BIiIG DATA HANDS-ON
WORKSHOP

Data Manipulation with Hive
and Pig

ORACLE

Contents

AckNowledgements. ... 1
Introduction to Hive and Pigcccccoccociiiiiiicccceeceecccc s 2
SEUP ... 2
Exercise 1 - Load Avro data into HDESc..ooiiiiiiiiiiieeeeeee e 2
Exercise 2 - Define an external Hive table and review the results............cceuee...... 3
Exercise 3 — Extract facts using Hive.........cccocoviiiiiiiinccccccrree 5
Optional: Extract sessions using Pig ... 9
SOIULIONS. ..ottt ettt e ettt e e et e e st e e e entteeesaaaeeessateesanteeesessaeeesbaeeessnaeeessnneeeas 11
Exercise 1 - Load Avro data into HDFESc.oooiiiiiiiiiiceeee e 11
Exercise 2 - Define an external Hive table and review the resultsc.......... 12

Exercise 3 — Extract facts using Hive.........cccocoviiiiiiinccccccceeee 15

Acknowledgements

Information about the movies used in this demonstration - including titles, descriptions, actors, genres - is

courtesy of Wikipedia. Movie posters are courtesy of TMDb. All other data used in this demonstration -
including customers and their viewing behavior - is completely fictitious.

Introduction to Hive and Pig

In the emerging world of Big Data, data processing must be many things: fault-tolerant, massively-parallel, and
linearly scalable. Central to achieving these goals is the understanding that computation is less costly to move
than large volumes of data. The Hadoop ecosystem is an Open Source set of frameworks designed around this
concept. Through its components, the Hadoop ecosystem enables developers to focus on solving their Big Data
problems rather than developing ad hoc solutions to managing massive data.

At its core, Hadoop provides two components that are central to effectively dealing with petabyte-scale problems:
o HDFS: A distributed file system to provide fault-tolerant storage while scaling horizontally

e MapRedce: A computational framework which “moves the compute to the data” enabling incredible
parallelism

The Hadoop Distributed File System (HDFS) plays a central role in storing and efficiently accessing massive
amounts of data. HDFS is:

e Fault-tolerant: fault detection is rapid and recovery is automatic
¢ High-throughput: streaming data access and large block sizes optimizes operation on massive datasets

e Designed for data locality: enabling mapped computation is central to the design

Operating in parallel over data stored in HDFS requires a computing framework. MapReduce is the parallel data
processing framework in Hadoop. Processing jobs are broken into tasks, distributed across the cluster, and run
locally with the correct data. MapReduce jobs consist of two types of tasks:

e Map: filter and interpret input data, producing key-value pairs
¢ Reduce: summarize and aggregate the sorted map results, producing final output

Because Hadoop is largely written in Java, Java is the language of MapReduce. However, the Hadoop
community understands that Java is not always the quickest or most natural way to describe data processing. As
such, the ecosystem has evolved to support a wide variety of APIs and secondary languages. From scripting
languages to SQL, the Hadoop ecosystem allows developers to express their data processing jobs in the language
they deem most suitable. Hive and Pig are a pair of these secondary languages for interacting with data stored
HDFS. Hive is a data warehousing system which exposes an SQL-like language called HiveQL. Pig is an
analysis platform which provides a dataflow language called Pig Latin. In this workshop, we will cover the
basics of each language.

1
Setup

Make sure the hands-on lab is initialized by running the following script:

cd /home/oracle/ movie/ moviework/reset

./reset_mapreduce.sh

Exercise 1 - Load Avro data into HDFS

Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will
use the hadoop fs command when interacting with HDFS:

Run these commands from the /home/oracle/movie/moviework/mapreduce directory.

