
 

 

 

An Oracle White Paper 
June 2011 

Best Practices for Running Oracle 
Databases in Oracle Solaris Containers



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

 

 

Introduction ............................................................................................................1 
Oracle Solaris Containers ......................................................................................2 

Oracle Solaris Zones Partitioning Technology...................................................2 
Solaris Resource Manager ................................................................................4 

License Model for Oracle Solaris Containers.........................................................7 
Creating an Oracle Solaris Container ....................................................................8 

Requirements.....................................................................................................8 
Enabling Resource Pools...................................................................................9 
Creating a Non-Global Zone ............................................................................10 

Special Considerations ........................................................................................11 
Devices in Oracle Solaris Containers ..............................................................11 
UFS File Systems in Oracle Solaris Containers ..............................................12 
Oracle Solaris ZFS File Systems in Oracle Solaris Containers .......................13 
System V Resource Controls...........................................................................16 
Dynamic Intimate Shared Memory (DISM) ......................................................16 
Dedicated CPU ................................................................................................17 
IP Instances: LAN and VLAN Separation for Non-Global Zones .....................17 
Moving Oracle Solaris Containers ...................................................................18 
Volume Management.......................................................................................18 
CPU Visibility ...................................................................................................19 

Summary..............................................................................................................20 
About the Authors ................................................................................................21 
Acknowledgements..............................................................................................21 
References...........................................................................................................21 
Appendix A: Scripts to Create an Oracle Solaris Container.................................23 

README.txt .....................................................................................................24 
The setenv.sh File............................................................................................25 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

 

 

The zone_cmd_template.txt File......................................................................26 
The create_zone_cmg.pl Script .......................................................................26 
The create_container.sh Script ........................................................................27 

Appendix B: Setting System V IPC Kernel Parameters .......................................30 
Setting System V IPC Parameters for Oracle Installation................................33 
Using Resource Control Commands to Set System V IPC Parameters ..........33



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

 1
 

Introduction 

The Oracle Solaris operating system includes support for Oracle Solaris Containers, a 
virtualization technology that provides isolated and secure runtime environments within a 
single Oracle Solaris instance. Using Oracle Solaris Containers, administrators can manage 
separate workloads, control resource usage, and maintain IP network separation. These 
features can enable multiple applications, or even multiple instances of the same application, 
to securely coexist on a single system, providing potential server consolidation savings. 

Both Oracle Database 9i R2, 10g R2 and 11g R2databases have been certified to run in an 
Oracle Solaris Container. In addition, Oracle also recognizes capped Oracle Solaris 10 
Containers as hard partitions. The ability to license only the CPUs or cores configured in an 
Oracle Solaris Container provides flexibility, consolidation opportunities, and possible cost 
savings. 

This article addresses the following topics: 

•  “Oracle Solaris Containers” on page 2 provides an overview of Oracle Solaris Containers, 
including Oracle Solaris Zones and the Solaris resource management. 

•  “License Model for Oracle Solaris Containers” on page 7 describes the licensing model 
supported by Oracle. 

•  “Creating an Oracle Solaris Container” on page 8 provides directions for creating and 
configuring a non-global zone in an Oracle Solaris Container that is appropriate for 
deploying an Oracle database. 

•  “Special Considerations” on page 10 discusses guidelines for running an Oracle database 
in an Oracle Solaris Container.



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

2 

Oracle Solaris Containers 

Oracle Solaris Containers, Oracle's operating system level virtualization technology, provide complete, 
isolated, and secure runtime environments for applications. This technology allows application 
components to be isolated from each other using flexible, software-defined boundaries. Oracle Solaris 
Containers are designed to provide fine-grained control over resources that the applications use, 
allowing multiple applications to operate on a single Oracle Solaris 10 instance while maintaining 
specified service levels (see Figure 1). 

Figure 1. Multiple Oracle Solaris Containers on a single Oracle Solaris 10 instance. 

Oracle Solaris Containers use Oracle Solaris resource management features along with Oracle Solaris Zones 
software partitioning technology to deliver a virtualized environment that can have fixed resource 
boundaries for application workloads. These two major components of Oracle Solaris Containers are 
discussed in the following sections.  

Oracle Solaris Zones Partitioning Technology 

Oracle Solaris Zones, a component of the Oracle Solaris Containers environment, is a software 
partitioning technology that virtualizes operating system services and provides an isolated and secure 
environment for running applications. Oracle Solaris Zones are ideal for environments that consolidate 
multiple applications on a single server. 

There are two types of zones: global zones and non-global zones. The underlying operating system, which is 
the Oracle Solaris instance booted by the system hardware, is called the global zone. There is only one 

Note—All Oracle Solaris features described in this document require the use of Oracle Solaris 10 10/08 (U6) or later releases. 

This document does not address Oracle Real Application Clusters (RAC), but concentrates solely on standard Oracle 

databases. It is also beyond the scope of this document to explain how Oracle Solaris Containers technology can be used to 

consolidate multiple Oracle database instances in separate Oracle Solaris Containers on the same system.  

 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

3 

global zone per system, and it is both the default zone for the system and the zone used for system-
wide administrative control. One or more non-global zones can be created by an administrator of a 
global zone. Once created, these non-global zones can be administered by individual non-global zone 
administrators, whose privileges are confined to that non-global zone. 

Two types of non-global zones can be created using different root file system models: sparse root and 
whole root. 

• Sparse root model —The sparse root zone model optimizes the sharing of objects by installing only a 
subset of the root packages and using a read-only loopback file system to gain access to other files. 
In this model, the directories /lib, /platform, /sbin, and /usr are mounted by default as 
loopback file systems. The advantages of this model are improved performance due to efficient 
sharing of executables and shared libraries, and a much smaller disk footprint for the zone itself. 

• Whole root model —The whole root zone model provides for maximum configurability by installing 
the required packages and any selected optional zones into the private file systems of the zone. The 
advantages of this model include the ability for zone administrators to customize their zone’s file 
system layout and add arbitrary unbundled or third-party packages. 

Oracle Solaris Zones provide the standard Oracle Solaris interfaces and application environment; they 
do not impose a new ABI or API. In general, applications do not need to be ported to Oracle Solaris 
Zones. However, applications running in non-global zones may need to be aware of non-global zone 
behavior, depending on the Oracle Solaris interfaces they use. In particular: 

• All processes running in a zone have a reduced set of privileges, which is a subset of the privileges 
available in the global zone. This set of privileges is available to the root user. Non-root users of a 
zone have a subset of those privileges. By default, non-global zone non-root users have privileges 
that are the “logical AND” of the privileges available to non-root users in the global zone and the 
privileges available to that zone. 

Processes that require a privilege not available in a non-global zone can fail to run, or in a few cases 
fail to achieve full performance. 

• Administrators can modify the privileges that a zone has, reducing or expanding the set. This 
provides the ability to enhance security by removing privileges not needed by applications running in 
that zone, or to give a zone a non-default privilege in order to improve the functionality or 
performance of an application. The privilege proc_lock_memory, required to use Dynamic Intimate 
Shared Memory (DISM), is now in the default privileges set of zones. 

• Each non-global zone may have its own logical network and loopback interface. Bindings between 
upper-layer streams and logical interfaces are restricted such that a stream may only establish 
bindings to logical interfaces in the same zone. Likewise, packets from a logical interface can only be 
passed to upper-layer streams in the same zone as the logical interface. 

• Each zone can be configured with exclusive-IP privileges which allow it to have its own IP 
resources. This gives full functionality and independence from the global zone's IP. Specifically, an 
exclusive-IP zone can manage its own network interfaces, routing table, IPQoS configuration, and IP 
Filter rules. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

4 

• Non-global zones have access to a restricted set of devices. In general, devices are shared resources 
in a system. Therefore, restrictions within zones are put in place so that security is not compromised. 

