

Configuring Oracle Solaris
ZFS for an Oracle Database

Configuration Best Practices for Oracle Solaris 11.4

September 2020 | Version 4.0
Copyright © 2020, Oracle and/or its affiliates
Public

ccccc

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

2

DISCLAIMER
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle.
Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service
agreement, which has been executed and with which you agree to comply. This document and information contained herein may
not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written consent of Oracle. This document
is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade
of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this
document remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this document
without risking significant destabilization of the code.

ccccc

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

3

TABLE OF CONTENTS

Disclaimer 2

Introduction 4

Planning for an Oracle Database on ZFS Configuration 4
ZFS Storage Pool Considerations 4

ZFS Storage Pool Sizing 4
Managing Pool Space 5

ZFS File System Considerations 5
ZFS File System Property Settings for Data Warehouse Workloads 7

Using ZFS Secondary Cache (L2ARC) 7
Using ZFS Snapshots with the Oracle Database 8

ZFS Cloning for Test and Development 8
Additional System Configuration 9

Memory and Swap Considerations 9
ISM or DISM Shared Memory Considerations 9
Configuring Multiple Block Sizes for an Oracle Database 10
Tuning the ZFS ARC (zfs_arc_max and zfs_arc_max_percent) 10

How to Configure ZFS File Systems for an Oracle Database 11

For More Information 12

ccccc

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

4

INTRODUCTION
This document provides planning information and step-by-step instructions for configuring Oracle Solaris ZFS file
systems for an Oracle database.

A large number of enterprise customers today run an Oracle relational database on top of storage arrays with different
sophistication levels and many customers would like to take advantage of the ZFS file system. Using the Oracle Solaris
ZFS file system can reduce the cost and complexity of managing data and storage devices for hosting your Oracle
database. Since storage product capabilities often overlap ZFS features, a wide range of options are offered for
deployment. This document provides guidance on how to economically deploy an Oracle database on ZFS to maximize
data integrity and performance. We start with a brief planning section and follow with step-by-step instructions for
configuring and maintaining ZFS file systems for an Oracle database.

PLANNING FOR AN ORACLE DATABASE ON ZFS CONFIGURATION
The following sections provide specific planning information that is needed before you configure ZFS file systems
for an Oracle database.

• Oracle Solaris 11.4 is the recommended Solaris OS release

• Storage – Recommendation is to present individual disks from a storage controller to ZFS or use a RAID
controller in JBOD mode so ZFS can manage devices directly and provide RAID redundancy. By allowing
ZFS to directly provide RAID redundancy allows, it to both report and recover from any data
inconsistencies.

• Storage array considerations
o Confirm with your array vendor that the disk array is not flushing its non-volatile cache after

write cache flush requests issued by ZFS.
o If you must use a RAID array, consider using in JBOD mode.

ZFS Storage Pool Considerations
We recommend using a ZFS redundancy configuration, such as a mirrored storage pool for redundancy protection
and best performance for the Oracle Database. With a mirrored storage pool or any ZFS based redundancy
configuration, ZFS can automatically detect and repair data storage corruption. We do not recommend RAIDZ
redundancy when performance and IOPS are the main criteria for selecting a storage configuration for your
database. For more information about creating redundant ZFS storage pools, see the Oracle Solaris ZFS
Administration Guide.

Review the following steps to prepare your ZFS environment for the Oracle Database:

• Create ZFS storage pool with physical devices from the storage controller that include both HDDs for the
main pool devices and SSDs that can be designated to improve performance of database log operation

• If necessary, create LUNs or requests LUNs from your SAN storage to create ZFS storage pools

• Create a single ZFS pool with specialized file systems for each database for both OLTP and OLAP
workloads. If Oracle DB (OLTP) performance is critical, then consider creating two separate pools to
optimize performance for OLTP workload.

