

 Using the Oracle ZFS Storage Appliance as
Storage Back End for OpenStack Cinder
An Example Architecture Using Oracle ZFS Storage Appliance
and Oracle Solaris
O R A C L E W H I T E P A P E R | D E C E M B E R 2 0 1 5

1 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Table of Contents

Introduction 3
Introducing the OpenStack Project 5

Providing a Reference Model for Cloud Services 5
Defining Cloud Deployment Models 5

Private Cloud 5
Community Cloud 6
Public Cloud 6
Hybrid Cloud 6

OpenStack Main Services Overview 6
Compute Service 7
Block Storage Service 7
Networking Service 7
Image Service 7
Object Storage 7
Identity Service 8
Dashboard Service 8

OpenStack on the Oracle Solaris Operating System 8
Architecture of the Oracle OpenStack Implementation on Oracle Solaris 9

Meeting Storage Requirements in an OpenStack Environment 10
Gaining Flexibility with the Oracle ZFS Storage Appliance Architecture 10

Storage Pool 11
Project 12
Shares 12
Data Services 12
Snapshots 12
Clones 12
Remote Replication 12
Shadow Migration 12
Data Security 13
Virus Protection 13
Encryption 13
Analytics 13

Using the Oracle ZFS Storage Appliance in an Oracle OpenStack Environment 13
Designing an OpenStack Architecture with Oracle Solaris and Oracle ZFS Storage
Appliance 14

Establishing a Network Architecture 16
Installing and Configuring Oracle OpenStack in Oracle Solaris 20

Implementing the Network Configuration 21
Setting Up Storage Network Interfaces 21
Setting Up the OpenStack Network Connections 22

Setting Up OpenStack Cinder and the Oracle ZFS Storage Appliance 24

2 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Using iSCSI as the Communication Link 24
Understanding the Role of the Oracle OpenStack ZFSSA Cinder Driver 25

Installing and Configuring the Oracle OpenStack ZFSSA Cinder Driver 28
Setting Up Network Interfaces on the Oracle ZFS Storage Appliance 28
Setting Up Storage Connections on Oracle Solaris OpenStack Nodes 29
Setting Up the Cinder Configuration File 29
Setting Up Cinder Service with Oracle ZFS Storage Appliance
Cluster Configurations 31
Using Multiple Cinder Storage Back-end Definitions 33

Administering Oracle ZFS Storage Appliance Volumes in the OpenStack
Environment 35
Best Practices for Deploying Oracle OpenStack on Oracle Solaris with
Oracle ZFS Storage Appliance 38

Planning for Growth with a Multiple Network Architecture 38
Incorporating Uniformity into the Network Design 39
Using Logical Hostnames 40
Using NTP to Synchronize OpenStack Nodes Time 40
Employing a Uniform Symmetrical Hardware Design 40
Using Configuration to Manage Storage Capacity for Various Cinder Guests 41

Use Multiple Backend Volume Definitions 41
Increase Block Storage API Service Throughput 42

Managing Volumes 43
Use Volume Labels 43

Troubleshooting Configurations 44
Troubleshooting iSCSI Connectivity 45
Troubleshooting Using Analytics 47

Appendix A: Cinder Configuration File 48
Appendix B: Oracle OpenStack on Oracle Solaris Open Issues 50
References 51

3 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Introduction
As the use of cloud computing continues to grow, so too do industry expectations for increasing
corporate spending on IT cloud implementations. The cost benefits of being able to standardize
on server hardware and software and share those resources in a more economical way within a
cloud service model are key factors for the uptake of cloud computing. Furthermore, cloud
computing offers flexibility to adapt to organizational changes, and control over critical issues like
security and capacity management.

The OpenStack flexible Cloud platform has helped with the wide adoption and deployment of
cloud computing. OpenStack offers seamless scaling for both private and public clouds.

Designing and implementing a cloud using the OpenStack software is a challenging task and
requires a thorough understanding of the requirements and needs of cloud customers/users. The
OpenStack platform is very flexible in accommodating and implementing such requirements in a
proper cloud implementation.

Cloud deployments often focus around sharing compute, network infrastructure resources and
application services. The development of the technology of providing storage capacity resources
based upon organization level Service Agreements around performance, availability, reliability,
capacity and costs has not kept up with the speed of development of modeling SLAs for compute
and network cloud services.

This paper will describe how the Oracle ZFS Storage Appliance and its data services can be
utilized to implement multi-level storage service level agreement (SLA) requirements in an
enterprise OpenStack-based cloud architecture using an Oracle Solaris SPARC compute
platform.

The described architecture provides a secure and highly available storage subsystem
architecture for OpenStack cloud implementations. Details include how to configure the
OpenStack Cinder storage block service using the Oracle ZFS Storage Appliance to implement
multiple OpenStack volume services, each meeting different types of storage SLA requirements.
These SLA requirements include use of data encryption.

A dual data path outside the OpenStack Neutron layer, between the OpenStack Compute nodes
and the Oracle ZFS Storage Appliance, is used to create a highly available, secure connection
between virtual machine (VM) instances and the storage subsystem, avoiding any possible
bottlenecks going through the OpenStack Neutron network layers.

4 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

This paper also offers best practices for fully utilizing the rich Oracle ZFS Storage Appliance
features in an OpenStack architecture.

NOTE: References to Sun ZFS Storage Appliance, Sun ZFS Storage 7000, and ZFS Storage
Appliance all refer to the same family of Oracle ZFS Storage Appliances.

5 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Introducing the OpenStack Project
The OpenStack project is an ongoing development effort to provide an open source cloud software-
computing platform that can provide to organizations cloud-computing services running on commodity
hardware. OpenStack controls and manages large pools of compute, storage and networking resources
throughout the data center. The OpenStack Foundation promotes and manages the development,
distribution, and adoption of the OpenStack cloud operating system. Many organizations, including
Oracle, support and contribute to the OpenStack project.

Providing a Reference Model for Cloud Services
Cloud computing has gained market attention. To create a common understanding and a reference model
for comparing various cloud services, the United States government's National Institute of Standards and
Technology (NIST) has described a reference model, related characteristics, service models and
deployment models for cloud computing.

NIST provides the following definition of cloud computing:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction."

Within cloud computing, NIST distinguishes three different cloud service models:

x Software as a Service (SaaS) – The capability for consumers to use the provider's applications
running on a cloud infrastructure.

x Platform as a Service (PaaS) – The capability for consumers to deploy onto the cloud
infrastructure consumer-created or acquired applications created using programming languages,
libraries, services and tools supported by the provider.

x Infrastructure as a Service (IaaS –The capability for the consumer to provision processing,
storage, networks and other fundamental computing resources, where the consumer is able to
deploy and run arbitrary software, which can include operating systems and applications.

The OpenStack cloud implementation follows the NIST IaaS services model through a set of interrelated
software services.

Defining Cloud Deployment Models
OpenStack offers several cloud deployment models, commonly known as Public, Private and Hybrid
models. NIST, however, distinguishes the following four different cloud deployment models, which all
are supported by the OpenStack cloud offering.

Private Cloud
As defined by NIST, the private cloud is provisioned for exclusive use by a single organization comprising
multiple consumers (that is, business units). It may be owned, managed, and operated by the organization,

6 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

a third party, or some combination of them, and it may exist on or off premises. Separation of data and
services between consumers is important and no access to external resources is available.

Community Cloud
NIST defines this type of cloud as an infrastructure provisioned for exclusive use by a specific community
of consumers from organizations that have shared concerns (such as mission, security requirements,
policy, and compliance considerations). It may be owned, managed, and operated by one or more of the
organizations in the community, a third party, or some combination of them, and it may exist on or off
premises.

Public Cloud
The public cloud model is at the opposite spectrum of the private cloud model and is defined by NIST as
the cloud infrastructure provisioned for open use by the general public. It may be owned, managed, and
operated by a business, academic, or government organization, or some combination of them. It exists on
the premises of the cloud provider. From a network and data separation perspective, this is the most
challenging type of cloud deployment models.

Hybrid Cloud
The hybrid cloud model is defined by NIST as the cloud infrastructure being a composition of two or
more distinct cloud infrastructures (private, community, or public) that remain unique entities but are
bound together by standardized or proprietary technology that enables data and application portability
(such as cloud bursting for load balancing between clouds).

Understanding which deployment model is going to be used in your organization helps you to understand,
define and scope security, availability and performance requirements of the envisioned cloud solution. It
will also help you to determine physical network requirements and architecture, as this paper will explore
later.

OpenStack Main Services Overview
OpenStack provides an IaaS deployment model type solution by using a set of modular services. Each
service offers an Application Programming Interface (API) that enables the services to communicate with
each other and offer public API functions for third party applications. There are a number of mandatory
core services and some optional services that can be installed, depending on the customer’s cloud
implementation requirements. The following diagram shows the most common OpenStack services.

Figure 1. OpenStack components

7 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Authentication and access control are provided by the OpenStack Identity Service (Keystone) for all other
OpenStack services. Configuring, managing and monitoring the OpenStack services is provided by the
Dashboard (Horizon) service. This is available as a Browser User Interface (BUI), enabling the
administrator’s remote access functionality.

Compute Service
The OpenStack Compute Service (Nova) manages the lifecycle of compute instances in an OpenStack
environment. It manages functions including spawning, scheduling and decommissioning of virtual
machines on demand. The compute service facilitates this management through an abstraction layer that
interfaces with supported hypervisors.

Block Storage Service
The OpenStack Block Storage Service (Cinder) provides persistent block storage to running instances for
both the Instance boot image and any specific application block storage volumes. Cinder is responsible
for managing the lifecycle of the volumes, including creation, attachment to guest instances, snapshot,
cloning and deleting of volumes. The pluggable driver architecture facilitates the creation and
management of those volumes. The Oracle-provided Cinder driver plug-in for the Oracle ZFS Storage
Appliance is the focus of this paper.

Networking Service
The OpenStack Networking Service (Neutron) provides various networking services to cloud users
(tenants) such as IP address management, Domain Name Service (DNS), Dynamic Host Configuration
Protocol (DHCP), load balancing, and security (network access rules, like firewall policies). Neutron
provides a framework for software-defined networking (SDN) that allows pluggable integration like the
Oracle Elastic Virtual Switch (EVS) plug-in for Oracle Solaris.

OpenStack Networking enables cloud tenants to manage their guest network configurations. When you
are setting up a (virtual) network architecture, pay careful attention to network traffic isolation, availability,
integrity, and confidentiality.

Image Service
The OpenStack Image Service (Glance) provides disk image management services. The Image Service
provides image discovery, registration, and delivery services to the Compute Service as needed.

Trusted processes for managing the lifecycle of disk images, as well as other data security aspects, are
required.

Object Storage
The OpenStack Object Storage Service (Swift) provides support for storing and retrieving arbitrary
unstructured data in the cloud. The Object Storage Service provides a RESTful, HTTP-based API. The
service provides a high degree of resiliency through data replication and can handle petabytes of data.
Object storage is typically used for storing large, static data objects, including media files, virtual machine
images and backup images.

8 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Identity Service
The OpenStack Identity Service (Keystone) provides an authentication and authorization service for all
other OpenStack services. The Identity Service has pluggable support for multiple forms of
authentication.

Dashboard Service
The OpenStack Dashboard (Horizon) provides a web-browser-based user interface (BUI) for both cloud
administrators and cloud tenants. This BUI enables administrators and tenants to provision, manage, and
monitor cloud resources.

