

An Oracle Technical White Paper

September 2014

Working with the RESTful API for the Oracle
ZFS Storage Appliance

Working with the RESTful API for the Oracle ZFS Storage Appliance

 2

Table of Contents
Introduction ..3
RESTful API Architecture in the Oracle ZFS Storage Appliance4

Success and Error Return Codes ... 5
Simple Examples .. 6
Authentication and Sessions .. 8
REST Service Versions .. 8

Using Integrated Development Environments ..9
Program Examples ...10

Using curl in Shell Scripts .. 10
Using Python .. 12

Python programming best practices ... 13
Python code examples ... 13

Conclusion ...20
References ...21
Appendix A: Python Code for restmulty.py Module22
Appendix B: Python Code for restclient.py Module25

Working with the RESTful API for the Oracle ZFS Storage Appliance

3

Introduction

The Oracle ZFS Storage Appliance combines advanced hardware and software architecture
for a multiprotocol storage subsystem that enables users to simultaneously run a variety of
application workloads and offer advanced data services. First-class performance
characteristics are illustrated by the results of the industry standard benchmarks like SPC-1,
SPC-2 and SPECsfs.

The Oracle ZFS Storage Appliance provides an Application Programming Interface (API)
based on the Representational State Transfer (REST) architectural style. REST is designed
to provide a consistent interface to the roles of components, their functional interactions and
state data while hiding the specific implementation and protocol syntax details for a particular
application or system.

REST is an industry standard developed by the W3C Technical Architecture Group – based
on HTTP 1.1. A REST API is known as RESTful as it adheres to the REST constraints which
are detailed in "Architectural Styles and the design of Network-based Software Architectures,"
the Doctoral dissertation by Roy Fielding at the University of California, Irvine, in 2000.

There are only four REST methods – GET, PUT, POST, DELETE. With the obvious exception
of the DELETE method, these methods are those that are used by web browsers to access
web sites. These methods are also described as CRUD – Create, Read, Update and Delete –
operations.

For the Oracle ZFS Storage Appliance, REST is designed for use in connecting systems
management monitoring and control software to allow automated and manual control and
monitoring of the components and services with the Oracle ZFS Storage Appliance without
using either the command line interface (CLI) or direct browser user interface (BUI). REST
can also be used for iterative tasks in a programming environment such as Python. In this
sense, REST is not a storage protocol but an administrative interface.

Working with the RESTful API for the Oracle ZFS Storage Appliance

4

RESTful API Architecture in the Oracle ZFS Storage Appliance

The RESTful API supplements the access client methods offered by the Oracle ZFS Storage
Appliance family of products. The three supported client types are:

• CLI: SSH - Login - session

• BUI: HTTP - HTML/XML - Cookie based session

• REST: HTTP - JSON – Sessionless

The following graphic illustrates the client types and their architecture within the Oracle ZFS Storage
Appliance.

Figure 1. Client architecture for communicating with the Oracle ZFS Storage Appliance

The REST service supports any HTTP client conforming to HTTP 1.0 or HTTP 1.1.

Previously, operations were carried out on the Oracle ZFS Storage Appliance using SSH as the
transport mechanism. The utility of this setup was hampered by the inability to return the status of
the operation without some interpretive wrapper around the command execution.

With the advent of REST within the Oracle ZFS Storage Appliance, success or failure of the
command is returned in parsable JavaScript Object Notation (JSON) format. This means that large
jobs with similar operations can be carried out with proper error detection and, if necessary, remedial
action also initiated by a comprehensive script.

Working with the RESTful API for the Oracle ZFS Storage Appliance

5

One example where this may be useful is in the creation and masking of many LUNs in a virtual
desktop infrastructure (VDI) environment. Typically this involves similar operations being carried out
with small variations in the masking details and naming of LUNs. Written in any of the supported
scripting languages, this tedious task can now be carried out with relative ease and with full error
reporting, so that any problems are caught and dealt with as early as possible.

Access to the RESTful API is through the standard HTTPS interface:
https://zfssa.example.com:215/api

The following figure and table represent and detail the operations the REST service offers.

Figure 2. The REST Service operations

TABLE 1. CRUD OPERATIONS
OPERATION USE

GET List information about a resource – for example, storage pools, projects, LUNs, shares, users, and so on
POST Create a new resource – POST /storage/v1/pools creates a new pool, for example

PUT Modify a resource
DELETE Destroy a resource

Success and Error Return Codes

The response body from the API is encoded in JSON format (RFC 4627.) Unless otherwise stated, a
single resource returns a single JSON result object with the resource name as a property. Similarly,
unless otherwise stated, the create (POST) and modify (PUT) commands return the properties of the
appropriate resource.

Errors return an HTTP status code indicating the error, along with the fault response payload which
is formatted like the following:

 {
 fault: {
 message: ‘ERR_INVALID_ARG’,
 details: ‘Error Details’,
 code: 500
 }
 }

Successful requests will return one of four codes, depending on context:

https://zfssa.example.org:215/api

Working with the RESTful API for the Oracle ZFS Storage Appliance

6

TABLE 2. SUCCESS RETURN CODES
NAME CODE DESCRIPTION

OK 200 Request returned success
CREATED 201 New resource created successfully
ACCEPTED 202 The request was accepted
NO_CONTENT 204 Command returned OK but no data will be returned

The following table defines some common error codes:
TABLE 3. ERROR RETURN CODES
NAME CODE DESCRIPTION

ERR_INVALID_ARG 400 Invalid input argument
ERR_UKNOWN_ARG 400 Extra unhandled input argument
ERR_MISSING_ARG 400 Required input argument missing
ERR_UNAUTHORIZED 401 The user is not authorized to execute command
ERR_DENIED 403 Operation denied
ERR_NOT_FOUND 404 The requested item was not found
ERR_OBJECT_EXISTS 409 Request created an object that already exists
ERR_OVER_LIMIT 413 Input request too large to handle
ERR_UNSUPPORTED_MEDIA 415 Requested media type is not supported by request
ERR_NOT_IMPLEMENTED 501 Operation not implemented
ERR_BUSY 503 Service not available due to limited resources

Simple Examples

The following example shows the RESTful API in use. This Python script uses the GET operation to
download entries in the audit log files:

from restclientlib import *
host = “10.0.2.13”
user = “root”
password = “secret”

client = RestClient (host)
result = client.login (user, password)

result = client.get(“/api/log/v1/collect/audit”)
print result.getdata()
client.logout()

Assuming the username, password and host are correctly set, the following output results from
running the script:

Thu Apr 17 13:08:16 2014
nvlist version: 0
address = 10.0.2.15
host = 10.0.2.15
annotation =
user = root
class = audit.ak.xmlrpc.system.login_success
payload = (embedded nvlist)
nvlist version: 0
iscli = 0
(end payload)

summary = User logged in

Thu Apr 17 12:10:32 2014
nvlist version: 0
address = 10.0.2.15
host = 10.0.2.15
annotation =
user = root
class = audit.ak.appliance.nas.storage.configure
payload = (embedded nvlist)
nvlist version: 0
pool = onlystuff