ZFS Storage Pool Sizing
The size of the pool or the sum of the device sizes or LUN sizes configured in the pool should be made to
accommodate all the current database sizing, while leaving room for growth and free space. Pool capacity at 80%
usually helps to achieve the highest level of performance. In all cases, always operate with at least 5% of free
space. In addition to the data devices, the pool is configured with one or more pool log devices that is used to

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

5

accelerate synchronous operations. The use of a pool log device also helps reduce the internal fragmentation and
is greatly recommended.

Managing Pool Space
In an environment with a high rate of data update (or churn), it is advisable to maintain pool capacity at 80%. ZFS
is a copy-on-write file system and relocates all writes to free disk space. Keeping some amount of free blocks
allows ZFS to easily find space in big chunks. This practice also allows ZFS to aggregate writes and reduce the write
IOPS demand on hard disks. Streaming aggregated writes can be 50-100 times less demanding on hard drives than
doing small random writes. Therefore, the incentive for keeping free space is high, especially in a high churn
environment, such as an active OLTP database. If at some point in the life of the pool, you see the total IOPS grow
and the avg I/O size drops to serve the same DB workload, this is a sign that creating free space would help
achieve higher performance. Creating free space is often done by deleting older snapshots.

In a data warehouse environment, data is inserted in the DB and normally stays present for long periods with little
churn. This use case accommodates a much higher level of occupancy on the storage pool, such as 95% capacity.

As a way to enforce this free space, create a special unused file system with a ZFS file system reservation. This
reservation prevents other file systems in the system from growing beyond the desired point. As you reach the
limit, ZFS does not accept the creation of new reservations. As that happens, you may decide to reduce the free,
unused reservation, reclaim reservations from other file systems, redirect projects to other storage, or simply add
storage space.

Adding storage space to a full pool should be done with care. Adding devices to a pool is challenging because it
creates a imbalance in free space. To illustrate with an extreme example, if a pool of 10 x 1 TB LUNs is made
~100% full and 2 new 1TB devices are added (to make the pool 80% full), then all new allocation will target the
new devices creating a performance problem. A better alternative is to grow the existing LUNs in the storage
array and allow ZFS to use the expanded space (see zpool.1m autoexpand option).

Using Oracle's File Auto Extent

Regarding space consumption, you can use the Oracle database file auto extent feature to instruct the Oracle
database not to preallocate the entire data file size, but grow it in controlled increments.1 Using this method
leaves plenty of free space to ZFS at least until the DB has reached its full size, at which point the ZFS pool can be
expanded.

In addition to the above reservation, data is located in a smaller range of hard disk addresses leading to greater
efficiency. When using this feature, you specify an upper limit to the size of each data file at the Oracle
configuration level. At the ZFS level, it is also possible to set up a corresponding ZFS file system reservation, which
guarantees never running out of space. This space can be reclaimed at any time if it turns out the sum of the data
file maximum size was over provisioned.

While this feature allows you to run with more free space in the pool and brings some flexibility in operations, it
does come with a downside, in that it is not always compatible with every database application.

Be aware also that when the database needs to run through an extension, it causes some disruption to
operations. As a remedy using a small next auto extent, typically of 1MB, allows a very short allocation time and
limits the impact of that disruption for the application. While a ZFS reservation helps you deal with space
concerns, your final experience is the key in determining if the feature is desirable in your environment.

For more information about using ZFS quotas and reservation, see the Oracle Solaris ZFS Administration Guide.

ZFS File System Considerations
Previous recommendations were to set the Oracle DB tables (data files) file system recordsize to
db_block_size. The current recommendation is to match the ZFS recordsize for the data file file system

1 For more information, see http://www.dba-oracle.com/t_alter_autoextend_on.htm.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

6

to the average network I/O size as closely as possible. This size might be significantly larger than
db_block_size.

• For OLTP workloads the general recommendation is 32K

• For data warehouse or OLAP workloads the record size of the datafile share should be 128K

Important Note: Keep in mind that modifying the ZFS file system recordsize parameter affects only the files
created after the change. To change the size that is used by an existing data file, you must first change the
recordsize property of the file system used to store the file, and then copy the files back into the file system.

