

Splunk and the Oracle ZFS Storage Appliance

O R A C L E T E C H N I C A L W H I T E P A P E R | S E P T E M B E R 2 0 1 5

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Table of Contents

Introduction 1

Overview of the Example System 2

Why Use a Forwarder? 2

Configuring the Oracle ZFS Storage Appliance 3

Installing the Universal Forwarder 5

Collecting Data from the Oracle ZFS Storage Appliance 6

Configuring the Forwarders to Parse Timestamps 6

Collecting Datasets from the Oracle ZFS Storage Appliance 8

The get_datasets.py Script 8

Defining the Script 8

Using the Oracle ZFS Storage Appliance Dataset Data 10

Example: Charting I/O Operations 12

Example: Charting I/O Operations with Drilldown Data 15

Collecting Storage Data from the Oracle ZFS Storage Appliance 17

The get_storage.py Script 17

Defining the Script 17

Using the Oracle ZFS Storage Appliance Storage Data 18

Predictions Using the Oracle ZFS Storage Appliance Storage Data 19

Collecting Logs from the Oracle ZFS Storage Appliance 21

The get_logs.py Script 21

Defining a Monitor 22

Using the Oracle ZFS Storage Appliance Log Data 24

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Example: Charting Logins 24

Conclusion 25

References 26

Appendix A: Python Code for get_datasets.py 27

Appendix B: Python Code for get_storage.py 28

Appendix C: Python Code for get_logs.py 30

Appendix D: Python code for zfs_session.py 33

Appendix E: Adding a Limited-Privilege User to the Oracle ZFS Storage Appliance 37

Appendix F: Enabling the RESTful Interface 39

1

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Introduction

The Operational Intelligence platform Splunk Enterprise is used by many organizations to gather
machine data from many sources. The collected data is then used to monitor the end-to-end
infrastructure to help avoid service degradation and to troubleshoot problems such as
performance bottlenecks. Splunk also provides predictive analysis tools to help determine when
resources may become overburdened.

This white paper provides information on the fundamentals of collecting data from the Oracle ZFS
Storage Appliance, basics on a Splunk infrastructure that allows distributing the load of collecting
the data, and configuring Splunk Enterprise to index that data. It provides, through example,
guidance on using this gathered data to help predict certain performance bottlenecks. This paper
is intended for an audience already familiar with Splunk Enterprise, its command line interface
(CLI), and the Oracle ZFS Storage Appliance.

2

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Overview of the Example System
The Splunk Enterprise infrastructure is flexible in how it collects its machine data. The heart of
the Splunk infrastructure is the Indexer node. The Indexer node transforms the raw data into
events and places the result into an index. It also searches the index in response to search
requests.1

In smaller deployments, the Indexer may also perform the other fundamental Splunk operations –
data input and search management – but in larger deployments, these operations may be
offloaded to other machines. A machine that takes on the data input operation is called a
Forwarder. A Forwarder node runs a streamlined, dedicated version of Splunk Enterprise that
contains only the essential components needed to forward data.2

Why Use a Forwarder?

In the Splunk infrastructure, the Indexer nodes can be quite heavily loaded, especially in a large
environment. The tasks of data input can accumulate quickly, leading to poor performance at both
server and network chokepoints. By using Forwarders, the machine resources can be distributed
across a number of small machines or virtual machines (VMs) and the generated network traffic
is more easily balanced.

In an environment where the monitored systems are spread across networks, Forwarders
automatically queue the data if connection to the Indexers is lost, whereas if data is streaming
directly to an Indexer, events can be lost during the network down time.

Another benefit to the use of Forwarders is the ability to group data from related machines,
allowing faster access to related events on the Indexers.

1 http://docs.splunk.com/Splexicon:Indexer
2 http://docs.splunk.com/Splexicon:Forwarder

http://docs.splunk.com/Splexicon:Indexer
http://docs.splunk.com/Splexicon:Forwarder

3

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 1. Distributed Splunk infrastructure

Figure 1 illustrates an example of a distributed Splunk infrastructure. It covers three distinct
islands of functionality, each on a separate subnet with limited routing between them. Each
island has one or more Oracle ZFS Storage Appliances containing data pulled by a Forwarder
which processes the raw data and pushes it to an Indexer.

 This white paper details how data from the Oracle ZFS Storage Appliance in Development can
be collected by a Forwarder and pushed to an Indexer.

This example assumes an environment with an Indexer node with Splunk Enterprise 6.2 already
installed and a server running Oracle Linux 7.1 with the Splunk Universal Forwarder installed.
However, the concepts in this white paper are OS-independent. The Splunk Forwarder is also
available for Oracle Solaris and other operating systems. As long as the Python language and the
required modules are available, the implementation described here will be applicable.

Configuring the Oracle ZFS Storage Appliance

To access the Representational State Transfer (REST) – also called RESTful – interface on
Oracle ZFS Storage Appliances running OS8.3 and earlier, REST must first be enabled. Please
see Appendix F for details on how to enable the RESTful API. Oracle ZFS Storage Appliances
running OS8.4 and above have the API enabled by default.

4

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Configuring the Indexer

In order to accept the data from the Forwarder, the Indexer must first be configured to receive it.
This is done with a Receiver process. Enable the Receiver process at the Indexer’s command
line interface with the command:

splunk enable listen 9997

Note that by convention, Splunk Forwarders use port 9997 to transfer data, but you can specify
any unused port. If no authenticated session to the Indexer already exists, the Indexer will
prompt for a username and password.

By setting up the Receiver, the Indexer will automatically add the data inputs for the files or
streams it receives.

Figure 2. Adding a Receiver through the Splunk web interface

As shown in Figure 2, you can also define the Receiver from the Indexer’s web GUI. Under the
Settings menu, in the Data section, choose “Forwarding and receiving”. Under “Receive data”,
click “Add new”, then enter the port number of the Receiver.

Once the Receiver is in place, it will automatically ingest the data pushed to it by the Forwarder.

5

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Installing the Universal Forwarder
The high-level steps for installation and configuration of the Linux Forwarder are:

1. If you have not already done so, download and install the Splunk Universal Forwarder on
the Linux machine according to the Splunk documentation.3 For Oracle Linux, use the
RPM file for your architecture and install it with yum or rpm. The Forwarder may run as
any user on the system. If it is to be run as a non-root user, ensure that the user has the
appropriate permissions to read the inputs that will be specified.