• Two categories of iSCSI storage are supported with zones. A zone can be installed into a directory 
which is mounted in the global zone and is backed by iSCSI storage. (See a description of “Network-
Attached Containers” by Jeff Victor, documented at http://blogs.oracle.com/JeffV/entry/ 
zoit_solaris_zones_on_iscsi) Alternatively, iSCSI storage can be mounted into the global zone, and a 
directory from the file system can be loopback mounted into a zone.  

Oracle Solaris Resource Management 

By default, Oracle Solaris provides all workloads running on the system equal access to all system 
resources. This default behavior of Oracle Solaris can be modified by Oracle Solaris resource 
management, which provides a way to control resource usage. 

Oracle Solaris resource management provides the following functionality: 

• A method to classify a workload, so the system knows which processes belong to a given workload. 

• The ability to measure the workload to assess how much of the system resources the workload is 
actually using. 

• The ability to control the workloads so they do not interfere with one another and also get the 
required system resources to meet predefined service-level agreements. 

Oracle Solaris resource management provides three types of workload control mechanisms: 

• The constraint mechanism, which allows the system administrator to limit the resources a workload is 
allowed to consume. 

• The scheduling mechanism, which refers to the allocation decisions that accommodate the resource 
demands of all the different workloads in an under-committed or over-committed scenario. 

• The partitioning mechanism, which ensures that pre-defined system resources are assigned to a given 
workload. 

Workload Identification 

Oracle Solaris resource management uses two levels of granularity, projects and tasks, to identify a 
workload: 

• Projects 

Projects are a facility that allow the identification and separation of workloads. A workload can be 
composed of several applications and processes belonging to different groups and users. The 
identification mechanism provided by projects serves as a tag for all the processes of a workload. 
This identifier can be shared across multiple machines through the project name service database. 
The location of this database can be in files, NIS, or LDAP, depending on the definition of projects 
database source in the /etc/nsswitch.conf file. Attributes assigned to the projects are used by the 
resource control mechanism to provide a resource administration context on a per-project basis. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

5 

• Tasks 

Tasks provide a second level of granularity in identifying a workload. A task collects a group of 
processes into a manageable entity that represents a workload component. Each login creates a new 
task that belongs to the project, and all the processes started during that login session belong to the 
task. The concept of projects and tasks has been incorporated in several administrative commands 
such as ps, pgrep, pkill, prstat and cron. 

Resource Controls 

It is possible to place bounds on resource usage, to control the resource usage of a workload. These 
bounds can be used to prevent a workload from over-consuming a particular resource and interfering 
with other workloads. Oracle Solaris resource management provides a resource control facility to 
implement constraints on resource usage. 

Each resource control is defined by the following three values: 

• Privilege level 

• Threshold value 

• Action that is associated with the particular threshold 

The privilege level indicates the privilege needed to modify the resource. It must be one of the 
following three types: 

• Basic, which can be modified by the owner of the calling process 

• Privileged, which can be modified only by privileged (superuser) callers 

• System, which is fixed for the duration of the operating system instance 

The threshold value on a resource control constitutes an enforcement point where actions can be 
triggered. The specified action is performed when a particular threshold is reached. Global actions 
apply to resource control values for every resource control on the system. Local action is taken on a 
process that attempts to exceed the control value. 

There are three types of local actions: 

• None—No action is taken on resource requests for an amount that is greater than the threshold. 

• Deny—Deny resource requests for an amount that is greater than the threshold. 

• Signal—Enable a global signal message action when the resource control is exceeded. 

For example, task.max-lwp=(privileged, 10, deny) would tell the resource control facility to 
deny more than 10 lightweight processes to any process in that task. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

6 

CPU and Memory Management 

Oracle Solaris resource management enables the end user to control the available CPU resources and 
physical memory consumption of different workloads on a system by providing Fair Share Scheduler 
(FSS), Resource Capping Daemon, CPU Caps and Dedicated CPUs facilities. 

• Fair Share Scheduler 

The default scheduler in Oracle Solaris provides every process equal access to CPU resources. 
However, when multiple workloads are running on the same system one workload can monopolize 
CPU resources. Fair Share Scheduler provides a mechanism to prioritize access to CPU resources 
based on the importance of the workload. 

With FSS the importance of a workload is expressed by the number of shares the system 
administrator allocates to the project representing the workload. Shares define the relative 
importance of projects with respect to other projects. If project A is deemed twice as important as 
Project B, project A should be assigned twice as many shares as project B. 

It is important to note that FSS only limits CPU usage if there is competition for CPU resources. If 
there is only one active project on the system, it can use 100% of the system CPUs resources, 
regardless of the number of shares assigned to it. 

• Resource Capping Daemon 

The resource capping daemon (rcapd) can be used to regulate the amount of physical memory that 
is consumed by projects with resource caps defined. The rcapd daemon repeatedly samples the 
memory utilization of projects which are configured with physical memory caps. The sampling 
interval is specified by the administrator. When the system's physical memory utilization soft cap 
exceeds the threshold for cap enforcement and other conditions are met, the daemon takes action to 
reduce the memory consumption of projects with memory caps to levels at or below the caps. 

Virtual memory (swap space) can also be capped. This is a hard cap. In an Oracle Solaris Container 
which has a swap cap, an attempt by a process to allocate more virtual memory than is allowed will 
fail. 

With Oracle Database it may be not appropriate to set the physical memory and swap limitation 
since the swapping of Oracle Database processes or System Global Area (SGA) is not desirable. 

The third memory cap is locked memory. This is the amount of physical memory that an Oracle 
Solaris Container can lock down, or prevent from being paged out. By default an Oracle Solaris 
Container now has the proc_lock_memory privilege, so it is wise to set this cap for all Oracle Solaris 
Containers. 

• CPU Caps 

CPU caps provide absolute fine-grained limits on the amount of CPU resources that can be 
consumed by a project or a zone. CPU caps are provided as a zonecfg resource, and as project and 
zone-wide resource controls. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

7 

Administrators can use this feature to control upper limit of CPU usage by each zone. This is in 
contrast to FSS, which sets the minimum guaranteed portion of CPU time to a given zone if there is 
a competition for CPU. 

For example, consider the following commands to set a CPU cap for a zone: 

zonecfg:myzone> add capped-cpu 
zonecfg:myzone:capped-cpu> set ncpus=3.75 
zonecfg:myzone:capped-cpu> end 

The ncpus parameter indicates the percentage of a single CPU that can be used by all user threads in 
a zone, expressed as a fraction (for example, .75) or a mixed number (whole number and fraction, 
for example, 3.25). An ncpu value of 1 means 100% of a CPU, a value of 3.25 means 325%, .75 
mean 75%, and so forth. When projects within a capped zone have their own caps, the minimum 
value takes precedence. 

• Dedicated CPUs 

Administrators can use this feature to assign CPUs to zones dynamically within specified minimum 
and maximum limits per each zone. This eliminates the need to create CPU pools and assign pools 
to zones, leading to better resource usage and much simple administration. 

For example, consider the following commands to set dedicated CPUs for a zone: 

zonecfg:myzone> add dedicated-cpu 
zonecfg:myzone:dedicated-cpu> set ncpus=8-12 
zonecfg:myzone:dedicated-cpu> end 

With this example, when the zone boots the system creates a temporary dedicated pool for this zone 
by taking CPUs from the global zone. If the zone will need more CPUs and there will be available 
CPUs, then the system will assign them to the zone within specified limits. 

License Model for Oracle Solaris Containers 

Oracle recognizes capped Oracle Solaris 10 Containers as licensable entities, known as hard partitions. 
Oracle customers running an Oracle database in an Oracle Solaris 10 environment can license only the 
CPUs or cores that are in a capped Oracle Solaris Container. 

Oracle licensing policy defines hard partitioning as “a physical subset of a server that acts like a self-
contained server”. The following example (see Figure 2) illustrates how an 8-processor system can be 
partitioned into a 3-processor subsystem using Oracle Solaris Containers technology in Oracle Solaris 
10. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

8 

Figure 2. Example of an Oracle Solaris Container configured for running an Oracle Database instance. 