Working with the RESTful API for the Oracle ZFS Storage Appliance

7

profile = Striped
(end payload)

summary = Configured storage pool "onlystuff" using profile "Striped"

Thu Apr 17 12:11:04 2014
nvlist version: 0
address = 10.0.2.15
host = 10.0.2.15
annotation =
user = root
class = audit.ak.xmlrpc.svc.enable
payload = (embedded nvlist)
nvlist version: 0
service = rest
(end payload)

summary = Enabled rest service

Thu Apr 17 12:24:01 2014
nvlist version: 0
address = 10.0.2.15
host = 10.0.2.15
annotation =
user = root
class = audit.ak.xmlrpc.system.session_timeout
payload = (embedded nvlist)
nvlist version: 0
iscli = 0
(end payload)

summary = Browser session timed out

Thu Apr 17 13:10:28 2014
nvlist version: 0
host = <console>
annotation =
user = root
class = audit.ak.xmlrpc.system.logout
payload = (embedded nvlist)
nvlist version: 0
iscli = 1
(end payload)

summary = User logged out of CLI
…

Another example creates multiple shares (in this case, 10) in a given pool and project:

#!/usr/bin/python

from restclientlib import *

host = "10.0.2.13"
user = "root"
password = "secret"

pool="R1Pool"
project = "apiproj"

sharepath = "/api/storage/v1/pools/%s/projects/%s/filesystems"

client = RestClient(host)
result = client.login(user, password)
for i in range(1, 10+1):
 sharename="MyShare_%d" % i
 result=client.post(sharepath % (pool, project), { "name": sharename })
 if result.status != httplib.CREATED:
 print result.status
 print "Error creating " + sharename + ": " + result.body
client.logout()

In this last example, the errors in creating the shares are tracked but the loop continues regardless.

More complex examples are presented in a following section.

Working with the RESTful API for the Oracle ZFS Storage Appliance

8

Authentication and Sessions

The REST service uses the same underlying user authentication as the Oracle ZFS Storage Appliance
BUI and CLI services.

Authentication can take one of two forms: Basic or User. Basic authentication requires that each
request contain a valid username and password while User authentication requires that the X-Auth-
User header contain the username and the X-Auth-Key contain the password.

Once a session has been successfully authenticated through either method, a session header is
returned and can subsequently be used for future requests until the session expires, at which point re-
authentication must take place.

Figure 3. Session variable use

REST Service Versions

Each service has a version number embedded as part of the Uniform Resource Identifier (URI) to
access the REST service. For example: /api/user/v1/users

Working with the RESTful API for the Oracle ZFS Storage Appliance

9

The version numbering consists of a major and minor revision. While the major version number must
be supplied, the minor is optional and defaults to ‘0’.

The major number must match the major number of the Oracle ZFS Storage Appliance RESTful API
software. The minor number, should it be supplied, must be less than or equal to the minor number
of the RESTful API service.

The following table shows the results of requests to a service which is running version 2.1 of the
RESTful API software.

TABLE 4. SUCCESS RETURN CODES
REQUEST VERSION RESULT

v1 ERROR – major number does not match
v2 Success – Major number matches and implied minor ‘0’ is less than or equal to minor version 1.

v2.1 Success – Major and minor numbers both match
v2.2 ERROR – Major matches but minor is greater than the service version

Using Integrated Development Environments

There are three areas where the Oracle ZFS Storage Appliance RESTful API can be used to
externally manage an Oracle ZFS Storage Appliance:

• Using scripts to execute repetitive tasks, like creating a large number of shares

• Creating scripts/programs with specific tasks for administrators

• Integrating a customer monitoring and management environment, like the OpenStack
environment, with the Oracle ZFS Storage Appliance

Each of these options requires some coding development to implement the required
user/administrator functionality. Several programming languages can be used for this. The choice of
language depends on the programming rules and standards enforced in a customer environment.
Sometimes regulatory requirements influence the choice of program language. Python, Ruby, PHP
and Java are a few of the most popular choices.

A key requirement is the support for JavaScript Object Notation (JSON) in the programming
environment of choice. It is a lightweight data interchange format used by the RESTful API to
exchange data between the client and the Oracle ZFS Storage Appliance.

The simplest way to write code is to use a text editor, write code, and run it through the language
interpreter program or compile it to create a direct executable program. Test and debug the program
and update the code source with the text editor. This works fine for simple scripts and/or programs.
When the number of lines of code increases from just a few lines to multiple modules, using an
Integrated Development Environment (IDE) makes more sense.

IDEs consists of a combined code text editor and a code compilation/debug environment. The text
editor often has extra features to format text according to general accepted coding standards and
checks for coding syntax errors. This enhances the quality of the code and helps to enforce a uniform
way of writing code text within an engineering group.

This document reflects Python as the coding language and the free Community Edition of PyCharm
as the IDE. The following figure shows a typical PyCharm setup, using a navigation pane on the left,

Working with the RESTful API for the Oracle ZFS Storage Appliance

10

showing the various Python modules used for the current project, a code editor on the top right, and
a debugger/console pane at the bottom.

Figure 4. PyCharm IDE screen view

Program Examples

Regardless of the programming environments used for the RESTful API, the principle remains the
same: communication between the client program and the Oracle ZFS Storage Appliance is based on
simple HTTP use. The following examples illustrate the use of the RESTful API using the CURL
utility in a shell scripting CLI-type environment and a Python programming environment. The
examples illustrate the use of the API commands. Error handling is rudimentary.

Using curl in Shell Scripts

The following example shows a framework for using curl in a shell script to execute the GET, PUT,
POST and DELETE commands through curl. The URL path of the resource to operate on has to be
provided as argument for the script. User login credentials can either be specified using the –u and –
p argument options or set using the environment variables $USER and $PASSWORD.
1 #!/bin/bash
2 #
3 # Example 1
4 # Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.
5 # Script akrest
6
7 CURL=(`which curl` -3 -k) # curl command options
8 ACCEPT="application/json" # Default returned content type accepted
9 DO_FORMAT=false # Pretty print JSON output
10 PYTHON=`which python` # Used for pretty printing JSON output
11 USER=$ZFSSA_USER # Login user

