA MySQL resource os-mysql-rs:

both os-api zones# mkdir -p /opt/HA-OpenStack/etc
both os-api zones# vi /opt/HA-OpenStack/etc/keystone-svclist.txt
<svc:/application/openstack/keystone:default>,</lib/svc/manifest/application/openstack/keystone.xml>

os-api-z1# clrt register Proxy_SMF_failover

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/keystone-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-keystone-rs

also need a resource dependency on HA MySQL, configure in the global cluster:
cc-node-a# clrs set -Z os-api -p Resource_dependencies+=os-db:os-mysql-rs \
 os-keystone-rs

os-api-z1# clrs enable os-keystone-rs

Once Keystone is started under cluster control, enable and disable the Keystone service by enabling and disabling

the os-keystone-rs cluster resource through the Oracle Solaris Cluster CLI or BUI.

Glance

The Glance image store service stores disk images of virtual machines (VM), which are used to deploy VM

instances. In Oracle Solaris, Glance images are Unified Archives. The images can be stored in a variety of locations,

from simple file systems to object storage systems such as OpenStack Swift. Glance has a RESTful API that

enables you to query image metadata as well as retrieve the image.

In this configuration, the Unified Archives are stored on a ZFS file system. The corresponding zpool os-api_zp is

managed by the SUNW.HAStoragePlus resource os-api-hasp-rs.

The following SMF services will be managed by corresponding HA SMF proxy failover resources:

» svc:/application/openstack/glance/glance-api:default

» svc:/application/openstack/glance/glance-db:default

» svc:/application/openstack/glance/glance-registry:default

23 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:35357/v2.0

» svc:/application/openstack/glance/glance-scrubber:default

In order for the Glance services to use the configured cluster objects, the following configuration files and options

have to be amended in addition to options that you normally set up:

configuration file option value to use

/etc/glance/glance-api.conf bind_host os-api-lh

log_file /failover/os-api/glance/log/api.log

sql_connection mysql://glance:<glancepwd>@os-db-lh/glance

registry_host os-api-lh

notifier_strategy rabbit

rabbit_host os-mq-sa

filesystem_store_datadir /failover/os-api/glance/images/

swift_store_auth_address os-api-lh:5000/v2.0/

s3_store_host os-api-lh:8080/v1.0/

scrubber_datadir /failover/os-api/glance/scrubber

image_cache_dir /failover/os-api/glance/image-cache/

auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user glance

admin_password <glanceadmpassword>

signing_dir /failover/os-api/glance/keystone-signing

/etc/glance/glance-cache.conf log_file /failover/os-api/glance/log/image-cache.log

image_cache_dir /failover/os-api/glance/image-cache/

registry_host os-api-lh

auth_url http://os-api-lh:5000/v2.0/

admin_tenant_name service

admin_user glance

admin_password <glanceadmpassword>

filesystem_store_datadir /failover/os-api/glance/images/

swift_store_auth_address os-api-lh:5000/v2.0/

s3_store_host os-api-lh:8080/v1.0/

/etc/glance/glance-registry.conf bind_host os-api-lh

log_file /failover/os-api/glance/log/registry.log

sql_connection mysql://glance:<glancepwd>@os-db-lh/glance

auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user glance

24 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:35357/
http://os-api-lh:5000/v2.0
http://os-api-lh:5000/v2.0/
http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

admin_password <glanceadmpassword>

signing_dir /failover/os-api/glance/keystone-signing

/etc/glance/glance-api-paste.ini auth_host os-api-lh

auth_port 35357

admin_tenant_name service

admin_user glance

admin_password <glanceadmpassword>

/etc/glance/glance-registry-paste.ini auth_host os-api-lh

auth_port 35357

admin_tenant_name service

admin_user glance

admin_password <glanceadmpassword>

/etc/glance/glance-scrubber.conf log_file /failover/os-api/glance/log/scrubber.log

scrubber_datadir /failover/os-api/glance/scrubber

registry_host os-api-lh

auth_url http://os-api-lh:5000/v2.0/

admin_tenant_name service

admin_user glance

admin_password <glanceadmpassword>

filesystem_store_datadir /failover/os-api/glance/images/

swift_store_auth_address os-api-lh:5000/v2.0/

s3_store_host os-api-lh:8080/v1.0/

Table 3: Glance configuration parameters

In addition, other parameters that are not related to the HA setup may be amended as required [1].

Other OpenStack components required to access the Glance endpoints have to use the highly available IP address

managed by the cluster for those services. In this example, the access to glance-api and glance-registry

has to be configured for the IP address os-api-lh.

Create the Glance database within zone cluster os-db

Create the Glance database within MySQL and ensure that the Glance user has access from all nodes and zones

that are required to connect to the Glance database. Access to the Glance database has to be directed to the logical

hostname os-db-lh:

os-db-z1# mysql -h os-db-lh -u root -p
mysql> CREATE DATABASE glance;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' IDENTIFIED by \
 '<glancepassword>';
Query OK, 0 rows affected (0.00 sec)

25 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0/

mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED BY \
 '<glancepassword>';
Query OK, 0 rows affected (0.00 sec)

Configure Glance services within zone cluster os-api

Install the Glance packages within zone cluster os-api and amend the configuration files as described within the

OpenStack installation guide [1] and Table 3:

both os-api zones# pkg install glance glanceclient

both os-api zones# cd /etc/glance

Amend the following config files for glance on all os-api zones:
both os-api zones# vi glance-api.conf
both os-api zones# vi glance-cache.conf
both os-api zones# vi glance-registry.conf
both os-api zones# vi glance-api-paste.ini
both os-api zones# vi glance-registry-paste.ini
both os-api zones# vi glance-scrubber.conf

=> amend configuration parameters for all the files as described in [1]
 and table 3

Create the required directories within zpool os-api_zp which is managed by the cluster framework:

os-api-z1# mkdir -p /failover/os-api/glance/log
os-api-z1# mkdir /failover/os-api/glance/images
os-api-z1# mkdir /failover/os-api/glance/image-cache
os-api-z1# mkdir /failover/os-api/glance/keystone-signing
os-api-z1# chmod 700 /failover/os-api/glance/keystone-signing
os-api-z1# mkdir /failover/os-api/glance/scrubber

os-api-z1# chown -R glance:glance /failover/os-api/glance

Create the Glance database instance and enable the Glance SMF services:

os-api-z1# su - glance -c "glance-manage db_sync"

os-api-z1# svcadm enable glance-db
os-api-z1# svcadm enable glance-api
os-api-z1# svcadm enable glance-registry
os-api-z1# svcadm enable glance-scrubber

Verify that the Glance services run correctly, then disable them:

os-api-z1# su - glance -c "env OS_AUTH_URL=http://os-api-lh:5000/v2.0 \
 OS_USERNAME=glance OS_PASSWORD=<glanceadmpassword> \
 OS_TENANT_NAME=service glance image-list"

os-api-z1# svcadm disable glance-scrubber
os-api-z1# svcadm disable glance-registry
os-api-z1# svcadm disable glance-api
os-api-z1# svcadm disable glance-db

26 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0

Configure Glance SMF services as failover cluster resources within zone cluster os-api

Configure the Glance SMF services as SMF proxy failover resources within resource group os-api-rg. Within the

global cluster, define the resource dependencies on the HA MySQL and HA RabbitMQ resources, where required:

glance-db
both os-api zones# vi /opt/HA-OpenStack/etc/glance-db-svclist.txt
<svc:/application/openstack/glance/glance-db:default>,\
</lib/svc/manifest/application/openstack/glance-db.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/glance-db-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-glance-db-rs

also need a resource dependency on HA MySQL, configure in the global cluster:
cc-node-a# clrs set -Z os-api -p Resource_dependencies=os-db:os-mysql-rs \
 os-glance-db-rs

os-api-z1# clrs enable os-glance-db-rs

glance-api
both os-api zones# vi /opt/HA-OpenStack/etc/glance-api-svclist.txt
<svc:/application/openstack/glance/glance-api:default>,\
</lib/svc/manifest/application/openstack/glance-api.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/glance-api-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 -p Resource_dependencies=os-glance-db-rs os-glance-api-rs

also need a resource dependency on HA SMF rabbitmq, configure in the
global cluster:
cc-node-a# clrs set -Z os-api -p Resource_dependencies+=os-mq:os-rabbitmq-rs \
 os-glance-api-rs

os-api-z1# clrs enable os-glance-api-rs

glance-registry
both os-api zones# vi /opt/HA-OpenStack/etc/glance-registry-svclist.txt
<svc:/application/openstack/glance/glance-registry:default>,\
</lib/svc/manifest/application/openstack/glance-registry.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/glance-registry-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 -p Resource_dependencies=os-glance-db-rs os-glance-registry-rs

os-api-z1# clrs enable os-glance-registry-rs

glance-scrubber
both os-api zones# vi /opt/HA-OpenStack/etc/glance-scrubber-svclist.txt
<svc:/application/openstack/glance/glance-scrubber:default>,\
</lib/svc/manifest/application/openstack/glance-scrubber.xml>

Note: The previous content needs to be all one line, without the \ character

27 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/glance-scrubber-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs \
 -p Resource_dependencies=os-glance-db-rs os-glance-scrubber-rs

os-api-z1# clrs enable os-glance-scrubber-rs

quick sanity check for glance:
os-api-z1# su - glance -c "env OS_AUTH_URL=http://os-api-lh:5000/v2.0 \
 OS_USERNAME=glance OS_PASSWORD=<glanceadmpassword> \
 OS_TENANT_NAME=service glance image-list"

Once the various glance-* SMF services are started under cluster control, you need to enable and disable the

Glance services by enabling and disabling the corresponding os-glance-*-rs cluster resources by using the

Oracle Solaris Cluster CLI or BUI.