2. Set the environment variable $SPLUNK_HOME to the directory the Forwarder was
installed to. If the Forwarder is installed from an RPM package using its defaults, this will
be the /opt/splunkforwarder directory. Append the $PATH variable to the location
of the splunk executable, then start the Splunk Forwarder. The export lines may be
added to your shell’s initialization script to make them permanent: The first time Splunk
is started, you must agree to its license terms. Appending “—accept-license” to the
line that starts Splunk will accept the license without it being displayed.

export SPLUNK_HOME=/opt/splunkforwarder

export PATH=${PATH}:${SPLUNK_HOME}/bin

splunk start --accept-license

3. The default Splunk admin password should be changed with the following command. If
the CLI session on the Forwarder has not yet been authenticated, the screen interface
will prompt you for a username and password. For a new installation, when prompted,
use admin for the Splunk username and changeme for the password.

splunk edit user admin -password <New_Splunk_Admin_Password> \ -
role admin

4. Configure the Forwarder to point to a specific receiving Indexer. Specify the host by
either IP address or name. The default port for Splunk communication is 9997, but you
can easily change this at the Indexer end.

splunk add forward-server <host>:<port>

The Splunk Forwarder package does not have a web interface. You must configure it from the
command line or through configuration files.

3 As of this writing, the documentation is available at
http://docs.splunk.com/Documentation/Splunk/latest/Forwarding/Deployanixdfmanually

http://docs.splunk.com/Documentation/Splunk/latest/Forwarding/Deployanixdfmanually

6

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Collecting Data from the Oracle ZFS Storage Appliance
There are a number of ways that data can be collected from the Oracle ZFS Storage Appliance.
These include the Browser User Interface (BUI), the Command Line Interface (CLI), and the
Representational State Transfer (REST) interface. The REST interface is the most flexible and is
used in this white paper for all interaction with the Oracle ZFS Storage Appliance. The REST
interface will return the requested data in the JavaScript Object Notation (JSON) format, which is
easily parsed by Splunk.

Configuring the Forwarders to Parse Timestamps

The Oracle ZFS Storage Appliance logs use a timestamp format that is not immediately
recognized by Splunk. To allow Splunk to find and parse the timestamp within the log’s JSON
format, edit the file $SPLUNK_HOME/etc/system/local/props.conf to include the following
stanza:

[host::<hostname_regex>]

TIME_PREFIX = “timestamp"

MAX_TIMESTAMP_LOOKAHEAD = 22

TIME_FORMAT = “%Y%m%dT%H:%M:%S”

TZ = UTC # Dependent on environment

The <hostname_regex> field is a regular expression that will match the hostnames for the Oracle
ZFS Storage Appliances. In the hypothetical/example development island, all of the Oracle ZFS
Storage Appliances begin with dev-zfs, so the host line would be:

[host::dev-zfs*]

The TIME_PREFIX line identifies lines that contain a timestamp, and the
MAX_TIMESTAMP_LOOKAHEAD line defines where in the line the timestamp begins. These values
are correct for timestamps in the Oracle ZFS Storage Appliance JSON output.

The last line defines the format of the Oracle ZFS Storage Appliance’s timestamp string. (Note
that while the timestamp format shown is valid for all the examples in this paper, some sections of
the REST API, such as the Problem service, use other formats.)

Note that if a Splunk infrastructure has multiple Forwarders collecting logs from Oracle ZFS
Storage Appliances, this change must be made on each Forwarder. It is the Forwarders and not
the Indexers that must have this timestamp stanza in place.

Depending on your environment, you may need to add a line for the time zone. Best practices
recommend that systems use the Coordinated Universal Time (UTC) zone for their internal clock,
with the local time zone set by the operating system. The Oracle ZFS Storage Appliance is
generally configured this way, and would require the TZ line as shown previously. To test this,
run the following command:

 curl –k –u <user> https://<appliance>:215/api/service/v1/services/ntp

7

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

If the date line returned ends in “GMT+0000 (UTC)” then the TZ line should be used.

Any changes made to a Forwarder’s configuration files will not take effect until Splunk is
restarted. To check the validity of the files without affecting the current operation, run the
command splunk btool check –debug.

8

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Collecting Datasets from the Oracle ZFS Storage Appliance
Splunk is machine data-driven, and the Oracle ZFS Storage Appliance has plenty for it to work
with. The REST services give access to the Oracle ZFS Storage Appliance’s datasets, allowing
the user to collect various metrics and drilldown information for Splunk to assimilate. Full
documentation on the available datasets is available in the Oracle ZFS Storage Appliance
Analytics Guide.

Getting the datasets into Splunk requires a script on the Forwarder to log into the Oracle ZFS
Storage Appliance, collect the data, and write it to stdout.

The get_datasets.py Script

The get_datasets.py script in Appendix A (and its companion module, zfs_session.py in
Appendix D) provides an example method of collecting datasets and writing the output in the
JSON format.

The usage of the get_datasets.py script is:
usage: get_datasets.py -d DATASET [DATASET ...]
 -k KEYFILE -u USERNAME [-1]
 zfs_appliances [zfs_appliances ...]

You can specify any dataset – and multiple datasets – listed in the Analytics Guide. The keyfile is
a small JSON file that stores some information about the Oracle ZFS Storage Appliances
accessed by the script. The username is the login user on all of the Oracle ZFS Storage
Appliances. It is assumed that all Oracle ZFS Storage Appliances accessed by the same script
have the same login credentials.

The script, when run, prompts for a password for the Oracle ZFS Storage Appliance username
passed on the command line. It is highly recommended to use a non-privileged user to query the
REST interface. Such a user can be created through the Oracle ZFS Storage Appliance BUI.
When creating this user, the only role that should be applied is read-only access to Analytics.
(Please see Appendix E for an example of adding such a user.) There are a number of methods
that may be used to automate setting the password for the script. Be sure to implement a method
consistent with the security practices in your environment.

Defining the Script

To have Splunk run the script and read its output, the script must first be in a location accessible
to Splunk. $SPLUNK_HOME/bin/scripts is an ideal location for such scripts.

You must then add a script stanza to the file $SPLUNK_HOME/etc/system/local/inputs.conf

The stanza is of the format:

[script://<script_name> <script_parameters>]

interval = <seconds>

sourcetype = _json

http://docs.oracle.com/cd/E56021_01/html/E55853/docinfo.html
http://docs.oracle.com/cd/E56021_01/html/E55853/docinfo.html

9

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

It is good practice, especially when calling scripts that have additional parameters such as this, to
use a wrapper script so that Splunk’s parser does not accidentally misread characters that are
special to it. Here is the wrapper script get_datasets.sh:

#!/bin/bash

/opt/splunkforwarder/bin/scripts/get_datasets.py \

-d io.bytes[op] io.bytes nic.kilobytes[direction] \

nfs3.ops[share] nfs3.ops[op] nfs4.ops[share] nfs4.ops[op] \

-k /opt/splunkforwarder.tmp/get_datasets.key –u reporter \

dev-zfs-1 dev-zfs-2]

Here is the example stanza in inputs.conf:

[script:///opt/splunkforwarder/bin/scripts/get_datasets.sh]

interval = 60

sourcetype = _json

Note that the sourcetype must be specified as _json or Splunk may improperly parse the
output. Also note that the script must be specified with its full pathname, and that this will result in
three slashes after the colon in the script definition line. The interval value sets the time between
script executions in seconds.