Working with the RESTful API for the Oracle ZFS Storage Appliance

11

12 PASSWORD=$ZFSSA_PASSWORD # Login password
13 SESSION=$ZFSSA_SESSION # Login session id
14 INFILE= # POST/PUT input file
15 CONTENT="application/json" # Default input content type
16 VERBOSE=false # Print more data
17
18 usage() {
19 echo "usage akrest [options] <host> <get|post|put|delete> <path> [json]"
20 echo "options:"
21 echo " -f Format output"
22 echo " -h Print headers"
23 echo " -c Request CLI script"
24 echo " -i <file> Input file to post/put"
25 echo " -s <id> Session id"
26 echo " -p <pass> Login password"
27 echo " -u <user> Login username"
28 echo " -v Verbose"
29 echo " -y Request YAML output"
30 echo " -z Request compressed return data (only some commands supported)"
31 exit 2
32 }
33
34 while getopts u:p:i:s:hvbcfyz name
35 do
36 case $name in
37 c) CURL=("${CURL[@]}" "--header" "X-Zfssa-Get-Script: true");;
38 b) CONTENT="application/octet-stream";;
39 f) DO_FORMAT="true";;
40 u) USER="$OPTARG";;
41 p) PASSWORD="$OPTARG"
42 SESSION=;;
43 h) CURL=("${CURL[@]}" "-i");;
44 i) INFILE=$OPTARG;;
45 s) CURL=("${CURL[@]}" --header "X-Auth-Session: $OPTARG")
46 PASSWORD="";;
47 v) VERBOSE="true"
48 CURL=("${CURL[@]}" "-v");;
49 y) ACCEPT="text/x-yaml";;
50 z) CURL=("${CURL[@]}" "--header" "Accept-Encoding: gzip");;
51 ?) usage
52 esac
53 done
54 shift $(($OPTIND - 1))
55
56 if ["$#" == "3"]; then
57 JSON=""
58 elif ["$#" == "4"]; then
59 JSON=$4
60 CURL=("${CURL[@]}" "-d" "@-" "--header" "Content-Type: ${CONTENT}")
61 else
62 usage
63 fi
64
65 HOST=$1
66 REQUEST=$2
67 PATH=$3
68 DATA=$4
69
70 case $REQUEST in
71 get) REQUEST=GET;;
72 put) REQUEST=PUT;;
73 post) REQUEST=POST;;
74 delete) REQUEST=DELETE;;
75 *) usage
76 esac
77
78 if ["$HOST" == ""]; then
79 usage
80 fi
81 if ["$PATH" == ""]; then
82 usage
83 fi
84 if ["localhost" == "$HOST"]; then
85 URL="http://$HOST:8215/$PATH"
86 else
87 URL="https://$HOST:215/api/$PATH"
88 fi
89
90 if ["${USER}" == ""]; then
91 USER=root
92 fi
93 if ["${SESSION}" != ""]; then
94 CURL=("${CURL[@]}" --header "X-Auth-Session: ${SESSION}")
95 elif ["${PASSWORD}" != ""]; then
96 CURL=("${CURL[@]}" --user "${USER}:${PASSWORD}")
97 else
98 if ["$HOST" != "localhost"]; then

Working with the RESTful API for the Oracle ZFS Storage Appliance

12

99 echo "Either password or session needs to be set"
100 exit 1
101 fi
102 fi
103
104 if ["${INFILE}" == ""]; then
105 CURL=("${CURL[@]}" "-sS")
106 else
107 CURL=("${CURL[@]}" "-d" "@${INFILE}" "--header" "Content-Type: $CONTENT")
108 fi
109
110 CURL=("${CURL[@]}" "--header" "Accept: ${ACCEPT}" -X "${REQUEST}" "${URL}")
111
112 if ["${VERBOSE}" == "true"]; then
113 echo "${CURL[@]}"
114 fi
115
116 if ["${DO_FORMAT}" == "true"]; then
117 if ["$JSON" == ""]; then
118 "${CURL[@]}" | $PYTHON -mjson.tool
119 else
120 "${CURL[@]}" << JSON_EOF | $PYTHON -mjson.tool
121 $JSON
122 JSON_EOF
123 fi
124 elif ["$JSON" == ""]; then
125 "${CURL[@]}"
126 else
127
128 "${CURL[@]}" << JSON_EOF
129 $JSON
130 JSON_EOF
131 fi
132
133 echo ""
134

The following command line example shows how to retrieve detailed information for a specific user
account using the akrest script.
$./akrest -u root -p verysecret 192.168.0.230 get user/v1/users/Edinburgh
{"user":
{"href": "/api/user/v1/users/Edinburgh",
"logname": "Edinburgh",
"fullname": "John Edinburgh",
"initial_password": "DummyPassword",
"require_annotation": false,
"roles": ["basic"],
"kiosk_mode": false,
"kiosk_screen": "status/dashboard",
"exceptions": [],
"preferences": {"href": "/api/user/v1/users/Edinburgh/preferences",
"locale": "C",
"login_screen": "status/dashboard",
"session_timeout": 15,
"advanced_analytics": false,
"keys": []
}
}}

Using Python

The Python code examples in this document heavily use the Python module structure. This enables
creation of a library of commonly used functions for client code to access the RESTful API service in
the Oracle ZFS Storage Appliance. Functions in Python RESTful API modules
restclientlib.py and restmulti.py are made available to client code by importing the
modules in client code modules using the Python import statement.

The code for the used Python Restful library modules restclientlib and restmulti in the
following examples can be found in the appendices at the end of this document.

Working with the RESTful API for the Oracle ZFS Storage Appliance

13

Python programming best practices

When writing Python code, try to write self-contained code modules, and avoid using global data
variables. As Python is an Object Oriented type programming language, define data classes and
implement methods (functions) operating on that data. The Python RESTful API modules can be
used as examples.

Python code examples

The next example shows Python code, illustrating how to log in to the Oracle ZFS Storage Appliance
and issue a GET command to retrieve its user accounts. Note that user and password login
information is hard coded, which is not recommended in actual practice. A later section of this paper
shows how to avoid including user names and passwords in code. The following illustration shows
the code and part of its output.

Figure 5. Python code to log in and issue a get command for the Oracle ZFS Storage Appliance

The next step is to make the code in the example more generic and follow the Python module
structure coding practice. A proper main function is defined, and if the module is started as a main
module, the main function is called (code lines 44-46). Another change is the use of the
create_client method of the restclient object. This method adds checks on arguments
passed to it (code line 20).

Working with the RESTful API for the Oracle ZFS Storage Appliance

14

An addition is the use of multithread functionality from the RESTful client API restmulti Python
module. See the restmulti module import in line 12.
1 #!/usr/bin/python
2
3 # Example 3
4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
5 #
6 """An example of using multi-threaded requests to list the details for all
7 users in a system"""
8
9 import os
10 import sys
11 import restclientlib
12 import restmulti
13
14
15 def usage():
16 print "usage: python listusers.py <host> [user] [password]"
17 sys.exit(2)
18
19 def main(args):
20 client = restclientlib.create_client(*args)
21 if not client:
22 usage()
23
24 result = client.get("/api/user/v1/users")
25 if result.status == restclientlib.Status.OK:
26 users = result.getdata().get("users")
27 user_details = restmulti.RestMultiRequest()
28
29 # Create a multi-threaded request to get detail info for every user
30 for user in users:
31 request = restclientlib.RestRequest(
32 "GET", "/api/user/v1/users/%s" % user.get("logname"))
33 user_details.add_request(client, request)
34
35 user_details.run()
36 user_details.wait()
37
38 # Print the results for listing all user details
39 for run in user_details.runs:
40 print str(run)
41
42 client.logout()
43
44 if __name__ == "__main__":
45 main(sys.argv[1:])
46 os._exit(0)

The next example demonstrates how to upload a workflow and use the option to pass on arguments
to the workflow. Workflows are scripting code uploaded in the Oracle ZFS Storage Appliance and
run under control of the Oracle ZFS Storage Appliance software shell. For more detailed information
on workflows, see the white paper "Effectively Managing the Oracle ZFS Storage Appliance with
Scripting" in the Oracle ZFS Storage Appliance White Papers web site listed in the References
section.