1. Review the commands available for the Hadoop Distributed File System:

cd /home/oracle/movie/ moviework/mapreduce

hadoop fs

2. List the contents of /user/oracle

Create a subdirectory called “my_stuff” in the /user/oracle folder and then ensure the directory has been
created:

hadoop fs -mkdir /user/oracle/ my_stuff

hadoop fs -Is /user/oracle

4. Remove the directory “my_stuff” and then ensure it has been removed:

hadoop fs -rm -r my_stuff
hadoop fs -Is

Next, load a file into HDFS from the local file system. Specifically, you will load an Avro log file that tracked
activity in an on-line movie application. The Avro data represents individual clicks from an online movie rental
site. You will use the basic “put” commands for moving data into Hadoop Distributed File System.

5. Inspect the compressed JSON application log:

cd /home/oracle/movie/ moviework/mapreduce

./read_avro_file.sh

6. Review the commands available for the Hadoop Distributed File System and copy the Avro file into
HDFS:

hadoop fs -put movieapp_3months.avro /user/oracle/ moviework/applog_avro

7. Verify the copy by listing the directory contents in HDFS:

hadoop fs -Is /user/oracle/moviework/applog_avro

The remaining exercises operate over the data in this JSON file. Make a note of its location in HDFS and the fields
in each tuple.

Exercise 2 - Define an external Hive table and review the results

Now that you have placed the data into HDFS, you will want to start extracting information from it using an
external table. An external table in hive is similar to an external table in Oracle Database 12¢. It is a metadata
object that is defined over a file. The metadata provides a table name, column names and types, file locations,
processors, and more. Once that structure has been defined, you can query it using HiveQL.

In this exercise you will:

e Create a database to store your hive tables

Review the Avro schema for the data file that contains the movie activity
Create an external table that parses the Avro fields and maps them to the columns in the table.

Select the min and max time periods contained table using HiveQL

Enter the Hive command line by typing hive at the Linux prompt:

| hive |

Create a new hive database called moviework. Ensure that the database has been successfully created:

hive> create database moviework;
hive> show databases;

To create a table in a database, you can either fully qualify the table name (i.e. prepend the database to
the name of the table) or you can designate that you want all DDL and DML operations to apply to a
specific database. For simplicity, you will apply subsequent operations to the moviework database:

hive> use moviework;

Review the schema for the Avro file. This schema definition has already been saved in HDFS in the
/user/oracle/ moviework/schemas/ directory. Create a new Terminal window and type the following
command at the Linux prompt to review the schema definition:

hadoop fs -cat moviework/schemas/activity.avsc

Notice that the schema contains the field names, data types and default values for each of the fields.

Create a Hive external table using that schema definition. Notice that you do not need to specify the
column names or data types when defining the table. The Avro serializer-deserializer (or SERDE) will
parse the schema definition to determine these values. After creating the table, review the results by
selecting the first 20 rows. Go back into your Hive terminal window and run the following commands in
the moviework database:

hive> CREATE EXTERNAL TABLE movieapp_log_avro
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES
(‘avro.schema.url'='hdfs:/ /bigdatalite.localdomain/user/oracle/ moviework/schemas/activity.avsc')
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '/user/oracle/moviework/applog_avro';
hive> SELECT * FROM movieapp_log_avro LIMIT 20;

6. HiveQL supports many standard SQL operations. Find the min and max time periods that are available
in the log file:

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_avro;

I
Exercise 3 - Extract facts using Hive

Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for
transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to
filter and aggregate click data to build facts about user’s movie preferences. The query results will be saved in a
staging table used to populate the Oracle Database.

The moveapp_log_avro table contains an activity column. Activity states are as follows:
RATE_MOVIE

COMPLETED_MOVIE
PAUSE_MOVIE
START_MOVIE
BROWSE_MOVIE
LIST_MOVIE
SEARCH_MOVIE
LOGIN

LOGOUT

10. INCOMPLETE_MOVIE
11. PURCHASE_MOVIE

LNV R WDNPRE

Hive maps queries into MapReduce jobs, simplifying the process of querying large datasets in HDFS. HiveQL
statements can be mapped to phases of the MapReduce framework. As illustrated in the following figure,
selection and transformation operations occur in map tasks, while aggregation is handled by reducers. Join
operations are flexible: they can be performed in the reducer or mappers depending on the size of the leftmost
table.