To create an Oracle Solaris 10 Container that fits the licensing requirements set by Oracle, the system 
administrator needs to create a resource pool with the desired number of CPUs or cores and bind a 
zone to this resource pool. Alternatively, the administrator may set up a zone to use a dynamic pool 
with a specified CPU maximum limit. The license is driven by the number of CPUs or cores in this 
pool. 

Creating an Oracle Solaris Container 

This section provides instructions for creating an Oracle Solaris Container appropriate for installing 
and running Oracle Database. These instructions have been followed in the sample scripts documented 
in “Appendix A: Scripts to Create an Oracle Solaris Container” on page 21, which provide a 
convenient way of creating Oracle Solaris Containers.   

Requirements 

1. Ensure that the file system in which the root directory for the Oracle Solaris Container will be 
placed has at least 6 GB of physical disk space. This disk space is required to create the Oracle 
Solaris Container and install Oracle Database binaries. This example uses a sparse root zone. 

2. Identify the physical interface that will be used to bring up the virtual interface for the Oracle 
Solaris Container. Examples of common interfaces are ce0, bge0 and hme0.To find the physical 
interfaces available in the global zone, execute the following command: 

# /usr/sbin/ifconfig -a 

Alternatively, to configure exclusive-IP for a zone, consider using an interface that is listed among 
the output of the following dladm command, but is not listed by the output of the ifconfig -a 
command: 

# /usr/sbin/dladm show-link 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

9 

Examples may include hme1 or e1000g1. 

3. Obtain an IP address and a hostname for the Oracle Solaris Container. 

a. If exclusive-IP is not being used, this IP address must be in the same subnet as the IP assigned 
to the physical interface selected in the previous step. 

b. Or, if exclusive-IP is being used, then select any IP address. (This address is not required to 
belong to the same subnet as global zone's IP.) 

4. If exclusive-IP is not being used, ensure that the netmask for the IP address of the Oracle Solaris 
Container can be resolved in the global zone according to the databases used in the 
/etc/nsswitch.conf file. If this is not the case, update the file /etc/netmasks in the global 
zone with the netmask desired for the subnet to which the IP address belongs. 

If partitioning the CPUs into pools or using dedicated-CPUs, determine the quantity of CPUs to be 
reserved for the Oracle Solaris Container. To find the quantity of CPUs available in the default pool, 
execute the command poolstat. The default pool will indicate the number of CPUs available. Keep in 
mind that the default pool must always have at least one CPU. If your system is not configured with 
pools then use psrinfo to find all available CPUs. 

Enabling Resource Pools 

Resource pools and dynamic resource pools have been integrated into the Oracle Solaris service 
management facility (SMF). Dynamic resource pools are enabled separately of the resource pools 
service. 

The fault management resource identifier (FMRI) for the dynamic resource pools service is 
svc:/system/pools/dynamic. The FMRI for the resource pools service is svc:/system/pools. 

To enable the pool facility, use the following commands: 

# svcadm enable svc:/system/pools:default 
# svcadm enable svc:/system/pools/dynamic:default 

To check the status, use the following command: 

# svcs -a | grep pool 
STATE STIME FMRI 
online 11:21:40 svc:/system/pools:default 
online 11:21:45 svc:/system/pools/dynamic:default 

Creating a Non-Global Zone 

Once the resource pools services are available, a non-global zone can be created and bound to it. For 
the purposes of installing and running Oracle Database, the non-global zone can have either a whole 
root model or a sparse root model. Unless it conflicts with specific requirements, it is recommended to 
use the sparse root model as this creates a much smaller disk footprint for the zone. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

10 

A non-global Oracle Solaris zone can be created as follows: 

1. As root user, create a directory where the root directory of the non-global zone will be placed (for 
example, /zones/myzone) and set the access permissions to 700. The name of this directory 
should match the name of the zone (myzone, in this example). This directory can be also on an 
Oracle Solaris Zettabyte File System (ZFS) file system (for example rpool/myzone or 
rpool/zones/myzone). 

2. Unless special instructions are added, the directory /usr in the Oracle Solaris Container will be a 
loopback file system (lofs). This means that the Oracle Solaris Container will mount in read-only 
mode /usr from the global Oracle Solaris Container into /usr of its own file system tree. By 
default, the Oracle installer requires root to create files in the /usr/local directory. Since /usr 
will be read-only in the Oracle Solaris Container, this example creates a special mount point in 
/usr/local to allow root to create such files. Check if the directory /usr/local exists in the 
global Oracle Solaris Container, and if it is not present, create it. 

3. Create a directory in the global Oracle Solaris Container to mount /usr/local. The 
recommendation is to create it in /opt/ZONE_NAME/local. 

4. Use the setenv.sh file in Appendix A (“The setenv.sh File” on page 23) to create a settings file to 
create the zone and bind it to the resources. Set the values of the variables ZONE_DIR, ZONE_NAME, 
IP_TYPE, NET_IP, and NET_PHYSICAL with appropriate values. In the file 
zone_cmd_template.txt, the command create is used to create a sparse root. Replacing this 
command with create -b would create a whole root. The zone will be created with a dynamic 
CPU pool within the NUM_CPUS_MIN and NUM_CPUS_MAX limits. If you want to have exclusive IP in 
your new zone then set IP_TYPE=EXCLUSIVE. The scheduling class and max-shm-memory for the 
zone can also be set in this file. 

5. Create the zone by executing the following command as root (see “The create_container.sh 
Script” on page 25 of Appendix A): 

# sh ./create_container.sh 

6. Finish the configuration of the Oracle Solaris Container with the following command: 

# zlogin -C ZONE_NAME 

Special Considerations 

This section contains special considerations when running an Oracle database inside an Oracle Solaris 
Container. 

Devices in Oracle Solaris Containers 

To guarantee that security and isolation are not compromised, certain restrictions regarding devices are 
placed on non-global zones: 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

11 

• By default, only a restricted set of devices (which consist primarily of pseudo devices) such as 
/dev/null, /dev/zero, /dev/poll, /dev/random, and /dev/tcp, are accessible in the non-global 
zone. 

• Devices that expose system data like kmem, and ksyms are not available in non-global zones. 

• By default, physical devices are also not accessible by non-global zones. 

The global zone administrator can make physical devices available to non-global zones. It is the 
administrator's responsibility to ensure that the security of the system is not compromised by doing so, 
mainly for two reasons: 

• Placing a physical device into more than one zone can create a covert channel between zones. 

• Global zone applications that use such a device risk the possibility of compromised data or data 
corruption by a non-global zone. 

The global zone administrator can use the add device subcommand of zonecfg to include additional 
devices in non-global zone. For example to add the block device /dev/dsk/c1t1d0s0 to the non-
global zone my-zone, the administrator executes the following commands: 

# zonecfg -z my-zone 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/dsk/c1t1d0s0 
zonecfg:my-zone:device> end 
zonecfg:my-zone> exit 
# zoneadm -z my-zone reboot 

All slices of /dev/dsk/c1t1d0 could be added to the non-global zone by using /dev/dsk/c1t1d0* in 
the match command. This same procedure can be used for character devices (also known as raw 
devices) or any other kind of device. 

If it is planned to install an Oracle database in a non-global zone by using Oracle installation CDs, the 
CD-ROM device must be made visible to the non-global zone. One recommended method is to 
loopback mount the /cdrom directory from the global zone. An alternative method of exporting the 
physical device from the global zone to the non-global zone is discouraged, as /cdrom is nearly always 
a system-wide shared device (and, furthermore, exporting the cdrom device requires 
stopping/disabling the Volume Management daemon vold in the global zone).  
 
UFS File Systems in Oracle Solaris Containers 

Each zone has its own file system hierarchy, rooted at a directory known as zone root. Processes in a 
zone can access only files in the part of the file system hierarchy that is located under the zone root. 