The example shows an upload of a simple workflow that will stop after the number of seconds
specified in the argument of the workflow. The Python script takes the workflow file name and a
workflow parameter block passed as a JSON object.

The following is the workflow code:
1 # Example 4a
2 # Copyright (c) 2013, 2014 Oracle and/or its affiliates. All rights reserved.
3 # Workflow: slow_workflow.akwf
4
5 var workflow = {
6 name: 'Slow Return',
7 description: 'A workflow that takes a long time to end.',
8 scheduled: false,
9 parameters: {
10 seconds: {
11 label: 'Seconds to sleep',
12 type: 'Integer'
13 },
14 sendOutput: {

Working with the RESTful API for the Oracle ZFS Storage Appliance

15

15 label: 'Send output while executing',
16 type: 'Boolean'
17 }
18 },
19 execute: function (params) {
20 "use strict";
21 var i = 0;
22 for (i = 0; i < params.seconds; i = i + 1) {
23 run('sleep 1');
24 if (params.sendOutput) {
25 printf('%s second\n', i);
26 }
27 }
28 return ('Workflow ended successfully.');
29 }
30 };
31

The workflow definition specifies the workflow characteristics. Note in code line 8 that scheduled is
set to false, so the workflow can be executed using the RESTful API workflow execute function.

The Python module upload_workflow is used to upload the workflow (code line 89), pass on the
parameters, and execute the workflow (code lines 101-112).

Note also the slightly different import syntax for the restclientlib module. With the python
code from <libmodulename> import *, the classes and objects from that imported module
can be referenced directly in the code. When using the import <libmodulename> syntax, a class
from that module must be referred to as <modulename>.<classname>. Which method to use is
a personal preference. When using multiple library modules, using the <modulename>. style of
code writing makes it easier to track the location of classes and functions.
1 #!/usr/bin/python
2
3 # Example 4b
4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
5 #
6 """
7 Upload any workflow in your local folder/directory and run it using this script
8 Ensure that the workflow property "scheduled" is not set to true to execute
9 the workflow
10 """
11
12 from restclientlib import *
13 import getopt
14 import getpass
15 import sys
16 import jason
17
18
19 def readfile(filename):
20 if "akwf" in filename.lower():
21 try:
22 with open(filename, "r") as f:
23 return f.read()
24 except IOError as e:
25 print e
26 else:
27 print "Please upload an akwf file"
28
29
30 def usage():
31 print "upload_workflow.py - Upload and Execute a workflow"
32 print "uses restclientlib.py - please ensure that it is in your workspace"
33 print "usage: upload_workflow.py [options] <zfssa-host>"
34 print "options:"
35 print " -u <user> Login user. (default is root)"
36 print " -p <pass> Login password."
37 print " -f <filename> filename (neccessary)."
38 print " -e <TRUE/FALSE> (default is false)."
39 print " -c <JSON> (content to execute the workflow with). (optional)"
40
41
42 def main(argv):
43 do_execute = "False"
44 execute_content = ""
45 user = "root"
46 password = ""
47 filename = ""
48
49 try:
50 opts, args = getopt.getopt(argv[1:], "u:p:f:e:c:")

Working with the RESTful API for the Oracle ZFS Storage Appliance

16

51 except getopt.GetoptError as err:
52 print str(err)
53 usage()
54 sys.exit(2)
55
56 for opt, arg in opts:
57 if opt == "-u":
58 user = arg
59 elif opt == "-p":
60 password = arg
61 elif opt == "-f":
62 filename = arg
63 elif opt == "-e":
64 do_execute = arg
65 elif opt == "-c":
66 execute_content = arg
67
68 if len(args) != 1:
69 print "Insufficient arguments"
70 usage()
71 sys.exit(2)
72
73 if not password:
74 password = getpass.getpass()
75
76 host = args[0]
77 client = RestClient(host)
78 result = client.login(user, password)
79
80 if result.status != Status.CREATED:
81 print "Login failed:"
82 print json.dumps(result.getdata(), sort_keys=True, indent=4)
83 sys.exit(1)
84
85 if filename == "":
86 print "Include a filename"
87
88 body = readfile(filename)
89 result = client.post("/api/workflow/v1/workflows", body)
90
91 if result.status != Status.CREATED:
92 print result.status
93 print result
94 raise Exception("Failed to upload the workflow")
95 else:
96 print "Workflow uploaded"
97 workflow = result.getdata()
98 print json.dumps(workflow, sort_keys=True, indent=4)
99 if do_execute.lower() == "true":
100 print execute_content
101 result = client.put(workflow["workflow"]["href"] + "/execute",
102 execute_content)
103 if result.status != Status.ACCEPTED:
104 print "The workflow cannot be executed. " \
105 "Ensure that scheduled property is not set to true"
106 print json.dumps(result.getdata(), sort_keys=True, indent=4)
107
108 else:
109 print "The workflow has been executed"
110 print "output:"
111 print json.dumps(result.getdata(), sort_keys=True, indent=4)
112
113
114 if __name__ == "__main__":
115 main(sys.argv)
116

When executing the code, special attention needs to be given to the double quotes in the JSON
formatted text block to pass the workflow parameters. Backslashes must be used to surround the
double quotes required within the JSON text block so that the quotes are not stripped out by either
the shell or IDE environment. The following figure shows how to do this using the PyCharm IDE.