When run, the script will gather the data for multiple datasets in one-second intervals since the
last time the script was run. With the first invocation of the script, it will gather the data from the
previous 24 hours.

If less granularity is needed for some datasets, the -1 parameter can be passed to the script, and
a single data point from the current moment will be returned for each specified dataset.

Here is an example stanza (which does not use a wrapper) to collect a single dataset every 30
seconds:

[script:///opt/splunkforwarder/bin/scripts/get_datasets.py \

 -d cpu.utilization[mode] \

 -k /opt/splunkforwarder/tmp/get_datasets2.key –u reporter \

 dev-zfs-1 dev-zfs-2]

interval = 30

sourcetype = _json

Note that a different keyfile is specified. When the same script is called from different stanzas, a
recommended practice is to use different keyfiles to prevent contention, especially in cases when
scripts are run at different intervals. This is because the last access time is also stored in the
keyfile, and it is unlikely that this value can be accurately shared across scripts.

With the stanzas in place in inputs.conf, restart Splunk. The data collected by the Forwarder
will automatically be passed to the Indexer.

10

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Using the Oracle ZFS Storage Appliance Dataset Data
When the script begins generating data, the Forwarder will automatically push it to the Indexer.
This can be seen in the “What to Search” section of the Search screen.

Figure 3. What to Search section in the Splunk interface

Clicking the “Data Summary” button brings up a list of hosts from which Splunk collects its data.
Note that by default, Splunk uses as the “Host” the hostname of the Forwarder, not the hostname
of the Oracle ZFS Storage Appliance.

Figure 4. Data Summary

Clicking on the Forwarder’s host name will pull in all of the records that the Indexer has collected
from the Forwarder. Each of the Forwarders in the Splunk infrastructure will be listed under the
Host column.

In the instances where multiple Oracle ZFS Storage Appliances are reporting to a single
Forwarder, a search can be created based on all records from that Forwarder. In this
example, data from a single machine reporting to the Forwarder will be reported upon.

11

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 5. Expanding a record

Note in Figure 5 that under the “i ” column there are arrows to expand the record and act upon
them. Click on the arrow for the first record.

Figure 6. Expanded record

12

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Find the field extracted_host in the expanded record and click the box to the left. The field is
then moved up to the “Selected” area, making it much easier for the Indexer to sort on a single
Oracle ZFS Storage Appliance. This selection is applied to all records pushed from the
Forwarder. This action is persistent so it will not have to be repeated for other searches even if
they are for different Oracle ZFS Storage Appliances.

Clicking the arrow in the “i” column once again will close the expanded window. Note the
extracted_host field is now displayed as host in the log records. By clicking on the value of
the extracted host, a list of options is displayed.

Figure 7. Creating a search

Clicking on “New search” will create a search for only that Oracle ZFS Storage Appliance. Other
fields can be added to the search from the same popup menu. By clicking on the dataset value of
nfs4.ops[op], the search is restricted to NFSv4 operation events and no other datasets.

Figure 8. Adding to a search

As the search is created, the command line for it is shown at the top. It may be manually edited if
needed.

Example: Charting I/O Operations

As an example of extracting and charting data with drilldown information, a search is created for
the desired Oracle ZFS Storage Appliance as shown in the previous figure. You could search
through the many events returned for the desired host to find a particular dataset and add it to the
search as shown previously, but it is likely faster to simply edit the search manually. Adding an

13

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

spath command for the dataset field will speed the search up. Then you can pipe the output to a
search command for the particular dataset of interest – in this case, io.bytes:

* | spath host | search host="aie-zs3-2b" | spath dataset | search dataset="io.bytes"

Figure 9. Editing the search

To create a graph from this information, a transforming command4 can be added to the search.

In the following example, the total I/O in is graphed using the value field. Adding timechart
avg(value) to the search command will create a graph with values averaged for each
timespan shown, and using ‘as “IO Bytes”’ permits renaming the value field for the graph.
Use the pull-down menus to change the style and format of the graph. This example shows an
area graph for the total I/O in bytes.

* | spath host | search host="aie-zs3-2b" | spath dataset | search

dataset="io.bytes" | timechart avg(value) as "IO Bytes"

Figure 10. Average total I/O

4 Transforming commands "transform" the specified cell values for each event into numerical values that Splunk can use
for statistical purposes.
Transforming commands include chart, timechart, stats, top, rare, contingency, and highlight.
Transforming commands are required to transform search result data into the data structures required for visualizations
such as column, bar, line, area, and pie charts.

14

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

The previous example averages the Oracle ZFS Storage Appliance’s I/O every 5 minutes, but this
may not represent the data accurately enough, as short spikes of high I/O will be smoothed out in
the average. An alternate way to represent the data is to create a table of value over time and
use the chart command to draw the graph.

* | spath host | search host="aie-zs3-2b" | spath dataset | search

dataset="io.bytes" | table value, _time, | chart values(value) as "IO

Bytes/sec" by _time

Figure 11. Using the table and graph commands

The graph in Figure 10 shows clearly that the Oracle ZFS Storage Appliance is averaging about
1,200 B/s in I/O, while Figure 11 shows that there are occasionally spikes of over 10,000 B/s.

Note that there is a warning that there is too much data to graph, and that the results may be
truncated. Hovering the mouse over the end of the graph shows that the last time plotted was
1,000 seconds (or 16 minutes and 40 seconds) after the beginning of the graph, with the later
data points unplotted. This style of chart is better suited to using a timespan of 15 minutes or
less, as shown in Figure 12.

15

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 12. Using a 15-minute timespan

Example: Charting I/O Operations with Drilldown Data

Charting the total I/O of an Oracle ZFS Storage Appliance is useful, but does not tell the whole
story. The previous charts using the io.bytes dataset provides no clue about whether the load
is skewed towards reads, writes, or is a mix of both. To drill down into the total I/O, you can use
the dataset io.bytes[op] instead. Whenever a dataset’s name is followed by a descriptor in
square brackets, more information is available. In the case of io.bytes[op], the total I/O
shown in value is broken down by operation in the fields read and write, as shown in Figure
13.

Figure 13. io.bytes[op] event

By modifying the search used for the chart in Figure 12 to use io.bytes[op] as the dataset
and modifying the table and chart commands in the last example to use read and write,
display both pieces of data at the same time, as shown in Figure 14.