OpenStack on the Oracle Solaris Operating System
The Oracle OpenStack software for Oracle Solaris is available as Oracle Solaris software packages. They
are fully integrated into the Oracle Solaris Image Package Repository, and thus provide integral release
update functionality. (See the References section at the end of this document for locations.) The packages
contain all the OpenStack services, including the following modules:

x Compute (Nova): Takes advantage of Oracle Solaris Zones, supporting both native non-global
zones and a new feature of Oracle Solaris 11.2 called Oracle Solaris Kernel Zones. Kernel Zones
enable greater isolation and independence with a separate kernel instance.

x Networking (Neutron): Uses Oracle Solaris virtual networking and the new Elastic Virtual
Switch (EVS) feature in Oracle Solaris. EVS extends network virtualization to virtual switches
and spans those virtual switches across multiple physical servers or compute nodes as if they
were a single switch.

x Block Storage (Cinder): The Oracle OpenStack for Oracle Solaris distribution contains two
Oracle block storage Cinder drivers. One supports the use of the ZFS file system on an
OpenStack Oracle Solaris node as back end for volumes managed by Cinder. The other driver
supports Oracle ZFS Storage Appliance as volume repository for Cinder. Both drivers take
advantage of ZFS's numerous capabilities, including instant snapshot and cloning, encryption,
redundancy and data integrity. The Cinder driver for the Oracle ZFS Storage Appliance option is
the focus of this white paper.

x Image Management (Glance): The Image service provides disk management services, like
image discovery, registration and delivery services to the Compute service as needed. A new form
of image archive introduced in Oracle Solaris 11.2 is called Unified Archives. This is the primary
integration point for Glance. It allows for fast creation and cloning of system images, including
virtualization, into the cloud.

x Configuration Management (RAD): The Remote Administration Daemon (RAD) is a new
feature in Oracle Solaris 11.2. This framework provides tools and a protocol for remote
administration on the operating system and is the seamless glue that is used to create new
compute nodes, configure networking, or provision storage.

9 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

x Service Management (SMF): All the OpenStack services have been integrated with the Service
Management Facility, providing fast startup and recovery should a service fail for whatever
reason.

Architecture of the Oracle OpenStack Implementation on Oracle Solaris
The OpenStack implementation on Oracle Solaris utilizes the kernel zone partitioning functionality to
create the OpenStack Guest instances. The Oracle Solaris Zones partitioning is an Operating System (OS)
virtualization method providing an isolated and secure environment for running applications. A zone
provides isolation for application execution, meaning that no interaction can occur between processes
running on different zones. Likewise, these processes have no access to physical resources of the platform
on which the zones are configured.

With the Oracle OpenStack on Oracle Solaris implementation, Oracle Solaris zone instances are used as
OpenStack guest instances and are created and administered by the related OpenStack services.

Because the Oracle Solaris Zone architecture is not using a hypervisor, zones offer a near native
performance to applications.

The following diagram illustrates the interaction between the OpenStack Nova service and the Oracle
Solaris zones. Other OpenStack services like Neutron and Cinder provide the Oracle Solaris Zone
administrative interface with the appropriate device specification for the zone configuration file of the
related zone instance.

Figure 2. Interaction of Oracle Solaris Zoning and OpenStack

Note that after an OpenStack guest instance is started, no OpenStack layers are involved on a compute
node, either in the block I/O path or in the compute resource layers. Some network traffic might flow

10 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

between the OpenStack node where the guest instance is running and the OpenStack node where the
Neutron network service is active.

Meeting Storage Requirements in an OpenStack Environment
Cloud platforms provide both Compute and Network as a Service functions with SLA-type properties to
customize the services to consumer requirements. This is not always the case for storage services in a
cloud environment. The implementation of storage SLA-type services has not kept up with the cloud
compute and network services' developments. This is especially true for block-based storage services. It is
still the cloud administrator’s responsibility to match the consumer's storage SLA requirements –like
availability, security, performance and cost – with the various low-level I/O properties – such as RAID
levels, cache settings, and type of I/O interface used – of the storage subsystems.

With the OpenStack Cinder block storage service, multiple storage back-end definitions can be created.
The Oracle Solaris ZFSSA Cinder OpenStack driver enables the administrator to set up different back-
end definitions, each definition having a specific set of I/O properties that match a certain set of storage
SLAs. For example, one definition might be customized for a storage back-end optimized for high
performance, low latency or high availability dedicated to mission-critical transactional services. Another
back-end definition can be optimized for archiving large media type files.

This Cinder driver functionality enables an Oracle ZFS Storage Appliance to be used for storage capacity
consolidation in an OpenStack cloud environment while still providing storage capacity provisioning
tailored to a variety of SLA types.

Gaining Flexibility with the Oracle ZFS Storage Appliance Architecture
The Oracle ZFS Storage Appliance combines multiple protocol connectivity, data services for business
continuity, and ease of management into a single storage appliance. The Oracle ZFS Storage Appliance
supports Network File System (NFS), Common Internet File System (CIFS), Internet Small Computer
System Interface (iSCSI), InfiniBand (IB), and Fibre Channel (FC) protocols for data access. The Oracle
ZFS Storage Appliance also supports Network Data Management Protocol (NDMP) for backing up and
restoring the data. The Oracle ZFS Storage Appliance is available either as single head or a clustered head
for high availability. Its browser-based user interface offers intuitive, easy navigation, with layered, detailed
information displays that ease management activities.

11 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Figure 3. Oracle ZFS Storage Appliance Stack

The Oracle ZFS Storage Appliance architecture utilizes the Hybrid Storage Pool (HSP) model where the
integrated direct random access memory (DRAM), flash and physical disks are seamlessly integrated for
efficient data placement. Based on the application I/O request and pattern, Oracle ZFS Storage Appliance
automatically handles the data movement among these tiers. This model ensures scalable and predictable
performance when consolidating multiple applications with different workloads onto a single Oracle ZFS
Storage Appliance.

The storage also includes a powerful performance monitoring tool called Analytics which provides details
about the performance of components such as the network, storage, file systems, and client access. The
Oracle ZFS Storage Appliance also offers a variety of RAID protections to balance capacity, protection,
and performance requirement of the applications.

Test results of industry-standard benchmarks like SPECsfs, SPC-1 and SPC-2 illustrate the superior
benefits of this architectural design, making the Oracle ZFS Storage Appliance highly cost effective.

The following features and constructs of the Oracle ZFS Storage Appliance provide the building blocks
for its high functionality and are key to its suitability to the OpenStack cloud environment. They are
provided here as a quick reference.

Storage Pool
The storage pool, similar to a volume group, is created over a set of physical disks. File systems and LUNs
are then created over the storage pool. One or more storage pools are created over the available physical
disks and flash drives for use as secondary cache are assigned. The storage pool is configured with a
RAID layout such as Mirrored, RAID-Z (single parity), RAID-Z2 (dual parity), and so on.

12 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Project
Capacity can easily be managed by grouping related file systems and/or LUNs into so-called projects.
Projects share capacity from a pool of disks. If needed, a quota can be set up for each file system so that
IT staff can easily balance capacity over various file systems without having to move them around.

A project can be considered a “consistency group.” A project defines a common administrative control
point for managing shares. All shares within a project can share common settings, and quotas can be
enforced at the project level in addition to the share level.

Shares
Shares are file systems and LUNs. They are exported over the Oracle ZFS Storage Appliance data
protocols to clients of the Appliance. File systems export a file-based hierarchy and can be accessed over
CIFS, NFS, HTTP/WebDav, and FTP. Both CIFS and NFS have file-sharing capabilities, using locking
mechanisms to prevent concurrent updates from different clients. LUNs export block-based shares and
can be accessed over iSCSI or FC. The application server needs to create a file system on a LUN. File
system shares share free capacity from the pool to which they belong. Quota can be used to limit the
amount of capacity used by a file system share or by a project. Projects and shares have compression,
encryption and de-duplication options. LUNs can be thin provisioned.

Data Services
The Oracle ZFS Storage Appliance offers a rich set of data services. Remote replication, snapshots and
cloning are key features for a complete disaster recovery (DR) and business continuity solution. For
further details, please refer to the documents listed in the Reference section of this paper.

Snapshots
The Oracle ZFS Storage Appliance has unlimited snapshot capability. Snapshots are the read-only point-
in-time copies of a file system. They are instantaneously created, initially with no space allocated. Blocks
are allocated as changes are made to the base file system (copy-on-write). Snapshots are either initiated
manually or can be automatically scheduled at specific intervals. These snapshot data sets can be directly
accessed for any backup purposes. Taking project snapshots is the equivalent of performing snapshots on
all shares within the project.

Clones
The Oracle ZFS Storage Appliance supports an unlimited number of clones. A clone is an instantaneously
created read and writable copy of a snapshot. One or more clones can be created from a single snapshot.
These clones are presented to the users as a normal file system(s). All the regular operations are allowed
on the clones, including taking a snapshot from the clone. The clones are typically used in test,
development, QA, and backup environments.

Remote Replication
Data is replicated from the primary to the secondary location, with data blocks asynchronously streamed
to the secondary location. Data replication can be set up between two nodes, a primary and secondary
site, or within the same node between two different pools. Source data is modified at the granularity of a
ZFS transaction; therefore the data is always consistent. Modified data is replicated to the secondary site,
which ensures the data at the secondary site is also consistent.

Shadow Migration

13 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

The Shadow Migration Data Service offers the ability to migrate data from any NFS volume to an NFS
volume on the Oracle ZFS Storage Appliance. Once set up, the original NFS volume is under the control
of the Oracle ZFS Storage Appliance and access to the volume is handled by the Appliance. The Oracle
ZFS Storage Appliance moves the file structure, including the ACLs, from the source location to the new
NFS volume on the Appliance without any interruption of services to the clients using the NFS volume.

Data Security
Managing and monitoring data access tasks are provided by LDAP and Active Directory (AD) services
together with functions to set up local user accounts. User access can be monitored through the extensive
Analytics functionality, with drill-down capabilities to observe user access to projects and shares.

Virus Protection
The Oracle ZFS Storage Appliance has an antivirus protection service to provide to file shares protection
against virus infection attacks.

Encryption
The Oracle ZFS Storage Appliance offers transparent data encryption for projects or individual shares
inside of projects. The Appliance offers both local key management and central key management
administration using the Oracle Key Manager (OKM) system.

Analytics
Analytics is an advanced function in Oracle ZFS Storage Appliance offering administrators information
on various storage performance statistics. It is the only storage platform offering such unique capabilities
through the DTrace function. It visualizes run-time performance statistics of the storage subsystem,
enabling quick and easy diagnosis of application storage workloads and providing valuable information for
making capacity planning decisions.

Using the Oracle ZFS Storage Appliance in an Oracle OpenStack Environment
The use of the Oracle ZFS Storage Appliance to consolidate the storage capacity required for an
OpenStack implementation has many advantages, including centralized management, with volume
management well integrated with the OpenStack Cinder functionality. For instance, both Cinder snapshot
and 'create volume from snapshot' functions take full advantage of the Oracle ZFS Storage Appliance’s
snapshot and clone data services. As previously noted, combining the option to use multiple back-end
definitions for OpenStack Cinder and using the Oracle ZFS Storage Appliance properties that define
specific volume I/O characteristics, different OpenStack volume types can be defined, each meeting
specific customer and/or application type SLAs including properties like security, availability,
performance and costs.

For an environment requiring the use of encryption, the Oracle ZFS Storage Appliance encryption service
can be used to offload the encryption burden from the OpenStack environment.

14 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Designing an OpenStack Architecture with Oracle Solaris and Oracle ZFS
Storage Appliance

The OpenStack cloud environment provides a framework to design a virtual compute and network
environment on top of a number of physical servers and a physical network infrastructure. Before setting
up the OpenStack software framework, a detailed understanding is needed on the number of virtual
servers, as well as storage, compute and network resources that are required for your particular application
environment. Because a good understanding of the OpenStack components and their interaction is a
must, it is recommended that you first set up an OpenStack sandbox environment to gain experience on
its functionality before deploying it in a production environment.

One of the most complex elements is the design and configuration of the OpenStack virtual network
using the OpenStack Neutron services.