Nova

The Nova compute virtualization service provides a cloud computing fabric controller that supports a variety of

virtualization technologies. In Oracle Solaris, virtual machine (VM) instances are kernel zones or non-global zones.

Zones are scalable high-density virtual environments with low virtualization overhead. Kernel zones additionally

provide independent kernel versions, enabling independent upgrade of VM instances, which is desirable for a multi-

tenant cloud.

The following SMF services will be managed by corresponding HA SMF proxy failover resources:

» svc:/application/openstack/nova/nova-api-ec2:default

» svc:/application/openstack/nova/nova-api-osapi-compute:default

» svc:/application/openstack/nova/nova-cert:default

» svc:/application/openstack/nova/nova-conductor:default

» svc:/application/openstack/nova/nova-objectstore:default

» svc:/application/openstack/nova/nova-scheduler:default

In order for the Nova services to use the configured cluster objects, the following configuration files and options have

to be amended in addition to options that you normally set up:

configuration file option value to use

/etc/nova/nova.conf my_ip os-api-lh

host os-api-lh

state_path /failover/os-api/nova

neutron_url http://os-api-lh:9696

neutron_admin_username neutron

neutron_admin_password <neutronadmpassword>

neutron_admin_tenant_name service

neutron_admin_auth_url http://os-api-lh:5000/v2.0

rabbit_host os-mq-sa

28 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0
http://os-api-lh:9696/
http://os-api-lh:5000/v2.0

rabbit_port 5672

rabbit_hosts $rabbit_host:$rabbit_port

rabbit_userid guest

rabbit_password <rabbitmqpassword>

connection mysql://nova:<novapassword>@os-db-lh/nova

auth_host os-api-lh

auth_port 35357

auth_protocol http

admin_tenant_name service

admin_user nova

admin_password <novaadmpassword>

/etc/nova/api-paste.ini auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user nova

admin_password <novaadmpassword>

signing_dir /failover/os-api/nova/keystone-signing

Table 4: Nova configuration parameters

In addition, other parameters that are not related to the HA setup may be amended as required [1].

Other OpenStack components required to access the nova endpoints have to make use of the high available IP

address that is managed by the cluster for those services. In this example, the access to nova-api-* services has

to be configured for the IP address os-api-lh.

Create the Nova database within zone cluster os-db

Create the Nova database within MySQL and ensure the Nova user has access from all nodes and zones that are

required to connect to the Nova database. Access to the Nova database has to be directed to the logical hostname

os-db-lh:

os-db-z1# mysql -h os-db-lh -u root -p
mysql> CREATE DATABASE nova;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' IDENTIFIED by \
 '<novapassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED BY '<novapassword>';
Query OK, 0 rows affected (0.00 sec)

Configure Nova services within zone cluster os-api

Install the Nova packages within zone cluster os-api and amend the configuration files as described within the

OpenStack installation guide [1] and Table 4:

both os-api zones# pkg install nova novaclient

29 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

both os-api zones# cd /etc/nova

Amend the following config files for nova on all os-api zones:
both os-api zones# vi nova.conf
both os-api zones# vi api-paste.ini

=> amend configuration parameters for all the files as described in [1]
 and table 4

Create the required directories within the zpool os-api_zp, which is managed by the cluster framework:

os-api-z1# mkdir /failover/os-api/nova
os-api-z1# mkdir /failover/os-api/nova/keystone-signing
os-api-z1# chmod 700 /failover/os-api/nova/keystone-signing
os-api-z1# chown -R nova:nova /failover/os-api/nova

Create the Nova database instance and enable the Nova SMF services:

os-api-z1# su - nova -c "nova-manage db sync"

os-api-z1# svcadm enable nova-conductor

os-api-z1# svcadm restart rad:local

os-api-z1# svcadm enable nova-scheduler
os-api-z1# svcadm enable nova-cert
os-api-z1# svcadm enable nova-objectstore
os-api-z1# svcadm enable nova-api-osapi-compute
os-api-z1# svcadm enable nova-api-ec2

Verify that the Nova endpoints are configured correctly, then disable them:

os-api-z1# su - nova -c "env OS_AUTH_URL=http://os-api-lh:5000/v2.0 \
 OS_PASSWORD=<novaadmpassword> OS_USERNAME=nova OS_TENANT_NAME=service \
 nova endpoints"

os-api-z1# svcadm disable nova-api-ec2
os-api-z1# svcadm disable nova-api-osapi-compute
os-api-z1# svcadm disable nova-objectstore
os-api-z1# svcadm disable nova-cert
os-api-z1# svcadm disable nova-scheduler
os-api-z1# svcadm disable nova-conductor

Configure the Nova SMF services as failover cluster resources within zone cluster os-api

Configure the Nova SMF services as SMF proxy failover cluster resources within resource group os-api-rg.

Within the global cluster, define the resource dependencies on the HA MySQL and HA RabbitMQ resources, where

required:

nova-conductor
both os-api zones# vi /opt/HA-OpenStack/etc/nova-conductor-svclist.txt
<svc:/application/openstack/nova/nova-conductor:default>, \
</lib/svc/manifest/application/openstack/nova-conductor.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/nova-conductor-svclist.txt \

30 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0

 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-nova-conductor-rs

also need a resource dependency on HA MySQL and on HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies=os-db:os-mysql-rs,os-mq:os-rabbitmq-rs \
 os-nova-conductor-rs

os-api-z1# clrs enable os-nova-conductor-rs

nova-scheduler
both os-api zones# vi /opt/HA-OpenStack/etc/nova-scheduler-svclist.txt
<svc:/application/openstack/nova/nova-scheduler:default>,\
</lib/svc/manifest/application/openstack/nova-scheduler.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/nova-scheduler-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs \
 -p Resource_dependencies=os-nova-conductor-rs os-nova-scheduler-rs

also need a resource dependency on HA MySQL and on HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies+=os-db:os-mysql-rs,os-mq:os-rabbitmq-rs \
 os-nova-scheduler-rs

os-api-z1# clrs enable os-nova-scheduler-rs

nova-cert
both os-api zones# vi /opt/HA-OpenStack/etc/nova-cert-svclist.txt
<svc:/application/openstack/nova/nova-cert:default>,\
</lib/svc/manifest/application/openstack/nova-cert.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/nova-cert-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs \
 -p Resource_dependencies=os-nova-conductor-rs os-nova-cert-rs

also need a resource dependency on HA MySQL and on HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies+=os-db:os-mysql-rs,os-mq:os-rabbitmq-rs os-nova-cert-rs

os-api-z1# clrs enable os-nova-cert-rs

nova-objectstore
both os-api zones# vi /opt/HA-OpenStack/etc/nova-objectstore-svclist.txt
<svc:/application/openstack/nova/nova-objectstore:default>,\
</lib/svc/manifest/application/openstack/nova-objectstore.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/nova-objectstore-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-nova-objectstore-rs

os-api-z1# clrs enable os-nova-objectstore-rs

31 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

nova-api-osapi-compute
both os-api zones# vi /opt/HA-OpenStack/etc/nova-api-osapi-compute-svclist.txt
<svc:/application/openstack/nova/nova-api-osapi-compute:default>,\
</lib/svc/manifest/application/openstack/nova-api-osapi-compute.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover -p \
proxied_service_instances=/opt/HA-OpenStack/etc/nova-api-osapi-compute-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-nova-api-osapi-compute-rs

also need a resource dependency on HA MySQL and on HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies=os-db:os-mysql-rs,os-mq:os-rabbitmq-rs \
 os-nova-api-osapi-compute-rs

os-api-z1# clrs enable os-nova-api-osapi-compute-rs

nova-api-ec2
both os-api zones# vi /opt/HA-OpenStack/etc/nova-api-ec2-svclist.txt
<svc:/application/openstack/nova/nova-api-ec2:default>,\
</lib/svc/manifest/application/openstack/nova-api-ec2.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/nova-api-ec2-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-nova-api-ec2-rs

os-api-z1# clrs enable os-nova-api-ec2-rs

Once the various Nova SMF services are started under cluster control, you need to enable and disable the Nova

services by enabling and disabling the corresponding os-nova-*-rs cluster resources by using the Oracle Solaris

Cluster CLI or BUI.

Horizon

Horizon is the OpenStack dashboard where you can manage the cloud infrastructure and computing infrastructure.

The dashboard provides a web-based user interface to OpenStack services.

The Horizon dashboard is provided through an Apache web server. The HA Apache data service is used to manage

the Apache httpd service. It can be configured as failover or scalable service.

Assuming the /etc/apache2/2.2/samples-conf.d/openstack-dashboard-tls.conf is used, in order for

the Horizon service to use the configured cluster objects, the following configuration files and options have to be

amended, in addition to options that you normally set up:

configuration file option value to use

/etc/openstack_dashboard/local_settings.py OPENSTACK_HOST "os-api-lh"

/etc/apache2/2.2/conf.d/openstack-dashboard-tls.conf RedirectPermanent
/horizon https://os-api-
sa.example.com/horizon

ServerName os-api-sa.example.com

Table 5: Horizon configuration parameters

32 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

https://os-api-sa.us.oracle.com/horizon
https://os-api-sa.us.oracle.com/horizon

In addition, other parameters not related to the HA setup may be amended as required [1].