Hive SELECT With WHERE Clause

SELECT a, sum{b) FROM
myTable
WHERE a < 100

Map Task

GROUP BY a

Reduce Task

=

1. Write a query to select only those clicks which correspond to starting, browsing, completing, or
purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers
where “Y" is 1 and ‘N” is 0. Also, ensure GENREID is not null. Only include the first 25 rows:

Note: Aggregations such as
GROUP BY are handled by
reduce tasks

hive> SELECT custid,

movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
time,
CASE recommended WHEN "Y' THEN 1 ELSE 0 END recommended,
activity,
price

FROM movieapp_log_avro

WHERE activity IN (2,4,5,11) LIMIT 25;

Select the movie ratings made by a user. And, consider the following: what if a user rates the same movie
multiple times? In this scenario, you should only load the user’s most recent movie rating.

In Oracle Database 12¢, you can use a windowing function. However, HiveQL does not provide sophisticated
analytic functions. Instead, you must use an inner join to compute the result.

Note: Joins occur before WHERE clauses. To restrict the output of a join, a requirement should be in the WHERE
clause, otherwise it should be in the JOIN clause.

2. Write a query to select the customer ID, movie ID, recommended state and most recent rating for each
movie.

hive> SELECT
m1.custid,
m1l.movieid,
CASE WHEN m1.genreid > 0 THEN m1.genreid ELSE -1 END genreid,

ml.time,
CASE m1l.recommended WHEN 'Y' THEN 1 ELSE 0 END
recommended,
ml.activity,
ml.rating
FROM movieapp_log_avro ml
JOIN
(SELECT
custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
MAX(time) max_time,
activity
FROM movieapp_log_avro
GROUP BY custid,
movieid,
genreid,
activity
) m2
ON (
ml.custid = m2.custid
AND m1l.movieid = m2.movieid
AND m1.genreid = m2.genreid
AND m1.time = m2.max_time
AND ml.activity =1
AND m?2.activity =1
) LIMIT 25;

3. Load the results of the previous two queries into a staging table. First, create the staging table:

hive> CREATE TABLE movieapp_log_stage (
custld INT,
movield INT,
genreld INT,
time STRING,
recommended INT,
activity INT,
rating INT,
sales FLOAT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t}

Hive queries that involve nested queries are translated into sequential MapReduce jobs which use temporary
tables to store intermediate results. The following figure illustrates how statements in a nested query are
transformed into map and reduce tasks. As before, dashed lines show logical mapping and solid lines define data
flow.

Hive: Nested Queries

SELECT mt.a, mt.timesTwao, H Job #1

otherTable.zasID FROM ([~ :
A H
SELECT a, sum(b*b) as ‘\ ’__--'-""E
timesTwo FROM == I'E Map Task
myTable 1 i
\ i
| mmm b
GROUP BY a) mt -——-=Fr-=-" i Reduce Task

JOIN otherTable

ON otherTable.z= mt.a i
GROUP BY mt.a, otherTable.z

Note: Subqueries are
treated as sequential
MapReduce jobs. Jobhs i
execute from the innermost ‘\
query outward H

Temporary
Result

Next, load the results of the queries into the staging table:

INSERT OVERWRITE TABLE movieapp_log_stage
SELECT * FROM (
SELECT custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
time,
CAST((CASE recommended WHEN "Y' THEN 1 ELSE 0 END) AS INT)
recommended,
activity,
cast(null AS INT) rating,
price
FROM movieapp_log_avro
WHERE activity IN (2,4,5,11)
UNION ALL
SELECT
ml.custid,
m1l.movieid,
CASE WHEN m1.genreid > 0 THEN m1.genreid ELSE -1 END genreid,
ml.time,
CAST((CASE m1l.recommended WHEN 'Y' THEN 1 ELSE 0 END) AS
INT) recommended,
m1.activity,
ml.rating,
cast(null as float) price
FROM movieapp_log_avro m1l
JOIN
(SELECT
custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
MAX(time) max_time,
activity

FROM movieapp_log_avro
GROUP BY custid,
movieid,
genreid,
activity
) m2
ON (
ml.custid = m?2.custid
AND m1.movieid = m2.movieid
AND ml.genreid = m2.genreid
AND m1.time = m2.max_time
AND m1.activity =1
AND m2.activity =1
)

) union_result;

I
Optional: Extract sessions using Pig

While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis is better described
as the flow of data through a series of sequential operations. For these situations, Pig Latin provides a convenient
way of implementing dataflows over data stored in HDFS.