For additional performance in the case of a large database, you might use different db_block_size values for
different database components. In these cases, you should use one ZFS filesystem per db_block_size and
match file system's record size to db_block_size. Also, different DB file types should be segregated to specific
filesystems of a pool as described below.

Improving Database Writing and Caching Performance

Use the following properties to improve Oracle database performance:

• Set the logbias property per file system

• Use the primarycache property to control what is stored in main memory cache

Tuning Synchronous Write Activity

ZFS manages synchronous writes internally with the ZFS intent log (ZIL). By default, synchronous writes are stored
in the ZIL at low latency and shortly thereafter (within approximately 5 seconds), ZFS does a bulk update of the
pool state by committing a transaction group.2

Another way exists for the ZIL to handle synchronous write activity, which is of slightly higher latency, but also
involves almost half as much traffic on the channel to the storage array. This mode is triggered by the
logbias=throughput value. This mode is recommended for file systems holding Oracle data files since
writes to those files are highly threaded background operations from the database perspective, which does not
warrant the utmost latency requirements. Using logbias=throughput for data files frees up the storage
resource and as a consequence, allows the redolog to be handled with lower latency. The redo log itself should
generally not be tuned for this property.

Recommended File System Settings for OLTP Workloads

FILE SYSTEM RECORDSIZE LOGBIAS PRIMARYCACHE COMPRESSION

Tables 32K latency all (data and metadata) LZ4

Redo 128K latency Do not use off (default)

Index 32K throughput all (data and metadata) off (default)

Undo 1 MB throughput all (data and metadata) off (default)

Temp 128K latency Do not use off (default)

Archive 1 MB throughput Do not use LZ4

2 Note that data for a transaction group is kept in memory and not read from the ZIL, which is only used in case of a
system failure.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

7

ZFS File System Property Settings for Data Warehouse Workloads
Some databases hold a mix of volatile and historical data. The distinction is that historical data is subject to a
reduced rate of modification compared to the volatile nature of evolving OLTP data. The historical data has
effectively become frozen. Such data can still be kept in the main database for the purpose of reporting and trend
analysis.

Historic data that is generally static and that is read in database scan operations should benefit from being stored
on a large ZFS recordsize, and if necessary, compressed by ZFS using LZ4 compression, to reduce the on-disk
footprint. Separately, index data might benefit from using a larger db_block_size (32 KB). For historical data,
we also advocate setting the logbias file system property to throughput. Note also, that contrasted to volatile
data, file systems holding historical data on ZFS interact well with storage based dynamic provisioning, the
amount of data stored after compression is closer to the amount provisioned by the storage. The data warehouse
workloads usually have creation and modification during integration phase, but have nearly no modification on
integrated data. This modification pattern allows data warehouse databases to push up the fill percentage of a
ZFS pool to the 95% capacity without adverse effect.

Recommended File System Settings for OLAP Workloads

FILE SYSTEM RECORDSIZE LOGBIAS PRIMARYCACHE COMPRESSION

Tables 128K throughput Do not use LZ4

Index 32K throughput all (data and metadata) off (default)

 Oracle Large Object (LOB) Considerations

The Oracle LOB, CLOB, NCLOB or BLOB data types are somewhat less common, but when present can benefit
from special handling. Because this type of data leads to large read and write I/Os, such as a full table scan,
setting up these objects can be done by using the same guidelines as the ones given for data warehouses.

For these applications, we can use the Oracle SQL syntax to set apart the LOB columns in specific tablespaces. The
LOB data types are frequently large, many MB, and are split over many Oracle data blocks. Consider creating a
separate file system and specify a larger record size for the LOB tablespace. 3 You may use a ZFS recordsize of
128 KB or even 1MB, but we advise to use a ZFS recordsize no greater that the average size of individual
LOBs.