OpenStack users accessing the Horizon dashboard have to make use of the highly available IP address managed

by the cluster for the HA Apache service. In this example, the user web browser has to access the URL

https://os-api-sa.example.com/horizon .

Configure the horizon/https services within zone cluster os-api

Install the horizon packages within zone cluster os-api and amend the configuration file as described within the

OpenStack installation guide [1] and Table 5:

both os-api zones# pkg install horizon memcached

both os-api zones# cd /etc/openstack_dashboard
os-api-z1# openssl req -new -x509 -nodes -out horizon.crt -keyout horizon.key

=> enter information required to create the certificate
 use the logical hostname used to access the OpenStack dashboard,
 e.g. os-api-sa.example.com

os-api-z1# chmod 0600 horizon.*
os-api-z1# scp horizon.* os-api-z2:/etc/openstack_dashboard

both os-api zones# cd /etc/apache2/2.2
both os-api zones# cp samples-conf.d/openstack-dashboard-tls.conf conf.d/

both os-api zones# cp -p /etc/openstack_dashboard/local_settings.py \
 /etc/openstack_dashboard/local_settings.py.orig

both os-api-zones# vi /etc/apache2/2.2/conf.d/openstack-dashboard-tls.conf
both os-api zones# vi /etc/openstack_dashboard/local_settings.py

=> amend configuration parameters for all the files as described in
 [1] and table 5

both os-api zones# svcadm enable apache22
 => verify login at the OpenStack dashboard portal within a web browser:
 https://os-api-sa.example.com/horizon
 => admin / <adminpassword>
 Note: While the login should succeed, since at this point the Neutron
 component is not yet configured, you will see a failure message
 saying “Connection to neutron failed: ...”, which is to be
 expected at this point.

both os-api zones# svcadm disable apache22

os-api-z1# scp /var/lib/openstack_dashboard/.secret_key_store \
 os-api-z2:/var/lib/openstack_dashboard/

os-api-z2# chown webservd:webservd /var/lib/openstack_dashboard/.secret_key_store

Configure horizon/https services as HA Apache scalable cluster resource within zone cluster os-api

Configure horizon/https services as SUNW.apache scalable cluster resource os-apache22-rs within

resource group os-apache22-rg. The cluster load balancer is configured to use the shared address os-api-sa

with TCP ports 80 and 443, with an even client access distribution between the Apache instances:

os-api-z1# clrt register SUNW.apache
os-api-z1# clrg create -S os-apache22-rg
os-api-z1# clrs create -d -g os-apache22-rg -t SUNW.apache \
 -p Bin_dir=/usr/apache2/2.2/bin -p Scalable=true \
 -p Load_balancing_policy="Lb_weighted" \

33 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

 -p Load_balancing_weights="1@1,1@2" \
 -p Resource_dependencies=os-api-sa-rs -p Port_list=80/tcp,443/tcp \
 os-apache22-rs
os-api-z1# clrg online -eM os-apache22-rg
 => verify login at the OpenStack dashboard portal within a web browser:
 https://os-api-sa.example.com/horizon
 => admin / <adminpassword>

 Note: While the login should succeed, since at this point the Neutron
 component is not yet configured, you will see a failure message
 saying “Connection to neutron failed: ...”, which is to be
 expected at this point.

Once Apache is started under cluster control, you need to enable and disable the Apache service by enabling and

disabling the os-apache22-rs cluster resource by using the Oracle Solaris Cluster CLI or BUI.

More information about the HA Apache data service can be found within the HA for Apache data service guide [15].

Neutron

The Neutron network virtualization service provides network connectivity for other OpenStack services on multiple

OpenStack systems and for VM instances. In Oracle Solaris, network virtualization services are provided through

the Elastic Virtual Switch (EVS) capability, which acts as a single point of control for servers and switches in

virtualized environments. Applications can drive their own behavior for prioritizing network traffic across the cloud.

Neutron provides an API for users to dynamically request and configure virtual networks. These networks connect

interfaces from other OpenStack services, such as VNICs from Nova VM instances. The Neutron API supports

extensions to provide advanced network capabilities such as quality of service (QoS), access control lists (ACLs),

and network monitoring.

Neutron on Oracle Solaris makes use of the plugin for the elastic virtual switch (EVS). As such, it has a runtime

dependency on the EVS controller.

The Neutron configuration has three main parts on the cloud controller:

» neutron-server is configured within zone cluster os-api

» EVS controller is configured within a non-global Oracle Solaris zone, which can fail over between the global

cluster nodes

» neutron-l3-agent and neutron-dhcp-agent are configured within the global cluster as failover services

Install the Neutron packages within zone cluster os-api

Install the Neutron packages within zone cluster os-api. This will also create the user neutron, which is required to

exist in order to set up the SSH keys to communicate with the EVS controller:

both os-api zones# pkg install neutron

Elastic Virtual Switch (EVS) Controller

The EVS controller is a single instance within the overall OpenStack Havana deployment, which makes it a single

point of failure (SPOF). Providing HA for the EVS controller is important to ensure that changes can be made

through the neutron-server component. Already-deployed VM instances are not affected by an EVS controller

outage, but any new deployments or application of network configuration changes would fail.

34 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

mailto:1@1

Since the EVS controller implementation has a fixed location for its own private database file within /etc/evs,

currently the only way to provide HA is to wrap the EVS controller into a failover zone.

Configure the non-global zone evs-controller as an HA for Oracle Solaris Zones failover cluster resource

The following procedure configures the EVS controller within a non-global Oracle Solaris zone. That zone is then

configured as a failover zone by using the HA for Oracle Solaris Zones data service [16].

Configure EVS controller - configured within a solaris failover zone:
register the SUNW.HAStoragePlus resource type
cc-node-a# clrt register SUNW.HAStoragePlus

create resource group to manage the EVS controller resources
cc-node-a# clrg create -n cc-node-a,cc-node-b evs-controller-rg

Create a dedicated zpool for OpenStack EVS controller zone path
cc-node-a# zpool create -m /ha-zones ha-zones_zp <shared storage device 4 cxtydz>
cc-node-a# zpool export ha-zones_zp

register zpool ha-zones_zp as SUNW.HAStoragePlus resource
cc-node-a# clrs create -t SUNW.HAStoragePlus -g evs-controller-rg \
 -p zpools=ha-zones_zp ha-zones-hasp-rs
cc-node-a# clrg online -eM evs-controller-rg

cc-node-a# zfs create ha-zones_zp/solaris

Configure the solaris zone to host the EVS controller with additional privileges:
limitpriv=default,sys_dl_config is needed in case the EVS controller is to
be run within a non-global zone
both cc-node-a|b# zonecfg -z evs-controller 'create -b ; \
 set zonepath=/ha-zones/solaris/evs-controller ; set autoboot=false; \
 set ip-type=shared; add attr; set name=osc-ha-zone; set type=boolean; \
 set value=true; end; add net; set physical=sc_ipmp0; \
 set address=os-evscon-lh/24; end; set limitpriv=default,sys_dl_config;'

cc-node-a# zoneadm -z evs-controller install

cc-node-a# zoneadm -z evs-controller boot
 => in a different root shell, start
 # zlogin -C -e @ evs-controller
 => go through sysidcfg setup

cc-node-a# zoneadm -z evs-controller shutdown

cc-node-a# zoneadm -z evs-controller detach -F

cc-node-a# clrg switch -n cc-node-b evs-controller-rg

cc-node-b# zoneadm -z evs-controller attach

cc-node-b# zlogin -C -e @ evs-controller
cc-node-b# zoneadm -z evs-controller boot

cc-node-b# zoneadm -z evs-controller shutdown
cc-node-b# zoneadm -z evs-controller detach -F

both cc-node-a|b# cd /opt/SUNWsczone/sczbt/util
both cc-node-a|b# cp -p sczbt_config sczbt_config.evs-controller-rs
both cc-node-a|b# vi sczbt_config.evs-controller-rs
RS=evs-controller-rs
RG=evs-controller-rg

35 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

PARAMETERDIR=
SC_NETWORK=false
SC_LH=
FAILOVER=true
HAS_RS=ha-zones-hasp-rs

Zonename="evs-controller"
Zonebrand="solaris"
Zonebootopt=""
Milestone="svc:/milestone/multi-user-server"
LXrunlevel="3"
SLrunlevel="3"
Mounts=""
Migrationtype="cold"

cc-node-b# ./sczbt_register -f ./sczbt_config.evs-controller-rs
sourcing ./sczbt_config.evs-controller-rs
Registration of resource type ORCL.ha-zone_sczbt succeeded.
Registration of resource evs-controller-rs succeeded.

cc-node-b# clrs enable evs-controller-rs

cc-node-b# clrg switch -n cc-node-a evs-controller-rg
 => verify with "zlogin -C -e @ evs-controller" that the zone does
 successfully failover from node cc-node-b to node cc-node-a

Configure the EVS controller within the non-global zone evs-controller

The EVS controller configuration has two main parts:

» Configuration of the EVS controller properties

» Setup of the password-less SSH login between EVS controller and various nodes and zones that interact with the

EVS controller

The following procedure installs the EVS controller packages, performs the SSH setup between zone cluster nodes

(os-api-z1 and os-api-z1) and the non-global zone hosting the EVS controller (os-evscon-lh), and

configures the EVS controller properties used by this example. More information on the EVS controller setup can be

found at [1] and [19].