Three different ways of mounting a UFS file system in a non-global zone are described in the following 
examples: mount using a loopback file system, mount file systems as UFS, and export a device from a 
global zone. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

12 

Method 1: Mount Using Loopback File System (lofs) 

Create a file system in a global zone and mount it in a non-global zone as a loopback file system (lofs). 
This method is used to share a file system between global and non-global zones. 

1. Log in as global zone administrator. 

2. Create a file system in global zone: 

global# newfs /dev/rdsk/c1t0d0s0 

3. Mount the file system in the global zone: 

global# mount /dev/dsk/c1t0d0s0 /mystuff 

4. Add the file system of type lofs to the non-global zone: 

global# zonecfg -z my-zone 
zonecfg:my-zone> add fs 
zonecfg:my-zone:fs> set dir=/usr/mystuff 
zonecfg:my-zone:fs> set special=/mystuff 
zonecfg:my-zone:fs> set type=lofs 
zonecfg:my-zone:fs> end 

Method 2: Mount File System as UFS 

Create a file system in the global zone and mount it to the non-global zone as UFS. 

1. Log in as global zone administrator. 

2. Create a file system in the global zone: 

global# newfs /dev/rdsk/c1t0d0s0 

3. Add the file system of type ufs to the non-global zone: 

global# zonecfg -z my-zone 
zonecfg:my-zone> add fs 
zonecfg:my-zone:fs> set dir=/usr/mystuff 
zonecfg:my-zone:fs> set special=/dev/dsk/c1t0d0s0 
zonecfg:my-zone:fs> set raw=/dev/rdsk/c1t0d0s0 
zonecfg:my-zone:fs> set type=ufs 
zonecfg:my-zone:fs> end 

Method 3: Export a Device from a Global Zone 

Export a device from a global zone to a non-global zone and mount it from the non-global zone. 
Using this method, the file system that is created will not be shared between zones. 

1. Log in as global zone administrator. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

13 

2. Export a raw device to the non-global zone: 

global# zonecfg -z my-zone 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/rdsk/c1t0d0s0 
zonecfg:my-zone:device> end 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/dsk/c1t0d0s0 
zonecfg:my-zone:device> end 

3. Log in as root in non-global zone. 

4. Create a file system in the non-global zone: 

my-zone# newfs /dev/rdsk/c1t0d0s0 

5. Mount the file system in the non-global zone: 

my-zone# mount /dev/dsk/c1t0d0s0 /usr/mystuff 

Oracle Solaris ZFS File Systems in Oracle Solaris Containers 

The Oracle Solaris Zones partitioning technology supports Oracle Solaris ZFS components, such as 
adding Oracle Solaris ZFS file systems and storage pools into a zone. The following sections describe 
how to add an Oracle Solaris ZFS file system and delegate a dataset to a non-global zone.  
 

Adding a Single Oracle Solaris ZFS File System 

This example illustrates adding an Oracle Solaris ZFS file system to a non-global zone. 

1. From the global zone, set the mount point to legacy: 

global# zfs set mountpoint=legacy tank/home 

2. From the global zone, make sure that mount point is set to legacy. Use the following command to 
check the mount point, and confirm it is set to legacy: 

global# zfs get mountpoint tank/home 

3. Use the following commands to add an Oracle Solaris ZFS file system to the zone: 

global# zonecfg -z myzone 
zonecfg:myzone> add fs 
zonecfg:myzone:fs> set type=zfs 
zonecfg:myzone:fs> set dir=/export/share 
zonecfg:myzone:fs> set special=tank/home 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

14 

zonecfg:myzone:fs> end 

This syntax adds the Oracle Solaris ZFS file system tank/home to the myzone zone, mounted at 
/export/share. With this configuration, the zone administrator can create and destroy files 
within the file system. The file system cannot be remounted in a different location, nor can the 
zone administrator change properties on the file system (such as compression, read-only, and so 
on). The global zone administrator is responsible for setting and controlling properties of the file 
system. 

Delegating a Complete Oracle Solaris ZFS Dataset 

If the primary goal is to delegate the administration of storage to a zone, a complete Oracle Solaris 
ZFS dataset can be delegated to a non-global zone. In the following example, an Oracle Solaris ZFS 
file system is delegated to a non-global zone by the global zone administrator. 

1. First, create an Oracle Solaris ZFS file system in a global zone: 

# zfs create distr/vol1 

2. Second, add it to the zone as a dataset: 

# zonecfg -z myzone 
zonecfg:myzone> add dataset 
zonecfg:myzone:dataset> set name=distr/vol1 
zonecfg:myzone:dataset> end 
zonecfg:myzone> verify 
zonecfg:myzone> commit 
zonecfg:myzone> end 

3. Third, restart the zone to get the Oracle Solaris ZFS file system in it. After restarting, the Oracle 
Solaris ZFS file system can be found inside a zone: 

# zfs list 
NAME USED AVAIL REFER MOUNTPOINT 
distr 48,9G 18,3G 30,5K /distr 
distr/vol1 24,5K 18,3G 24,5K /distr/vol1 

Because the directory distr/vol1 was imported in this example, it cannot be managed on the distr 
level. But, additional file systems can be created beneath the distr/vol1 directory, as seen in the 
following example: 

# zfs create distr/vol2 
cannot create 'distr/vol2': permission denied 
# zfs create distr/vol1/vol2 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

15 

Unlike the previous example of adding a single file system, this example causes the Oracle Solaris ZFS 
file system /distr/vol1 to be visible within the zone myzone. The zone administrator can set file 
system properties, create children, take snapshot, create clones, and otherwise control the entire Oracle 
Solaris ZFS file system hierarchy. This allows the administration of an Oracle Solaris ZFS file system 
(and any subordinate file systems created in the zone) to be delegated to a non-global zone. 

After the Oracle Solaris ZFS dataset is delegated to a zone, the dataset property zoned=on will be set. 
This means that most of the Oracle Solaris ZFS properties, including mountpoint, cannot be used in 
global zone anymore. Effectively, it will look like mounpoint=legacy even if the mountpoint is set to 
any specific value. 

Limiting Oracle Solaris ZFS cache 

The Oracle Solaris ZFS cache limit in global zone can be set by specifying the zfs_arc_max parameter 
in the /etc/system file. For example, the following example sets the Oracle Solaris ZFS cache limit to 
8 GB (0x200000000 in hexadecimal): 

set zfs:zfs_arc_max = 0x200000000 

While Oracle Solaris ZFS sets its own limits on cache used, administrators can choose to monitor 
cache usage and set explicit limits. The blog article “Monitoring ZFS Statistic on the system loaded 
with Oracle database,” available online at 
http://blogs.oracle.com/pomah/entry/monitoring_zfs_statistic, contains a script that can be used to 
monitor cache usage, and the cache limit should be planned to be below the value of the physical 
memory size less the sum of all SGAs for all Oracle database instances. 

System V Resource Controls 

The Fair Share Scheduler (FSS) can be used to control the allocation of available CPU resources among 
zones, based on their importance. 

zonecfg:myzone> set scheduling-class=FSS 

If it is planned to set shares for each zone, they can be specified using the set cpu-shares command. 
For example: 

zonecfg:myzone> set cpu-shares=10 

The more shares that are assigned, the more CPU cycles this zone's processes will get if there is 
competition for CPU. 

Note—The “ZFS Evil Tuning Guide” provides additional information on limiting the Oracle Solaris ZFS cache and other tuning 

best practices: http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

16 

Additionally, the maximum shared memory segment size needed can be set for an Oracle database 
instance. For example: 

zonecfg:myzone> set max-shm-memory=4G 

It is recommended to set FSS globally (unless specific configuration requirements make it undesirable 
to do so) and then reboot the global zone: 

global# dispadmin -d FSS 

In this case, it is not required to explicitly set the scheduling class to FSS for each zone (set 
scheduling-class=FSS) since it is inherited from global zone. 