Working with the RESTful API for the Oracle ZFS Storage Appliance

17

Figure 6. Using backslashes to prevent Python from stripping quotation marks in code when passed as an argument

Running the upload_workflow script generates the following output:

/System/Library/Frameworks/Python.framework/Versions/2.7/bin/python

"/Users/peterbrouwer/Documents/SunDocs/docs&whitepapers/Rest

API/examples/Python/upload_workflow.py" -u root -p verysecret -f slow_workflow.akwf -e

true -c "{\"seconds\": \"10\" , \"sendOutput\" : \"False\" }" 192.168.0.230

Workflow uploaded

{
 "workflow": {
 "alert": false,
 "description": "A workflow that takes a long time to end.",
 "href": "/api/workflow/v1/workflows/5d29f146-0f52-6566-b443-f54eb11b5ea4",
 "name": "Slow Return",
 "origin": "<local>",
 "owner": "root",
 "scheduled": false,
 "setid": false,
 "uuid": "5d29f146-0f52-6566-b443-f54eb11b5ea4",
 "version": ""
 }
}
{"seconds": "10" , "sendOutput" : "False" }
The workflow has been executed
output:
{
 "result": "Workflow ended successfully.\n"
}
Process finished with exit code 0

The next example shows how to retrieve log information from the Oracle ZFS Storage Appliance.
The Oracle ZFS Storage Appliance maintains status information classified according to severity
(Alerts and Faults) and type (System and Audit). The Python module
download_filter_logs.py uses the –t option (code line 50) to specify the type logs to be
retrieved. Use the –f option to specify the name of the file in which to store the retrieved log info.
1 #!/usr/bin/python
2
3 # Example 5
4 #
5 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
6 #
7
8
9 import restclientlib
10 import getopt
11 import getpass
12 import json
13 import sys
14
15

Working with the RESTful API for the Oracle ZFS Storage Appliance

18

16 def usage():
17 print "download_filter_logs.py - Download and filter logs"
18 print "uses restclient.py - please ensure that it is in your workspace"
19 print "usage: download_logs [options] <zfssa-host>"
20 print "options:"
21 print " -u <user> Login user. (default is root)"
22 print " -p <pass> Login password."
23 print " -t <logs type> (default is audit)"
24 print " -f <filename> filename (default is logs.txt)."
25 print " -F <filter> if -F is given. Login, Logouts entries will be" \
26 " deleted."
27 print " only works if log type is audit"
28
29
30 def main(argv):
31 do_filter = False
32 filename = "logs.txt"
33 logtype = "audit"
34
35 user = "root"
36 password = ""
37
38 try:
39 opts, args = getopt.getopt(argv[1:], "u:p:t:f:F")
40 except getopt.GetoptError as err:
41 print str(err)
42 usage()
43 sys.exit(2)
44
45 for opt, arg in opts:
46 if opt == "-u":
47 user = arg
48 elif opt == "-p":
49 password = arg
50 elif opt == "-t":
51 logtype = arg
52 elif opt == "-f":
53 filename = arg
54 elif opt == "-F" and logtype == "audit":
55 do_filter = True
56
57 if len(args) != 1:
58 print "Insufficient arguments"
59 usage()
60 sys.exit(2)
61
62 if not password:
63 password = getpass.getpass()
64
65 host = args[0]
66 client = restclientlib.RestClient(host)
67
68 result = client.login(user, password)
69
70 if result.status != restclientlib.Status.CREATED:
71 print "Login failed:"
72 print json.dumps(result.getdata(), sort_keys=True, indent=4)
73 sys.exit(1)
74
75 download_log(client, logtype, filename)
76 if do_filter:
77 remove_login_logout(filename)
78
79
80 def download_log(client, logtype, filename):
81 result = client.get("/api/log/v1/collect/%s" % logtype)
82 if result.status != restclientlib.Status.OK:
83 raise Exception("failed to download the logs")
84 else:
85 fp = open('./%s' % filename, 'w')
86 line = result.readline()
87 while line:
88 fp.write(line)
89 line = result.readline()
90 fp.close()
91
92
93 def remove_login_logout(filename):
94 fp = open('./%s' % filename, 'r')
95 fp1 = open('./%s.filtered' % filename, 'w')
96 lines = fp.readlines()
97 i = 0
98 while i < len(lines) - 1:
99 if "summary" in lines[i]:
100 if "User logged in" in lines[i] or "User logged out" in lines[i]:
101 pass

Working with the RESTful API for the Oracle ZFS Storage Appliance

19

102 else:
103 for j in range(-12, 2):
104 fp1.write(lines[i+j])
105 i += 12
106 else:
107 i += 1
108 fp.close()
109 fp1.close()
110
111
112 if __name__ == "__main__":
113 main(sys.argv)
114

The last example demonstrates uploading an ssh key to the Oracle ZFS Storage Appliance to avoid
having to code passwords into ssh-based scripts. The Python module addsshkey.py uses the file
authorized_keys in the user’s directory ~/.ssh (code line 73) to upload the ssh keys into the
specified user’s (code line 64) account of the Oracle ZFS Storage Appliance. The default used for
user is root (code line 61).

First you need to create an SSH DSA-type key pair for authentication:
Peter-Brouwer-Mac-Pro: peterbrouwer$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/Users/peterbrouwer/.ssh/id_dsa):
/Users/peterbrouwer/.ssh/id_dsa already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/peterbrouwer/.ssh/id_dsa.
Your public key has been saved in /Users/peterbrouwer/.ssh/id_dsa.pub.
The key fingerprint is:
a5:68:a6:3b:7d:d5:12:1f:ef:40:8e:74:02:0c:f6:27 peterbrouwer@Peter-Brouwer-Mac-
Pro.local
The key's randomart image is:
+--[DSA 1024]----+
| oo |
| . .o |
| E.o |
| . =+ + |
| + A. Q o |
| + # = . |
| o |
| |
| .. . |
+-----------------+

Peter-Brouwer-Mac-Pro: ~ peterbrouwer$

The Python addsshkey uses the file authorized_keys in the user's ~/.ssh directory to
upload the keys, so add the just-generated key to that file:

Peter-Brouwer-Mac-Pro:~ peterbrouwer$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Peter-Brouwer-Mac-Pro:~ peterbrouwer$

Now execute the Python addsshkey.py to upload the previously generated ssh key. After the
upload, you can test the uploaded keys by using ssh to log in to the Oracle ZFS Storage Appliance.
There should be no password request.

1 #!/usr/bin/python
2
3 # Example 6
4 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
5 #
6
7 """Adds all public keys of the current user to an appliance"""
8
9 import getpass
10 import os
11 import restclientlib
12 import sys
13
14
15 def add_keys(appliance, user, password, filename):
16 """

Working with the RESTful API for the Oracle ZFS Storage Appliance

20

17 Adds a ssh key to the specified appliance.
18
19 :param appliance: Host name
20 :param user: Appliance management login user name
21 :param password: User password
22 :param filename: Key filename
23 """
24
25 with open(filename) as key_file:
26 keys = key_file.readlines()
27 client = restclientlib.RestClient(appliance, user, password)
28
29 key_types = {
30 "ssh-dss": "DSA"
31 }
32
33 for k in keys:
34 words = k.split()
35 if len(words) != 3:
36 continue
37 key_type = key_types.get(words[0])
38 if not key_type:
39 continue
40 key = {
41 "type": key_type,
42 "key": words[1],
43 "comment": words[2]
44 }
45 path = "/api/user/v1/users/%s/preferences/keys" % user
46 result = client.post(path, key)
47 if result.status == 201:
48 print "Created key %s" % key
49 else:
50 print "Error creating %s\nError:%s" % (key, str(result))
51
52
53 def usage():
54 print "addsshkey.py - Add public SSH keys to an appliance user"
55 print "usage: python addsshkey.py <host> [user] [password]"
56 print " If user is not supplied than 'root' is used as default"
57 print " If password is not supplied then a prompt will be used"
58
59
60 def main():
61 user = "root"
62
63 if len(sys.argv) == 3:
64 user = sys.argv[2]
65 elif len(sys.argv) == 2:
66 pass
67 else:
68 print "usage: add_key.py <host> [user]"
69 sys.exit(2)
70
71 password = getpass.getpass()
72
73 filename = "%s/.ssh/authorized_keys" % os.environ['HOME']
74
75 print filename
76
77 add_keys(sys.argv[1], user, password, filename)
78
79
80 if __name__ == "__main__":
81 main()
82

Conclusion

The provided code examples in this paper have been written to illustrate the use of the RESTful API
and in many cases lack full error checking on input parameters as well as detailed information on
possible failing commands. Please use the examples accordingly. When creating programs in
production environments, pay proper attention to writing code that fully checks user input and
provides enough detail in diagnostic error messages for the user to understand the nature of a failure.
A message such as ‘Error encountered, contact your administrator’ would not meet any standards of
usefulness.