* | spath host | search host="aie-zs3-2b" | spath dataset | search

dataset="io.bytes[op]" | table read, write, _time, | chart values(read) as

Read, values(write) as Write by _time

16

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 14. A stacked chart showing read and write I/O

The format of the chart has been set to stack the variables, and now shows the total I/O
represented by the total height of the graph, as well as the I/O used by the read and write
operations separately. This allows you to easily see that this Oracle ZFS Storage Appliance is
handling a much higher write load than a read load.

17

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Collecting Storage Data from the Oracle ZFS Storage Appliance
Storage information may be collected from an Oracle ZFS Storage Appliance in a similar manner
to metric information provided by datasets. Once again, you need a script to log on the
Forwarder to log in, collect data, process it, and write it to stdout. The get_storage.py script
in Appendix B provides an example.

The get_storage.py Script

This script is much simpler than get_datasets.py. Its usage is:
 usage: get_storage.py -k KEYFILE -u USERNAME
 zfs_appliances [zfs_appliances ...]

All of the security concerns for running get_datasets.py remain true for get_storage.py,
as are the use of the keyfile and username parameters.

When developing the script to read data from an Oracle ZFS Storage Appliance, it is important to
preview the data and ensure that Splunk has the data it needs to properly handle the records.
The JSON output for a storage query does not have a host identifier or a timestamp, so it is
important that the code add these fields to the JSON object.

The script discards information about the devices that make up the pool and scrubs information
for clarity. If this information is valuable to the user, the script should be modified to include it.

Defining the Script

Once again, use a wrapper script:

#!/bin/bash

/opt/splunkforwarder/bin/scripts/get_storage.py \

-k /opt/splunkforwarder/tmp/get_storage.key –u reporter \

dev-zfs-1 dev-zfs-2

Add a script stanza to the file $SPLUNK_HOME/etc/system/local/inputs.conf as before:

[script:///opt/splunkforwarder/bin/scripts/get_storage.sh]

interval = 60

sourcetype = _json

Once the Forwarder is restarted, it will begin executing the script.

18

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Using the Oracle ZFS Storage Appliance Storage Data
The get_storage.py script is run once per minute in the example, and returns a JSON object
for each pool on the Oracle ZFS Storage Appliance. Here is an example of one such object:

{

 "asn": "fd4ccdd9-02e0-c467-90cb-a383680c21c3",

 "available": 958106216960.0,

 "dedupratio": 100,

 "host": "aie-zs3-2b",

 "owner": "aie-zs3-2b",

 "peer": "00000000-0000-0000-0000-000000000000",

 "pool": "pool0",

 "profile": "cache_stripe:mirror:log_mirror",

 "status": "online",

 "timestamp": "20150716T13:57:52",

 "total": 8933531975680.0,

 "used": 7975425758720.0

}

A useful visualization from this data is a pie chart of disk space used and disk space available.
By creating a search for a desired host followed by a search on the pool desired, you can easily
see the ratio of free and used space in the pool.

* | spath host | search host=”aie-zs3-2b” | spath pool | search pool=”pool0” |

dedup available, used | stats avg(available) as Free, avg(used) as Used |

transpose

Figure 15. A pie chart showing pool usage

Note the use of the dedup command to return only the latest record to be added.

19

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Predictions Using the Oracle ZFS Storage Appliance Storage Data
The get_storage.py script in the example can also return information about filesystems. In
the code, only filesystems in pool0 have information retrieved.

With the filesystem data being ingested by Splunk, it is a simple process to write a search for the
space used in the filesystem.

* | spath filesystem | search filesystem="*tinyfs" | timechart

sum(eval(space_total/1048576)) as UsedMB

Figure 16. Space used in a filesystem

For this example, there is a script that writes a one megabyte file to a mounted filesystem once
every one to three minutes at random, resulting in a steady increase in space used.

To project the space usage into the future, you can use Splunk’s predict command. This
command allows the user to apply one of a number of modeling algorithms to time-based data to
predict future trends. Easily invoke the predict command by piping the output from the
timechart command into predict.

* | spath filesystem | search filesystem="*tinyfs" | timechart

sum(eval(space_total/1048576)) as UsedMB | predict “UsedMB” future_timespan=250

20

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 17. Predicting future space usage in a filesystem

While this example is an oversimplification compared to real-world situations, it clearly shows the
power and utility of the predict command in Splunk.

21

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Collecting Logs from the Oracle ZFS Storage Appliance
Log files are a rich source of data for Splunk, and the Oracle ZFS Storage Appliance logs a
great deal of data. This data is distributed into five different logs: alert, audit, fault, phone-
home and system.5 Only the system log is presented through the standard syslog protocol,
which has the ability to forward the system log to another server. By using the REST
interface, it is easy to collect all the desired logs.

Three steps are needed to bring the logs into Splunk. The first of these is log collection, which is
done with a script.

The get_logs.py Script

The get_logs.py script that is listed in Appendix C is an example of how the logs may be
collected by a script that is designed to be run periodically on a Forwarder node.

The usage of get_logs.py as displayed in the script is:

usage: get_logs.py –k KEYFILE –u USERNAME
 -p LOGPATH –t LOGTYPE [LOGTYPE …] [-F]

 <zfs_appliances>

As before, the keyfile should be different for each script. The logpath is the directory where
the logs will be written, and one or more logtypes must be specified.

The script, when run, prompts for a password for the Oracle ZFS Storage Appliance username
passed on the command line. Again, it is highly recommended to use a non-privileged user to
query the REST interface.

The script then authenticates itself to the Oracle ZFS Storage Appliance, gathers the entries for
the specified log type that have been generated since the last time the script was run, and writes
a file of the form <zfs_appliance>.<logtype>.log to a designated path on the Forwarder,
rotating out the previous log files in a manner similar to the Linux logrotate command.

When the audit log is requested, a special filter can be applied by using the –F parameter to
prevent writing each session login or logout from the BUI, CLI or REST interfaces. These entries
comprise the bulk of the audit file and may not be useful to pass to Splunk for indexing.

One of the issues with collecting the log data through a Splunk Forwarder is that the original
source of the data can become conflated with logs from other Oracle ZFS Storage Appliances. In
order to be able to search on logs from a single Oracle ZFS Storage Appliance, the script adds a
field named “host” to each log entry to correctly identify its origin.

5 Please refer to the Oracle ZFS Storage Appliance documentation for details on each log type.

22

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

The script should be installed in an appropriate location such as $SPLUNK_HOME/bin/scripts
and be given execute permissions with the command chmod +x get_logs.py The
designated file path that will be used by the script to write the logs to must exist and be writable
by the user running the script.

The script needs to be run on a periodic basis. On Linux and other UNIX-like operating systems,
a service called cron is available to define schedules to run processes. Adding the following line
to the file /etc/crontab on the example Oracle Linux system will schedule the log collection
process to be run every 15 minutes:

0,15,30,45 * * * * /usr/local/bin/get_logs.py –u reporter \

–p /var/log/splunk –k /opt/splunkforwarder/tmp/dev_log.dat \

–t alert audit fault system –F dev-zfs-1 dev-zfs-2

With the script in place and set to run on a regular basis, the second step is the configuration of
the Forwarder.