Pig Latin statements are translated into a sequence of MapReduce jobs on the execution of any STORE or DUMP
command. Job construction is optimized to exploit as much parallelism as possible, and much like Hive,
temporary storage is used to hold intermediate results. As with Hive, aggregation occurs largely in the reduce
tasks. Map tasks handle Pig’s FOREACH and LOAD, and GENERATE statements. The EXPLAIN command will
show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE command will provide sample
results for each stage of the execution plan.

Pig: FOREACH statements
with GROUP

C= GROUP a BY custld as -
customer;

Map Task

view = FOREACH ¢ GENERATE
c.custlD, userFunction(c); |~ -
Dump view; N

Reduce Task

Note: as with Hive
aggregation translates to
Reducetasks

Result

In this exercise you will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags
and Tuples.

1. Start the Grunt shell and execute the following statements to set up a dataflow with the clickstream data. Note:
Pig Latin statements are assembled into MapReduce jobs which are launched at execution of a DUMP or STORE
statement.

pig

REGISTER /usr/lib/pig/piggybank.jar

REGISTER /usr/lib/pig/lib/avro-1.7.4 jar

REGISTER /usr/lib/pig/lib/json-simple-1.1.jar
REGISTER /usr/lib/pig/lib/snappy-java-1.0.4.1.jar
REGISTER /usr/lib/ pig/lib/jackson-core-asl-1.8.8.jar
REGISTER /usr/lib/pig/lib/jackson-mapper-asl-1.8.8.jar

applogs = LOAD '/user/oracle/moviework/applog_avro'
USING org.apache.pig.piggybank.storage.avro. AvroStorage(
'no_schema_check!,
'schema_file',
'hdfs:/ /bigdatalite.localdomain/user/ oracle/ moviework/schemas/activity.avsc');
DESCRIBE applogs;
log_sample = SAMPLE applogs 0.001;

DESCRIBE log_sample;

DUMP log_sample;

log_sample is a bag of tuples, two of the basic Pig Latin data types. Put concisely:
e 1227714 is afield

e (1227714,2012-09-30:22:56:03,6,,39451,6,) is a tuple, an ordered collection of fields
o {(1227714,2012-09-30:22:56:03,6,,39451,6,), (1070227,2012-09-30:19:09:32,8,,,,)} is a bag, a collection
of tuples

2. Group the log_sample by movie and dump the resulting bag.

grunt> movie_logs = GROUP log_sample BY movield;

grunt> dump movie_logs;

movie_logs is a relation, in this case it is an outer bag which contains tuples of (data field, bag). Operations on
these inner bags can be parallelized using the data field member of the tuple as keys in a MapReduce job. When
combined with user defined functions, Pig allows for succinct expression of complex analysis.

3. Add a GROUP BY statement to the sessionize.pig script to process the clickstream data into user sessions.

Solutions

L
Exercise 1 - Load Avro data into HDFS
1. Inspect the Avro application log:

[oracle@bigdatalite
[oracle@bigdatalite
{"custId": 11835972,
{"custId": 1354924,
{"custId": 1883711,
{"custId": 1234182,
{"custId": 1818228,
{"custId": 1143971,
{"custId": 1253676,
{"custId": 1351777,
{"custId": 1143971,
{"custId": 1363545,

cd /home/oracle/movie/ moviework/mapreduce

./read_avro_file.sh

~1% cd /home/oracle/movie/moviework/mapreduce
mapreducel$./read avro file.