Ensure that host aliases get resolved which need to interact with the EVS
controller. This includes all global cluster nodes, zone cluster nodes and
logical hostnames managed by the cluster.
This can be achieved by amending /etc/inet/hosts to include the IP addresses
and corresponding host aliases.
os-evscon-lh# vi /etc/inet/hosts

=> add required IP addresses and host aliases

os-evscon-lh# pkg install rad-evs-controller evs
os-evscon-lh# svcadm restart rad:local

Enable root login via ssh
os-evscon-lh# vi /etc/ssh/sshd_config
PermitRootLogin yes

os-evscon-lh# svcadm restart ssh

Setup ssh keys for evsuser, neutron and root
os-api-z1# su - neutron -c "ssh-keygen -N '' -f /var/lib/neutron/.ssh/id_rsa -t rsa"
os-api-z1# scp /var/lib/neutron/.ssh/id_rsa.pub \
 root@os-evscon-lh:/var/user/evsuser/.ssh/authorized_keys

36 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-evscon-lh# su - evsuser -c \
 "ssh-keygen -N '' -f /var/user/evsuser/.ssh/id_rsa -t rsa"
os-evscon-lh# ssh-keygen -N '' -f /root/.ssh/id_rsa -t rsa
os-evscon-lh# cat /var/user/evsuser/.ssh/id_rsa.pub /root/.ssh/id_rsa.pub \
 >> /var/user/evsuser/.ssh/authorized_keys

test ssh setup and accept connection
os-api-z1# su - neutron -c "ssh evsuser@os-evscon-lh.example.com true"
os-evscon-lh# su - evsuser -c "ssh evsuser@os-evscon-lh.example.com true"
os-evscon-lh# ssh evsuser@os-evscon-lh.example.com true

os-api-z1# cd /var/lib/neutron/
os-api-z1# tar cpf ssh.tar .ssh
os-api-z1# scp ssh.tar os-api-z2:/var/lib/neutron
os-api-z1# rm ssh.tar

os-api-z2# cd /var/lib/neutron/
os-api-z2# tar xpf ssh.tar
os-api-z2# rm ssh.tar
os-api-z2# su - neutron -c "ssh evsuser@os-evscon-lh.example.com true"

os-evscon-lh# evsadm set-prop -p controller=ssh://evsuser@os-evscon-lh.example.com

this will seed the database within /etc/evs/evs.db
os-evscon-lh# evsadm

setup VLAN config for this example
use untagged network for external network and floatingip
sc_ipmp_0 = untagged external network (also
aggr1 = tagged vlan used between both cc-node-a|b and nova-compute nodes for
the OpenStack internal network tenants
os-evscon-lh# evsadm set-controlprop -p l2-type=vlan
os-evscon-lh# evsadm set-controlprop -p uplink-port=aggr1
os-evscon-lh# evsadm set-controlprop -p vlan-range=1,1002-1011

Verify the EVS conrtoller property setup
os-evscon-lh# evsadm show-controlprop

Neutron server

The Neutron-server component requires the MySQL and rabbitmq service to be online and available, otherwise it

will fail to start. As part of its startup, it establishes an SSH connection to the EVS controller. As such, it also has a

offline-restart dependency on the EVS controller resource.

The following SMF service will be managed by the HA SMF proxy failover resource:

» svc:/application/openstack/neutron/neutron-server:default

In order for the Neutron-server service to use the configured cluster objects, the following configuration files and

options need to be amended:

configuration file option value to use

/etc/neutron/neutron.conf state_path /failover/os-api/neutron

bind_host os-api-lh

rabbit_host os-mq-sa

rabbit_userid guest

rabbit_password <rabbitmqpassword>

37 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

rabbit_port 5672

auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user neutron

admin_password <netronadmpassword>

connection mysql://neutron:<neutronpwd>@os-db-lh/neutron

/etc/neutron/plugins/evs/evs_plugin.ini evs_controller ssh://evsuser@os-evscon-lh.example.com

sql_connection mysql://neutron:<neutronpwd>@os-db-lh/neutron

Table 6: Neutron-server configuration parameters

In addition, other parameters not related to the HA setup may be amended as required [1].

Other OpenStack components that are required to access the Neutron-server endpoint need to make use of the

highly available IP address that is managed by the cluster for this service. In this example, access to

neutron-server needs to be configured for the IP address os-api-lh.

Create the Neutron database within zone cluster os-db

Create the Neutron database within MySQL and ensure that the Neutron user has access from all nodes and zones

that are required to connect to the Neutron database. Access to the Neutron database needs to be directed to the

logical hostname os-db-lh:

os-db-z1# mysql -h os-db-lh -u root -p
mysql> CREATE DATABASE neutron;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED by \
 '<neutronpassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED BY \
 '<neutronpassword';
Query OK, 0 rows affected (0.00 sec)

Configure the neutron-server service within zone cluster os-api

Create the required directories within the zpool os_api_zp which is managed by the cluster framework within zone

cluster os-api, and amend the configuration files as described within the OpenStack installation guide [1] and

Table 6:

os-api-z1# mkdir -p /failover/os-api/neutron/lock
os-api-z1# mkdir -p /failover/os-api/neutron/keystone-signing
os-api-z1# chown -R neutron:neutron /failover/os-api/neutron
os-api-z1# chmod 700 /failover/os-api/neutron/keystone-signing

both os-api zones# vi /etc/neutron/neutron.conf
both os-api zones# vi /etc/neutron/plugins/evs/evs_plugin.ini

=> amend configuration parameters for all the files as described in [1]and
 table 6

Verify that the Neutron-server SMF service runs correctly, then disable it:

38 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

ssh://evsuser@os-evscon-lh.us.oracle.com
http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

os-api-z1# svcadm enable neutron-server

os-api-z1# su - neutron -c "env OS_AUTH_URL=http://os-api-lh:5000/v2.0 \
 OS_USERNAME=neutron OS_PASSWORD=<neutronadmpassword> OS_TENANT_NAME=service \
 neutron net-list"

os-api-z1# svcadm disable neutron-server

Configure the neutron-server SMF service as a failover cluster resource within zone cluster os-api

Configure the neutron-server SMF service as SMF proxy failover resource os-neutron-server-rs within

resource group os-api-rg. Within the global cluster, define the required resource dependency on the HA MySQL,

HA Rabbitmq, and HA Zones sczbt resources:

both os-api zones# vi /opt/HA-OpenStack/etc/neutron-server-svclist.txt
<svc:/application/openstack/neutron/neutron-server:default>,\
</lib/svc/manifest/application/openstack/neutron-server.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/neutron-server-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-neutron-server-rs

also need a resource dependency on HA MySQL and HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies=os-db:os-mysql-rs,os-mq:os-rabbitmq-rs \
 os-neutron-server-rs

also need a offline restart resource dependency on HA sczbt for the
evs-controller non-global zone, configure in the global cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies_offline_restart+=global:evs-controller-rs \
 os-neutron-server-rs

os-api-z1# clrs enable os-neutron-server-rs

Once the neutron-server SMF service is started under cluster control, you need to enable and disable the

neutron-server service by enabling and disabling the corresponding os-neutron-server-rs cluster

resource by using the Oracle Solaris Cluster CLI or BUI.

Neutron L3 and Neutron DHCP agent

The Oracle Solaris 11.2 implementation of OpenStack Neutron supports a provider router with a private networks

deployment model. In this deployment model, each tenant can have one or more private networks and all the tenant

networks share the same router. The router in this model provides connectivity to the outside world for the tenant

VM instances. The router performs bidirectional NAT on the interface that connects the router to the external

network. All the gateway interfaces are instantiated on the node that is running the neutron-l3-agent SMF

service. Though a cloud can have many Neutron instances, you need only one neutron-l3-agent per cloud. As

such, it is important to provide high availability for the neutron-l3-agent .

The neutron-dhcp-agent provides DHCP service for the configured tenant networks and is only run as a single

instance service. Again, it is important to provide high availability for this service.

The EVS can be configured with two l2-types: VLAN or VxLAN. The combination of VxLAN and IPMP does not

work. As such, when configured on a cluster node, it is necessary to use either VLAN or use dedicated separate

39 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0

network links that are not managed by IPMP. In this example, a dedicated separate network aggregation that is

configured with VLANs is used.

The neutron-l3-agent and neutron-dhcp-agent component require the rabbitmq service to be online and

available. They also depend on the EVS controller being online and available. The neutron-l3-agent needs to

be started before the neutron-dhcp-agent service is started.