Most OpenStack architecture examples and demos use a configuration in which only a single network
interface is used on each node. All network communication to and from the virtual compute instances as
well as internal OpenStack, SSH management, and OpenStack API use the same interface. This can
quickly lead to network bandwidth congestion and long service response times. Using only one network
interface is highly unsuitable for a production environment.

As with the traditional enterprise server network architecture, it is good practice to identify the different
types of networking traffic streams and keep them separated from each other. Company security
requirements, regulatory requirements, performance requirements and availability requirements will lead
to classification of different types of network traffic and subsequently to isolation and performance
requirements. Consider separating subnets for: strict administrative access, secure exclusive access to data
repositories by certain applications, VMs' external internet access, and OpenStack internal data traffic.

Be particularly careful to avoid creating bottlenecks or single points of failure on physical network ports
by mapping multiple virtual data streams/subnets over a single physical network.

Start by identifying the different types of network traffic in your OpenStack virtual IT infrastructure and
how each would have to be mapped on a reliable physical network to satisfy the identified network
security and performance requirements.

OpenStack distinguishes four different types of networks:

x Network traffic between VMs and networks outside the OpenStack virtual environment, like the
corporate intranet or the external worldwide internet. In OpenStack documentation, this is often
referred to as the External network.

x Network traffic between VMs themselves; in the OpenStack documentation, it is referred to as
the Guest or Tenant network.

x Network traffic used by the OpenStack framework components to manage and monitor the
virtual components within the OpenStack framework, referred to as data using the API network.

x Administrative access to the physical nodes of the OpenStack system. OpenStack documentation
refers to this type of network as the Management network.

15 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

The following figure illustrates the OpenStack network model.

Figure 4. OpenStack network model

What is missing from the OpenStack network definitions is a separate network to be used by the compute
nodes to access the storage subsystem(s) using the Cinder block storage service. In the previous diagram,
either using the management interface or the external interface would accomplish this. Neither of the two
options provides secure access to the data with data streams separated from the other data traffic
functions. In both cases, all storage I/O traffic would have to go through the Neutron layers on the
OpenStack networking node.

In the network architecture used in this paper, an extra storage network subnet – for network traffic
between VMs and the VMs' application datasets on external storage – is used as shown in the next
diagram, to separate all storage data traffic from the rest of the data networks.

16 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Figure 5. OpenStack network architecture used in this paper

In the network architecture described in this paper, the OpenStack external network function is
configured using the Data Center Network, so the OpenStack external access and OpenStack admin
access are both configured using the Data Center Network.

Based on performance, reliability and security requirements described previously, a physical infrastructure
can be designed.

Note that from the previously listed categories of data traffic, only the data traffic between VMs on the
Tenant Network remains within the virtual environment of the OpenStack architecture. In OpenStack,
networks that host traffic between VMs are referred to as Tenant or Guest networks. The network(s)
carrying the other categories of data traffic are referred to as Provider networks. Provider networks map
directly to a physical network in the data center. Thus, the physical network must already exist before an
OpenStack framework can be installed and configured. In many examples used in current OpenStack
documentation, these Provider networks are mapped on a single physical network and a single subnet
using a single network port on each OpenStack node.

Establishing a Network Architecture
The OpenStack architecture described in this paper deploys the Oracle OpenStack for Oracle Solaris on
Oracle SPARC servers with the following configured segregated networks:

17 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

x A subnet used for administrative access to each node. In this subnet, IP addresses are used to
access a node for administrative purposes, like installing or updating software packages and
performing administrative tasks on the global Oracle Solaris instance.

This subnet is also used to configure all OpenStack API-based data services. It is used to expose
both the API to users of the OpenStack cloud and the listener endpoints of the various
OpenStack services like Neutron, Keystone and Glance. If the listener endpoints cannot be
exposed for security reasons, then configure these on an isolated separate subnet.

The ILOM management connections of each node are also connected to this subnet, each with
its own IP address.

x Two physical separated subnets are used to form redundant access to the Oracle ZFS Storage
Appliance's storage subsystems. Data repositories are made available to the VM instances
through the Cinder iSCSI interface.

x A physical network to map the OpenStack tenants' subnets and route them to the data center
network so VMs can access the data center network.

The following diagram shows the physical network connections.

Figure 6. Physical network structure

Consider the following:

x When using a single physical network and a single switch for the local network, VLAN tagging
can be used to keep the two storage subnets separated. In this case, the switch used in the local
network must be able to support the VLAN tagging as used by the network set-up for the
Oracle ZFS Storage Appliance. The architecture example in this paper uses this type of
configuration.

18 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

x All network components in each OpenStack node are of the same type and are on the same
hardware I/O expansion slots.

x All network connections on each node are wired in the same way and the same network port on
each OpenStack node is configured to use the same IP subnet.

The following diagram shows where all the OpenStack software modules are installed and how the logical
IP subnets are mapped to the hardware network ports.

The OpenStack subnets used by the guest instances are mapped to the network device net1 on each
OpenStack node and the OpenStack admin subnet is mapped to the network device net0. These subnets
are configured on the OpenStack Neutron and Oracle Solaris EVS layer. The network connections from
the OpenStack guest instance to these subnets are handled by the Oracle Solaris zoning layer.

The storage subnets are configured on each OpenStack node in the Oracle Solaris global zone.

Figure 7. Network setup for example architecture

Oracle Solaris uses the EVS to implement an OpenStack Neutron L3 router, and follows the deployment
model of a single virtual provider router with private networks. In this model, each tenant can use one or
more private networks and all the tenant private networks share the same router. The EVS router is
created, owned, and managed by the data center administrator and owned by the OpenStack service
tenant. Thus, the router should not be visible in the tenant's network topology view. Furthermore, tenant
networks cannot use overlapping IPs. Thus, administrators need to create the private networks on behalf
of tenants.

By default, the EVS router prevents routing between private networks that are part of the same tenant.
That is, VMs within one private network cannot communicate with the VMs in another private network,

19 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

even though they are all part of the same tenant. You can change this behavior by changing the setting
allow_forwarding_between_networks to ‘true’ in the /etc/neutron/l3_agent.ini
configuration file and restarting the neturon-l3-agent SMF service.

The EVS router provides the tenants' VMs the connectivity to the outside world. It does this by
performing Bidirectional Network Address Translation (NAT) or Source NAT on the interface that
connects the router to the external network. Tenants that need to be accessed from the outside world can
create as many floating IPs (public IPs) as they need or as are allowed by the floating IP quota. Then
associate these floating IPs with the VMs that need access from the outside world.

More info about the use of an EVS router in an OpenStack Neutron environment can be found in the
Installing and Configuring OpenStack in Oracle Solaris document listed in the References section.

20 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Installing and Configuring Oracle OpenStack in Oracle Solaris

Before installing and configuring Oracle OpenStack on Oracle Solaris, be familiar with the specific
requirements and installation steps as documented in Installing and Configuring OpenStack in Oracle Solaris.

The installation process can be broken down into the following steps:

1. Set up physical machines.

Verify that all servers meet the minimum hardware requirements to support the required Oracle
Solaris version, as well as Oracle Solaris kernel Zone functionality. The servers must also meet
the minimum disk, RAM memory, and CPU resources requirements to host the OpenStack
services.

Install planned network Host Bus Adapters (HBAs), then connect network HBA and ILOM
ports to network switches.

2. Installing the correct Oracle Solaris version on each physical machine, set up network for Oracle
Solaris admin and ILOM access, and set up access to the Oracle Solaris pkg repository.

3. Configure and test network DNS functionality on each machine.

4. Set up the storage subsystem subnets and enable Oracle Solaris multipathing for iSCSI.

5. Install Oracle OpenStack modules as required for the OpenStack Controller/Network node and
Compute nodes. See the document Installing and Configuring OpenStack in Oracle Solaris for further
details.

6. Configure each OpenStack service by modifying the required parameters in the various related
configuration files for each OpenStack service. Wait with the configuration and startup of the
OpenStack Cinder service until the Oracle ZFS Storage Appliance has been set up as mentioned
below.

7. Set up the required OpenStack virtual Tenant (Guest) network(s) and network ports to be used
by the Oracle Solaris EVS (Elastic Virtual Switch) for subnet routing. Pay special attention to
the section ‘Configuring the Neutron L3 Agent’ in the Installing and Configuring OpenStack in Oracle

Solaris document

8. Configure the Oracle ZFS Storage Appliance with the Appliance properties and user credentials
as described in the section of this paper titled "Setting Up OpenStack Cinder and the Oracle ZFS
Storage Appliance." Configure Cinder for use of the Oracle ZFS Storage Appliance.

9. Create virtual guest instances boot images.

10. Create virtual guest instances.

Note that this paper only details configuration steps for setting up the communication between the
OpenStack nodes and the Oracle ZFS Storage Appliance and how to define back-end definitions in the
OpenStack Cinder service for the Oracle ZFS Storage Appliance. All steps required to install and
configure the various OpenStack services are described in the previously mentioned document Installing

and Configuring OpenStack in Oracle Solaris. When required, some extra information is given in this paper

21 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

specific to the example architecture in this paper. This paper focuses on the process to configure the
Cinder service for use with the Oracle ZFS Storage Appliance.

Implementing the Network Configuration
The OpenStack architecture presented in this paper uses multiple network interfaces on each OpenStack
node in order to separate network I/O for performance and security reasons. All nodes used in the
architecture described in this paper use the same number of networks ports and all are configured in the
same way.

The net0 interface is used to make the connection to the external world, so Oracle Solaris patches and
updates can easily be retrieved through the specified patch repository in the Oracle Solaris pkg utility. This
network interface must be set up during the installation and configuration of Oracle Solaris on the node.

The net1 interface is used for the OpenStack Guest virtual LAN(s). This network interface does not need
to be given an IP address.

The net2 and net3 interfaces are used to set up dual redundant network connections to the Oracle ZFS
Storage Appliance. Two independent subnets are used, each with its own respective network. The Oracle
Solaris stms multipathing feature is used to handle the dual paths connections to the iSCSI LUNs on the
Appliance.

Setting Up Storage Network Interfaces

To match the VLAN tagging that is used in the configuration of the Oracle ZFS Storage Appliance, the
following script is used to configure the net2 and net3 interfaces on each OpenStack node.

NODE_IP=$1

dladm set-linkprop -t -p mtu=9000 net2

dladm set-linkprop -t -p mtu=9000 net3

dladm create-vnic -l net2 -v 222 net222002

dladm create-vnic -l net3 -v 223 net223003

ipadm create-ip net222002

ipadm create-ip net223003

ipadm create-addr -T static -a 192.168.222.${NODE_IP} net222002/v4static

ipadm create-addr -T static -a 192.168.223.${NODE_IP} net223003/v4static

Next step is to enable Oracle Solaris multipath support for iSCSI on all OpenStack Compute nodes using
the following command:

stmsboot –e –D iscsi

Note that a change in the multipath setup requires a reboot of Oracle Solaris for it to rebuild the devices
in the /dev directory.

22 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Setting Up the OpenStack Network Connections
The OpenStack guest network access is set up on the OpenStack controller-node as part of the Neutron
installation process. Follow the process steps in the section "Installing and Configuring Neutron" from
the document Installing and Configuring OpenStack in Oracle Solaris.

Special consideration is required to assign the physical network ports to the OpenStack Guest network(s)
and the interface used for guests instances to reach the Internet. This is done by using evsadm to map a
vlan or vlan range to a network interface.