"movieId":
"movieId":
"movieId":
"movieId":
"movieId":
"movieId":
"movieId":
"movieId":
"movieId":
"movieId":

8, "activity": 8,
1948, "activity":
8, "activity": 9,
11547, “"activity":
11547, "activity":
B, "activity": 8,
B, "activity": 9,

608, "activity": 7,

8, "activity": 9,
27205, "activity":

sh

"genreld": @, "recommended”: "null", "time": "2012-07-01:00:00:07", "rating": null, "pr
7, "genreld": 9, "recommended": "N", "time": "2012-87-01:00:00:22", "rating": null, "pr
"genreld": @, "recommended”: "pull", “"time": "2012-87-01:80:00:26", "rating": null, "pr
7, "genreld": &, "recommended": "¥", “"time": "2812-87-01:00:808:32", “"rating": null, "p
6, "genreId": 6, "recommended": "Y", "time": "2812-07-01:00:00:42", "rating": null, "p
"genreld": @, "recommended": "null", "time": "2012-07-01:00:00:43", "rating": null, "pr
"genreld": @, "recommended”: "null", "time": "2012-07-01:00:00:58", "rating": null, "pr
"genreld": &, "recommended": "N", "time": "2012-07-01:00:01:03", "rating": null, "pri
"genreId": @, "recommended”: "null", "time": "2012-07-01:00:01:07", "rating": null, "pr.
7, "genreld": 9, "recommended": "¥", “"time": "2812-87-01:00:81:18", “rating": null, "p

2. Review the commands available for the Hadoop Distributed File System and copy the gzipped file into

HDFS:

hadoop fs

hadoop fs -put movieapp_3months.avro /user/oracle/moviework/applog_avro

r?_! Applications Places System % 4 @
& oracle@bigdatalite:~/movie/moviedem)

File Edit View Terminal Tabs Help

oracle@bigdatalite /udl/n...

x Icra:\e@quatahte ~/bigd... x lora:\e@mgdataute ~fmovi... x loracle@mgda

[oracle@bigdatalite appl
Usage: java FsShell

-1s =path=]
-lsr =path=]
-df [<path=]
-du <path>]
-dus <path>]
-count[-gq] <
-my <src> <d
-cp =src> <d
-rm [-skipTr

-expunge]
-put <locals
-copyFromLoc
-moveFromLoc
-get [-ignor
-getmerge <s
-cat =sre=]
-text =src>]
-copyToLocal
-moveTolocal

-setrep [-R]
-touchz <pat
-test -[ezd]
-stat [forma
-tail [-T] =<
-chmod [-R]
-chown [-R]
-chgrp [-R]
-help [cmd]]

Generic options supporte
-conf =configuration il
-D <=property=value>

0g]% hadoop fs

]

path=]

st=>]

st=>]

ash] =<path>]

-rmr [-skipTrash] =<path=]

rc= ... =dst=]
al <localsrc> ... =dst=>]
al <localsrc> ... =dst=>]

eCrc] [-cre] <srec= <localdst=]
rc= <localdst> [addnl]]

[-ignoreCrc] [-crc] <src> <localdst>]
[-crc] =src> <localdst>]

-mkdir =path=]

[-w] =rep= <=path/Tile=]
h=>]

<path=]
t] <path>]
Tile=]
<MODE[,MODE] ... | OCTALMODE> PATH...]
[OWNER] [: [GROUP]] PATH...]
GROUP PATH...]

d are
e= specify an application configuration file
use value for given property

-fs <local|namenode:port= specify a namenode

(O vne conrig

][oracle@bigdatalite:~/movie/moviedemo/applog

3. Verify the copy by listing the directory contents in HDFS:

hadoop fs -Is /user/oracle/ moviework/applog_avro

[oracle@bigdatalite mapreduce]$ hadoop fs -ls /user/oracle/moviework/appleg avro
Found 1 items
-mwW-r--r-- 1 oracle supergroup 19242738 2014-01-27 09:22 /user/oracle/moviework/applog avro/movieapp 3months.avro

|
Exercise 2 - Define an external Hive table and review the results

1. Enter the Hive command line by typing hive at the Linux prompt:

| hive |

2. Create a new hive database called moviework. Ensure that the database has been successfully created:

hive> create database moviework;
hive> show databases;