The following SMF services will be managed by the HA SMF proxy failover resource:

» svc:/application/openstack/neutron/neutron-l3-agent:default

» svc:/application/openstack/neutron/neutron-server:default

In order for the neutron-l3-agent and neutron-dhcp-agent services to use the configured cluster objects,

the following configuration files and options need to be amended in addition to options that you normally set up:

configuration file option value to use

/etc/neutron/neutron.conf state_path /failover/os-gz-api/neutron

rabbit_host os-mq-sa

rabbit_password <rabbitmqpassword>

rabbit_port 5672

rabbit_userid guest

auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user neutron

admin_password <neutronadmpassword>

connection
mysql://neutron:<neutronpassword>@os-db-
lh/neutron

/etc/neutron/l3_agent_ini external_network_datalink <nic used for external network uplink>

evs_controller ssh://evsuser@os-evscon-lh.example.com

/etc/neutron/dhcp_agent.ini evs_controller ssh://evsuser@os-evscon-lh.example.com

/etc/neutron/plugins/evs/evs_plugin.ini evs_controller ssh://evsuser@os-evscon-lh.example.com

sql_connection
mysql://neutron:<neutronpassword>@os-db-
lh/neutron

Table 7: neutron-l3-agent and neutron-dhcp-agent configuration parameters

In addition, other parameters that are not related to the HA setup may be amended as required [1].

Configure the neutron-l3-agent and neutron-dhcp-agent services within the global cluster

Install the Neutron packages and configure the neutron-l3-agent and neutron-dhcp-agent services within

the global cluster as described within the OpenStack installation guide [1] and Table 7:

both cc-node-a|b# pkg install neutron mysql-55/client \
 library/python-2/python-mysql-26

both cc-node-a|b# cd /etc/neutron

40 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

ssh://evsuser@os-evscon-lh.us.oracle.com
ssh://evsuser@os-evscon-lh.us.oracle.com
ssh://evsuser@os-evscon-lh.us.oracle.com
http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

both cc-node-a|b# vi neutron.conf
both cc-node-a|b# vi l3_agent.ini
both cc-node-a|b# vi dhcp_agent.ini
both cc-node-a|b# cd /etc/neutron/plugins/evs
both cc-node-a|b# vi evs_plugin.ini

=> amend configuration parameters for all the files as described in [1]
 and table 7

Create resource group os-gz-api-rg and the SUNW.HAStoragePlus resource to manage zpool os-gz-api_zp

within the global cluster:

cc-node-a# clrg create -n cc-node-a,cc-node-b os-gz-api-rg
cc-node-a# clrs create -t SUNW.HAStoragePlus -g os-gz-api-rg \
 -p zpools=os-gz-api_zp os-gz-api-hasp-rs
cc-node-a# clrg online -eM os-gz-api-rg

Create the required directories within zpool os-gz-api_zp managed by the cluster framework:

cc-node-a# mkdir -p /failover/os-gz-api/neutron/keystone-signing
cc-node-a# mkdir -p /failover/os-gz-api/neutron/lock
cc-node-a# chown -R neutron:neutron /failover/os-gz-api/neutron
cc-node-a# chmod 700 /failover/os-gz-api/neutron/keystone-signing

In order for the EVS to correctly work across multiple systems, SSH authentication needs to be set-up by using the

pre-shared public key between the host where OpenStack components use the evsadm command and the EVS

controller. The following procedure creates the SSH setup between neutron-l3-agent and

neutron dhcp-agent services that are running on the global cluster nodes (cc-node-a and cc-node-b) and

the non-global zone that hosts the EVS controller (os-evscon-lh):

both cc-node-a|b# su - root -c "ssh-keygen -N '' -f /root/.ssh/id_rsa -t rsa"
both cc-node-a|b# su - neutron -c "ssh-keygen -N '' \
 -f /var/lib/neutron/.ssh/id_rsa -t rsa"
cc-node-a# cat /root/.ssh/id_rsa.pub /var/lib/neutron/.ssh/id_rsa.pub \
 > /var/tmp/cc-node-a-neutron-root-ssh-pub.txt
cc-node-a# scp /var/tmp/cc-node-a-neutron-root-ssh-pub.txt os-evscon-lh:/var/tmp

cc-node-b# cat /root/.ssh/id_rsa.pub /var/lib/neutron/.ssh/id_rsa.pub \
> /var/tmp/cc-node-b-neutron-root-ssh-pub.txt

cc-node-b# scp /var/tmp/cc-node-b-neutron-root-ssh-pub.txt os-evscon-lh:/var/tmp

os-evscon-lh# cat /var/tmp/cc-node-a-neutron-root-ssh-pub.txt \
 /var/tmp/cc-node-b-neutron-root-ssh-pub.txt >> \
 /var/user/evsuser/.ssh/authorized_keys

both cc-node-a|b# su - neutron -c "ssh evsuser@os-evscon-lh.example.com whoami"
both cc-node-a|b# su - root -c "ssh evsuser@os-evscon-lh.example.com whoami"

evsuser@os-evscon-lh$ scp /var/user/evsuser/.ssh/id_rsa.pub root@cc-node-a:/tmp
evsuser@os-evscon-lh$ scp /var/user/evsuser/.ssh/id_rsa.pub root@cc-node-b:/tmp

both cc-node-a|b# cat /tmp/id_rsa.pub >> /root/.ssh/authorized_keys
both cc-node-a|b# su - evsuser
evsuser@cc-node-a|b$ cat /tmp/id_rsa.pub >> .ssh/authorized_keys

evsuser@os-evscon-lh$ ssh root@cc-node-a.example.com true
evsuser@os-evscon-lh$ ssh root@cc-node-b.example.com true
evsuser@os-evscon-lh$ ssh evsuser@cc-node-a.example.com true
evsuser@os-evscon-lh$ ssh evssuer@cc-node-b.example.com true

41 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

For more information on the EVS controller SSH key distribution, refer to the “Configure the Network Node” section

within the Installing and Configuring OpenStack in Oracle Solaris 11.2 user guide [1].

The combination of Neutron with the EVS requires global IP forwarding on the global cluster nodes where the

neutron-l3-agent is configured to run. The Oracle Solaris Cluster private interconnect and the underlying

network interfaces are required to disable IP forwarding for those interfaces. In order to ensure this requirement is

implemented, the SMF service system/cluster/osc-clpriv-ip-forwarding-disable is provided in the

appendix of this white paper (manifest in appendix section “SMF manifest for service system/cluster/osc-clpriv-ip-

forwarding-disable“ and method script in appendix section “SMF method script for service system/cluster/osc-clpriv-

ip-forwarding-disable“) and has to be installed on all global cluster nodes.

The following procedure also enables IP Filter and configures the EVS controller property and the external provider

router for the neutron-l3-agent services within the global cluster nodes for this example:

Enable ipfilter and global IP forwarding
both cc-node-a|b# ipadm set-prop -p forwarding=on ipv4
both cc-node-a|b# svcadm enable ipfilter

Install SMF service to disable IP forwarding on clprivnet and underlying
network devices.
Use the osc-clpriv-ip-forwarding-disable-manifest.xml and
svc-osc-clpriv-ip-forward-disable method script from appendix to this white paper
und put them into /var/tmp on all cluster nodes:

both cc-node-a|b# mkdir -p /opt/HA-OpenStack/bin

both cc-node-a|b# install -c /lib/svc/manifest/system/cluster -m 644 -u root \
 -g sys /var/tmp/osc-clpriv-ip-forwarding-disable-manifest.xml
both cc-node-a|b# install -c /opt/HA-OpenStack/bin -m 755 -u root -g sys \
 /var/tmp/svc-osc-clpriv-ip-forward-disable
both cc-node-a|b# svcadm restart manifest-import

set the EVS controller property:
both cc-node-a|b# evsadm set-prop -p \
 controller=ssh://evsuser@os-evscon-lh.example.com

Configure the external provider router:
os-api-z1# su - neutron -c "env OS_AUTH_URL=http://os-api-lh:5000/v2.0 \
 OS_PASSWORD=<neutronadmpassword> OS_USERNAME=neutron \
 OS_TENANT_NAME=service neutron router-create provider_router"
Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	e82c9561-0ee5-6dd2-b035-f25bff464d98
name	provider_router
status	ACTIVE
tenant_id	4fa1a0a7b198c30dace9ca46b40fc4a2
+-----------------------+--------------------------------------+

Add the router id to the l3_agent.ini configuration file:
both cc-node-a|b# vi /etc/neutron/l3_agent.ini
router_id = e82c9561-0ee5-6dd2-b035-f25bff464d98

cc-node-a# svcadm enable neutron-l3-agent
cc-node-a# svcadm enable neutron-dhcp-agent

42 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:5000/v2.0

verify that the neutron-l3-agent and neutron-dhcp-agent services run correctly

cc-node-a# svcadm disable neutron-l3-agent neutron-dhcp-agent

More information on the EVS controller setup can be found at [1] and [19].