The third step that must be in place is to tell the Forwarder to read the logs.

Defining a Monitor

A Splunk Monitor is a process that will watch a specified directory for changes and pass the new
data to the Indexer. Because the script in the example writes logs to a file, the Forwarder must
be told to monitor that directory for changes to the files located there. The <filepath>
argument to the get_logs.py script becomes the <source> for the Monitor.

Any changes to the files in the monitored directory are noted by the Forwarder and immediately
acted upon.

To add the Monitor from a file, edit $SPLUNK_HOME/etc/system/local/inputs.conf to
include a stanza of the format:

[monitor://<source>]
sourcetype = _json

If the example file path is /var/log/splunk/, then the stanza would be:

[monitor:///var/log/splunk]

sourcetype = _json

blacklist = \.(gz|bz2|z|zip)$

Note that the sourcetype must be specified as _json or Splunk will improperly parse the logs.

The script does not provide for compressing older log files, because Splunk’s default behavior for
handling logs is sub-optimal. It understands log rotation to the extent that if a logfile has been
renamed, it does not have to be reread, but if the file is renamed and compressed, Splunk will
uncompress it and re-parse it, resulting in duplicate events.

23

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

If compression is used for the log rotation, adding a blacklist rule as shown in the previous code
will prevent Splunk from processing any files ending with the given patterns.

To add the Monitor from the command line, use this:

$ splunk add monitor <source> -sourcetype _json

Note that the directory name must end with a slash(/) when the command line is used.

To pick up the new configuration, the Forwarder must be restarted with the following command:

splunk restart

24

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Using the Oracle ZFS Storage Appliance Log Data
As with the dataset and storage data in the previous sections, when the script begins generating
data into the monitored directory, the Forwarder will automatically push it to the Indexer.

Example: Charting Logins

You can create a search for login information in a similar manner to the dataset and storage
searches. This example uses a wildcard to match all logins to the various interfaces.

* | spath host | search host=”aie-7120b” | spath summary | search summary=”User

logged in”

Figure 18. Searching for logins

In the following example, adding “timechart count” to the search command will create a graph of
the number of logins over time. Use the pull-down menus to change the style and format of the
graph.

* | spath host | search host=”aie-7120b” | spath summary | search summary=”User

logged in” | timechart count

Figure 19. Visualizing the search

25

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Conclusion
By leveraging the RESTful API on the Oracle ZFS Storage Appliance, all logs and datasets can
be imported into Splunk, allowing for a comprehensive overview of an organization’s
infrastructure with the ability to drill down into details as needed.

The provided Python scripts in this paper have been written to illustrate the use of the RESTful
API in extracting various types of data from an Oracle ZFS Storage Appliance and may not
provide adequate error checking on input parameters or error reporting on failed commands.
Please use the examples accordingly.

When creating programs in production environments, pay proper attention to writing code that
fully checks user input and provides adequate detail in diagnostic error messages for the user to
fully understand the nature of a failure. A more automated method of authenticating the user to
the Oracle ZFS Storage Appliance is left as an exercise for the reader.

26

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

References

See the following resources for additional information relating to the products covered in this
document.

• Oracle RESTful API documentation
https://docs.oracle.com/cd/E51475_01/html/E52433/index.html

• Oracle ZFS Storage Appliance White Papers and Subject-Specific Resources
http://www.oracle.com/technetwork/server-storage/sun-unified-
storage/documentation/index.html

Including: “Working with the RESTful API for the Oracle ZFS Storage Appliance” at
http://www.oracle.com/technetwork/server-storage/sun-unified-
storage/documentation/restfulapi-zfssa-0914-2284451.pdf

• Oracle ZFS Storage Appliance Analytics Guide
http://docs.oracle.com/cd/E56021_01/html/E55853/docinfo.html

• Oracle ZFS Storage Appliance Product Information
https://www.oracle.com/storage/nas/index.html

• Oracle ZFS Storage Appliance Documentation Library, including Installation,
Analytics, Customer Service, and Administration guides:
http://www.oracle.com/technetwork/documentation/oracle-unified-ss-193371.html

The Oracle ZFS Storage Appliance Administration Guide is also available through
the Oracle ZFS Storage Appliance help context.
The Help function in Oracle ZFS Storage Appliance can be accessed through the
browser user interface.

• Splunk information and documentation
http://splunk.com

https://docs.oracle.com/cd/E51475_01/html/E52433/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/index.html
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/restfulapi-zfssa-0914-2284451.pdf
http://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/restfulapi-zfssa-0914-2284451.pdf
http://docs.oracle.com/cd/E56021_01/html/E55853/docinfo.html
https://www.oracle.com/storage/nas/index.html
http://www.oracle.com/technetwork/documentation/oracle-unified-ss-193371.html
http://splunk.com/

27

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix A: Python Code for get_datasets.py
#!/usr/bin/python
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.

""" Collect either a single or a set of data points for each dataset passed via
the command line from each specified ZFS storage appliance and format it in a
way to make Splunk ingestion simple. If a single data point is specified, it
will be taken for the current second, otherwise the data will be collected
starting from the last time the script was run as stored in the keyfile and be
returned with an object for each one second interval. If there is no start
time available, collect the last 60 seconds of data.
"""

import json
import sys
import os
import zfs_session

def get_datasets(host, args):
 """ Drilldown dataset data are accumulated over time, and getting a dump
 of the information for a long timespan may take quite a bit of time.
 This function will return the data in one second intervals since the last
 time the script was run against the host (as determined by an entry in the
 key file) up to the present moment. """
 # Get current ZFS appliance's time
 host.get_zfssa_curtime()
 for dataset_name in args.datasets:
 if args.onetime:
 # Override the timespan set in get_zfssa_curtime() to one second
 host.urlspan = "data?start=now&seconds=1"
 host.url = "{0}/api/analytics/v1/datasets/{1}/{2}".\
 format(host.urlbase, dataset_name, host.urlspan)
 dataset_array = host.get_data()['data']
 if args.onetime:
 # A dataset without drilldown data will not be in the list format
 # expected below - recast it into one
 dataset_array = [dataset_array]
 for dataset in dataset_array:
 # Add identifying fields to the JSON object and flatten the
 # object for better ingestion
 dataset['host'] = host.name
 dataset['dataset'] = dataset_name
 dataset = zfs_session.flatten_dataset_json(dataset)
 print json.dumps(dataset, sort_keys=True, indent=2)

def main():
 args = zfs_session.getargs()
 for hostname in args.zfs_appliances:
 # Create the host object
 host = zfs_session.Host(hostname, args)
 get_datasets(host, args)
 host.save_session(args)

if __name__ == '__main__':
 # redefine stdout to be unbuffered
 sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
 main()