Result:
hive> show databases;
0K
default
moviedemo
moviework

3. Review the schema definition for the avro file and then define a table using that schema file:

hadoop fs -cat moviework/schemas/activity.avsc:

Result:

"type" : "record",
"name" : "Activity",
"namespace" : "oracle.avro",
"fields" : [{

"name" : "custId",

"type" : ["int","null"],
"default" : null

LRt
"name" : "movieId",
"type" : ["int","null"],
"default" : null

A
"name" : “"activity",
“type" : ["inmt","null"],
"default" : null

LRt
"name" : "genreld",
"type" : ["int","null"],
"default" : null

A
"name" : "recommended",
"type" : ["string","null”],
"default" : "pull®

boA _
"name" : "time",
"type" : ["string","null"],
"default" : "pull®

hoA _
"name" : "rating",
“type" : ["inmt","null"],
"default" : null

boA _
"name" : "price",
"type" : ["double","null"],
"default" : null

hoA o
"name" : "position”,
“type" : ["inmt","null"],
"default" : null

1

}

4. To create a table in a database, you can either fully qualify the table name (i.e. prepend the database to
the name of the table) or you can designate that you want all DDL and DML operations to apply to a
specific database. For simplicity, you will apply subsequent operations to the moviework database:

hive> use moviework;

Now create the external table movieapp_log_avro that uses the activit Avro schema. Select the first 20 rows:

hive> CREATE EXTERNAL TABLE movieapp_log_avro
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES
(‘avro.schema.url'="hdfs:/ / bigdatalite.localdomain/user/oracle/ moviework/schemas/activity.avsc')
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '/user/oracle/ moviework/applog_avro';

SELECT * FROM movieapp_log_avro LIMIT 20;

hive= SELECT * FROM movieapp_log_avro LIMIT 20;

0K

1185972 © 8 0] null 2012-07-01:00:00:07 NULL NULL NULL
1354924 19438 7 9 N 2012-07-01:00:00:22 NULL NULL NULL
1683711 @ 9 0] null 2012-07-01:00:00:26 NULL NULL NULL
1234182 11547 7 6 Y 2012-07-01:00:00:32 NULL NULL NULL
1016220 11547 6 6 Y 2012-07-01:00:00:42 NULL NULL NULL
1143971 @ 8] null 2012-07-01:00:00:43 NULL NULL NULL
1253676 © 9] null 2012-07-01:00:00:50 NULL NULL NULL
1351777 608 7 6 N 2012-07-01:00:01:03 NULL NULL NULL
1143971 © 9 0] null 2012-07-01:00:01:07 NULL NULL NULL
1363545 27285 7 9 Y 2012-07-01:00:01:18 NULL NULL NULL
1067283 1124 7 9 Y 2012-07-01:00:01:26 NULL NULL NULL
1126174 16369 7 46 N 2012-07-01:00:01:35 NULL NULL NULL
1234182 11547 7 6 Y 2012-07-01:00:01:39 NULL NULL NULL
1067283 © 9 [¢] null 2012-07-01:00:01:55 NULL NULL NULL
1377537 © 9 [¢] null 2012-07-01:00:01:58 NULL NULL NULL
1347836 © g [¢] null 2012-07-01:00:02:03 NULL NULL NULL
1137285 © g [¢] null 2012-07-01:00:03:39 NULL NULL NULL
1354924 © 9 [¢] null 2012-07-01:00:03:51 NULL NULL NULL
1036191 © g [¢] null 2012-07-01:00:03:55 NULL NULL NULL
1363545 27285 5 9 Y 2012-07-01:00:04:03 NULL NULL NULL
Time taken: 0.579 seconds