Dynamic Intimate Shared Memory (DISM) 

DISM provides shared memory that is dynamically resizable. A process that makes use of a DISM 
segment can lock and unlock parts of a memory segment while the process is running. By doing so, the 
application can dynamically adjust to the addition of physical memory to the system or prepare for the 
removal of it. 

By default, an Oracle database instance uses intimate shared memory (ISM) instead of standard System 
V shared memory on Oracle Solaris. When a shared memory segment is made into an ISM segment, it 
is mapped using large pages and the memory for the segment is locked (that is, it cannot be paged out). 
This greatly reduces the overhead due to process context switches, which improves the database's 
performance linearity under load.   
 
ISM certainly has benefits over standard System V shared memory. However, its disadvantage is that 
ISM segments cannot be resized. To change the size of an ISM database buffer cache, the database 
must be shut down and restarted. DISM overcomes this limitation as it provides shared memory that is 
dynamically resizable. DISM has been supported in Oracle databases since Oracle Database 9i. Oracle 
databases use DISM instead of ISM if the maximum SGA size set by the sga_max_size parameter in 
init.ora is larger than the sum of its components (that is, db_cache_size, shared_pool_size, and 
other smaller SGA components). 

In ISM, the kernel locks and unlocks memory pages. However, in DISM the locking and unlocking of 
memory pages is done by the Oracle database process ora_dism_$ORACLE_SID. In order to lock 
memory, a process needs the proc_lock_memory privilege. This privilege is now available in an Oracle 
Solaris 10 non-global zone by default. 

The following example shows configuring Oracle Database for DISM: 

SQL> alter system set sga_max_size=1000M scope=spfile; 
SQL> alter system set sga_target=600M scope=spfile; 
SQL> shutdown immediate 
SQL> startup 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

17 

$ ps -ef|grep ism 
root 28976 5865 0 10:54:00 ? 0:17 ora_dism_mydb 

Dedicated CPU 

With the introduction of the dedicated CPU feature, system administrators now have a much easier 
and also more effective way of managing pools of CPUs. In reality, system administrators do not even 
have to care about creating CPU pools. Of course, they must know how many CPUs are available and 
how they are used. With the dedicated CPU feature, administrators can assign CPUs right when they 
are creating a new zone, and they can manage assigned CPUs by changing zone properties. 

For example, the following commands specifies a CPU range for use by the zone myzone: 

zonecfg:myzone> add dedicated-cpu 
zonecfg:myzone:dedicated-cpu> set ncpus=8-12 
zonecfg:myzone:dedicated-cpu> end 

IP Instances: LAN and VLAN Separation for Non-Global Zones 

IP networking can now be configured in two different ways, depending on whether the zone is 
assigned an exclusive IP instance or shares the IP layer configuration and state with the global zone. IP 
types are configured by using the zonecfg command. 

The shared-IP type is the default. These zones connect to the same VLANs or same LANs as the 
global zone and share the IP layer. 

Full IP-level functionality is available in an exclusive-IP zone. If a zone must be isolated at the IP layer 
on the network, then the zone can have an exclusive IP. The exclusive-IP zone can be used to 
consolidate applications that must communicate on different subnets that are on different VLANs or 
different LANs. 

Network interfaces should not be used by any other zone, including the global zone. 

The following example configures the zone myzone for exclusive IP usage using the physical interface 
e1000g1: 

zonecfg:myzone> set ip-type=exclusive 
zonecfg:myzone> add net 
zonecfg:myzone:net> set physical=e1000g1 
zonecfg:myzone:net> end 

Moving Oracle Solaris Containers 

Oracle Solaris Containers can be moved, or migrated, from one server to another. This capability 
allows administrators to rapidly provision zones and relocate workloads as needed to meet changing 
requirements. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

18 

In order to move an Oracle Solaris Container, the zone must be halted. In addition, both the old and 
new systems must have compatible levels of Oracle Solaris patches, and the location of devices must 
be the same if these devices were used in the configuration. 

Basic steps include the following: 

1. Create the Oracle Solaris Container on the first system. 

2. Detach the Oracle Solaris Container. 

3. Create an archive. 

4. Move the archive to a new system, and unpack the archive. 

5. Attach the Oracle Solaris Container to the new system. 

The procedure for moving an Oracle Solaris Container depends, in part, on the type of file system used 
to hold the Oracle Solaris Container’s private files. For example, the Oracle Solaris Container can 
reside on a root file system, on an Oracle Solaris ZFS file system, or in a UFS file system built on an 
Oracle Solaris Volume Manager metadevice.  Error! Reference source not found. 

Volume Management 

Because various options are available for volume management, including third-party volume manager 
products, usability in Oracle Solaris Containers cannot be completely generalized. As of this writing, 
volume managers cannot be installed or managed from non-global zones. Currently, the recommended 
approach is to install and manage volume manager software from a system's global zone. Once the 
devices, file systems, and volumes are created in the global zone, they can be made available to the 
non-global zones by using zonecfg subcommands. 

For example, Oracle Solaris Volume Manager (SVM) should be installed and managed from global 
zones. Once the storage has been configured in the desired way from the global zone, the metadevices 
can then be made available to the non-global zones or used through mounted file systems. 

CPU Visibility 

Users can expect a virtualized view of the system in an Oracle Solaris Container with respect to CPU 
visibility when the zone is bound to a resource pool. In these cases the zone will only see those CPUs 
associated with the resource pool it is bound to. 

By default an Oracle Solaris Container is bound to the pool pool_default, which is the same set of 
processors that the global zone's processes use. 

The Oracle Database application mainly calls pset_info(2) and sysconf(3c) with the 
_SC_NPROCESSORS_ONLN argument to procure the number of CPUs it has available. Based on this 
number, Oracle Database will size internal resources and create threads for different purposes (for 

Note—For the latest status of support and any published work-arounds for technical issues related to third-party volume 

management software, it is advised to consult with the third-party support Web sites. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

19 

example, parallel queries and number of readers). These calls will return the expected value (that is, the 
number of CPUs in the resource pool) if the zone is bound to a resource pool with a pset associated 
with it. Table 1 shows the interfaces that have been modified in Oracle Solaris and that will return the 
expected value in this scenario. 

TABLE 1. LIST OF CPU-RELATED ORACLE SOLARIS 10 INTERFACES THAT ARE CONTAINER-AWARE 

INTERFACE TYPE 

p_online(2) System Call 

processor_bind(2) System Call 

processor_info(2) System Call 

pset_list(2) System Call 

pset_info(2) System Call 

pset_getattr(2) System Call 

pset_getloadavg(3c) System Call 

getloadavg(3c) System Call 

sysconf(3c) System Call 

p_online(2) System Call 

_SC_NPROCESSORS_CONF sysconf(3c) arg 

_SC_NPROCESSORS_ONLN sysconf(3c) arg 

pbind(1M) Command 

psrset(1M) Command 

psrinfo(1M) Command 

mpstat(1M) Command 

vmstat(1M) Command 

iostat(1M) Command 

sar(1M) Command 

In addition to these interfaces, certain kernel statistics (kstats) are used commonly by tools such as 
psrinfo(1M) and mpstat(1M) to retrieve information about the system. All consumers of these 
kstats will only see information for a pset in the pool bound to the zone. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

20 

Summary 

Oracle Solaris Containers provide a very flexible and secure method of managing multiple applications 
on a single Oracle Solaris instance. Oracle Solaris Containers use software partitioning technology to 
virtualize the operating system and provide isolated and secure runtime environments for applications. 
Solaris resource management can be used to control resource usage, such as capping memory and CPU 
usage, helping to ensure workloads get required system resources. By utilizing Oracle Solaris 
Containers, multiple applications, or even multiple instances of the same application, can securely 
coexist on a single system, providing potential server consolidation savings. 