28

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix B: Python Code for get_storage.py
#!/usr/bin/python
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
""" Collect pool information from a ZFS storage appliance """
import json
import sys
import os
import zfs_session

def get_filesystems(host):
 # Only query for the filesystems in the default project
 host.url = "{0}/projects/default/filesystems".format(host.url)
 filesystems = host.get_data()
 if not filesystems:
 print "No filesystems found"
 sys.exit(1)
 for fs in filesystems['filesystems']:
 fs['filesystem'] = fs.pop('canonical_name')
 # A host and a timestamp are important to Splunk
 fs['host'] = host.name
 fs['timestamp'] = host.timestamp
 # Delete data uninteresting to Splunk
 del fs['source']
 print json.dumps(fs, sort_keys=True, indent=2)

def get_pools(host):
 host.url = "{0}/api/storage/v1/pools".format(host.urlbase)
 pools = host.get_data()
 if not pools:
 print "No pools found"
 sys.exit(1)
 for pool in pools['pools']:
 host.url = "{0}{1}".format(host.urlbase, pool['href'])
 pooldetail = host.get_data()
 pooldetail['pool']['pool'] = pooldetail['pool'].pop('name')
 # A host and a timestamp are important to Splunk
 pooldetail['pool']['host'] = host.name
 pooldetail['pool']['timestamp'] = host.timestamp
 pooldetail['pool'] = zfs_session.flatten_storage_json(
 pooldetail['pool'])
 print json.dumps(pooldetail['pool'], sort_keys=True, indent=2)
 # Only collect filesystem data for pool0
 if pooldetail['pool']['pool'] == 'pool0':
 get_filesystems(host)

def main():
 args = zfs_session.getargs()
 for hostname in args.zfs_appliances:
 # Create the host object
 host = zfs_session.Host(hostname, args)
 host.get_zfssa_curtime()
 get_pools(host)
 host.save_session(args)

if __name__ == '__main__':

29

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 # redefine stdout to be unbuffered
 sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
 main()

30

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix C: Python Code for get_logs.py
#!/usr/bin/python
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.

"""Collect logs from an Oracle ZFS Storage Appliance. The logs are returned in
JSON format and will be rotated as needed."""

import json
import sys
import os
import glob
import zfs_session

def rotate_logs(filename, args):
 """Rotate the log files in a similar manner to the logrotate command"""
 loglist = sorted(glob.glob(filename + '.*'))
 if args.keep_logs == 0 or args.keep_logs >= 1000:
 log_num_len = 3
 args.keep_logs = 1000
 else:
 log_num_len = len(str(args.keep_logs - 1))
 if len(loglist) == args.keep_logs:
 loglist.pop()
 latest = len(loglist)
 for myfile in reversed(loglist):
 logstr = '.' + str(latest).zfill(log_num_len)
 os.rename(myfile, filename + logstr)
 latest -= 1
 os.rename(filename, filename + '.' + str(latest).zfill(log_num_len))
 return

def find_last_logs(filename):
 """Find the last time a log entry was written to the extant logfile and
 return all entries with that timestamp."""
 try:
 with open(filename, 'r') as fp:
 oldlog = json.load(fp)
 fp.close()
 lastlogs = []
 last_time = oldlog[-1]['timestamp']
 for entry in reversed(oldlog):
 if entry['timestamp'] == last_time:
 lastlogs.append(entry)
 return lastlogs
 except IOError:
 return None
 except AttributeError as err:
 print "Error ", err, " opening ", filename
 sys.exit(6)

def get_logs(host, args):
 """ Retrieve the logs from the appliance, parse and filter them as
 required, then write them to the appropriate field. """

 # Get current ZFS appliance's time
 host.get_zfssa_curtime()

31

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 for logtype in args.logtype:
 filename = '{0}/{1}.{2}.log'.format(args.logpath, host.name, logtype)
 # Find the last log entry written, if any
 if os.path.exists(filename):
 last_logs = find_last_logs(filename)
 if len(last_logs) != 0:
 last_time = last_logs[0]['timestamp']
 else:
 last_time = None
 else:
 last_logs = []
 last_time = None

 if not last_time:
 host.url = "{0}/api/log/v1/logs/{1}".format(host.urlbase, logtype)
 else:
 host.url = "{0}/api/log/v1/logs/{1}?start={2}".format(host.urlbase,
 logtype,
 last_time)
 # The appliance returns the logs in a dictionary with a single key:value
 # pair, with the key of 'logs' and a value of a list of all the
 # pertinent entries. We only need the list.
 log_array = host.get_data()['logs']

 for log_entry in log_array[:]:
 # Using slicing to be able to modify log_array even as we iterate
 # through it.
 log_entry['host'] = host.name
 if args.filter and logtype == 'audit':
 if log_entry['summary'].find("User logged") != -1 or \
 log_entry['summary'].find("Browser session") != -1:
 log_array.remove(log_entry)

 # Compare the last log entries written with the new log entries
 # collected and discard any matches in the new log
 for test_entry in last_logs:
 for log_entry in log_array[:]:
 if cmp(test_entry, log_entry) == 0:
 log_array.remove(log_entry)
 continue

 if len(log_array) > 0:
 # Only rotate logs and write a new log file if there are new entries
 if os.path.exists(filename):
 rotate_logs(filename, args)
 try:
 with open(filename, 'w') as fp:
 json.dump(log_array, fp, sort_keys=True, indent=2)
 fp.close()
 except IOError as e:
 print 'I/O error({0}) writing {1}: {2}'.format(e.errno,
 filename,
 e.strerror)

def main():
 args = zfs_session.getargs()
 # Define how many logs are to be kept, up to 1000. Zero is the same as 1000
 args.keep_logs = 15
 for hostname in args.zfs_appliances:
 # Create the host object

32

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 host = zfs_session.Host(hostname, args)
 get_logs(host, args)
 host.save_session(args)

if __name__ == "__main__":
 # redefine stdout to be unbuffered
 sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
 main()