Recommended File System Settings for LOB Applications

FILE SYSTEM RECORDSIZE LOGBIAS PRIMARYCACHE COMPRESSION

LOB 1M throughput all (data and metadata) LZ4

Using ZFS Secondary Cache (L2ARC)
You can add SSDs as secondary cache (L2ARC) devices in a storage pool to store a cached copy of disk content for
quick access and serve to increase the total random read throughput of the storage.

Setting the secondarycache property determines which file systems will use the secondary cache.

Using a secondary cache is beneficial for read-latency sensitive workloads, for both index and database blocks. As
usual, a cache layer is most effective when cache hit rates are high, implying that the total size of cache devices

3 For more information, see Configuring Multiple Block Sizes for an Oracle Database.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

8

should be sized according to the application's warm working set. Moreover, in an environment where
performance peaks when physical disks are saturated with random reads, the caching devices offer a venue for
additional read IOPS.

• Caching devices do retain data between system reboots

• Enabling the secondary cache for redo logs is not recommended

Allow for days of operation to gauge their effectiveness in your environment.

Using ZFS Snapshots with the Oracle Database
Creating ZFS snapshots and clones of your Oracle database can reduce the time spent on data management.

A key ZFS feature is creating a snapshot of a given file system or sets of file systems. Creating a snapshot is nearly
instantaneous and allows you to operate on a read-only point in time representation of a ZFS file system. A
snapshot can be used to keep previous images of the database at a very modest space cost. Multiple snapshots
can be generated during the day, each representing a potential recovery point. Generally, a snapshot and the file
system from which it originated actually point to the same physical blocks. Therefore, the cost of taking snapshots
of disk blocks is equal to only data that has been modified in the database since the last snapshot was taken.

Blocks that are referenced from either the snapshot or from the database image actually share ZFS cache buffers
for a reduced memory footprint.

Taking a snapshot of a database can involve placing the database in hot-backup mode just for the instant
necessary to capture the ZFS snapshot. The database can then be returned to normal operation.

Snapshots can also be used to replicate the database to a remote host by using the zfs send and zfs
receive commands. When creating a series of snapshots, only data that was updated between the two
snapshots needs to be transferred over the network. If done regularly, the incremental data to be transferred is
either in the cache or on the disk with blocks that have physical proximity to one another for more efficient
operation.

For backups, either the snapshot captured on the primary host or the replicated snapshot on a remote host can
serve as the source of a backup. The remote host replicates the full snapshot while the primary host transfers the
incremental snapshot changes. It is also possible to clone and mount a copy of the database on a replicated site
and share the largest part of the replicated volume. The replicated database is some hours, days, behind the
production database and can be used for business intelligence queries or as a pre-production environment.

Sending and receiving ZFS snapshot streams is an alternative to the commonly used storage-based replication.
With storage-based replication of an ZFS storage pool, be aware you must configure all LUNs belonging to a ZFS
storage pool to be in the same storage coherency group in the SAN array. Failure to do so prevents the replicated
LUNs from being imported by ZFS on the replication site. On the other hand, a successful receive operation is
immediately accessible on the replication site. In addition, during reception, previously replicated file systems
snapshots are still accessible and ready for use. For more information, see the Oracle Solaris ZFS Administration
Guide.

ZFS Cloning for Test and Development
While snapshots are read-only file systems, it is also possible to create a clone of any ZFS snapshot. A clone is a
full read/write accessible fork of the original database. Therefore, by using either the primary or a replicated
storage system, you can cheaply create hundreds of copies of your up-to-date database to run test and
development workloads under real data conditions. Clones, snapshots, and the original file systems running in the
same storage, share cached blocks between each other.