Oracle Database 9i R2, 10g R2 and 11gR2have been certified to run in an Oracle Solaris Container. 
This paper provides step-by-step directions for creating a non-global zone in an Oracle Solaris 
Container that is appropriate for running a non-RAC Oracle database. In addition, this paper describes 
special considerations that apply when running Oracle Database within an Oracle Solaris Container. 

About the Authors 

Ritu Kamboj is a Staff Engineer in ISV Engineering's Open Source Team at Sun Microsystems. She 
has over 12 years of experience in software development with expertise on database design, 
performance, and high availability. She has worked extensively on Sybase, Oracle, and MySQL 
databases. Recently her primary focus has been making MySQL run best on the Solaris platform. 

Roman Ivanov joined Sun in January 2006. He is working in the ISV Engineering department helping 
Independent Software Vendors adopt Sun's technology and improve performance on Sun's hardware. 
His blog is available online at http://blogs.oracle.com/pomah/. 

Acknowledgements 

The author would like to thank Alain Chéreau, Jeff Victor, and Fernando Castano for their 
contributions to this article. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

21 

Appendix A: Scripts to Create an Oracle Solaris Container 

The scripts documented in this Appendix can be used to create an Oracle Solaris Container 
appropriate for installing and running non-RAC instances of Oracle Database. These scripts do not 
represent the only way in which the Oracle Solaris Container can be created. They are provided as 
sample code and should be modified to fit specific requirements and constraints. 

In this example, a sparse root zone will be created with the root directory, IP address, and physical 
interface provided by the user. Users may choose to have exclusive IP and be independent from global 
zone. A special mount point for /usr/local will be created in /opt/zone_name/local to facilitate 
the Oracle installation, since /usr/local is the default directory for the installation of some of the 
Oracle utilities. To use these scripts, save all the files in the same directory and follow these steps: 

1. Edit the file setenv.sh with appropriate values for the following variables: 

• ZONE_NAME: Hostname for the zone 

• ZONE_DIR: Directory for the root directory of the zone or Oracle Solaris ZFS pool name 

• NET_IP: IP address for the zone, it is not necessary to set if using exclusive IP 

• IP_TYPE: You may wish to have exclusive IP 

• NET_PHYSICAL: Physical interface in which the virtual interface for the zone will be created 

• NUM_CPUS_MAX: Maximum number of CPUs for the zone 

• NUM_CPUS_MIN: Minimum number of CPUs for the zone 

• SCHEDULING_CLASS=FSS: To have FSS as default scheduling for the zone 

• MAX_SHM_MEMORY=4GB: To specify Maximum Shared memory segment 

2. Edit the file setenv.sh with appropriate values for the following variables: 

# ./create_container.sh 

3. Configure this Oracle Solaris Container by executing the following command from global zone, 
substituting the correct zone_name: 

# zlogin -C zone_name 

The files composing these scripts are presented and explained next. 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

22 

README.txt 

This file describes how an Oracle Solaris Container is created when these scripts are used. It also gives 
tips about how to execute common operations such as giving the zone access to raw devices or 
removing resource pools. 

The scripts in this directory can be used to create a container 
suitable for installing and running non-RAC instances of Oracle database. These 
scripts do not represent the only way in which you can create an appropriate 
container for Oracle; depending on your requirements and constrains you can 
modify these scripts to fit your needs. 

1) creating a container for Oracle 
A sparse root zone will be created with the root directory, IP and 
interface provided by the user. A special mount point for /usr/local will 
be created in /opt/<zone_name>/local to facilitate the oracle installation, 
since /usr/local is the default directory for the installation of some of 
the oracle utilities. To use these scripts follow these 
steps: 

a) edit the file setenv.sh with appropriate values for: 
- ZONE_NAME: hostname for the zone 
- ZONE_DIR: directory for the root directory of the zone 
- NET_IP: IP for the zone 
- NET_PHYSICAL: physical interface in which the virtual interface for 
the zone will be created 
- NUM_CPUS_MAX: maximum number of CPUs for the zone 
- NUM_CPUS_MIN: minimum number of CPUs for the zone 
- IP_TYPE: You may wish to have exclusive IP 
- SCHEDULING_CLASS=FSS: To have FSS as default scheduling for the zone 
- MAX_SHM_MEMORY=4GB: To specify Maximum Shared memory segment 

b) from the global container run ./create_container.sh 

c) Once the container has been created run "zlogin -C <zone_name>" 
from the global container to finish configuring the zone. 

2) giving your container access to raw devices 
If you need to give your container access to a raw device 
follow this example once the container has been created 
(these commands must be issued from the global container): 

zonecfg -z my-zone 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/rdsk/c3t40d0s0 
zonecfg:my-zone:device> end 
zonecfg:my-zone> exit 
zonecfg -z my-zone halt 
zonecfg -z my-zone boot 

3) giving your container access to a file system 
If you need to give your container access to a file system 
created in the global container follow this example once the non-global 
container has been created: 

global# newfs /dev/rdsk/c1t0d0s0 
global# zonecfg -z my-zone 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

23 

zoncfg:my-zone> add fs 
zoncfg:my-zone> set dir=/usr/mystuff 
zoncfg:my-zone> set special=/dev/dsk/c1t0d0s0 
zoncfg:my-zone> set raw=/dev/rdsk/c1t0d0s0 
zoncfg:my-zone> set type=ufs 
zoncfg:my-zone> end 
zonecfg -z my-zone halt 
zonecfg -z my-zone boot 

4) to uninstall and delete a previously created zone use these commands: 
zoneadm -z $ZONE_NAME halt 
zoneadm -z $ZONE_NAME uninstall -F 
zonecfg -z $ZONE_NAME delete -F 

The setenv.sh File 

The setenv.sh file is used to define parameters used to create the Oracle Solaris Container. 

#!/usr/bin/sh 

# host name for the zone 
ZONE_NAME=myzone 

# directory where to place root dir for the zone 
# or ZFS pool 
#ZONE_DIR=/zones 
ZONE_DIR=rpool 

#IP for the zone (make sure netmask can be resolved for this IP according to 
# the databases defined in nsswitch.conf) 
# or use Exclusive-IP with its own IP stack 
#NET_IP=129.146.182.199 
IP_TYPE=EXCLUSIVE 

#interface used by the zone 
NET_PHYSICAL=e1000g1 

#min and max CPUs for the dynamic pool bound to the zone 
NUM_CPUS_MIN=8 
NUM_CPUS_MAX=12 
SCHEDULING_CLASS=FSS 
MAX_SHM_MEMORY=4G YSICAL=e1000g1 

# do not make changes beyond this point 
export ZONE_NAME ZONE_DIR NET_IP NET_PHYSICAL 
export NUM_CPUS_MIN NUM_CPUS_MAX 
export MOUNT_ZFS SCHEDULING_CLASS MAX_SHM_MEMORY IP_TYPE 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

24 

The zone_cmd_template.txt File 

The zone_cmd_template.txt file contains a template set of commands to create the zone. After 
replacing some strings by user-defined values, this file is used to create the zone. 

create 
set zonepath=MOUNTPOINT 
set autoboot=true 
SCHEDULING_CLASS 
MAX_SHM_MEMORY 
IP_TYPE 
add net 
NET_IP 
set physical=NET_PHYSICAL 
end 
add fs 
set dir=/usr/local 
set special=/opt/ZONE_NAME/local 
set type=lofs 
end 
MOUNT_ZFS 
add dedicated-cpu 
set ncpus=NUM_CPUS_MIN-NUM_CPUS_MAX 
end 
verify 
commit 

The create_zone_cmg.pl Script 

This script uses the perl utility to create a command file that creates the zone. This script replaces the 
user-given parameters in the zone command template file. It is called by create_container.sh. 