Configure neutron-l3-agent and neutron-dhcp-agent SMF services as failover cluster resources

within the global cluster

Configure neutron-l3-agent and neutron-dhcp-agent SMF services as SMF proxy failover resources within

resource group os-gz-api-rg in the global cluster and define the required dependencies on the HA RabbitMQ

service and the failover zone hosting the EVS controller. The neutron-dhcp-agent resource depends on the

neutron-l3-agent resource, this ensures that the neutron-l3-agent service is started before the

neutron-dhcp-agent service:

Register HA SMF proxy failover RT in the global cluster
cc-node-a# clrt register Proxy_SMF_failover

both cc-node-a|b# mkdir /opt/HA-OpenStack/etc

neutron-l3-agent resource setup
both cc-node-a|b# vi /opt/HA-OpenStack/etc/neutron-l3-agent-svclist.txt
<svc:/application/openstack/neutron/neutron-l3-agent:default>,\
</lib/svc/manifest/application/openstack/neutron-l3-agent.xml>

Note: The previous content needs to be all one line, without the \ character

cc-node-a# clrs create -d -g os-gz-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/neutron-l3-agent-svclist.txt \
 -p Resource_dependencies_offline_restart=os-gz-api-hasp-rs \
 -p Resource_dependencies=os-mq:os-rabbitmq-rs,evs-controller-rs \
 os-neutron-l3-agent-rs

cc-node-a# clrs enable os-neutron-l3-agent-rs

neutron-dhcp-agent resource setup
both cc-node-a|b# vi /opt/HA-OpenStack/etc/neutron-dhcp-agent-svclist.txt
<svc:/application/openstack/neutron/neutron-dhcp-agent:default>,\
</lib/svc/manifest/application/openstack/neutron-dhcp-agent.xml>

Note: The previous content needs to be all one line, without the \ character

cc-node-a# clrs create -d -g os-gz-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/neutron-dhcp-agent-svclist.txt \
 -p Resource_dependencies_offline_restart=os-gz-api-hasp-rs -p \
Resource_dependencies=os-mq:os-rabbitmq-rs,evs-controller-rs,os-neutron-l3-agent-
rs \
 os-neutron-dhcp-agent-rs

cc-node-a# clrs enable os-neutron-dhcp-agent-rs

Once the neutron-l3-agent and neutron-dhcp-agent SMF services are started under cluster control, you

need to enable and disable those services by enabling and disabling the corresponding

os-neutron-l3-agent-rs and neutron-dhcp-agent-rs cluster resources by using the Oracle Solaris

Cluster CLI or BUI.

43 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Cinder

The Cinder block storage service provides an infrastructure for managing block storage volumes in OpenStack.

Cinder enables you to expose block devices and connect block devices to VM instances for expanded storage,

better performance, and integration with enterprise storage platforms. In Oracle Solaris, Cinder uses ZFS for storage

and uses iSCSI or Fibre Channel for remote access. ZFS provides integrated data services including snapshots,

encryption, and deduplication.

While the two cinder-volume SMF services can't be made highly available with Oracle Solaris Cluster on the HA

cloud controller when setting volume_driver to ZFSVolumeDriver (default), ZFSISCSIDriver, or

ZFSFCDriver, it is possible to configure high availability for the cinder-volume services when using

ZFSSAISCSIDriver for volume_driver in combination with the Oracle ZFS Storage Appliance [5]. Setup of that

configuration on the HA cloud controller is described in a dedicated sub-section, “Cinder-volume services when

using the ZFSSAISCSIDriver volume driver for the ZFS Storage Appliance”.

The following SMF services will be managed by corresponding HA SMF proxy failover resources:

» svc:/application/openstack/cinder/cinder-api:default

» svc:/application/openstack/cinder/cinder-backup:default

» svc:/application/openstack/cinder/cinder-db:default

» svc:/application/openstack/cinder/cinder-scheduler:default

In order for the Cinder services to use the configured cluster objects, the following configuration files and options

need to be amended in addition to options that you normally set up:

configuration file option value to use

/etc/cinder/cinder.conf state_path /failover/os-api/cinder

my_ip os-api-lh

sql_connection mysql://cinder:<cinderpassword>@os-db-lh/cinder

rabbit_host os-mq-sa

/etc/cinder/api-paste.ini auth_uri http://os-api-lh:5000/v2.0

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user cinder

admin_password <cinderadmpassword>

signing_dir /failover/os-api/cinder/keystone-signing

Table 8: Cinder configuration parameters

In addition, other parameters not related to the HA setup may be amended as required [1].

Other OpenStack components that are required to access the Cinder endpoints have to make use of the highly

available IP address managed by the cluster for those services. In this example, access to the cinder-api service

has to be configured for the IP address os-api-lh.

44 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

Create the Cinder database within zone cluster os-db

Create the Cinder database within MySQL and ensure that the Cinder user has access from all nodes and zones

that are required to connect to the Cinder database. Access to the Cinder database needs to be directed to the

logical hostname os-db-lh:

os-db-z1# mysql -h os-db-lh -u root -p
mysql> CREATE DATABASE cinder;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' IDENTIFIED by \
 '<cinderpassword>';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' IDENTIFIED BY \
 '<cinderpassword>';
Query OK, 0 rows affected (0.00 sec)

Configure the Cinder services within zone cluster os-api

Install the Cinder packages within zone cluster os-api and amend the configuration files as described within

the OpenStack installation guide [1] and Table 8:

both cc-node-a|b# pkg install system/storage/iscsi/iscsi-target

both os-api zones# pkg install cinder
both os-api zones# cd /etc/cinder
both os-api zones# vi cinder.conf
both os-api zones# vi api-paste.ini

=> amend configuration parameters for all the files as described in [1]
 and table 8

Create the required directories within the zpool os-api_zp which is managed by the cluster framework:

os-api-z1# mkdir /failover/os-api/cinder
os-api-z1# mkdir /failover/os-api/cinder/keystone-signing
os-api-z1# chmod 700 /failover/os-api/cinder/keystone-signing
os-api-z1# chown -R cinder:cinder /failover/os-api/cinder

Create the Cinder database instance, enable the Cinder SMF services, ensure that the Cinder SMF services run

correctly, and then disable the Cinder SMF services:

os-api-z1# su - cinder -c "cinder-manage db sync"

os-api-z1# svcadm enable cinder-db
os-api-z1# svcadm enable cinder-scheduler
os-api-z1# svcadm enable cinder-api

verify that the cinder services run correctly

os-api-z1# svcadm disable cinder-api
os-api-z1# svcadm disable cinder-scheduler
os-api-z1# svcadm disable cinder-db

45 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Configure the Cinder SMF services as failover cluster resources within zone cluster os-api

Configure the Cinder SMF services as SMF proxy failover failover resources within resource group os-api-rg.

Within the global cluster, define the resource dependencies on the HA MySQL and HA RabbitMQ resources, where

required:

cinder-db
both os-api zones# vi /opt/HA-OpenStack/etc/cinder-db-svclist.txt
<svc:/application/openstack/cinder/cinder-db:default>,\
</lib/svc/manifest/application/openstack/cinder-db.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/cinder-db-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-cinder-db-rs

also need a resource dependency on HA MySQL, configure in the global cluster:
cc-node-a# clrs set -Z os-api -p Resource_dependencies+=os-db:os-mysql-rs \
 os-cinder-db-rs

os-api-z1# clrs enable os-cinder-db-rs

cinder-scheduler
both os-api zones# vi /opt/HA-OpenStack/etc/cinder-scheduler-svclist.txt
<svc:/application/openstack/cinder/cinder-scheduler:default>,\
</lib/svc/manifest/application/openstack/cinder-scheduler.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/cinder-scheduler-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 -p Resource_dependencies=os-cinder-db-rs os-cinder-scheduler-rs

also need a resource dependency on HA SMF rabbitmq, configure in the global
cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies+=os-mq:os-rabbitmq-rs os-cinder-scheduler-rs

os-api-z1# clrs enable os-cinder-scheduler-rs

cinder-api
both os-api zones# vi /opt/HA-OpenStack/etc/cinder-api-svclist.txt
<svc:/application/openstack/cinder/cinder-api:default>,\
</lib/svc/manifest/application/openstack/cinder-api.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/cinder-api-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 -p Resource_dependencies=os-cinder-db-rs os-cinder-api-rs

also need a resource dependency on HA SMF rabbitmq, configure in the global
cluster:
cc-node-a# clrs set -Z os-api \
 -p Resource_dependencies+=os-mq:os-rabbitmq-rs os-cinder-api-rs

os-api-z1# clrs enable os-cinder-api-rs

46 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Cinder-volume services when using the ZFSSAISCSIDriver volume driver for the ZFS Storage Appliance

The Oracle ZFS Storage Appliance iSCSI Cinder driver enables the Oracle ZFS Storage Appliance to be used

seamlessly as a block storage resource for Cinder. The driver provides the ability to create iSCSI volumes that can

be allocated by a Cinder server to any virtual machine instantiated by the Nova service. The driver is delivered by

the cloud/openstack/cinder package.

Follow the procedure described in section “How to Configure the ZFS Storage Appliance iSCSI Cinder Driver” within

the Installing and Configuring OpenStack in Oracle Solaris 11.2 guide [5] to set up the cinder.akwf workflow on

the Oracle ZFS Storage Appliance.

The following SMF services will be managed by corresponding GDSv2 based failover resources:

» svc:/application/openstack/cinder/cinder-volume:setup

» svc:/application/openstack/cinder/cinder-volume:default

In order for the cinder-volume services to use the iSCSI Cinder driver for the Oracle ZFS Storage Appliance, the

following configuration files and options need to be amended, in addition to options that you normally set up and the

options explained in Table 8:

configuration file option value to use

/etc/cinder/cinder.conf volume_driver cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver

zfssa_host <name or IP address of the ZFSSA management host>

zfssa_auth_user <user name of the Cinder user on the ZFSSA>

zfssa_auth_password <password of the Cinder user on the ZFSSA>

zfssa_pool <pool name to be used to allocate volumes>

zfssa_target_portal <ZFSSA iSCSI target portal (data-ip:port)>

zfssa_project <name of the ZFSSA project>

zfssa_initiator_group <name of the initiator group>

zfssa_target_interfaces <ZFSSA iSCSI target network interfaces>

Table 9: Cinder configuration parameters for ZFS SA iSCSI driver

For more information on the specific parameters for the iSCSI driver for the Oracle ZFS Storage Appliance, refer to

[5].