33

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix D: Python code for zfs_session.py
Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
import requests
import json
import sys
import time
import argparse
import getpass
import base64

class Host(object):
 """ Host class for storing ZFS Storage Appliance data and methods for
 authentication and REST data retreival """

 def __init__(self, hostname, args):
 """ Define the host object and create placeholders for variables to
 be set at a later time, then log into the appliance. """
 self.name = hostname
 self.xauth = None
 self.url = None
 self.urlbase = None
 self.urlspan = None
 self.last_access_time = None
 self.client = None
 self.timestamp = None
 self.open_session(args)

 def save_session(self, args):
 """ Copy the configuration for the host to a JSON object and write
 the JSON object to a keyfile. Note that the keyfile is not intended to
 be shared with other processes.
 """
 try: # to read the keyfile
 with open(args.keyfile, 'r') as fp:
 tmp_dict = json.load(fp)
 fp.close()
 except IOError:
 tmp_dict = {self.name: {}}
 if self.name not in tmp_dict.keys():
 tmp_dict[self.name] = {}
 # The xauth token should not be stored in clear text. encode()
 # will use the Vigenere cipher to encrypt it, using the password as
 # a key.
 tmp_dict[self.name]['xauth'] = encode(args.password, self.xauth)
 tmp_dict[self.name]['url'] = self.url
 tmp_dict[self.name]['urlbase'] = self.urlbase
 tmp_dict[self.name]['urlspan'] = self.urlspan
 tmp_dict[self.name]['last_access_time'] = self.last_access_time
 try:
 with open(args.keyfile, 'w') as fp:
 json.dump(tmp_dict, fp, sort_keys=True, indent=2)
 fp.close()
 except IOError as e:
 print 'I/O error({0}) writing {1}: {2}'.format(e.errno,
 args.keyfile,
 e.strerror)

 def open_session(self, args):
 """ Read args.keyfile and if a JSON object exists for the host
 self.name, populate the host object, otherwise define the URL base.
 """
 try:
 with open(args.keyfile, 'r') as fp:

34

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 tmp_dict = json.load(fp)
 fp.close()
 if self.name in tmp_dict.keys():
 self.xauth = decode(args.password, tmp_dict[self.name]['xauth'])
 self.url = tmp_dict[self.name]['url']
 self.urlbase = tmp_dict[self.name]['urlbase']
 self.last_access_time = tmp_dict[self.name]['last_access_time']
 self.urlspan = tmp_dict[self.name]['urlspan']
 else:
 self.urlbase = "https://{0}:215".format(self.name)
 except IOError:
 # No keyfile at all
 self.urlbase = "https://{0}:215".format(self.name)
 self.define_client(args)

 def define_client(self, args):
 """ Define the Sessions object used to authenticate to and interact with
 the ZFS appliance.
 """
 self.client = requests.Session()
 # Do not verify appliance's self-signed certificate
 self.client.verify = False
 self.url = "{0}/api/access/v1".format(self.urlbase)
 # Can we log in with our old key?
 try:
 self.client.headers.update({'X-Auth-Session': self.xauth})
 obj = self.client.get(self.url)
 obj.raise_for_status()
 except requests.exceptions.HTTPError:
 # No self.xauth found, log in with the username and password
 try:
 # Having X-Auth-Session defined in the headers overrides the
 # existence of X-Auth-User and X-Auth-Key
 del self.client.headers['X-Auth-Session']
 self.client.headers.update({'X-Auth-User': args.username})
 self.client.headers.update({'X-Auth-Key': args.password})
 obj = self.client.post(self.url)
 obj.raise_for_status()
 # Remove X-Auth-User and X-Auth-Key and add X-Auth-Session
 del self.client.headers['X-Auth-User']
 del self.client.headers['X-Auth-Key']
 self.xauth = obj.headers['x-auth-session']
 self.client.headers.update(
 {'X-Auth-Session': obj.headers['x-auth-session']})
 except:
 print 'Error with user/pw authenticaton: {0}'.format(
 sys.exc_info()[0])
 sys.exit(2)
 except:
 print 'Error {0}'.format(sys.exc_info()[0])
 sys.exit(3)
 return self

 def get_zfssa_curtime(self):
 """ It cannot be assumed that the system running the script will be
 synchronized with the appliances being polled. Pull one second of arc
 size data from the storage appliance to define our base time.
 """
 self.url = \
 '{0}/api/analytics/v1/datasets/arc.size/data?start=now&seconds=1'.\
 format(self.urlbase)
 nowstr = self.get_data()['data']['startTime']
 nowobj = time.strptime(nowstr, "%Y%m%dT%H:%M:%S")
 nowflt = time.mktime(nowobj)

 # While the timespan is not always needed, the overhead of adding it
 # here is very low and allows the same function to be called for both

35

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 # single data points and drilldowns.
 if self.last_access_time is not None:
 # Get the data since it was last collected
 lasttime = self.last_access_time
 else:
 # Get last hour's data if being run for the first time
 lasttime = nowflt - 3600
 self.last_access_time = nowflt
 timespan = nowflt - lasttime
 self.urlspan = "data?start={0}&seconds={1}".format(
 time.strftime("%Y%m%dT%H:%M:%S", time.localtime(lasttime)),
 int(timespan))
 self.timestamp = "{0}".format(time.strftime("%Y%m%dT%H:%M:%S",
 time.localtime(nowflt)))

 def get_data(self):
 """ Make the HTTP call using self.url and return a JSON object after
 stripping off the outer ['data'] wrapper """
 # noinspection PyBroadException
 try:
 obj = self.client.get(self.url)
 obj.raise_for_status()
 except:
 print 'Error with REST call: {0}'.format(sys.exc_info()[0])
 print 'URL = {0}'.format(self.url)
 sys.exit(2)
 else:
 return obj.json()

Below are functions that do not act on the host object.

def flatten_dataset_json(dataset):
 """
 Flatten the JSON object returned by the appliance. It is assumed that the
 object has already had its outer data wrapper stripped off.
 """
 dataset['timestamp'] = dataset.pop('startTime')
 # Bring the total value to the top level.
 dataset['value'] = dataset['data']['value']
 del dataset['data']['value']
 # Handle breakdown data
 try:
 # The inner dictionaries only exist for datasets for which there
 # are breakdowns available.
 for tmpdict in dataset['data']['data']:
 dataset[tmpdict['key']] = tmpdict['value']
 except KeyError:
 pass
 # Delete unused fields
 del dataset['sample']
 del dataset['samples']
 del dataset['data']
 return dataset

def flatten_storage_json(storage):
 """
 Flatten the storage object returned by the appliance. It is assumed that
 the object has already had its outer data wrapper stripped off.
 """
 # Try dropping vdev details and other uneeded sub-objects some of which may
 # not always exist in the object
 objlist = 'vdev', 'log', 'spare', 'errors', 'scrub', 'cache'
 for subobj in objlist:
 try:

36

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

 del storage[subobj]
 except KeyError:
 pass
 # Flatten usage data
 try:
 # The inner dictionary 'usage' is brought up a level
 for name, value in storage['usage'].iteritems():
 storage[str(name)] = value
 del storage['usage']
 except KeyError:
 pass
 return storage

def encode(key, clear):
 # Encode a string using the Vigenere cipher
 coded = []
 for idx in range(len(clear)):
 # Rotate through the key string to get the key character
 key_c = key[idx % len(key)]
 # Add the ord() values of the clear and key characters, modulo
 # the size of the character set (256) and append the result to the
 # encoded string
 coded.append(chr(ord(clear[idx]) + ord(key_c) % 256))
 # Ensure the coded string is a pure text string
 return base64.urlsafe_b64encode("".join(coded))

def decode(key, base64str):
 # Decode a string using the Vigenere cipher
 clear = []
 # Ensure that base64str is not a unicode string or decoding from base64
 # will crash
 coded = base64.urlsafe_b64decode(str(base64str))
 for idx in range(len(coded)):
 key_c = key[idx % len(key)]
 clear.append(chr((256 + ord(coded[idx]) - ord(key_c)) % 256))
 return "".join(clear)

def getargs():
 """
 Parse the command line arguments. Note that this function does not do any
 checking as to whether the arguments are appropriate for the particular
 script being run.
 """
 parser = argparse.ArgumentParser()
 parser.add_argument('-d', '--datasets', nargs='+', type=str)
 parser.add_argument('-k', '--keyfile', type=str)
 parser.add_argument('-u', '--username', type=str)
 parser.add_argument('-p', '--logpath', type=str)
 parser.add_argument('-t', '--logtype', nargs='+', type=str)
 parser.add_argument('-F', '--filter', dest='filter', action='store_true')
 parser.add_argument('-1', '--onetime', dest='onetime', action='store_true')
 parser.add_argument('zfs_appliances', nargs='+', type=str)
 parser.set_defaults(filter=False, onetime=False)
 args = parser.parse_args()
 # The user may wish to automate the password input based on local
 # security concerns; this prompts for a password each time the program
 # is run.
 if not args.password:
 args.password = getpass.getpass(
 "Enter password for user {0}".format(args.username))
 return args

37

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix E: Adding a Limited-Privilege User to the Oracle ZFS Storage Appliance

The Oracle ZFS Storage Appliance does not require the user logging into the RESTful API to
have any administrative privileges if the user is only reading data, but some areas, such as
Analytics, do require special access. A new user with limited privileges should be created to
access the RESTful API.

Figure 20. User configuration screen

If Analytics access is desired, begin by creating a new role for the access. Click the plus sign
above the list of Roles to get to the Add Role screen as shown in Figure 21.

.

Figure 21. Adding a role

Give the role a name and description, then choose Analytics from the Scope pull-down menu.
Check the box for read access and click the Add button in the Authorizations section. The object
stat.* with read permission will be listed. You may then click the Add button in the upper right
corner to create the role.

To create the user, log in to the Oracle ZFS Storage Appliance’s web browser user interface
(BUI). Log in as a privileged user such as root. Click on Configuration, then on Users. Click on
the plus sign above the list of Users to get to the Add User screen.

38

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Figure 22. Adding a user

Start by clicking the button to make this user “Local Only”. Enter the name of the new user. This
example uses the username “reporter”. Enter a full name for the user if desired, then enter the
password twice.

Finally, ensure that the role previously created for access to the Analytics data at the bottom of
the window is checked off and that other roles are unchecked. Click the Add button in the upper
right corner of the window to add the user to the system.

39

SPLUNK AND THE ORACLE ZFS STORAGE APPLIANCE

Appendix F: Enabling the RESTful Interface
In Oracle ZFS Storage Appliance OS8.3 and earlier, the RESTful interface on the Oracle ZFS
Storage Appliance must be enabled before it can be accessed. This is done through the browser
user interface (BUI). Log in to the BUI and click on the Configuration menu item. The Services
page will be displayed. At the bottom of the page is a line in the Remote Access section labeled
REST. If the indicator is not green, click on the on/off button as shown in the following figure.
This button toggles the REST interface.

Figure 23. Enabling the REST interface

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615

Splunk and the Oracle ZFS Storage Appliance,
September 2015, version 2.1
Author: Joseph Hartley, Application Integration Engineering

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction 1
	Overview of the Example System 2
	Why Use a Forwarder? 2
	Configuring the Oracle ZFS Storage Appliance 3
	Installing the Universal Forwarder 5
	Collecting Data from the Oracle ZFS Storage Appliance 6
	Configuring the Forwarders to Parse Timestamps 6
	Collecting Datasets from the Oracle ZFS Storage Appliance 8
	The get_datasets.py Script 8
	Defining the Script 8
	Using the Oracle ZFS Storage Appliance Dataset Data 10
	Example: Charting I/O Operations 12
	Example: Charting I/O Operations with Drilldown Data 15
	Collecting Storage Data from the Oracle ZFS Storage Appliance 17
	The get_storage.py Script 17
	Defining the Script 17
	Using the Oracle ZFS Storage Appliance Storage Data 18
	Predictions Using the Oracle ZFS Storage Appliance Storage Data 19
	Collecting Logs from the Oracle ZFS Storage Appliance 21
	The get_logs.py Script 21
	Defining a Monitor 22
	Using the Oracle ZFS Storage Appliance Log Data 24
	Example: Charting Logins 24
	Conclusion 25
	References 26
	Appendix A: Python Code for get_datasets.py 27
	Appendix B: Python Code for get_storage.py 28
	Appendix C: Python Code for get_logs.py 30
	Appendix D: Python code for zfs_session.py 33
	Appendix E: Adding a Limited-Privilege User to the Oracle ZFS Storage Appliance 37
	Appendix F: Enabling the RESTful Interface 39
	Introduction
	Overview of the Example System
	Why Use a Forwarder?
	Configuring the Oracle ZFS Storage Appliance

	Installing the Universal Forwarder
	Collecting Data from the Oracle ZFS Storage Appliance
	Configuring the Forwarders to Parse Timestamps

	Collecting Datasets from the Oracle ZFS Storage Appliance
	The get_datasets.py Script
	Defining the Script

	Using the Oracle ZFS Storage Appliance Dataset Data
	Example: Charting I/O Operations
	Example: Charting I/O Operations with Drilldown Data

	Collecting Storage Data from the Oracle ZFS Storage Appliance
	The get_storage.py Script
	Defining the Script

	Using the Oracle ZFS Storage Appliance Storage Data
	Predictions Using the Oracle ZFS Storage Appliance Storage Data
	Collecting Logs from the Oracle ZFS Storage Appliance
	The get_logs.py Script
	Defining a Monitor

	Using the Oracle ZFS Storage Appliance Log Data
	Example: Charting Logins

	Conclusion
	References
	Appendix A: Python Code for get_datasets.py
	Appendix B: Python Code for get_storage.py
	Appendix C: Python Code for get_logs.py
	Appendix D: Python code for zfs_session.py
	Appendix E: Adding a Limited-Privilege User to the Oracle ZFS Storage Appliance
	Appendix F: Enabling the RESTful Interface