Use the following steps to set up the network connections:

1. Notify EVS which VLANs to use:

evsadm set-controlprop -p vlan-range=1,200-300

2. Specify which VLANs are mapped on which network interface by using the evsadm up-linkport
option.

root@controller-node:~#evsadm set-controlprop -p uplink-port=net1,vlan-range=200-300

root@controller-node:~#evsadm set-controlprop -p uplink-port=net0,vlan-

range=’’,flat=yes

To view the settings, use the evsadm -o all option.

root@controller-node:~#evsadm show-controlprop -o all

PROPERTY PERM VALUE DEFAULT FLAT VLAN_RANGE VXLAN_RANGE HOST

l2-type rw vlan vlan -- -- -- --

uplink-port rw net1 -- no 200-300 -- --

uplink-port rw net0 -- yes -- --

uri-template rw ssh:// ssh:// -- -- -- --

uuid r- eb0c27be-edc1-11e4-b338-7d5f11dc4417 -- -- -- -- --

vlan-range rw 200-300 -- -- -- -- --

vlan-range-avail r- 201-300 -- -- -- -- --

vxlan-addr rw 0.0.0.0 0.0.0.0 -- -- -- --

vxlan-ipvers rw v4 v4 -- -- -- --

vxlan-mgroup rw 0.0.0.0 0.0.0.0 -- -- -- --

vxlan-range rw -- -- -- -- -- --

vxlan-range-avail r- -- -- -- -- -- --

3. Set up one or more OpenStack internal Tenant subnets as described in the section "How to Create an
Internal Network" in Installing and Configuring OpenStack in Oracle Solaris.

4. Configure the Neutron L3 agent.

In this step, a virtual provider router is created and a route to the external network is established. The
Tenant subnets created in the previous step and the subnet related to the external network as created

23 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

in this step will be added to the router. The process of setting up the Neutron L3 agent is
documented in the section "How to Configure the External Network in OpenStack" in the Installing

and Configuring OpenStack in Oracle Solaris document.

Note that when there is no need to reach a guest instance from the external internet, no floating IPs
need to be set up. Setting the enable_snat option in the EVS router that was created in the
previous step is enough to give guest instances access to the external network.

The evsadm, dladm and ipadm utilities can be used to verify the network configuration on the
OpenStack controller node.

root@controller-node:~# dladm

LINK CLASS MTU STATE OVER

net1 phys 1500 up --

net3 phys 1500 up --

net0 phys 1500 up --

net2 phys 1500 up --

net222002 vlan 1500 up net2

net223003 vlan 1500 up net3

l3e4d3a277e_1_0 vnic 1500 up net0

l3ib93b59e2_d_0 vnic 1500 up net1

dh64945c23_9d_0 vnic 1500 up net1

root@controller-node:~# ipadm

NAME CLASS/TYPE STATE UNDER ADDR

dh64945c23_9d_0 ip ok -- --

 dh64945c23_9d_0/v4 static ok -- 192.168.99.2/24

l3e4d3a277e_1_0 ip ok -- --

 l3e4d3a277e_1_0/v4 static ok -- 10.xx.yy.168/23

lo0 loopback ok -- --

 lo0/v4 static ok -- 127.0.0.1/8

 lo0/v6 static ok -- ::1/128

net0 ip ok -- --

 net0/v4 static ok -- 10.xx.yy.26/23

net222002 ip ok -- --

 net222002/v4static static ok -- 192.168.222.26/24

net223003 ip ok -- --

 net223003/v4static static ok -- 192.168.223.26/24

24 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Setting Up OpenStack Cinder and the Oracle ZFS Storage Appliance
The Oracle OpenStack ZFSSA Cinder driver plug-in provides storage provisioning for the OpenStack
block volume create and manage functions by creating and managing LUNs on an Oracle ZFS Storage
Appliance.

The Oracle ZFS Storage Appliance is used to provide a central managed volume repository for the
OpenStack guest instances. Volumes are created as LUNs on the Oracle ZFS Storage Appliance and
made available to the OpenStack nodes using the iSCSI interface over the network.

The Oracle OpenStack ZFSSA Cinder driver exposes a number of Oracle ZFS Storage Appliance
properties. These properties allow for tuning LUNs specific to certain I/O workloads and security
requirements. By using the Cinder function to specify multiple back ends, each containing specific
information for volumes created with their associated back-end definition, a customizable storage
provisioning capability can be achieved. Volume are created according to specific application or
workgroup storage requirements, like transactional type workloads requiring low latency response times,
or high security storage requiring encryption and physically separate storage locations for different
workgroups. More detail on the use of multiple Cinder back-end definitions are provided later in this
paper.

It is good practice to separate the storage data traffic paths between the OpenStack nodes and the storage
subsystem from the other OpenStack network traffic. As previously described, two independent separate
IP subnets are provisioned over two physical separate networks to fulfill the data separation, security and
reliability requirements.

The creation of LUNs on the Oracle ZFS Storage Appliance and the setup of the iSCSI communication
are handled by the Oracle OpenStack ZFSSA Cinder driver that is active on the OpenStack controller
node. Specific Appliance configuration information and volume characteristics have to be specified in the
Cinder configuration cinder.conf file.

Using iSCSI as the Communication Link
iSCSI enables two nodes to exchange SCSI commands over an IP network. The iSCSI targets and
initiators are identified using unique IQNs (iSCSI Qualified Names). Block volumes on the target side are
made available as SCSI LUNs, each with a unique LUN number.

iSCSI uses TCP as a transport layer. TCP port number 3260 is reserved as a TCP listener port for the
iSCSI service at the target side.

Note that iSCSI nodes can be configured using multiple networks, targets can be made visible to those
networks by the storage subsystem, and the iSCSI initiator node can detect iSCSI targets from multiple
network interfaces. When a single LUN is made visible over multiple networks, iSCSI multipathing
software on the initiator must be used to utilize multiple paths between an initiator and target LUN.

You can add extra security by specifying CHAPS authentication, to be used when establishing an initiator-
target communication session.

25 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

So to set up communication between two nodes, the following information is needed to identify the SCSI
object:

x The SCSI node (initiator and target) DNS name or IP address

x The TCP iSCSI listener port (default 3260) at the target side

x The iSCSI IQN of the initiator and target node

x Optional authentication information using CHAPS

You can use the iscsiadm command to retrieve the relevant iSCSI information as shown in the next
diagram.

Figure 8. Relevant iSCSI info

The example shows the retrieval of the node iSCSI initiator IQN and LUNs visible from ZFSSA-data-222
to node compute-node-1 using the target IQN value used by the zfssa-data-222 storage subsystem to
export the LUNs.

Understanding the Role of the Oracle OpenStack ZFSSA Cinder Driver
The Oracle OpenStack ZFSSA Cinder driver creates and manages volumes by creating the related LUNs
on the Oracle ZFS Storage Appliance, setting the appropriate properties on the Appliance, and managing
the visibility of those LUNs to the appropriate OpenStack Compute nodes and OpenStack guest
instances on which the volumes are going to be used.

To understand the various configuration parameters and their relationships, consider the lifecycle of an
OpenStack Cinder volume. An OpenStack Cinder volume has two states: attached to an instance, or not
attached (free).

26 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

When an OpenStack Cinder volume is created, the Oracle OpenStack ZFSSA Cinder driver creates a
related LUN on the Oracle ZFS Storage Appliance. During this process, the Oracle OpenStack ZFSSA
Cinder driver sets the following iSCSI properties of the LUN on the Appliance:

x Alias for a target IQN – The Appliance automatically creates a value for the IQN. For each
target, Cinder sets the following attributes:

o IP interfaces to be used for data access to the LUN as specified in the Cinder
configuration file

o Optional CHAP authentication for the target side as specified in the Cinder
configuration file

x Target group as specified in the Cinder configuration file containing the target as created in the
previous step

x Aliases for the initiator IQNs as specified in the Cinder configuration file

x Initiator group to contain initiator IQNs as processed in the previous step

The Oracle ZFS Storage Appliance can limit an iSCSI LUN's visibility by granting access on an initiator
IQN basis. The Oracle OpenStack ZFSSA Cinder driver uses this capability to manipulate the volume’s
visibility depending on its state. In the free state, a LUN is assigned to a hidden initiator group in the
Appliance that prevents the LUN from being accessible by any initiator; that is, any OpenStack node in
the network.

Figure 9. Cinder volume and initiator group relationship

27 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

When attaching a volume to an OpenStack guest instance, the related LUN on the Oracle ZFS Storage
Appliance is made ‘visible’ to the related OpenStack guest instance. The Oracle OpenStack ZFSSA Cinder
driver does this by changing the LUN initiator group property of the LUN on the Oracle ZFS Storage
Appliance to the initiator group as specified in the Cinder configuration file. The initiator group contains
the initiator IQN(s) of the OpenStack Compute node(s) as specified in the Cinder configuration file.

The Oracle OpenStack ZFSSA Cinder driver also adds a device definition entry to the guest (Solaris zone)
configuration file on the Compute node on which the guest instance is running using the URL of the
LUN to be attached.

device:
 match not specified
 storage: iscsi://zfssa-1-data222:3260/target.iqn.1986-
03.com.sun:02:f061fc92-a2bf-41d1-adbb-b777c66d5fb1,lun.1
 id: 1

 bootpri not specified

The guest instance picks the LUN up as a local LUN in the form of /dev/(r)dsk/cxty. On the guest
instance, when a LUN is not used as a raw device, the LUN must be partitioned and a file system created
on it according to the guest OS and/or application requirements before the LUN can be used.

The Oracle OpenStack ZFSSA Cinder driver uses the Oracle ZFS Storage Appliance REST service to
monitor and administer the Oracle ZFS Storage Appliance. It is recommended to reserve a dedicated
admin IP interface on the Oracle ZFS Storage Appliance for the Oracle OpenStack ZFSSA Cinder driver
administrative functions, to avoid deteriorating response times caused by high volumes of data traffic.

Figure 10. Communication channels between OpenStack nodes and Oracle ZFS Storage Appliance

28 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

When using the Oracle ZFS Storage Appliance in a cluster configuration, setup of the communication IP
interface requires special attention. See the section "Setting Up Cinder Service with Oracle ZFS Storage
Appliance Cluster Configurations" for further details.

Installing and Configuring the Oracle OpenStack ZFSSA Cinder Driver
The Oracle OpenStack ZFSSA Cinder driver is installed as part of the Oracle OpenStack on Oracle
Solaris software bundle. Edit the Cinder configuration file /etc/cinder/cinder.conf to specify the
details of the Cinder storage back end that will be used to communicate with its related Oracle ZFS
Storage Appliance and to prepare the Appliance itself to accept communication requests from the Cinder
driver.

Details of the installation process and a description of all parameter options used by the Oracle
OpenStack ZFSSA Cinder driver are listed in its accompanying ZFSSACinderDriver.README
document. See the References section for a link to this document.

IMPORTANT: Before the installation process can be started, the Oracle ZFS Storage Appliance must
contain at least one storage pool, and the iSCSI initiator IQN of each OpenStack Compute node must be
identified.

The following tasks form the installation and configuration process for the OpenStack ZFSSA Cinder driver:

x Install and execute the Cinder workflow (cinder.akwf) on the Oracle ZFS Storage Appliance.

For details, see the ZFSSACinderDriver.README document listed in the References section.
The workflow creates an admin user to be used by the Oracle OpenStack ZFSSA Cinder driver
and enables the Oracle ZFS Storage Appliance REST service.

x Verify and set up the admin and data network interfaces on the Oracle ZFS Storage Appliance.

x Verify that all storage network connections on all OpenStack nodes are configured and
connections to the Oracle ZFS Storage Appliance can be established for both the admin and data
networks.

x Set up the Cinder configuration file and restart the Cinder services on the OpenStack controller
node.

x (Re)start the OpenStack Cinder volume service using svcadm:
root@controller-node:~# svcadm enable cinder-volume:default cinder-volume:setup

Setting Up Network Interfaces on the Oracle ZFS Storage Appliance
In the architecture used in this paper, two storage network interfaces are used, each connected to a
different subnet. To provide complete isolation between the subnets, VLAN tagging is used. This creates
two independent data paths between the OpenStack nodes and the Oracle ZFS Storage Appliance. Next
to these, an administrative interface is created on the Oracle ZFS Storage Appliance for the Cinder driver.