Working with the RESTful API for the Oracle ZFS Storage Appliance

21

The RESTful API provides a full framework for administrators to create programs and scripts,
tailored to the best practices and administrative procedures used within the organization, for
addressing the Oracle ZFS Storage Appliance.

References

Oracle RESTful API documentation.
http://docs.oracle.com/cd/E51475_01/html/E52433/index.html

Oracle ZFS Storage Appliance Product Information
http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html

Oracle ZFS Storage Appliance White Papers and Subject-Specific Resources
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html

Oracle ZFS Storage Appliance Document library
http://docs.oracle.com/cd/E51475_01/index.html

The Oracle ZFS Storage Appliance Administration Guide is also available through the Oracle ZFS Storage
Appliance help context.
The Help function in Oracle ZFS Storage Appliance can be accessed through the browser user
interface.

Python IDE environments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python
https://www.python.org

http://docs.oracle.com/cd/E51475_01/html/E52433/index.html
http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html
http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
http://docs.oracle.com/cd/E26765_01/index.html
http://docs.oracle.com/cd/E51475_01/index.html
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.python.org/

Working with the RESTful API for the Oracle ZFS Storage Appliance

22

Appendix A: Python Code for restmulty.py Module
1 #!/usr/bin/python
2
3 # The sample code provided here is for training purposes only to help you to get
4 # familiar with the Oracle ZFS Storage Appliance RESTful API.
5 # As such the use of this code is unsupported and is for non-commercial or
6 # non-production use only.
7 # No effort has been made to include exception handling and error checking
8 # functionality as is required in a production environment.
9 #
10 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
11 #
12
13 """Run many REST API client commands in parallel"""
14
15 import getopt
16 import json
17 import os
18 import restclientlib
19 import sys
20 import threading
21 import Queue
22
23 class _RestWorker(threading.Thread):
24 """A worker thread that runs REST API requests from a queue"""
25 def __init__(self, work_queue):
26 threading.Thread.__init__(self)
27 self._work_queue = work_queue # Queue containing requests
28 self._lock = threading.Lock() # Lock to protect properties below
29 self._request = None # Current REST request being processed
30 self._running = True # Worker will run while True
31 self.start() # Start this thread
32
33 def run(self):
34 """Run a REST API command from a queue. This method should only be
35 called by the thread that is running this worker via start()
36 """
37 with self._lock:
38 running = self._running
39
40 while running:
41 request = self._work_queue.get()
42 with self._lock:
43 running = self._running
44 if running:
45 self._request = request
46
47 if running:
48 try:
49 self._request.run()
50 except Exception as err:
51 self._request.error = err
52
53 with self._lock:
54 self._request = None
55 running = self._running
56
57 def shutdown(self):
58 """Allows RestThreadPool to shutdown this thread."""
59 with self._lock:
60 self._running = False
61 if self._request:
62 self._request.cancel()
63 self._request = None
64
65
66 class RestThreadPool(object):
67 """A pool of threads that will run REST API client requests."""
68 def __init__(self, max_threads=16):
69 """Creates a REST API thread pool.
70
71 :param max_threads: Max number of threads in the pool.
72 """
73 self._work_queue = Queue.Queue()
74 self._workers = list()
75 self.max_threads = max_threads
76
77 def add_request(self, *requests):
78 """Adds a REST API request to the thread pool queue to be processed"""
79 for request in requests:
80 self._work_queue.put(request)
81 num_threads = len(self._workers)

Working with the RESTful API for the Oracle ZFS Storage Appliance

23

82 if self.max_threads <= 0 or self.max_threads > num_threads:
83 if self._work_queue.qsize() > num_threads:
84 self._workers.append(_RestWorker(self._work_queue))
85
86 def stop(self):
87 """Stops all worker threads when thread pool is stopped"""
88 for worker in self._workers:
89 worker.shutdown()
90
91
92 class RestMultiRequest(object):
93 def __init__(self):
94 self.runs = list()
95
96 def add_request(self, client, request):
97 self.add_runner(restclientlib.RestRunner(client, request))
98
99 def add_runner(self, runner):
100 self.runs.append(runner)
101
102 def run(self, pool=None):
103 if not pool:
104 pool = RestThreadPool()
105 pool.add_request(*self.runs)
106
107 def wait(self):
108 """Wait for all requests to finish"""
109 done = False
110 while not done:
111 done = True
112 for r in self.runs:
113 if not r.result():
114 done = False
115
116 def print_results(self):
117 """Print out all the response data from all of the requests"""
118 done = False
119 for r in self.runs:
120 setattr(r, "print_results", False)
121 while not done:
122 done = True
123 for r in self.runs:
124 if not r.print_results:
125 if r.isdone():
126 print r
127 r.print_results = True
128 else:
129 done = False
130
131
132 #
133 # Main Program
134 #
135 def main(args):
136 verbose = False
137 pool = RestThreadPool()
138 default_user = "root"
139 default_password = ""
140 default_host = ""
141
142 try:
143 opts, args = getopt.getopt(args, "h:u:p:t:v")
144 except getopt.GetoptError as err:
145 print str(err)
146 usage()
147 sys.exit(2)
148
149 for opt, arg in opts:
150 if opt == "-t":
151 pool.max_threads = int(arg)
152 elif opt == "-u":
153 default_user = arg
154 elif opt == "-p":
155 default_password = arg
156 elif opt == "-v":
157 verbose = True
158 elif opt == "-h":
159 default_host = arg
160
161 if len(args) != 1:
162 usage()
163 sys.exit(2)
164
165 data_file = args[0]
166
167 json_str = open(data_file).read()