5. Write a query in the Hive command line that returns the first 5 rows from the table. After reviewing the
results, drop the table:

hive> SELECT * FROM movieapp_log_avro LIMIT 5;
hive> drop table movieapp_log_avro;

6. HiveQL supports many standard SQL operations. Find the min and max time periods that are available
in the log file:

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_avro

Result:

oracle@bigdatalite:~/movie/moviework/mapreduce

Fle Edit Miew Terminal Tabs Help

oracle@bigdatalite: ~/movie/moviework/map... ®* |oracle@bigdatalite: ~/movie/moviework/imap... %
1347836 NULL NULL 2012-07-81:00:02:03 NULL 8 NULL NULL [+
1137285 NULL NULL 2012-07-81:00:083:39 NULL 8 NULL NULL
1354924 NULL NULL 2012-07-81:00:83:51 NULL 9 NULL NULL
1836191 NULL NULL 2012-07-81:00:83:55 NULL 8 NULL NULL
1143971 10817161 44 2012-07-01:00:04:00 Y 7 NULL NULL

Time taken: ©0.134 seconds
hive= SELECT MIN(time), MAX{time) FROM movieapp_log_json;
Total MapReduce jobs =1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number=
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number=
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job 201288221127 0001, Tracking URL = http://localhost.localdomai
n:50030/jobdetails.jsp?jobid=job_ 201208221127 @061
Kill Command = /fusr/lib/hadoop-0.20/bin/hadoop job -Dmapred.job.tracker=localho
st.localdomain: 8621 -kill job 201208221127 8601
2012-08-22 12:28:03,618 Stage-1 map = 0%, reduce = 0%

2012-08-22 12:28:13,767 S5tage-1 map = 100%, reduce = 0%
2012-08-22 12:28:22,914 Stage-1 map = 100%, reduce = 33%
2012-08-22 12:28:23,930 S5tage-1 map = 100%, reduce = 100%]

Ended Job = job_201208221127_086801

0K
2012-07-01:00:00:07 2012-10-01:03:19:24

Time taken: 29.546 seconds

hive> || B

Exercise 3 - Extract facts using Hive

1. Write a query to select only those clicks which correspond to starting, browsing, completing, or
purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers
where Y is 1 and ‘N” is 0. Also, ensure GENREID is not null. Only include the first 25 rows:

hive> SELECT custid,

movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
time,
CASE recommended WHEN "Y' THEN 1 ELSE 0 END recommended,
activity,
price

FROM movieapp_log_avro

WHERE activity IN (2,4,5,11) LIMIT 25;

Result:

oracle@bigdatalite:~/movie/moviework/mapreduce

Fle Edit Miew Terminal Tabs Help

oracle@bigdatalite: ~/movie/moviework/map... ® |oracle@bigdatalite: ~/movie/moviework/map...

Time taken: 29.546 seconds
hive= SELECT custid,
= movieid,
CASE WHEN genreid = @ THEN genreid ELSE -1 END genreid,
time,
CASE recommended WHEN "Y° THEN 1 ELSE © END recommended,
activity,
price
FROM movieapp log_json
WHERE activity IN (2,4,5,11) LIMIT 25;
Total MapReduce jobs =1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201288221127 0002, Tracking URL = http://localhost.localdomai
n:500830/jobdetails.jsp?jobid=job 201208221127 0082
Kill Command = fusr/lib/hadoop-0.20/bin/hadoop job -Dmapred.job.tracker=localho
st.localdomain:8621 -kill job 201208221127 0002
2012-08-22 12:28:51,106 S5tage-1 map = 0%, reduce = 0%
2012-08-22 12:28:55,181 Stage-1 map = 100%, reduce 0%
2012-08-22 12:28:58,212 5tage-1 map = 100%, reduce = 100%
Ended Job = job_ 201208221127 0002
0K