#!/usr/bin/perl 
# Copyright (c) 2005,2008 Sun Microsystems, Inc. All Rights Reserved. 
# 
# SAMPLE CODE 
# SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT 
# THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS 
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
# IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
# FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 
# SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED 
# BY LICENSEE AS A RESULT OF USING, MODIFYING OR 
# DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 

 
while (<>){ 
   s/MOUNTPOINT/$ENV{'MOUNTPOINT'}/; 
   s/NET_IP/$ENV{'NET_IP'}/; 
   s/IP_TYPE/$ENV{'IP_TYPE'}/; 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

25 

   s/MOUNT_ZFS/$ENV{'MOUNT_ZFS'}/; 
   s/ZONE_NAME/$ENV{'ZONE_NAME'}/; 
   s/NET_PHYSICAL/$ENV{'NET_PHYSICAL'}/; 
   s/NUM_CPUS_MIN/$ENV{'NUM_CPUS_MIN'}/; 
   s/NUM_CPUS_MAX/$ENV{'NUM_CPUS_MAX'}/; 
   s/SCHEDULING_CLASS/$ENV{'SCHEDULING_CLASS'}/; 
   s/MAX_SHM_MEMORY/$ENV{'MAX_SHM_MEMORY'}/; 

 
   print; 
} 

The create_container.sh Script 

This is the main script. It uses the parameters given in the setenv.sh file to create the Oracle Solaris 
Container. 

#!/usr/bin/ksh 
# Copyright (c) 2005,2008 Sun Microsystems, Inc. All Rights Reserved. 
# 
# SAMPLE CODE 
# SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT 
# THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS 
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
# IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
# FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 
# SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED 
# BY LICENSEE AS A RESULT OF USING, MODIFYING OR 
# DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 

# script to create a container to run oracle RDBMS. 
# to use this script follow the instructions in the README.txt file 
# located in this directory. 

. ./setenv.sh 

#zone already exists? 
zonecfg -z $ZONE_NAME info > /tmp/z.$$ 2>&1 
cat /tmp/z.$$ | grep "No such zone" > /dev/null 2>&1 

if [ $? -eq 1 ] 
then 
   echo "ERROR: zone $ZONE_NAME already exists. IF you want to remove it do:" 
   echo "use zoneadm -z $ZONE_NAME halt" 
   echo "use zoneadm -z $ZONE_NAME uninstall -F" 
   echo "use zonecfg -z $ZONE_NAME delete -F" 
   exit 1 
fi 

rm -rf /tmp/z.$$ > /dev/null 2>&1 

# 1)............................... validate setenv.sh values 
if [ `expr ${ZONE_DIR} : '\(.\)'` = '/' ]; then 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

26 

   echo Using standard directory for the zone 
   #zone path exists? 
   if [ ! -d $ZONE_DIR/$ZONE_NAME ] 
   then 
      mkdir -p $ZONE_DIR/$ZONE_NAME 
      if [ $? = 1 ] 
      then 
         echo ERROR: could not create root directory 
         exit 1 
      fi 
   fi 
   MOUNTPOINT=$ZONE_DIR/$ZONE_NAME 

else 
   echo Using ZFS for the zone 
   MOUNTPOINT=`zfs get -H -o value mountpoint $ZONE_DIR/$ZONE_NAME 2>/dev/null` 

   if [ x$MOUNTPOINT = 'x' ]; then 
      echo zfs not exists. I will create $ZONE_DIR/$ZONE_NAME for you. 
      zfs create $ZONE_DIR/$ZONE_NAME 
      if [ $? -ne 0 ]; then 
         echo Failed to create $ZONE_DIR/$ZONE_NAME 
         exit 1 
      fi 
      MOUNTPOINT=`zfs get -H -o value mountpoint $ZONE_DIR/$ZONE_NAME 
2>/dev/null` 
   else 
      echo $ZONE_DIR/$ZONE_NAME filesystem already exists 
   fi 

   if [ $MOUNTPOINT = 'legacy' ]; then 
      echo Legacy mounted ZFS is not supported. Exiting. 
      exit 1 
   fi 
fi 

if [ x`ls $MOUNTPOINT` != 'x' ]; then 
   echo ERROR:Directory $MOUNTPOINT is not empty. exiting. 
   exit 1 
fi 

export MOUNTPOINT 
chmod 700 $MOUNTPOINT 

# Enabling Resource Pools 
svcadm enable svc:/system/pools:default 
svcadm enable svc:/system/pools/dynamic:default 

#/usr/local directory exists? 
if [ ! -d /usr/local ] 
then 
   mkdir /usr/local 
fi 

#special mnt point for /usr/local exists? 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

27 

if [ ! -d /opt/$ZONE_NAME/local ] 
then 
   mkdir -p /opt/$ZONE_NAME/local 
fi 

 
# 2)............................... pool creation 
# this section does not exist anymore since dynamic CPU pools is used 

if [ `expr $NUM_CPUS_MIN \* 2` -le $NUM_CPUS_MAX ]; then 
   echo WARNING: Having NUM_CPUS_MIN less then a half of NUM_CPUS_MAX is not 
recommended by Oracle. 
   echo Oracle bugs: 6309685 and 6309691 and ... 
   echo You may adjust values before running Oracle or continue at your own risk 
fi 

if [ -n "$SCHEDULING_CLASS" ]; then 
   SCHEDULING_CLASS="set scheduling-class=\"$SCHEDULING_CLASS\"" 
fi 

if [ -n "$MAX_SHM_MEMORY" ]; then 
   MAX_SHM_MEMORY="set max-shm-memory=$MAX_SHM_MEMORY" 
fi 

if [ x"$IP_TYPE" = "xEXCLUSIVE" ]; then 
   NET_IP="" 
   IP_TYPE="set ip-type=exclusive" 
else 
   NET_IP="set address=$NET_IP" 
fi 

 
# 3)............................... mounting zfs inside a zone 

MOUNT_ZFS='' 

if [ -n "$MOUNT_ZFS" ]; then 
   echo WARNING: mounting ZFS before the zone is started is not supported 
   echo ignoring MOUNT_ZFS settings 
   echo 
   #MOUNT_ZFS='' 
   TMP_MOUNT='' 
   for z in $MOUNT_ZFS; do 
      echo Changing mountpoint to legacy for $z 
      zfs set mountpoint=legacy `echo $z|awk -F= '{print $1}'` 
      TMP_MOUNT=${TMP_MOUNT}`echo $z|awk -F= '{print "\nadd fs\nset type=zfs\nset 
dir="$2"\nset special="$1"\nend\n"}'` 
   done 
   MOUNT_ZFS="$TMP_MOUNT" 
fi 

 
# 4)............................... zone creation 
perl ./create_zone_cmd.pl < zone_cmd_template.txt > /tmp/zone_commands.txt 
zonecfg -z $ZONE_NAME -f /tmp/zone_commands.txt 
echo $ZONE_NAME was configured with this information: 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

28 

echo --------------------------------------------------------- 
zonecfg -z $ZONE_NAME info 
echo --------------------------------------------------------- 
zoneadm -z $ZONE_NAME install 
zoneadm -z $ZONE_NAME boot 
echo "to finish configuring your container please run: zlogin -C $ZONE_NAME" 

Appendix B: Setting System V IPC Kernel Parameters 

Prior to the Oracle Solaris 10 OS, the System V IPC resources, consisting primarily of shared memory, 
message queues, and semaphores, were set in the /etc/system file. This implementation had the 
following shortcomings: 

• Relying on /etc/system as an administrative mechanism meant reconfiguration required a reboot. 

• A simple typo in setting the parameter in /etc/system could lead to hard-to-track configuration 
errors. 

• The algorithms used by the traditional implementation assumed statically-sized data structures. 

• There was no way to allocate additional resources to one user without allowing all users those 
resources. Since the amount of resources was always fixed, one user could have trivially prevented 
another from performing its desired allocations. 

• There was no good way to observe the values of the parameters. 

• The default values of certain tunable parameters were too small. 

In Oracle Solaris 10, all these limitations were addressed. The System V IPC implementation in Oracle 
Solaris 10 no longer requires changes in the /etc/system file. Instead, it uses the resource control 
facility, which brings the following benefits: 

• It is now possible to install and boot an Oracle database instance without needing to make changes 
to /etc/system file (or to resource controls in most cases). 