Working with the RESTful API for the Oracle ZFS Storage Appliance

24

168 json_data = json.loads(json_str)
169
170 request = RestMultiRequest()
171
172 def add_requests(config):
173 commands = config.get("commands")
174 if not commands:
175 return
176 host = config.get("host", default_host)
177 user = config.get("user", default_user)
178 password = config.get("password", default_password)
179 client = restclient.RestClient(host, user, password)
180 for command in commands:
181 req = restclient.RestRequest(*command)
182 runner = restclient.RestRunner(client, req, verbose=verbose)
183 request.add_runner(runner)
184
185 if isinstance(json_data, dict):
186 add_requests(json_data)
187 elif isinstance(json_data, list):
188 for c in json_data:
189 add_requests(c)
190
191 request.run(pool)
192 request.print_results()
193
194 failed = 0
195 succeeded = 0
196 tried = len(request.runs)
197 completed = 0
198
199 for r in request.runs:
200 result = r.result()
201 if result:
202 completed += 1
203 status = result.status
204 if status > 299 or status < 200:
205 failed += 1
206 else:
207 succeeded += 1
208
209 print "Completed %d of %d REST API calls" % (completed, tried)
210 print "Succeeded: %d" % succeeded
211 print "Failed: %d" % failed
212
213 os._exit(failed)
214
215
216 def usage():
217 print "restmulti.py - Make many REST API calls"
218 print "usage: restmulti.py [options] <config-file>"
219 print "options:"
220 print " -t <threads> Max number of threads. (Default is 10)"
221 print " -v Turn on verbose output."
222 print " -u <user> Login user name"
223 print " -p <passwd> Login user password"
224 print " -h <host> ZFSSA host"
225
226 if __name__ == "__main__":
227 try:
228 main(sys.argv[1:])
229 except KeyboardInterrupt:
230 os._exit(0)

Working with the RESTful API for the Oracle ZFS Storage Appliance

25

Appendix B: Python Code for restclient.py Module
1 #!/usr/bin/python
2
3 # The sample code provided here is for training purposes only to help you to get
4 # familiar with the Oracle ZFS Storage Appliance RESTful API.
5 # As such the use of this code is unsupported and is for non-commercial or
6 # non-production use only.
7 # No effort has been made to include exception handling and error checking
8 # functionality as is required in a production environment.
9 #
10 # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
11 #
12
13 """A REST API client for the ZFSSA"""
14
15 import base64
16 import json
17 import httplib
18 import threading
19 import urllib2
20
21 class Status:
22 """Result HTTP Status"""
23
24 def __init__(self):
25 pass
26
27 OK = 200 #: Request return OK
28 CREATED = 201 #: New resource created successfully
29 ACCEPTED = 202 #: Command accepted
30 NO_CONTENT = 204 #: Command returned OK but no data will
be returned
31 BAD_REQUEST = 400 #: Bad Request
32 UNAUTHORIZED = 401 #: User is not authorized
33 FORBIDDEN = 403 #: The request is not allowed
34 NOT_FOUND = 404 #: The requested resource was not found
35 NOT_ALLOWED = 405 #: The request is not allowed
36 TIMEOUT = 408 #: Request timed out
37 CONFLICT = 409 #: Invalid request
38 BUSY = 503 #: Busy
39
40 class RestRequest(object):
41 def __init__(self, method, path, data=""):
42 self.method = method
43 self.data = data
44 if not path.startswith("/"):
45 path = "/" + path
46 if not path.startswith("/api"):
47 path = "/api" + path
48 self.path = path
49
50
51 class RestResult(object):
52 """Result from a REST API client operation"""
53
54 def __init__(self, response, error_status=0):
55 """Initialize a RestResult containing the results from a REST call"""
56 self.response = response
57 self.error_status = error_status
58 self._body = None
59
60 def __str__(self):
61 if self.error_status:
62 return str(self.response)
63
64 data = self.getdata()
65 if isinstance(data, (str, tuple)):
66 return data
67 return json.dumps(data, indent=4, default=str)
68
69 @property
70 def body(self):
71 """Get the entire returned text body. Will not return until all
72 data has been read from the server."""
73 self._body = ""
74 data = self.response.read()
75 while data:
76 self._body += data
77 data = self.response.read()
78 return self._body
79
80 @property

Working with the RESTful API for the Oracle ZFS Storage Appliance

26

81 def status(self):
82 """Get the HTTP status result, or -1 if call failed"""
83 if self.error_status:
84 return self.error_status
85 else:
86 return self.response.getcode()
87
88 def readline(self):
89 """Reads a single line of data from the server. Useful for
90 commands that return streamed data.
91
92 :returns: A line of text read from the REST API server
93 """
94 if self.error_status:
95 return None
96 self.response.fp._rbufsize = 0
97 return self.response.readline()
98
99 def getdata(self):
100 """Get the returned data parsed into a python object. Right now
101 only supports JSON encoded data.
102
103 :return: Data is parsed as the returned data type into a python
104 object. If the data type isn't supported than the string value of
105 the data is returned.
106 """
107 if self.error_status:
108 return None
109 data = self.body
110 if data:
111 content_type = self.getheader("Content-Type")
112 if content_type.startswith("application/json"):
113 data = json.loads(data)
114 return data
115
116 def getheader(self, name):
117 """Get an HTTP header with the given name from the results
118
119 :param name: HTTP header name
120 :return: The header value or None if no value is found
121 """
122 if self.error_status:
123 return None
124 info = self.response.info()
125 return info.getheader(name)
126
127 def debug(self):
128 """Get debug text containing HTTP status and headers"""
129 if self.error_status:
130 return repr(self.response) + "\n"
131
132 msg = httplib.responses.get(self.status, "Unknown")
133 hdr = "HTTP/1.1 %d %s\n" % (self.status, msg)
134 return hdr + str(self.response.info())
135
136
137 class RestRunner(object):
138 """REST request runner for a background client call. Clients can obtain
139 the result when it is ready by calling result()
140 """
141 def __init__(self, client, request, **kwargs):
142 self._result = None # REST result from request
143 self._called = threading.Condition() # Result available condition
144 self.client = client # Client used to run request
145 self.request = request # REST Request
146 self.verbose = kwargs.get("verbose")
147
148 def __str__(self):
149 url = self.client.REST_URL % (self.client.host, self.request.path)
150 out = "%s %s %s\n" % (self.request.method, url, self.request.data)
151 if self.isdone():
152 if self.verbose:
153 out += self._result.debug()
154 out += "\n"
155 out += str(self._result)
156 out += "\n"
157 else:
158 out += "waiting"
159 return out
160
161 def run(self):
162 """Thread run routine. Should only be called by thread"""
163 try:
164 result = self.client.execute(self.request)
165 except Exception as err:
166 result = RestResult(err, -1)