Configure the cinder-volume SMF services within zone cluster os-api

Disable the Cinder services already under cluster control and amend the configuration files as described within the

OpenStack installation guide [1], Table 8, and Table 9:

os-api-z1# clrs disable os-cinder-api-rs os-cinder-scheduler-rs os-cinder-db-rs

both os-api zones# vi /etc/cinder/cinder.conf
=> amend configuration parameters for all the files as described in [1],

 table 8 and table 9. Ensure specifically that only the volume_driver
 entry for cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver is
 uncommented - all other entries for volume_driver must be commented out.

Enable the Cinder services already under cluster control and enable the cinder-volume SMF services. Verify that

the Cinder volume services get properly started, then disable the cinder-volume SMF services again:

47 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

os-api-z1# clrs enable os-cinder-db-rs os-cinder-scheduler-rs os-cinder-api-rs

os-api-z1# svcadm enable cinder-volume:setup cinder-volume:default

verify that the cinder services run correctly

os-api-z1# svcadm disable cinder-volume:default cinder-volume:setup

Configure the cinder-volume SMF services as GDSv2 based failover cluster resources within zone cluster
os-api

The cinder-volume SMF services use a common SMF manifest, which defines two instance names (setup and

default). The HA SMF proxy resource type is currently not able to manage an SMF service with such a manifest.

The Generic Data Service (GDSv2) can be used to manage the two cinder-volume SMF services by using a

helper script, which can be found in Appendix section “SMF wrapper script to manage the cinder-volume services”.

The following procedure describes how to register the GDSv2 resource type, install the helper script within the zone

cluster nodes os-api-z1 and os-api-z2, and register the cinder-volume:setup and

cinder-volume:default SMF services as failover cluster resources within resource group os-api-rg:

os-api-z1# clrt register ORCL.gds

Install the helper script to manage the cinder-volume SMF services with GDSv2.
Use the script smf-wrapper from the appendix section of this white paper and
put it into /var/tmp on all os-api zones:

both os-api zones# mkdir -p /opt/HA-OpenStack/bin
both os-api zones# install -c /opt/HA-OpenStack/bin -m 755 -u root -g sys \
 /var/tmp/smf-wrapper

cinder-volume:setup
os-api-z1# clrs create -d -g os-api-rg -t ORCL.gds -p PMF_managed=false \
 -p start_exit_on_error=TRUE -p stop_exit_on_error=TRUE \
 -p start_command="/opt/HA-OpenStack/bin/smf-wrapper start cinder-volume:setup" \
 -p stop_command="/opt/HA-OpenStack/bin/smf-wrapper stop cinder-volume:setup" \
 -p probe_command="/opt/HA-OpenStack/bin/smf-wrapper probe cinder-volume:setup" \
 -p Resource_dependencies=os-cinder-db-rs os-cinder-volume-setup-rs

os-api-z1# clrs enable os-cinder-volume-setup-rs

cinder-volume:default
os-api-z1# clrs create -d -g os-api-rg -t ORCL.gds -p PMF_managed=false \
 -p start_exit_on_error=TRUE -p stop_exit_on_error=TRUE \
 -p start_command="/opt/HA-OpenStack/bin/smf-wrapper start cinder-volume:default" \
 -p stop_command="/opt/HA-OpenStack/bin/smf-wrapper stop cinder-volume:default" \
 -p probe_command="/opt/HA-OpenStack/bin/smf-wrapper probe cinder-volume:default" \
 -p Resource_dependencies=os-cinder-volume-setup-rs os-cinder-volume-default-rs

also need a resource dependency on HA MySQL and on HA SMF rabbitmq, configure in
the global cluster:
cc-node-a# clrs set -p Resource_dependencies+=os-db:os-mysql-rs,os-rabbitmq-rs \
 os-cinder-volume-default-rs

os-api-z1# clrs enable os-cinder-volume-default-rs

48 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Once the cinder-volume services are started under cluster control, you need to enable and disable the services

by enabling and disabling the corresponding os-cinder-volume-setup-rs and

os-cinder-volume-default-rs cluster resources.

More information about the Generic Data Service can be found within the Oracle Solaris Cluster Generic Data

Service Guide [20].

Swift

The Swift object storage service provides redundant and scalable object storage services for OpenStack projects

and users. Swift stores and retrieves arbitrary unstructured data using ZFS, and the data is then accessible via a

RESTful API. The Swift components are typically deployed on dedicated storage nodes. High availability of the Swift

storage is achieved by using Swift features to configure the Swift ring. In Swift, objects are protected by storing

multiple copies of data so that, if one Swift storage node fails, the data can be retrieved from another Swift storage

node. However, there is one Swift component that can run on the HA cloud controller, the swift-proxy-server

service.

The proxy server processes are the public face of Swift, as they are the only ones that communicate with external

clients. As a result, they are the first and last to handle an API request. All requests to and responses from the proxy

use standard HTTP verbs and response codes.

The following SMF service will be managed by a corresponding HA SMF proxy failover resource:

» svc:/application/openstack/swift/swift-proxy-server:default

In order for the swift-proxy-server to use the configured cluster objects, the following configuration files and

options need to be amended in addition to options that you normally setup:

configuration file option value to use

/etc/swift/swift.conf swift_hash_path_suffix <swift_hash_path_suffix value>

swift_hash_path_prefix <swift_hash_path_prefix value>

/etc/swift/proxy-server.conf bind_ip os-api-lh

bind_port 8080

auth_uri http://os-api-lh:5000/

identity_uri http://os-api-lh:35357

admin_tenant_name service

admin_user swift

admin_password <swiftadmpassword>

signing_dir /failover/os-api/swift/keystone-signing

Table 10: Swift proxy-server configuration parameters

In addition, other parameters that are not related to the HA setup may be amended as required [4].

Other OpenStack components that are required to access the swift-proxy-server endpoint need to make use

of the highly available IP address that is managed by the cluster for this service. In this example, access to the

swift-proxy-server service needs to be configured for the IP address os-api-lh.

49 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://os-api-lh:35357/
http://os-api-lh:5000/v2.0

Configure swift-proxy-server service within zone cluster os-api

Install the Swift packages within zone cluster os-api and amend the configuration files as described within the

OpenStack Swift documentation [4] and Table 10:

both os-api zones# pkg install swift swiftclient

both os-api zones# cd /etc/swift
both os-api zones# vi swift.conf
both os-api zones# vi proxy-server.conf

=> amend configuration parameters for all the files as described in [4]
 and table 10

 Note that the same configuration for those files needs to be also applied
 on all the Swift storage nodes.

Create the required directories within the zpool os-api_zp which is managed by the cluster framework:

os-api-z1# mkdir /failover/os-api/swift
os-api-z1# mkdir /failover/os-api/swift/keystone-signing
os-api-z1# chmod 700 /failover/os-api/swift/keystone-signing
os-api-z1# chown -R swift:swift /failover/os-api/swift

Follow the OpenStack Swift documentation [4] to configure the Swift rings. Set up the corresponding Swift storage

nodes and replicate the required configuration information from /etc/swift on the proxy-server setup to the Swift

storage nodes.

Enable the swift-proxy-server SMF service, verify the Swift setup, then disable the swift-proxy-server

SMF service again:

os-api-z1# svcadm enable swift-proxy-server

Verify the Swift setup

os-api-z1# svcadm disable swift-proxy-server

Configure the swift-proxy-server SMF service as a failover cluster resource within zone cluster os-api

Configure the swift-proxy-server SMF service as SUNW.Proxy_SMF_failover resource

os-swift-proxy-server-rs within resource group os-api-rg, using the logical hostname os-api-lh and

zpool os-api_zp:

both os-api zones# vi /opt/HA-OpenStack/etc/swift-proxy-server-svclist.txt
<svc:/application/openstack/swift/swift-proxy-server:default>,\
</lib/svc/manifest/application/openstack/swift-proxy-server.xml>

Note: The previous content needs to be all one line, without the \ character

os-api-z1# clrs create -d -g os-api-rg -t SUNW.Proxy_SMF_failover \
 -p proxied_service_instances=/opt/HA-OpenStack/etc/swift-proxy-server-svclist.txt \
 -p Resource_dependencies_offline_restart=os-api-hasp-rs,os-api-lh-rs \
 os-swift-proxy-server-rs

os-api-z1# clrs enable os-swift-proxy-server-rs

Once the swift-server-proxy service is started under cluster control, you need to enable and disable the

swift-proxy-server service by enabling and disabling the os-swift-proxy-server-rs cluster resource.

50 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

OpenStack Components Not Running on the HA Cloud Controller

In this example. the following OpenStack components are running outside the HA cloud controller:

» nova-compute service on the Nova compute nodes

» swift-* services (except swift-proxy-server) on the Swift storage nodes

When configuring access to OpenStack endpoints for those services, configure the logical hostnames that

correspond to the OpenStack endpoints as listed in Table 1.

For the Nova compute nodes, the SSH public keys have to be set up such that the Nova compute nodes can ssh

into and from the EVS controller os-evscon-lh.example.com logical hostname as user evsuser. Further

details are explained within the Installing and Configuring OpenStack in Oracle Solaris 11.2 user guide [1].