For more information about sending and receiving snapshots, see the Oracle Solaris ZFS Administration Guide.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

9

Additional System Configuration

Memory and Swap Considerations
The ZFS cache grows to consume most of unused memory and shrinks when applications generate memory
demand. But while ZFS can shrink its cache quickly, it does take time for the free memory list to be restored.
When applications demand memory, usually at application startup, memory is consumed faster than the pace
with which free memory is generated. Have enough swap configured to allow applications to start up smoothly.
The swap space acts as a buffer zone for the application's allocation of pages for itself while the Oracle Solaris OS
is converting freed buffers into free pages. Having sufficient swap space prevents standard application from
aborting due to ENOMEM errors.

Configuring an amount of swap equivalent to all of system memory is always enough (in fact excessively so) for
this purpose. This swap space is not expected to be used, but is needed as a reservation area. Using a much
smaller amount of swap is normally sufficient to cover memory demand bursts from regular applications.

For information about increasing swap space, see the Oracle Solaris ZFS Administration Guide.

ISM or DISM Shared Memory Considerations
Applications that use ISM or DISM shared memory (shmget(2), shmat(2)) should be set up to retry when
getting errors. If the amount requested is very large, then the timeout for such operations needs to be scaled
appropriately. It takes minutes to convert hundreds of GB of freed buffers into free memory.

Another way to deal with bursts of memory demand is to cap the maximum ZFS cache by setting
zfs:zfs_arc_max in /etc/system. This is especially appropriate if the memory consumption of
applications is known in advance. ZFS is then instructed to never grow beyond a desired size. See Tuning the ZFS
ARC (zfs_arc_max and zfs_arc_max_percent).

Another benefit of limiting the ZFS cache is to preserve the set of large memory pages that can then be used by
the database's ISM/DISM segments. When those pages are available, some high intensity databases are observed
to perform better. Note that the preferred way to insure availability of large pages for a critical database is to
startup the instance shortly after boot.

Here are few considerations of trying to balance memory use between the Oracle database and ZFS.

A database SGA is a great place to cache data. When a system is devoted to running a single database instance, it
usually makes sense to configure a maximum amount of memory to the SGA. However, many large scale systems
run a number of independent database and it is not practical to maximize the SGA for each one. In these cases, it
makes sense to size each of the SGA a minimum, and then allow ZFS to do the unified system caching in front of
the disk subsystem.

In cases where the SGA is maximized and is the primary location of caching information for a database, it is
possible to limit the ZFS cache size. When the cache size is set very low, it is possible to adjust the cache by setting
primarycache=metadata on some ZFS file systems. This file system property reclaims more I/O on the
storage. However, file systems with primarycache set to metadata negate the benefit of prefetching, which
can be a problem during any long read as full scan, backup, restore (archivelog). Therefore, we recommend
undoing this setting during a restore operation because it relies on prefetching for performance. Also consider
that a file system holding an index file normally benefits significantly from file system level caching. Generally,
those file systems should not have the primarycache property set.

Set primarycache=metadata on the archivelog file system, but it can slow down the copy of the archivelog
file system to external storage. So, set primarycache=all on the archivelog file system for a restore
operation.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

10

Configuring Multiple Block Sizes for an Oracle Database
You can define a specific tablespace for the LOB using a 32 KB block size tablespace, which also requires some 32
KB cache in the SGA (System Global Area), as we do for a data warehouse environment, by using syntax similar to
the following:

zfs create -o recordsize=32k,mountpoint=/my_db_path/data_32k dbpool/data_32k

zfs create -o recordsize=1M,mountpoint=/my_db_path/data_1M dbpool/data_1Mk

In init.ora, you would find numbers similar to the following example:

DB_BLOCK_SIZE=8192

SGA_TARGET=20G

DB_32K_CACHE_SIZE=400M

In SQL, you would find numbers as follows:

CREATE TABLESPACE data_32k_example

BLOCKSIZE 32K

DATAFILE '/my_db_path/data_32k/image_lob01.dbf' SIZE 1G

AUTOEXTEND ON NEXT 10M MAXSIZE 20G;

Tuning the ZFS ARC (zfs_arc_max and zfs_arc_max_percent)
The zfs_arc_max parameter is in bytes and accepts decimal or hexadecimal values. It is highly recommended
to put a date and justification as comments alongside the tuning.