29 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

The following datalinks and interfaces have been created as illustrated in the following Oracle ZFS
Storage Appliance CLI session output:

zfssa-cinderadm:configuration net datalinks> show

Datalinks:

DATALINK CLASS LINKS STATE ID LABEL

igb0 device igb0 up - dl-igb0

igb222002 vlan igb2 up 222 vlan222

igb223003 vlan igb3 up 223 vlan223

zfssa-cinderadm:configuration net interfaces> show

Interfaces:

INTERFACE STATE CLASS LINKS ADDRS LABEL

igb0 up ip igb0 192.168.0.29/24 zfssa-cinderadm

igb222002 up ip igb222002 192.168.222.29/24 storage222

igb223003 up ip igb223003 192.168.223.29/24 storage223

Setting Up Storage Connections on Oracle Solaris OpenStack Nodes
When setting up storage connections on Oracle Solaris OpenStack nodes, it is highly recommended to use
the same network device on each node for the same configured subnet. Also use the same ‘number’ in the
IP address (xx.yy.zz.number) for each subnet.

Setting Up the Cinder Configuration File
The Cinder service is located on the OpenStack Controller node. As part of the Cinder service
initialization, it reads its configuration information from the file /etc/cinder/cinder.conf. This very
large configuration file contains template sections for drivers from various storage vendors as well as
multiple back-end definitions for different (or the same) storage subsystems. The Oracle OpenStack
ZFSSA Cinder driver retrieves information from this file on how to reach and configure the Oracle ZFS
Storage Appliance.

Each back-end definition defines various characteristics of the volume and storage back end so that
different volume types with different I/O characteristics can be configured. See the Best Practices section
of this paper for further details.

In the global section, named [DEFAULT], active back ends and the default back end must be specified.
Each back end starts with a [<NAME>] line.

The following table shows the mandatory properties required in each back-end definition that must be
specified for the Oracle OpenStack ZFSSA Cinder driver.

30 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

TABLE 1. REQUIRED PROPERTIES FOR EACH BACK-END DEFINITION

Properties Required setup on

Oracle ZFS Storage

Appliance

Description

volume_driver no Specify the ZFSSA Cinder driver;
cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver

san_ip yes The Appliance admin IP interface to be used by Cinder.

san_login yes A user account setup on the Appliance with privileges to
perform all Appliance admin functions by the Cinder driver.

san_password yes The password of the user account on the Appliance.

zfssa_pool yes The storage pool on the Appliance to be used to create the
OpenStack Cinder volumes.

zfssa_project no Project to be used to store the volume properties as defined
in the back-end definition section and hold all the volumes
created with this back-end definition.

zfssa_target_portal yes The IP address and port number used by the OpenStack
nodes to connect to the volumes using the iSCSI protocol.

zfssa_target_interfac
es

yes The name of one or more IP interfaces on the Appliance to
expose the volume LUNs to.

zfssa_initiator_group no Name of the initiator group to group the initiator IQNs as
specified in the next property.

zfssa_initiator(s) no The IQNs of all OpenStack node initiators to be allowed to
attach the volumes to their VMs created with this back end.

When one of the properties in the table is listed as ‘does not need to be set up,’ it means the Cinder driver
will create the property on the Oracle ZFS Storage Appliance if it is not already present. Properties that
need to be present on the Appliance for the back-end properties must be configured on the Appliance
before the Cinder volume services are (re)started on the OpenStack Controller Node.

Note: The san_ip and zfssa_target_portal can use the same IP interface of the Oracle ZFS Storage
Appliance. However, using two different IP interfaces is strongly recommended to avoid long response
times and risk of timeout errors on commands to the Appliance REST service due to high data traffic on
the same interface.

The next diagram shows the relationships between the various Oracle OpenStack Cinder ZFSSA driver
properties and the iSCSI and network properties as set up on the OpenStack nodes and the Oracle ZFS
Storage Appliance.

31 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Figure 11. Relevant iSCSI info for cinder.conf file

Note: As mentioned earlier, when a volume is created on the Oracle ZFS Storage Appliance by the Oracle
OpenStack Cinder ZFSSA driver, the volume is assigned to the already present, hidden initiator group,
com.sun.ms.vss.hg.maskAll, on the Appliance. As soon as a volume is attached to a guest instance, the
volume is moved to the initiator group as specified in the back-end definition in the cinder.conf file.

After the required changes to the cinder.conf file on the OpenStack Controller node have been
completed, restart the Cinder volume services using the svcadm command.

Setting Up Cinder Service with Oracle ZFS Storage Appliance Cluster Configurations
Using an Oracle ZFS Storage Appliance in a clustered configuration is highly recommended when high
availability and performance scaling features are important. A clustered configuration consists of two
Oracle ZFS Storage Appliance nodes. When specifying storage back-end definitions in the Cinder service
involving a cluster configuration, specific operating characteristics around the Oracle ZFS Storage
Appliance storage pools and network resources require special attention.

Network interfaces and storage pools are part of cluster resources. These resources contain objects that
are in most cases active on one cluster node at a time. In an active-active cluster configuration, a cluster
node owns the resources that it operates and manages. When a cluster node fails, the other node takes
over the resources of the failed node.

In the case of storage pools, all LUN definition and property management operations need to be executed
on the node that owns the storage pool that contain the LUNs. The Appliance IP interface objects used

32 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

to serve out the LUNs are also cluster resource objects and need to be owned by the same node that owns
the storage pool.

Therefore, both Oracle ZFS Storage Appliance IP interfaces as specified in the san_ip and
zfssa_target_portal need to be owned as resources by the Appliance node that owns the related pool
in the Cinder back-end definition. They need to be of the type ‘SINGLETON’. Refer to either the
Oracle ZFS Storage Appliance online help or the Oracle ZFS Storage Appliance Administration Guide for a
detailed description of types of cluster resources and how to configure them.

Figure 12. Configuring an Oracle ZFS Storage Appliance cluster for use with Cinder

Often a separate IP interface is reserved on each Appliance cluster node to maintain access to the node
for administrative actions, even if the other node has taken over all resources. To ensure access, the
related IP interface object is locked to a node in a ‘PRIVATE’ state.

Those interfaces are not suitable to be used as OpenStack management interfaces as specified in the
san_ip property. More information on the Oracle ZFS Storage Appliance networking functions and
features can be found in the white paper "Networking Best Practices with the Oracle ZFS Storage

33 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Appliance" on Oracle’s NAS Storage Documentation, White Papers and Solution Briefs web page noted
in the Reference section.

Using Multiple Cinder Storage Back-end Definitions
The cinder.conf file can be used to set up multiple storage back ends, each with its own property
definitions and a related Cinder driver. Multiple back-end definitions are useful for creating volume
definitions with different I/O characteristics, like volume blocksize and cache behavior settings. These
customized back-end definitions enable OpenStack administrators to provision volumes based upon
storage provisioning type requirements, such as highly available, low latency, and high security storage, or
generic workloads requiring high capacity density, or volumes for database redo log files, and so forth.
Additionally, OpenStack administrators do not need to know the specifics of the storage subsystem as
provided by the Oracle ZFS Storage Appliance in order to create volumes that behave optimally for their
particular environments.

Besides using multiple back ends to define volumes with specific I/O characteristics, the definitions can
also be used to control the placement of volumes on different physical disks by using different pools or
place volumes on different Oracle ZFS Storage Appliances.

The following table gives an overview of Oracle ZFS Storage Appliance properties that can be used in
Oracle OpenStack Cinder ZFSSA back-end definitions to specify characteristics for creating the
customized volumes.

TABLE 2. REQUIRED CINDER PROPERTIES FOR VOLUME CREATION

Cinder Property Description I/O Characteristics

zfssa_pool
Name of pool in the Appliance to be used
to create the volume.

Each pool is created according to the
specified RAID layout; select the RAID layout
optimal to the I/O profile of applications using
this pool.

zfssa_project
Name of the project to be used in the
specified pool of the Appliance. If the
project does not exist, it will be created.

Use a project to logically group volumes
together and to use volume data encryption
when required.

zfssa_lun_volblocksize
Volume block size. Default is 8k. Size can
be 512, 1k, 2k, 4k, 8k, 16k, 32k, 64k,
128k.

Select the volblock size that matches the I/O
profile requirements of the volumes.

zfssa_lun_sparse
Flag to enable sparse (thin-provisioned).
Default=False.

Enable sparse option to over provision
capacity and the average capacity of a
number of LUNs will not exceed the total
available capacity.

zfssa_lun_compression
Data compression. Default is off.
Value can be 'off, lzjb, gzip-2, gzip, gzip-9.'

Use data compression when disk space
utilization is important and the data in the
volumes are suitable for compression.

zfssa_lun_logbias
Synchronous write bias.
Value can be 'latency, throughput'.

Select logbias value matching write I/O
characteristics of a volume, latency for
transactional type I/O, throughput for large
sequential type I/O.

34 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Note that when directly creating a rpoject on the Oracle ZFS Storage Appliance, you have the option to
use data encryption. The encryption property will be applied to all volumes created within that project. In
order to use encryption, you must set up the Oracle ZFS Storage Appliance to use encryption keys, either
local on the Appliance or under the control of an Oracle Key Management (OKM) server.

Each back-end definition starts with a header containing the configuration group name of the back end
and ends as soon as a non-back-end property definition statement is encountered. The back-end group
name is not related to the property volume_backend_name. The volume_backend_name can be used
to point the Cinder volume type to the back-end definition to use when creating a volume.

[DEFAULT]

..

enabled_backends=zfssa-data,zfssa-log

default_volume_type=zfssa-data

..

[zfssa-data]

volume_backend_name=db-data

..

[zfssa-log]

volume_backend_name=db-log

..

When using multiple back-end definitions, the property enabled_backends must be set in the global
section of the cinder.conf file:

enabled_backends=zfssa-data,zfssa-log

The default volume type used is specified in the global section by:

default_volume_type=zfssa-data

The available back-end services and their status are listed as follows:

Controller-adm-node:# cinder service-list

+------------------+----------------------------------+------+----------+-------+---~/

| Binary | Host | Zone | Status | State | |

+------------------+----------------------------------+------+----------+-------+---~/

| cinder-scheduler | controller-adm-node | nova | enabled | up | ~/

| cinder-volume | controller-adm-node@zfssa-data | nova | enabled | up | ~/

| cinder-volume | controller-adm-node@zfssa-log | nova | enabled | up | ~/

+------------------+----------------------------------+------+----------+-------+----~

Different back-end group definitions can have the same name in the property volume_back_end_name.
The Cinder scheduler determines which back end is used based on scheduling properties set in the
cinder.conf file. Details can be found in the OpenStack Cloud Administrator Guide in the section
"Configure multiple-storage back ends" from docs.openstack.org.

When creating a volume, you can control which back end is used by specifying the volume type. For each
back-end definition, a relation to the volume type must be set up by creating a new volume type and a

35 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

type-key within the new type pointing to the back end. The property volume_back_end_name of the
back-end section is used for the type key.

controller-node:~# cinder type-create zfssa-data

+--------------------------------------+-----------+

| ID | Name |

+--------------------------------------+-----------+

| 19bde848-f7d8-4ae8-9679-ac2e84f09839 |zfssa-data |

+--------------------------------------+-----------+

controller-node:~# cinder type-key zfssa-data set volume_backend_name=db-data

controller-node:~# cinder extra-specs-list

+--------------------------------------+--------------+---+

| ID | Name | extra_specs |

+--------------------------------------+--------------+---+

| 19bde848-f7d8-4ae8-9679-ac2e84f09839 | zfssa-data | {u'volume_backend_name': u'db-data'} |

| 2ea3183e-be1b-407d-9318-c2e2fe0720fe | zfssa-log | {u'volume_backend_name': u'db-log'} |

+--------------------------------------+--------------+---+

controller-node:~# cinder create –-volume-type zfssa-data –-display-name my_volume1 2

+---------------------+--------------------------------------+

| Property | Value |

+---------------------+--------------------------------------+

| attachments | [] |

| availability_zone | nova |

| bootable | false |

| created_at | 2015-07-22T10:36:18.225519 |

| display_description | None |

| display_name | my_volume1 |

| encrypted | False |

| id | d0627a16-72dd-4069-aad7-c23892919379 |

| metadata | {} |

| size | 2 |

| snapshot_id | None |

| source_volid | None |

| status | creating |

| volume_type | zfssa-data |

+---------------------+--------------------------------------+

controller-node:~#

Administering Oracle ZFS Storage Appliance Volumes in the OpenStack
Environment
To create and manage volume types in the OpenStack environment, use either the Cinder and Nova
command line utilities or the OpenStack Horizon network BUI interface.