• It is now possible to limit use of the System V IPC facilities on a per-process or per-project basis 
(depending on the resource being limited), without rebooting the system. 

• None of these limits affect allocation directly. They can be made as large as possible without any 
immediate effect on the system. (Note that doing so would allow a user to allocate resources without 
bound, which would have an effect on the system.) 

• Implementation internals are no longer exposed to the administrator, thus simplifying the 
configuration tasks. 

• The resource controls are fewer and are more verbosely and intuitively named than the previous 
tunable parameters. 

• Limit settings can be observed using the common resource control interfaces, such as prctl(1) and 
getrctl(2). 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

29 

• Shared memory is limited based on the total amount allocated per project, not per segment. This 
means that an administrator can give a user the ability to allocate many segments and large segments, 
without having to give the user the ability to create many large segments. 

• Because resource controls are the administrative mechanism, this configuration can be persistent 
using project(4) and be made via the network. 

In Oracle Solaris 10, the following changes were made: 

• Message headers are now allocated dynamically. Previously all message headers were allocated at 
module load time. 

• Semaphore arrays are allocated dynamically. Previously semaphore arrays were allocated from a 
seminfo_semmns sized vmem arena, which meant that allocations could fail due to fragmentation. 

• Semaphore undo structures are dynamically allocated per-process and per-semaphore array. They are 
unlimited in number and are always as large as the semaphore array they correspond to. Previously 
there were a limited number of per-process undo structures, allocated at module load time. 
Furthermore, the undo structures each had the same, fixed size. It was possible for a process to not 
be able to allocate an undo structure, or for the process's undo structure to be full. 

• Semaphore undo structures maintain their undo values as signed integers, so no semaphore value is 
too large to be undone. 

• All facilities were used to allocate objects from a fixed size namespace, and were allocated at module 
load time. All facility namespaces are now resizable, and will grow as demand increases. 

As a consequence of these changes, the following related parameters have been removed (see Table 2). 
If these parameters are included in the /etc/system file on an Oracle Solaris system, the parameters 
are ignored. 

TABLE 2. SYSTEM PARAMETERS NO LONGER NEEDED IN ORACLE SOLARIS 10  

PARAMETER NAME BRIEF DESCRIPTION 

semsys:seminfo_semmns Maximum number of System V semaphores on the system 

semsys:seminfo_semmnu Total number of undo structures supported by the System V semaphore system 

semsys:seminfo_semmap Number of entries in semaphore map 

semsys:seminfo_semvmx Maximum value a semaphore can be set to 

semsys:seminfo_semaem Maximum value that a semaphore's value in an undo structure can be set to 

semsys:seminfo_semusz The size of the undo structure 

shmsys:shminfo_shmseg Number of segments, per process 

shmsys:shminfo_shmmin Minimum shared memory segment size 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

30 

TABLE 2. SYSTEM PARAMETERS NO LONGER NEEDED IN ORACLE SOLARIS 10  

PARAMETER NAME BRIEF DESCRIPTION 

msgsys:msginfo_msgmap Minimum shared memory segment size 

msgsys:msginfo_msgssz Size of the message segment 

msgsys:msginfo_msgseg Maximum number of message segments 

msgsys:msginfo_msgmax Maximum size of System V message 

As described above, many /etc/system parameters are removed simply because they are no longer 
required. The remaining parameters have more reasonable defaults, enabling more applications to work 
out-of-the-box without requiring these parameters to be set. 

Table 3 describes the default value of the remaining /etc/system parameters. 

TABLE 3. DEFAULT VALUES FOR SYSTEM PARAMETERS IN ORACLE SOLARIS 10  

RECOURCE CONTROL OBSOLETE TUNABLE OLD DEFAULT 

VALUE 

NEW DEFAULT 

VALUE 

process.max-msg-qbytes msginfo_msgmnb 4096 65536 

process.max-msg-messages msginfo_msgtql 40 8192 

process.max-sem-ops seminfo_semopm 10 512 

process.max-sem-nsems seminfo_semmsl 25 512 

project.max-shm-memory shminfo_shmmax 0x800000 1/4 of physical 

memory 

project.max-shm-ids shminfo_shmmni 100 128 

project.max-msg-ids msginfo_msgmni 50 128 

project.max-sem-ids seminfo_semmni 10 128 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

31 

Setting System V IPC Parameters for Oracle Installation 

Table 4 identifies the values recommended for /etc/system parameters by the Oracle Installation 
Guide and the corresponding Oracle Solaris resource controls. 

TABLE 4. RECOMMENDED VALUES FOR SYSTEM PARAMETERS WHEN RUNNING ORACLE 10G 

PARAMETER ORACLE  

REC. VALUE 

REQUIRED IN 

ORACLE SOLARIS 10 

RECOURCE CONTROL DEFAULT 

VALUE 

SEMMNI 
(semsys:seminfo_semmni) 

100 Yes project.max-sem-ids 128 

SEMMNS 
(semsys:seminfo_semmns) 

1024 No N/A N/A 

SEMMSL 
(semsys:seminfo_semmsl) 

256 Yes process.max-sem-nsems 512 

SHMMAX 
(shymsys:shminfo_shmmax) 

4294967295 Yes project.max-shm-memory 1/4 of physical 
memory 

SHMMIN 
(shmsys:shminfo_shmmin) 

1 No N/A N/A 

SHMMNI 
(shmsys:shminfo_shmmni 

100 Yes project.max-shm-ids 128 

SHMSEG 
(shmsys:shminfo_shmseg) 

10 No N/A N/A 

Since the default values are higher than Oracle recommended values, the only resource controls that 
might need to be set are project.max-shm-memory and process.max-sem-nsems. When setting 
project.max-shm-memory, set it higher than sum of SGAs of all Oracle database instances. If it is 
planned to have great number of Oracle processes (process parameter in init.ora) then consider 
increasing process.max-sem-nsems. Its value should be higher then what is planned for the process 
parameter. 

The following section details the process of setting a particular value using resource control. 

Using Resource Control Commands to Set System V IPC Parameters 

The prctl command can be used to view and change the value of resource controls of running 
processes, tasks and projects. The prctl command is invoked with the -n option to display the value 
of a certain resource control. The following command displays the value of the max-file-
descriptor resource control for the specified process: 

# prctl -n process.max-file-descriptor pid 

The following command updates the value of project.cpu-shares in the project group.dba: 

# prctl -n project.cpu-shares -v 10 -r -i project group.dba 



Oracle White Paper— Best Practices for Running Oracle Databases in Oracle Solaris Containers 

 

32 

The following commands create an Oracle project that is persistent across reboots, with a SHMMAX 
value of 32 GB and SEMMSL set to 4096: 

# projadd -c "Oracle project" group.dba 
# projmod -sK "project.max-shm-memory=(privileged,32G,deny)" group.dba 
# projmod -sK "process.max-sem-nsems=(privileged,4096,deny)" group.dba 



 

 

 

 

  

Best Practices for Running Oracle Databases in 
Oracle Solaris Containers  
June 2011, Version 1.1 
Authors: Ritu Kamboj and Roman Ivanov 
 
Oracle Corporation 
World Headquarters 
500 Oracle Parkway 
Redwood Shores, CA 94065 
U.S.A. 
 
Worldwide Inquiries: 
Phone: +1.650.506.7000 
Fax: +1.650.506.7200 
oracle.com 

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.  
This document is provided for information purposes only and the contents hereof are subject to change without notice. 
This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed 
orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. 
We specifically disclaim any liability with respect to this document and no contractual obligations are formed either 
directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any  
means, electronic or mechanical, for any purpose, without our prior written permission. 
 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their 
respective owners. 
 
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro 
Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are 
used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered 
trademark licensed through X/Open Company, Ltd. 0310 
 

 

 