The following text shows how to set this parameter to 16 GB, as an example:

Add this text with appropriate values to /etc/system and then reboot the system.

* August 19, 2020; RB.

* Cap the ARC to 16GB reserving 500GB for applications

* set zfs:zfs_arc_max=0x400000000

Since Solaris 11.4 SRU26, the preferred way to limit the arc cache is through a new zfs_arc_max_percent
which expresses the limit as a percentage of total memory. The default is 90% but ZFS will only grow to the point
where is sees memory pressure from applications and other kernel demands. Setting zfs_arc_max_percent
to 70% has been shown to help reduce disruptive events (where we see a large ARC reduction under memory
pressure along with multi-second periods of no I/Os). True the smaller ARC may lead to extra cache misses and
more IOPS requested to the storage devices but this can be the acceptable price in exchange of the extra
performance stability that a smaller ARC provides.

Add this text with appropriate values to /etc/system and then reboot the system.

* August 19, 2020; RB.

* Cap the ARC to 70% of physmem

* set zfs:zfs_arc_max_percent=70

Display the current memory size in bytes that is used as ZFS cache:

kstat zfs::arcstats:size

Monitor ZFS cache sizes with the preceding command and re-adjust the zfs_arc_max_percent parameter
when needed. If the vmstat command shows high level of free memory, consider increasing the value of
zfs_arc_max_percent to allow for better caching.

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

11

HOW TO CONFIGURE ZFS FILE SYSTEMS FOR AN ORACLE DATABASE
After you have reviewed the preceding planning section, use the steps below to configure ZFS for an Oracle database.

1. Confirm that you are running the latest Oracle Solaris 11.4 release.
cat /etc/release

 Oracle Solaris 11.4 X86

 Copyright (c) 1983, 2020, Oracle and/or its affiliates.

 Assembled 28 August 2020

2. Create a mirrored pool for best Oracle Database performance.
zpool create dbpool mirror c0t5000CCA02F02A15Cd0 c0t5000CCA02F02ADF4d0 mirror
c0t5000CCA02F027D84d0 c0t5000CCA02F0219C4d0 mirror c0t5000CCA02F0277A0d0
c0t5000CCA02F0284E4d0 mirror c0t5000CCA02F02092Cd0 c0t5000CCA02F026694d0 cache mirror
c0t5000CCA0536CBC84d0 c0t5000CCA0536CC430d0 log mirror c0t5000CCA04E1C1C20d0
c0t5000CCA04EB4C30Cd0 spare c0t5000CCA02F028604d0 c0t5000CCA02F029598d
zpool status dbpool
pool: dbpool
state: ONLINE
scan: none requested
config:

 NAME STATE READ WRITE CKSUM

 dbpool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 c0t5000CCA02F02A15Cd0 ONLINE 0 0 0

 c0t5000CCA02F02ADF4d0 ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 c0t5000CCA02F027D84d0 ONLINE 0 0 0

 c0t5000CCA02F0219C4d0 ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 c0t5000CCA02F0277A0d0 ONLINE 0 0 0

 c0t5000CCA02F0284E4d0 ONLINE 0 0 0

 mirror-3 ONLINE 0 0 0

 c0t5000CCA02F02092Cd0 ONLINE 0 0 0

 c0t5000CCA02F026694d0 ONLINE 0 0 0

 caches

 mirror-5 ONLINE 0 0 0

 c0t5000CCA0536CBC84d0 ONLINE 0 0 0

 c0t5000CCA0536CC430d0 ONLINE 0 0 0

 logs

 mirror-4 ONLINE 0 0 0

 c0t5000CCA04E1C1C20d0 ONLINE 0 0 0

 c0t5000CCA04EB4C30Cd0 ONLINE 0 0 0

 spares

 c0t5000CCA02F028604d0 AVAIL
 c0t5000CCA02F029598d0 AVAIL

errors: No known data errors

3. Create ZFS file systems and set the specific file system properties by following guidelines provided
previously.
zfs create -o recordsize=32k -o mountpoint=/my_db_path/data dbpool/data
zfs set logbias=latency dbpool/data
zfs get primarycache,recordsize,logbias dbpool/data
NAME PROPERTY VALUE SOURCE
dbpool/data primarycache all default
dbpool/data recordsize 32K local
dbpool/data logbias latency local