36 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Existing and available volumes and their status can be viewed from the Horizon volumes pane seen in the
following figure.

Figure 13. Horizon pane showing volume status information

You can also create and delete volumes in the Horizon interface. When creating a new volume, specify its
type and size in the Horizon Create Volume dialog window, as seen in the following figure.

37 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Figure 14. Horizon pane to create a volume

The ZFSSA Cinder iSCSI driver supports the following additional Cinder volume operations:

x Extend Volume

x Create Snapshot

x Delete Snapshot

x Create Volume from Snapshot

x Attach Volume to Guest Instance

x Detach Volume from Guest Instance

x Create Bootable Volume – Creating a bootable volume requires the existence of a Glance image
volume. When creating a new OpenStack guest instance, the contents of this image volume is
used to download the boot image from the Glance volume repository onto the newly created
volume in the Cinder volume repository.

x A typical cinder CLI command for this task would take the following format:
cinder create –image-id <glance-im-id> --display-name=mytest --volume-type

<myvolumetype>

38 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

The Cinder snapshot-related commands fully utilize the Oracle ZFS Storage Appliance snapshot and
clone functions, providing a virtual instantaneous access to volumes created using the Cinder snapshot
and 'create volume from snapshot' commands.

Note: Cinder volume Attach and Detach operations always require a reboot of the related guest instance.

The Cinder CLI application provides extensive information on its available CLI options; invoke it by
using help as an argument.

Best Practices for Deploying Oracle OpenStack on Oracle Solaris with
Oracle ZFS Storage Appliance
The following recommendations provide best practices and considerations for designing and configuring
your OpenStack Cinder service architecture using Oracle Solaris and Oracle ZFS Storage Appliance.

Planning for Growth with a Multiple Network Architecture
An OpenStack configuration can be started with just one hardware node or a single controller node and a
couple of compute nodes using a single network. However it make sense to plan for a larger scale
deployment and plan to use multiple networks as described in this document. OpenStack uses virtual
network elements to build a logical network infrastructure. This abstracts the network architecture from
the physical network transport elements, like host network connections and physical cabling. Care must
be taken to not oversubscribe the physical network elements by allocation to many logical data streams on
a single physical element. In deployments involving multiple physical OpenStack nodes, it is important to
plan to use multiple physical network connections. Other reasons for using multiple network connections
and/or subnets are data security, availability, and reliability.

Many factors need to be considered before starting a network design incorporating storage subsystem data
traffic. Key elements to scope according to customer and application(s) requirement are:

� Reliability/Availability

� Scalability/Performance

� Security

� Manageability

� Available budget for both capital investment and operational costs

Reliability/Availability

The first step to take is to determine the business requirements and translate those into IT-specific
requirements. Reliability and Availability information can be retrieved from a Business Continuity (BC)
plan and derived from the Service Level Agreements (SLAs) between the IT organization and the various
business departments in the company.

39 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Use the information from scoping the listed requirements to find the right balance between solution costs
and the cost impact of loss of services that is acceptable for the business. It is equally important to keep
all involved groups in the loop so that agreed-upon expectations are maintained and verified.

Avoid making designs too complex, or meant to solve problems that do not exist. Put yourself in the
position of support engineers who have been called out of bed at 4 a.m. on a weekend to deal with a
major downtime escalation. They must be able to understand the design in order to properly troubleshoot
it.

Scalability/Performance

As in all virtual network environments, the physical network underneath the virtual network must be able
to cope with the required connections and data bandwidth requirements on the virtual network
architecture. The physical network design must be planned for further expansion and care must be taken
to avoid bottlenecks on any of the components in the physical network design. In this regard, the key
components to be considered are the OpenStack node the network service is running on and its related
network HBAs.

Security

Customer IT security requirements, legal and/or (Government) regulatory requirements may dictate the
use of different (physical) networks for data and administrative purposes. Both the OpenStack software
architecture and the Oracle ZFS Storage Appliance offer various options to separate various data streams.
The ILOM (Integrated Lights Out Manager) access feature of the Solaris SPARC servers and the Oracle
ZFS Storage Appliance node ILOM feature offers strict and secure separation between administrative
access and normal data production access of the hardware. It requires a separate network connection into
the network used for strict administrative access.

Access control and authentication to volumes located on the Oracle ZFS Storage Appliance can be
realized using the iSCSI initiator and target group properties in the Cinder configuration file and using the
iSCSI CHAP authentication function.

Manageability

Separating different types of network traffic makes it easier to manage, and monitor network utilisation
and identify potential bottlenecks in the infrastructure.

Incorporating Uniformity into the Network Design

The Oracle Solaris Operating system enumerates network adapters as netxx in order of detection during
the kernel boot process. Link names used by the kernel are based on type of network HBAs used.

Use the same type of network adapters in each hardware node. Be sure to place them in the same option
slots on the motherboard so that the interface port numeration in the kernel and device link-names are
always the same on each OpenStack node.

40 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Configure each network adapter port on each server to the same subnet, keeping a uniform network
configuration over all OpenStack nodes. This way it is much easier to configure the Oracle Solaris EVS
virtual switch setup.

Using Logical Hostnames

During the OpenStack installation process, many of its components' configuration files have to be
modified. Quite often the network access information needs to be specified. In many examples and demo
scripts the node’s IP address is used. It is highly recommended that you do not use IP addresses wherever
possible. Use the node-name instead and use either network DNS or /etc/hosts for name resolution. This
makes configuration files easier to read and avoids having to administrate IP addresses in many places in
the infrastructure.

Before starting the OpenStack installation proces, make sure IP name resolution is set up and properly
functioning.

Also make sure to specify the node-name associated with the right subnet for the required configuration
information. Most networking access information for OpenStack nodes needed in their configuration files
are node-names associated with the administrative subnet.

Many OpenStack processes store critical resource information in a central database structure on the
Controller node. Granted privileges of all OpenStack services is also stored in that database as part of the
OpenStack installation process. Use the OpenStack controller admin node-name for this. Using an IP
address will make it very hard to change the configuration information in that database without detailed
knowledge of the database layout and related commands to change the info.

Using NTP to Synchronize OpenStack Nodes Time

It is important to keep system time clocks on each OpenStack node in sync with each other. For instance,
for monitoring and debugging purposes it is essential that the time stamps used for logging events on one
node match similar event loggings on another host.

Use the Oracle Solaris NTP client functionality to ensure time synchronization among all OpenStack
nodes. Setting up the NTP client is described in the ‘Installing and Configuring OpenStack in Oracle Solaris’
manual.

Employing a Uniform Symmetrical Hardware Design

Where possible, use the same type of server for all nodes, each with exactly the same hardware
configuration. Using the same Host Bus Adapters (HBAs) in the same HBA slots offers multiple
advantages:

x Simplifies swapping servers in case of a complete server failure.

x Requires only one type of server hardware to be kept as spare stock.

x Eases troubleshooting software problems, as references to various objects like network ports and
local disk(s) will always be the same on each OpenStack node.

41 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Using Configuration to Manage Storage Capacity for Various Cinder Guests
When managing storage capacity for the various guest instances in the OpenStack environment, follow
the OpenStack Project/Tenant and User management model. Align the Appliance project property with
the OpenStack project property to logically separate capacity used by different groups in the organization.
Do likewise with the Appliance target-group property to create different target groups for different
projects.

For larger configurations, use a combination of Appliance pool and project properties, to logically
organize and separate volumes on the Oracle ZFS Storage Appliance. Use the pool RAID properties to
select the appropriate data availability level and I/O characteristics required for a specific group of
OpenStack guests.

If OpenStack compute nodes are separated in different groups for different types of OpenStack guest
environments, use the Appliance target group and initiator group to restrict the visibility of volumes to
the OpenStack nodes within just that type of group.

Use Multiple Backend Volume Definitions
As previously discussed, Cinder OpenStack back-end definition specifies the Oracle ZFS Storage
Appliance pool, project, iSCSI access properties, and specific volume characteristic properties that are
used. By using multiple back-end definitions, you can logically organize volumes by workgroups, I/O
characteristics, and restricted visibility (among other constructs).

Consider the following for each logical organizational function.

Organize by OpenStack user/organizational workgroups.

Use the Oracle ZFS Storage Appliance pool properties to physically separate OpenStack volumes within
the Appliance into a certain disk group. Use the raid type option of the pool to match the data availability
requirements for a specific workgroup.

To further control access restrictions and volume visibility, use the Appliance targetgroup and
initiatorgroup properties.

Further data set separation can be implemented by using multiple Oracle ZFS Storage Appliances.
Separation per Appliance can be used to separate different workgroup storage capacity by specifying a
different Appliance in the back-end san_ip and zfssa_target_portal property for each back end.

Note that the use of multiple pools must be carefully considered. The Oracle ZFS Storage Appliance uses
SSD drives as a secondary data cache system. They are allocated on a per-pool basis. This implies that the
highest cache utilization is achieved when as many disks in the subsystem as possible share the same cache
devices. Spreading the SSD devices over different pools reduces overall secondary cache utilization.

42 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Organize by I/O characteristics.

Different types of I/O application profiles benefit from tuning the volume block size and the Oracle ZFS
Storage Appliance cache behavior for a volume by tuning the Oracle OpenStack Cinder ZFSSA driver
properties zfssa_lun_volumeblocksize and zfssa_lun_logbias.

For instance, random transactional type I/O profiles requiring low latency response benefit from smaller
volume (LUN) block sizes and cache optimization set for latency. Logging type I/O profiles benefit from
volumes using a larger block size and cache optimization set for throughput. By creating different back-
end definitions for each, the preferred type of characteristics can be selected when creating a volume by
choosing a specific volume-type related to the required back-end.

Organize by access restrictions and/or data separation.

The Oracle OpenStack Cinder ZFSSA zfssa_target_group and zfssa_initiator_group properties
can be used to restrict access to certain OpenStack Compute nodes. Note that at least one iSCSI initiator
value must be specified in the zfssa_initiator property for the zfssa_initiator_group to be
created on the Appliance by the Cinder driver.

For information on how to configure multiple Cinder back ends, see the section "Using Multiple Cinder
Storage Back-end Definitions" elsewhere in this paper.

Increase Block Storage API Service Throughput
The OpenStack Cinder API service by default runs as one process. This default behavior limits the
number of API requests that the Cinder Block Storage service can process at any given time. To increase
the API request throughput, increase the number of Cinder API service processes. In the
/etc/cinder/cinder.conf file, change the following property to the required number of threads:

Number of workers for OpenStack Volume API service. The

default is equal to the number of CPUs available. (integer

value)

osapi_volume_workers=4

The OpenStack Cinder service is one of a number of OpenStack services for which a number of so-called
worker threads – including Keystone, Nova, Neutron, Heat and Glance – can be specified. When using
the default for each (not specifying any value in the configuration file of the service) the related service
spawns as many instances as there are virtual CPU cores on the server. This is not a workable situation. So
the total number of worker threads of all OpenStack services needs to be carefully balanced to prevent
oversubscribing the total amount of available CPU resources.