51 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

References
[1] Installing and Configuring OpenStack in Oracle Solaris 11.2: http://docs.oracle.com/cd/E36784_01/html/E54155/index.html

[2] Oracle Solaris Cluster Concepts Guide: http://docs.oracle.com/cd/E39579_01/html/E39575/index.html

[3] Oracle Solaris Cluster 4 Compatibility Guide:
 http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf

[4] OpenStack Swift documentation: http://docs.openstack.org/developer/swift/

[5] Oracle ZFS Storage Appliance Cinder Driver Configuration README:
http://docs.oracle.com/cd/E36784_01/html/E54155/cinderinst.html#OSTCKzfssadriver

[6] Oracle Solaris Cluster 4.2 documentation library: http://docs.oracle.com/cd/E39579_01/index.html

[7] Oracle Solaris Cluster Technical Resources - How-To Guides:
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/cluster-how-to-1389544.html

[8] Technical article: “How to Install and Configure a Two-Node Cluster”:
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-147-install-2node-cluster-1395587.html

[9] Oracle Solaris Cluster Software Installation Guide: http://docs.oracle.com/cd/E39579_01/html/E39580/index.html

[10] Oracle Solaris Cluster With Network-Attached Storage Device Manual:
https://docs.oracle.com/cd/E39579_01/html/E39824/ggggo.html#scrolltoc

[11] OpenStack Operations Guide: http://docs.openstack.org/openstack-ops/content/index.html

[12] OpenStack High Availability Guide: http://docs.openstack.org/high-availability-guide/content/index.html

[13] Oracle Solaris Cluster Data Services Planning and Administration Guide:
http://docs.oracle.com/cd/E39579_01/html/E39648/index.html

[14] Oracle Solaris Cluster Data Service for MySQL Guide: http://docs.oracle.com/cd/E29086_01/html/E29602/index.html

[15] Oracle Solaris Cluster Data Service for Apache Guide: http://docs.oracle.com/cd/E39579_01/html/E39652/index.html

[16] Oracle Solaris Cluster Data Service for Oracle Solaris Zones Guide: http://docs.oracle.com/cd/E39579_01/html/E39657/index.html

[17| Rabbit MQ Clustering Guide: https://www.rabbitmq.com/clustering.html

[18] Rabbit MQ Highly Available Queues: https://www.rabbitmq.com/ha.html

[19] Blog: “Neutron L3 Agent in Oracle Solaris OpenStack”: https://blogs.oracle.com/openstack/entry/neutron_l3_agent

[20] Oracle Solaris Cluster Generic Data Service (GDS) Guide: http://docs.oracle.com/cd/E39579_01/html/E48652/index.html

52 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

http://docs.oracle.com/cd/E39579_01/html/E48652/index.html
https://blogs.oracle.com/openstack/entry/neutron_l3_agent
https://www.rabbitmq.com/ha.html
https://www.rabbitmq.com/clustering.html
http://docs.oracle.com/cd/E39579_01/html/E39657/index.html
http://docs.oracle.com/cd/E39579_01/html/E39652/index.html
http://docs.oracle.com/cd/E29086_01/html/E29602/index.html
http://docs.oracle.com/cd/E39579_01/html/E39648/index.html
http://docs.openstack.org/high-availability-guide/content/index.html
http://docs.openstack.org/openstack-ops/content/index.html
https://docs.oracle.com/cd/E39579_01/html/E39824/ggggo.html#scrolltoc
http://docs.oracle.com/cd/E39579_01/html/E39580/index.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-147-install-2node-cluster-1395587.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/cluster-how-to-1389544.html
http://docs.oracle.com/cd/E39579_01/index.html
https://openstack.java.net/ZFSSACinderDriver.README
http://docs.openstack.org/developer/swift/
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf
http://docs.oracle.com/cd/E39579_01/html/E39575/index.html
http://docs.oracle.com/cd/E36784_01/html/E54155/index.html

Appendix

SMF manifest for service system/cluster/osc-clpriv-ip-forwarding-disable

Save this file with the name osc-clpriv-ip-forwarding-disable-manifest.xml :

<?xml version='1.0'?>
<!DOCTYPE service_bundle SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>

<!--
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.

-->

<service_bundle type='manifest' name="ha-openstack:osc-clpriv-ip-forwarding-disable">

<service
 name='system/cluster/osc-clpriv-ip-forwarding-disable'
 type='service'
 version='1'>

 <create_default_instance enabled='true' />

 <single_instance />

<dependency
name='filesystem-minimal'
grouping='require_all'
restart_on='none'
type='service'>
<service_fmri value='svc:/system/filesystem/minimal:default'/>

</dependency>

<dependency
name='scprivipd'
grouping='require_all'
restart_on='none'
type='service'>
<service_fmri value='svc:/system/cluster/scprivipd:default' />

</dependency>

 <exec_method
 type='method'
 name='start'
 exec='/opt/HA-OpenStack/bin/svc-osc-clpriv-ip-forward-disable'
 timeout_seconds='30'>
 <method_context>
 <method_credential user='root' group='root' />
 </method_context>
 </exec_method>

 <exec_method
 type='method'
 name='stop'
 exec=':true'
 timeout_seconds='0' />

 <property_group name='startd' type='framework'>
 <propval name='ignore_error' type='astring' value='core,signal' />
 <propval name='duration' type='astring' value='transient' />
 </property_group>

 <stability value='Unstable' />

 <template>
 <common_name>
 <loctext xml:lang='C'>
 Oracle Solaris Cluster service to disable IP forwarding for the network
devices used by the cluster interconnect

</loctext>
 </common_name>

53 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

 </template>

</service>

</service_bundle>

SMF method script for service system/cluster/osc-clpriv-ip-forwarding-disable

Save this file with the name svc-osc-clpriv-ip-forward-disable :

#!/bin/ksh
#
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
#

The purpose of this script is to ensure that IPv4 and IPv6 forwarding for
clprivnet0 and the underlying network interfaces used by the Oracle
Solaris Cluster private interconnect is disabled.
#
By default Ipv4 and IPv6 forwarding is globally disabled on a Solaris system.
If IPv4 and/or IPv6 forwarding is enabled globally, this script ensures that
IPv4 and IPv6 forwarding is disabled per interface for clprivnet0 and the
underlying network interfaces used for the Oracle Solaris Cluster
private interconnect.
#

. /lib/svc/share/smf_include.sh

typeset -r IPADM=/usr/sbin/ipadm
typeset -r ROUTEADM=/usr/sbin/routeadm
typeset -r SCCONF=/usr/cluster/bin/scconf
typeset -r AWK=/usr/bin/awk
typeset -r SED=/usr/bin/sed
typeset -r HOSTNAME=/usr/bin/hostname
typeset rc=${SMF_EXIT_OK}

export LC_ALL=C

for iptype in ipv4 ipv6
do

if [[$(${ROUTEADM} -p ${iptype}-forwarding | \
 ${AWK} -F= 'BEGIN {RS=" " } $1 == "persistent" {FS="="; print $2}') == enabled]]

then
typeset nodename="$(${HOSTNAME})"
typeset clprivadapter="$(${SCCONF} -pv | \

 ${SED} -n 's/^ *('${nodename}') Node transport adapters:[]*\(.*\)/\1/p')"

for interface in clprivnet0 ${clprivadapter}
do

if [[$(${IPADM} show-ifprop -c -p forwarding -o current -m ${iptype} \
 ${interface}) == on]]

then
${IPADM} set-ifprop -t -p forwarding=off -m ${iptype} ${interface}
if (($? != 0))
then

print -u2 "Error: Could not temporary disable” \
 “IP forwarding for ${iptype} on ${interface}."

rc=1
else

print "Temporary disable IP forwarding for” \
 “${iptype} on ${interface}."

fi
fi

done
fi

done

exit ${rc}

54 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

SMF wrapper script to manage the cinder-volume services

Save this file with the name smf-wrapper:

#!/bin/ksh
#
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
#

typeset -r SVCADM=/usr/sbin/svcadm
typeset -r SVCS=/usr/bin/svcs
typeset -r BASENAME=/usr/bin/basename

typeset command_name="$(${BASENAME} $0)"
typeset subcommand="$1"
typeset fmri="$2"

function usage {
 print -u2 "usage: ${command_name} start <fmri>"
 print -u2 " ${command_name} stop <fmri>"
 print -u2 " ${command_name} probe <fmri>"
 exit 1
}

Main

if [[-z ${fmri}]]
then
 usage
fi

case "${subcommand}" in
start)

${SVCADM} enable -st ${fmri}
exit $?
;;

stop)
${SVCADM} disable -s ${fmri}
exit $?
;;

probe)
if [[$(${SVCS} -Ho state ${fmri}) != online]]
then

exit 100
else

exit 0
fi
;;

*)
usage
exit 1
;;

esac

55 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.0115

Providing High Availability to the OpenStack Cloud Controller on Oracle Solaris with Oracle Solaris Cluster
April 2015
Author: Thorsten Früauf

56 | PROVIDING HIGH AVAILABILITY TO THE OPENSTACK CLOUD CONTROLLER ON ORACLE SOLARIS WITH ORACLE SOLARIS CLUSTER

C O N N E C T W I T H U S

blogs.oracle.com/SC

facebook.com/oracle

twitter.com/oracle

oracle.com