Working with the RESTful API for the Oracle ZFS Storage Appliance

27

167 with self._called:
168 self._result = result
169 self._called.notify_all()
170
171 def isdone(self):
172 """Determine if the REST call has returned data.
173
174 :return: True if server has returned data, otherwise False
175 """
176 with self._called:
177 return self._result is not None
178
179 def result(self, timeout=0):
180 """Get the REST call result object once the call is finished.
181
182 :param timeout: The number of seconds to wait for the response to
183 finish
184 :returns: RestResult or None if not finished.
185 """
186 with self._called:
187 if self._result:
188 return self._result
189 else:
190 self._called.wait(timeout)
191 return self._result
192
193 def cancel(self):
194 if self.isdone():
195 result = self.result()
196 if result:
197 result.fp.close()
198
199
200 class RestClient(object):
201 """A REST Client API class to access the ZFSSA REST API"""
202 REST_URL = "https://%s:215%s"
203 ACCESS_URL = "https://%s:215/api/access/v1"
204
205 def __init__(self, host, user=None, password=None, session=None):
206 """Create a client that will communicate with the specified ZFSSA
207 host. If user and password are not supplied then the client must
208 login before making calls.
209
210 :param host: Appliance host name/ip address
211 :param user: Management user name
212 :param password: Management user password.
213 :param session: Create a client using an existing session
214 """
215 self.host = host
216 self.opener = urllib2.build_opener(urllib2.HTTPHandler)
217 self.services = None
218 if session:
219 self.opener.addheaders = [
220 ("X-Auth-Session", session),
221 ('Content-Type', 'application/json')]
222 elif user and password:
223 auth = "%s:%s" % (user, password)
224 basic = "Basic %s" % base64.encodestring(auth).replace('\n', '')
225 self.opener.addheaders = [
226 ("Authorization", basic),
227 ('Content-Type', 'application/json')]
228
229 def login(self, user, password):
230 """
231 Create a login session for a client. The client will keep track of
232 the login session information so additional calls can be made without
233 having to supply credentials.
234
235 :param user: The login user name
236 :param password: The ZFSSA user password
237 :return: The REST result of the login call
238 """
239 if self.services:
240 self.logout()
241
242 auth = "%s:%s" % (user, password)
243 basic = "Basic %s" % base64.encodestring(auth).replace('\n', '')
244 url = self.ACCESS_URL % self.host
245 request = urllib2.Request(url, '')
246 request.add_header('Authorization', basic)
247 request.get_method = lambda: 'POST'
248
249 try:
250 result = RestResult(self.opener.open(request))
251 if result.status == httplib.CREATED:
252 session = result.getheader("X-Auth-Session")

Working with the RESTful API for the Oracle ZFS Storage Appliance

28

253 self.opener.addheaders = [
254 ("X-Auth-Session", session),
255 ('Content-Type', 'application/json')]
256 data = result.getdata()
257 self.services = data["services"]
258 except urllib2.HTTPError as e:
259 result = RestResult(e)
260 return result
261
262 def logout(self):
263 """Logout of the appliance and clear session data"""
264 request = urllib2.Request(self.ACCESS_URL % self.host)
265 request.get_method = lambda: "DELETE"
266 result = self.call(request)
267 self.opener.addheaders = None
268 self.services = None
269 return result
270
271 def _service_url(self, module, version=None):
272 url = None
273 for service in self.services:
274 if module == service['name']:
275 if version and service['version'] != version:
276 continue
277 url = service['uri']
278 break
279 return url
280
281 def url(self, path, **kwargs):
282 """
283 Get the URL of a resource path for the client.
284
285 :param path: Resource path
286 :key service: The name of the REST API service
287 :key version: The version of the service
288 :return:
289 """
290 service = kwargs.get("service")
291 if service:
292 url = self._service_url(service, kwargs.get("version")) + path
293 else:
294 url = self.REST_URL % (self.host, path)
295 return url
296
297 def call(self, request, background=False):
298 """Make a REST API call using the specified urllib2 request"""
299 if background:
300 runner = RestRunner(self, request)
301 thread = threading.Thread(target=runner)
302 thread.start()
303 return runner
304 try:
305 response = self.opener.open(request)
306 result = RestResult(response)
307 except urllib2.HTTPError as e:
308 result = RestResult(e)
309 return result
310
311 def get(self, path, **kwargs):
312 """Make a REST API GET call
313
314 :param path: Resource path
315 :return: RestResult
316 """
317 request = urllib2.Request(self.url(path, **kwargs))
318 return self.call(request, kwargs.get("background"))
319
320 def delete(self, path, **kwargs):
321 """Make a REST API DELETE call
322
323 :param path:
324 :return: RestResult
325 """
326 request = urllib2.Request(self.url(path, **kwargs))
327 request.get_method = lambda: "DELETE"
328 return self.call(request, kwargs.get("background"))
329
330 def put(self, path, data="", **kwargs):
331 """Make a REST API PUT call
332
333 :param path: Resource path
334 :param data: JSON input data
335 :return: RestResult
336 """
337 url = self.url(path, **kwargs)
338 if not isinstance(data, (str, unicode)):

Working with the RESTful API for the Oracle ZFS Storage Appliance

29

339 data = json.dumps(data)
340 request = urllib2.Request(url, data)
341 request.get_method = lambda: "PUT"
342 request.add_header('Content-Type', "application/json")
343 return self.call(request, kwargs.get("background"))
344
345 def post(self, path, data="", **kwargs):
346 """Make a REST API POST call
347
348 :param path: Resource path
349 :param data: JSON input data
350 :return: RestResult
351 """
352 url = self.url(path, **kwargs)
353 if not isinstance(data, (str, unicode)):
354 data = json.dumps(data)
355 request = urllib2.Request(url, data)
356 request.get_method = lambda: "POST"
357 request.add_header('Content-Type', "application/json")
358 return self.call(request, kwargs.get("background"))
359 def execute(self, request, **kwargs):
360 """Make an HTTP REST request
361
362 :param method: HTTP command (GET, PUT, POST, DELETE)
363 :param path: Resource path
364 :param data: JSON input data
365 """
366 if request.method.lower() == "get":
367 return self.get(request.path, **kwargs)
368 if request.method.lower() == "put":
369 return self.put(request.path, request.data, **kwargs)
370 if request.method.lower() == "post":
371 return self.post(request.path, request.data, **kwargs)
372 if request.method.lower() == "delete":
373 return self.delete(request.path, **kwargs)
374 raise Exception(
375 "Invalid HTTP request '%s' "

376 "(Should be one of GET, PUT, POST, DELETE)" % request.method)

Working with the RESTful API for the Oracle ZFS
Storage Appliance
September 2014 Version 1.0
Authors: Peter Brouwer, Andrew Ness
Oracle Application Integration Engineering

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for
information purposes only and the contents hereof are subject to change without notice. This document is
not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally
or implied in law, including implied warranties and conditions of merchantability or fitness for a particular
purpose. We specifically disclaim any liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior
written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd. 0611

	Introduction
	RESTful API Architecture in the Oracle ZFS Storage Appliance
	Success and Error Return Codes
	Simple Examples
	Authentication and Sessions
	REST Service Versions

	Using Integrated Development Environments
	Program Examples
	Using curl in Shell Scripts
	Using Python
	Python programming best practices
	Python code examples

	Conclusion
	References
	Appendix A: Python Code for restmulty.py Module
	Appendix B: Python Code for restclient.py Module