Use the command psrinfo –pv to determine the number of CPU cores and virtual processors
supported by the Oracle server.

Controller-adm-node:~# psrinfo –pv

The physical processor has 8 cores and 64 virtual processors (0-63)

43 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

….

 SPARC-T4 (chipid 0, clock 2848 MHz)

Note that the Cinder API service only deals with administrative data traffic between the Oracle
OpenStack ZFSSA Cinder driver and the Oracle ZFS Storage Appliance and not with the actual data
traffic. The value for the osapi_volume_workers is influenced by the number of Oracle ZFS Storage
Appliances used in the architecture and the expected level of Cinder volume administrative commands. A
value between 2 for small environments and 8 for a very large environment is recommended.

The OpenStack service Keystone is probably the most important service when tuning the number of
worker threads. Note that increasing the number of OpenStack services worker processes also increases
the number of connections to the SQL database used by OpenStack to store status and configuration
information. When experiencing any related SQL connect errors in OpenStack log files, check the
max_connection parameter in the SQL environment setup. Currently its default value is 151. You
might need to increase this value if you increase the number of worker threads.

mysql> show variables like '%connections%';

+----------------------+-------+

| Variable_name | Value |

+----------------------+-------+

| max_connections | 151 |

| max_user_connections | 0 |

+----------------------+-------+

Managing Volumes
The OpenStack Nova Service creates and manages guest instances. When Nova creates a new instance, it
uses an ephemeral disk to create a guest VM OS boot and root partition. An ephemeral disk is purged and
deleted when the instance is terminated. This also includes all application data on that volume. So create
separate volumes for important application data that needs to be kept or reused by other instances.

Use Volume Labels
After a volume is created and attached to an OpenStack guest instance, it still needs to be initialized.
When volumes are used as raw device by an application on the guest instance, the application takes care
of that step.

When the volume is going to be used as a block device, you need to initialize the volume by partitioning
it, typically in two steps:

x Creating one or more partitions on the volume (LUN from the operating system perspective)
using the Solaris format command

x Creating an initial file-system structure on those partitions.

44 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Special consideration should be given to the alignment of the partition to the logical block size
(volblocksize of a LUN on the appliance) and the alignment of the file system structure to the partition.
See Oracle’s white paper on this topic, ‘Aligning Partitions to Maximize Storage Performance’.

When creating a ZFS file-system, the zpool create function can take care of the creating a properly
aligned partition and the file-system structure in one step. Specify the LUNs raw device name(s) in the
CLI zpool create command.

When creating partitions on a LUN it is good practice to create a unique label on each LUN to make it
easier to identify then.

The format utility shows the device name, its capacity and the associated label with the LUN for easy
identification:

compute-node1: #format

0. c0t5000CCA016B14590d0 <HITACHI-H109030SESUN300G-A31A-279.40GB> solaris

 /scsi_vhci/disk@g5000cca016b14590

 /dev/chassis/SYS/HDD4/disk

1. c0t600144F0AE323ECA0000559881E30043d0 <SUN-ZFS Storage 7330-1.0-4.00GB> sales-boot

 /scsi_vhci/ssd@g600144f0ae323eca0000559881e30043

3. c0t600144F0E17D38F300005570337B000Dd0 <SUN-ZFS Storage 7120-1.0-20.00GB> sales-data

 /scsi_vhci/ssd@g600144f0e17d38f300005570337b000d

4. c0t600144F0E17D38F3000055801909001Fd0 <SUN-ZFS Storage 7120-1.0-34.00GB> eng-boot

 /scsi_vhci/ssd@g600144f0e17d38f3000055801909001f

5. c0t600144F0E17D38F30000558152A10020d0 <SUN-ZFS Storage 7120-1.0-35.00GB> eng-data

 /scsi_vhci/ssd@g600144f0e17d38f30000558152a10020

6. c0t600144F0E17D38F30000555CA6D4001Dd0 <SUN-ZFS Storage 7120-1.0-20.00GB> mytst

 /scsi_vhci/ssd@g600144f0e17d38f30000555ca6d4001d

Troubleshooting Configurations
The OpenStack environment is complex and difficult to troubleshoot. Many OpenStack components log
events and errors into a log file. Normally, log files are located in /var/svc/log and
/var/log/<openstackcomponent>. Note, however, that you can specify a different location for log
files in their respective component's configuration files.

Start with checking the Oracle Solaris Service Management status of the OpenStack component services
by using the svcs –xv command. If a service failed to start, its corresponding log file is listed and should
be checked for further details.

You can find detailed OpenStack troubleshooting information in the Installing and Configuring OpenStack in

Oracle Solaris document. Also check the ‘Known Limitations’ chapter in that document.

Access of OpenStack Guest instances to the OpenStack volumes is directly handled by the Oracle Solaris
Zoning functions and the iSCSI stack in the Oracle Solaris global zone. The architecture in this document
uses a network setup to access the storage subsystems that bypasses the OpenStack Neutron gateway to
external network function to avoid any I/O bottlenecks.

http://docs.oracle.com/cd/E36784_01/html/E54155/knownissues.html#scrolltoc

45 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Troubleshooting iSCSI Connectivity
As described earlier, each OpenStack node needs to be configured to connect to the storage IP subnets.
In cases of volume access issues, verify the storage IP network connectivity on the related OpenStack
compute node by using the ping and traceroute commands. For example:

compute-adm-1:~# ping 192.168.222.29

192.168.222.29 is alive

compute-adm-1:~# traceroute 192.168.222.29

traceroute: Warning: Multiple interfaces found; using 192.168.222.25 @ net222002

traceroute to 192.168.222.29 (192.168.222.29), 30 hops max, 40 byte packets

 1 zfssa-1-data222 (192.168.222.29) 0.171 ms 0.096 ms 0.089 ms

compute-adm-1:~#

Note that the output of traceroute also shows the route used to the storage subsystem and should be a
route within the 192.168.222.0 subnet.

If the command output indicates network connectivity issues, use the dladm command to check if the
network port is physically connected to a network:

Compute-adm-1:~# dladm

LINK CLASS MTU STATE OVER

net0 phys 1500 up --

net1 phys 1500 unknown --

net2 phys 9000 up --

net3 phys 9000 up --

net222002 vnic 9000 up net2

net223003 vnic 9000 up net3

Note that the ports used for the storage subnets are set up to use an MTU size of 9000. To verify that
large packets travel through the network without being broken up, use the ping command to specify a
packet size, like ping –s –v 192.168.222.29 9000.

Next, verify what iSCSI targets and target devices have been detected using the iscsiadm command. In
large environments, this may show many iSCSI target IQNs and LUNs. To limit the iSCSI LUNs to the
Oracle ZFS Storage Appliance you want to check, specify the configured iSCSI with the iscsiadm –S
option.

The Appliance's Edit iSCSI Target window lists the target name and target IQN. For example:

46 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Figure 15. iSCSI target definitions shown in Oracle ZFS Storage Appliance iSCSI target window

All LUNs exposed through this target are visible over the two network interfaces igb222002 and
igb223003 on the Appliance that have been connected to the two storage subnets. The iscsiadm
command confirms the LUN is visible on the compute-node-1 over the two storage subnets.

Compute-adm-1:~# iscsiadm list target -S iqn.1986-03.com.sun:02:f061fc92-a2bf-41d1-adbb-

b777c66d5fb1

Target: iqn.1986-03.com.sun:02:f061fc92-a2bf-41d1-adbb-b777c66d5fb1

 Alias: 0_Openstack-z1

 TPGT: 3

 ISID: 4000002a0000

 Connections: 1

 LUN: 0

 Vendor: SUN

 Product: ZFS Storage 7120

 OS Device Name: /dev/rdsk/c0t600144F0E17D38F30000557EB40A001Dd0s2

Target: iqn.1986-03.com.sun:02:f061fc92-a2bf-41d1-adbb-b777c66d5fb1

 Alias: 0_Openstack-z1

 TPGT: 2

 ISID: 4000002a0000

 Connections: 1

 LUN: 0

 Vendor: SUN

 Product: ZFS Storage 7120

 OS Device Name: /dev/rdsk/c0t600144F0E17D38F30000557EB40A001Dd0s2

Use the command mpathadm to retrieve further details on the multipath configuration of the LUNs.

47 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Troubleshooting Using Analytics
The Analytics function from the Oracle ZFS Storage Appliance can be used to:

x Check and analyze the network traffic between the Appliance and the OpenStack nodes.

x Check and understand the nature of the I/O load in terms of block sizes used and type of I/O
patterns, such as sequential versus random. Understanding I/O load profiles helps to determine
the settings of back-end properties like zfssa_lun_logbias and zfssa_lun_volblocksize.

x When using multiple pools, check on load distribution among pools.

The following figure shows a screen capture of analytics displaying the iSCSI I/O load, broken down by
LUN, by client, and by network device. Multipathing has been used and Analytics shows how the I/O
load is distributed over the two Oracle ZFS Storage Appliance interfaces and the two initiators from the
client.

Figure 16. Oracle ZFS Storage Appliance Analytics function showing LUN load balancing over two iSCSI network path

48 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Appendix A: Cinder Configuration File
The following listing shows part of the /etc/cinder/cinder.conf file that is relevant to the ZFSSA
Cinder driver as used for the architecture described in this paper. For a detailed description of the ZFSSA
Cinder driver properties and its syntax, see the ZFSSACinderDriver.README file.

In cinder.conf default section:
[DEFAULT]
Default volume type to use (string value)
default_volume_type=zfssa-data

A list of backend names to use. These backend names should
be backed by a unique [CONFIG] group with its options (list
value)
enabled_backends=zfssa-log,zfssa-data,zfssa-images,zfssa-mpath,zfssa-test
Always good to set the ‘global’ value of the cinder driver to ZFSSA too
volume_driver = cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Start of Cinder backends used on Oracle ZFS Storage Appliance
Options defined in Cinder.volume.drivers.zfssa.zfssaiscsi

[zfssa-images]
volume_backend_name=os-images
volume_driver = cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver
san_ip = zfssa-admin-node1
san_login = OpenStackAdmin
san_password = verysecret
zfssa_pool = pool0
zfssa_project = 0_OpenStack-images
zfssa_initiator_group = 0_Openstack-compute-group1
zfssa_initator=iqn.1986-03.com.sun:01:0010e03d62b0.5527f3e4,iqn.1986-
03.com.sun:01:0010e03aa278.55281b09
zfssa_target_group = 0_Openstack-z1
zfssa_target_portal = zfssa-1-data222:3260
zfssa_target_interfaces = igb222002,igb223002
zfssa_lun_volblocksize = 8k
zfssa_lun_logbias = latency

[zfssa-log]
volume_backend_name=db-log
volume_driver = cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver
san_ip = zfssa-admin-node1
san_login = OpenStackAdmin
san_password = verysecret
zfssa_pool = pool0
zfssa_project = 0_OpenStack-log
zfssa_initiator_group = 0_Openstack-compute-group2
zfssa_initator=iqn.1986-03.com.sun:01:0010e03d62b0.5527f3e4,iqn.1986-
03.com.sun:01:0010e03aa278.55281b09
zfssa_target_interfaces = igb222002,igb223002
zfssa_target_group = 0_Openstack-z2
zfssa_target_portal = zfssa-1-data222:3260
zfssa_lun_volblocksize = 128k
zfssa_lun_logbias = latency

[zfssa-data]
volume_backend_name=db-data
volume_driver = cinder.volume.drivers.zfssa.zfssaiscsi.ZFSSAISCSIDriver
san_ip = zfssa-admin-node1
san_login = OpenStackAdmin
san_password = verysecret
zfssa_pool = pool0
zfssa_project = 0_OpenStack-1j-data
zfssa_initator=iqn.1986-03.com.sun:01:0010e03d62b0.5527f3e4,iqn.1986-
03.com.sun:01:0010e03aa278.55281b09
zfssa_initiator_group = 0_OpenStack-compute-group3
zfssa_target_group = 0_OpenStack-z3
zfssa_target_interfaces = igb222002,igb223002
zfssa_target_portal = zfssa-1-data222:3260
zfssa_lun_volblocksize = 8k
zfssa_lun_logbias = throughput

https://openstack.java.net/ZFSSACinderDriver.README

49 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

End ZFSSA +++++++++++++++++++++++++++

50 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

Appendix B: Oracle OpenStack on Oracle Solaris Open Issues
As of the time of this whitepaper's publish, the following bugs were open. Each of these bugs can be dealt
with as explained for each mentioned bug. Software versions used in this document:

x Oracle Solaris 11.3 and Oracle Solaris development version 12

x Oracle OpenStack Juno release

x Oracle OpenStack ZFSSA Cinder driver version 1.0 as delivered with Oracle OpenStack Cinder
package for Oracle Solaris

TABLE 3. BUGS ENCOUNTERED IN ORACLE OPENSTACK FOR ORACLE SOLARIS 11.3

Bug Number Issue Impact Workaround

21952273 Default value in cinder.conf
file of
volume_dd_blocksize=1M
not supported by Oracle Solaris
dd utility.

Issue causes direct failure of cinder
command to create a cinder volume
from a Glance image.