WHITE PAPER | Configuring Oracle Solaris ZFS for an Oracle Database | Version 4.0
 Copyright © 2020, Oracle and/or its affiliates | Public

12

zfs create -o recordsize=32k -o mountpoint=/my_db_path/index dbpool/index
zfs set logbias=throughput dbpool/index
zfs get primarycache,recordsize,logbias dbpool/index
NAME PROPERTY VALUE SOURCE
dbpool/index primarycache all default
dbpool/index recordsize 32K local
dbpool/index logbias throughput local

4. Create file systems for temporary and undo table spaces, using the default recordsize and
primarycache values.
zfs create -o recordsize=1m -o mountpoint=/my_db_path/temp dbpool/temp
zfs set logbias=throughput dbpool/temp
zfs create -o recordsize=1m -o mountpoint=/my_db_path/undo dbpool/undo
zfs set logbias=throughput dbpool/undo

5. Create a file system for redo logs. Use default file system values for primarycache and recordsize.
zfs create -o mountpoint=/my_db_path/redo redopool/redo
zfs set logbias=latency redopool/redo

6. Create a file system for the archivelog files, enable compression and use the default value for
recordsize.
zfs create -o compression=lz4 –o recordsize=1M -o mountpoint=/my_db_admin_path/archive
dbpool/archive
zfs get primarycache,recordsize,compressratio,compression,available,
used,quota dbpool/archive
NAME PROPERTY VALUE SOURCE
dbpool/archive primarycache all local
dbpool/archive recordsize 1M local
dbpool/archive compressratio 1.32x -
dbpool/archive compression on local
dbpool/archive available 40.0G -
dbpool/archive used 10.0G -
dbpool/archive quota 50G local

7. Consider the following steps to help maintain disk space and to create snapshots.

a) Set a reservation on the main database file system to reserve the required database file system
space.
zfs set reservation=200gb dbpool/data

b) Set a reservation on a dummy file system to reserve 10% of pool space to maintain pool
performance.

zfs set reservation=20gb dbpool/freespace

c) Consider setting a quota on the archive file system if other data is also archived in the archive pool.
zfs set quota=40g archivepool/archive

FOR MORE INFORMATION
For more information on Oracle Solaris 11.4 and ZFS technology, see the following references.

REFERENCES FOR MORE INFORMATION ABOUT ORACLE SOLARIS 11 AND ZFS TECHNOLOGY
Oracle Solaris 11 http://www.oracle.com/solaris
Oracle Solaris 11 technical content
on OTN

http://www.oracle.com/technetwork/server-
storage/solaris11/overview/index.html

Oracle Solaris 11 documentation
Oracle Solaris ZFS Administration
Guide

http://www.oracle.com/technetwork/server-
storage/solaris11/documentation/index.html
https://docs.oracle.com/cd/E37838_01/html/E61017/index.html

Oracle Solaris 11 Articles http://www.oracle.com/technetwork/server-
storage/solaris11/documentation/how-to-517481.html

13 DATA SHEET | [Data Sheet Title] | Version [1.02]
 Copyright © 2020, Oracle and/or its affiliates | Dropdown Options

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.
Outside North America, find your local office at oracle.com/contact.

blogs.oracle.com

facebook.com/oracle

twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this
document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0120

Configuring Oracle Solaris ZFS for an Oracle Database September 2020
Original Authors: Roch Bourbonnais, Alain Chereau, and Cindy Swearingen

Updated by Cindy Swearingen