Use ‘volume_dd_blocksize=1048576’
instead of ‘volume_dd_blocksize=1M in
the cinder.conf file.

21909435 dd utility fails on not having
write privileges on target device

When issuing a cinder create volume
from image command, the command
fails because dd utility does not have
the proper privileges to write to the
created cinder volume.

Use cinder-volume:solaris:cmd:
RO::/usr/bin/dd:privs=file_dac_
read;uid=0 in the
/etc/security/exec_attr.d/cloud
:openstack:cinder file.

TABLE 4. BUGS ENCOUNTERED IN ORACLE ZFS STORAGE APPLIANCE CINDER DRIVER VERSION 1.0

Bug Number Issue Impact Workaround

21951996 ZFSSA property
zfssa_target_portal does
not always accept logical node
name

Impact: Using IP addresses in
OpenStack config files is very
undesirable as target_portal info
is stored as part of metadata of
volumes, making it impossible to
change IP addresses of nodes at
a later stage.

Specify IP address of Appliance
data port instead of node/host
name in
zfssa_target_portal
property for each back-end
definition in cinder.conf file
zfssa_target_portal =
192.168.222.29:3260

21894294 No initiator group created on
appliance when no
zfssa_initiator specified or
contains syntax error

Impact: Creating undesired effect
of a volume assigned to the
Appliance ‘default’ initiatorgroup
during volume attach operation

Always specify a
‘zfssa_initator’ property for
each cinder back-end in the
cinder.conf file

21909542 error when using same initiator
in different back-end definitions
on same Appliance

Impact: Same initiator value for
initiator property cannot be used
in different back-end definitions
with different initiatorgroup
names on same Appliance.

Manually create the required
initiator groups on the Appliance
and manually populate them with
the required initiators

51 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

References
x Oracle ZFS Storage Appliance Product Information

http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html

x Oracle ZFS Storage Appliance White Papers and Subject-Specific Resources
http://www.oracle.com/technetwork/server-storage/sun-unified-
storage/documentation/index.html

Recommended related whitepapers:

x "Networking Best Practices with the Oracle ZFS Storage Appliance"

x "Aligning Partitions to Maximize Storage Performance"

x Oracle ZFS Storage Appliance Document library
http://docs.oracle.com/cd/E51475_01/index.html

x The Oracle ZFS Storage Appliance Administration Guide is also available through the Oracle ZFS
Storage Appliance help context.
The Help function in Oracle ZFS Storage Appliance can be accessed through the browser user
interface.

x README file for Oracle OpenStack ZFSSA Cinder driver for Oracle ZFS Storage Appliance
https://openstack.java.net/ZFSSACinderDriver.README

x OpenStack Configuration Reference Manual, Oracle ZFSSA iSCSI Driver in Volume Drivers
Section
http://docs.openstack.org/juno/config-reference/content/zfssa-volume-driver.html

x Installing and Configuring OpenStack in Oracle Solaris 11.2
http://docs.oracle.com/cd/E36784_01/html/E54155/index.html

x Oracle Solaris OpenStack on OTN
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/openstack-
2135773.html

x Getting started with OpenStack on Oracle Solaris 11
http://www.oracle.com/technetwork/articles/servers-storage-admin/getting-started-openstack-
os11-2-2195380.html

x Download OpenStack Unified Archive
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/unified-archives-
2245488.html

x Download Oracle Solaris 11
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/

x OpenStack documentation repository
http://docs.openstack.org

x The NIST Definition of Cloud computing, Publication 800-145
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html
http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
http://docs.oracle.com/cd/E26765_01/index.html
http://docs.oracle.com/cd/E51475_01/index.html
https://openstack.java.net/ZFSSACinderDriver.README
http://docs.openstack.org/juno/config-reference/content/zfssa-volume-driver.html
http://docs.oracle.com/cd/E36784_01/html/E54155/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/openstack-2135773.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/openstack-2135773.html
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/openstack-2135773.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/getting-started-openstack-os11-2-2195380.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/getting-started-openstack-os11-2-2195380.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/getting-started-openstack-os11-2-2195380.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/unified-archives-2245488.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/unified-archives-2245488.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/unified-archives-2245488.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/
http://docs.openstack.org/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

52 | Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder

• NIST Cloud Computing Reference Architecture

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615

Using the Oracle ZFS Storage Appliance as Storage Back End for OpenStack Cinder
December 2015
Author: Peter Brouwer, Application Integration Engineering

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction 3
	Introducing the OpenStack Project 5
	Providing a Reference Model for Cloud Services 5
	Defining Cloud Deployment Models 5
	Private Cloud 5
	Community Cloud 6
	Public Cloud 6
	Hybrid Cloud 6

	OpenStack Main Services Overview 6
	Compute Service 7
	Block Storage Service 7
	Networking Service 7
	Image Service 7
	Object Storage 7
	Identity Service 8
	Dashboard Service 8

	OpenStack on the Oracle Solaris Operating System 8
	Architecture of the Oracle OpenStack Implementation on Oracle Solaris 9
	Meeting Storage Requirements in an OpenStack Environment 10
	Gaining Flexibility with the Oracle ZFS Storage Appliance Architecture 10
	Storage Pool 11
	Project 12
	Shares 12
	Data Services 12
	Snapshots 12
	Clones 12
	Remote Replication 12
	Shadow Migration 12
	Data Security 13
	Virus Protection 13
	Encryption 13
	Analytics 13

	Using the Oracle ZFS Storage Appliance in an Oracle OpenStack Environment 13
	Designing an OpenStack Architecture with Oracle Solaris and Oracle ZFS Storage Appliance 14
	Establishing a Network Architecture 16
	Installing and Configuring Oracle OpenStack in Oracle Solaris 20
	Implementing the Network Configuration 21
	Setting Up Storage Network Interfaces 21
	Setting Up the OpenStack Network Connections 22

	Setting Up OpenStack Cinder and the Oracle ZFS Storage Appliance 24
	Using iSCSI as the Communication Link 24
	Understanding the Role of the Oracle OpenStack ZFSSA Cinder Driver 25
	Installing and Configuring the Oracle OpenStack ZFSSA Cinder Driver 28
	Setting Up Network Interfaces on the Oracle ZFS Storage Appliance 28
	Setting Up Storage Connections on Oracle Solaris OpenStack Nodes 29
	Setting Up the Cinder Configuration File 29
	Setting Up Cinder Service with Oracle ZFS Storage Appliance Cluster Configurations 31
	Using Multiple Cinder Storage Back-end Definitions 33
	Administering Oracle ZFS Storage Appliance Volumes in the OpenStack Environment 35
	Best Practices for Deploying Oracle OpenStack on Oracle Solaris with Oracle ZFS Storage Appliance 38
	Planning for Growth with a Multiple Network Architecture 38
	Incorporating Uniformity into the Network Design 39
	Using Logical Hostnames 40
	Using NTP to Synchronize OpenStack Nodes Time 40
	Employing a Uniform Symmetrical Hardware Design 40
	Using Configuration to Manage Storage Capacity for Various Cinder Guests 41
	Use Multiple Backend Volume Definitions 41
	Increase Block Storage API Service Throughput 42

	Managing Volumes 43
	Use Volume Labels 43

	Troubleshooting Configurations 44
	Troubleshooting iSCSI Connectivity 45
	Troubleshooting Using Analytics 47
	Appendix A: Cinder Configuration File 48
	Appendix B: Oracle OpenStack on Oracle Solaris Open Issues 50
	References 51
	Introduction
	Introducing the OpenStack Project
	Providing a Reference Model for Cloud Services
	Defining Cloud Deployment Models
	Private Cloud
	Community Cloud
	Public Cloud
	Hybrid Cloud

	OpenStack Main Services Overview
	Compute Service
	Block Storage Service
	Networking Service
	Image Service
	Object Storage
	Identity Service
	Dashboard Service

	OpenStack on the Oracle Solaris Operating System
	Architecture of the Oracle OpenStack Implementation on Oracle Solaris

	Meeting Storage Requirements in an OpenStack Environment
	Gaining Flexibility with the Oracle ZFS Storage Appliance Architecture
	Storage Pool
	Project
	Shares
	Data Services
	Snapshots
	Clones
	Remote Replication
	Shadow Migration
	Data Security
	Virus Protection
	Encryption
	Analytics

	Using the Oracle ZFS Storage Appliance in an Oracle OpenStack Environment

	Designing an OpenStack Architecture with Oracle Solaris and Oracle ZFS Storage Appliance
	Establishing a Network Architecture

	Installing and Configuring Oracle OpenStack in Oracle Solaris
	Implementing the Network Configuration
	Setting Up Storage Network Interfaces
	Setting Up the OpenStack Network Connections

	Setting Up OpenStack Cinder and the Oracle ZFS Storage Appliance
	Using iSCSI as the Communication Link
	Understanding the Role of the Oracle OpenStack ZFSSA Cinder Driver

	Installing and Configuring the Oracle OpenStack ZFSSA Cinder Driver
	Setting Up Network Interfaces on the Oracle ZFS Storage Appliance
	Setting Up Storage Connections on Oracle Solaris OpenStack Nodes
	Setting Up the Cinder Configuration File
	Setting Up Cinder Service with Oracle ZFS Storage Appliance Cluster Configurations
	Using Multiple Cinder Storage Back-end Definitions

	Administering Oracle ZFS Storage Appliance Volumes in the OpenStack Environment
	Best Practices for Deploying Oracle OpenStack on Oracle Solaris with Oracle ZFS Storage Appliance
	Planning for Growth with a Multiple Network Architecture
	Reliability/Availability
	Scalability/Performance
	Security
	Manageability

	Incorporating Uniformity into the Network Design
	Using Logical Hostnames
	Using NTP to Synchronize OpenStack Nodes Time
	Employing a Uniform Symmetrical Hardware Design
	Using Configuration to Manage Storage Capacity for Various Cinder Guests
	Use Multiple Backend Volume Definitions
	Organize by OpenStack user/organizational workgroups.
	Organize by I/O characteristics.
	Organize by access restrictions and/or data separation.

	Increase Block Storage API Service Throughput

	Managing Volumes
	Use Volume Labels

	Troubleshooting Configurations
	Troubleshooting iSCSI Connectivity
	Troubleshooting Using Analytics

	Appendix A: Cinder Configuration File
	Appendix B: Oracle OpenStack on Oracle Solaris Open Issues
	References