>
=
>
=
=
=

W

1363545 27205 9 2012-07-01:00:04:03 1 5 NULL
1345299 424 1 2012-07-01:00:05:02 1 4 NULL
1126174 16309 9 2012-07-01:00:05:45 <] 5 NULL
1354924 1948 9 2012-07-01:00:07:21 ¢] 11 1.99 b
1126174 275 8 2012-07-01:00:12:48 <] 5 NULL
1363545 7211 15 2012-07-01:00:13:47 ¢] 5 NULL
1836191 11450 1 2012-07-01:00:16:04 ¢] 5 NULL
1363545 11393 30 2012-07-01:00:18:44 0] 5 NULL | |
1126174 1647 7 2012-07-01:00:20:43 ¢] 4 NULL
1129727 14 3 2012-07-01:00:28:30 1 5 NULL
1836191 9346 44 2012-07-01:00:28:44 1 5 NULL £

2. Write a query to select the customer 1D, movie ID, recommended state and most recent rating for each
movie.

hive> SELECT

m1.custid,

m1l.movieid,

CASE WHEN m1.genreid > 0 THEN m1.genreid ELSE -1 END genreid,

m1l.time,

CASE m1.recommended WHEN "Y' THEN 1 ELSE 0 END

recommended,
ml.activity,
ml.rating
FROM movieapp_log_avro ml
JOIN

(SELECT
custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
MAX(time) max_time,
activity

FROM movieapp_log_avro
GROUP BY custid,

movieid,
genreid,

activity
) m2
ON (
ml.custid = m2.custid
AND m1l.movieid = m2.movieid
AND ml.genreid = m2.genreid
AND m1.time = m2.max_time
AND ml.activity =1
AND m2.activity =1
) LIMIT 25;

oracle@bigdatalite:~/movie/moviework/mapreduce

Hle Edit Miew Terminal Tabs Help

oracle@bigdatalite: ~/movie/moviework/map... ®* |oracle@bigdatalite: ~/movie/moviework/imap... %
1008693 2135 53 2012-09-13:04:31:08 1 1 3 E
1080693 7191 45 2012-09-81:23:14:50 <} 1 1
10808693 8871 6 2012-08-83:10:51:24 ¢} 1 3
1080693 11529 48 2012-07-18:15:22:15 1 1 2
1080693 22074 10 2012-09-15:09:57:35 ¢} 1 6
1000693 44214 9 2012-08-83:20:01:07 1 1 4
1880693 1895355 12 2012-07-18:15:85:05 ¢} 1 3
1801281 301 15 2012-09-81:17:15:33 <} 1 1
1881416 65 16 2012-08-25:09:01:08 1 1 6
1881585 197 7 2012-09-82:21:36:33 1 1 3
1081585 660 9 2012-09-21:05:59:58 <} 1 3
1881585 8373 11 2012-07-81:19:12:34 ¢} 1 1
1081585 9437 20 2012-09-14:15:24:22 <} 1 3
1881585 11547 44 2012-09-21:05:42:14 1 1 1
1881585 1860539 7 2012-08-85:05:52:56 <} 1 3
1081640 672 20 2012-08-84:23:34:16 1 1 5
loeledn 807 9 2012-08-04:11:27:06 1 1 2
1082672 88 48 2012-09-28:16:23:03 1 1 4

Time taken: 62.244 seconds

hive= CREATE TABLE movieapp_log stage |
= custId INT,

> movieId INT,

> genreId INT,

> time STRING,

= recommended INT,

= activity INT,

> rating INT,

= sales FLOAT

=

>

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY 'A\t';
0K
Time taken: 0.085 seconds
hive= ||

3. Load the results of the previous two queries into a staging table. First, create the staging table:

hive> CREATE TABLE movieapp_log_stage (
custld INT,
movield INT,
genreld INT,
time STRING,
recommended INT,
activity INT,
rating INT,
sales FLOAT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t}

oracle@bigdatalite:~/movie/moviework/mapreduce

Fle Edit Miew Terminal Tabs Help
oracle@bigdatalite: ~/movie/moviework/map... ® |oracle@bigdatalite: ~/movie/moviework/map... %
1686693 2135 53 2012-09-13:04:31:08 1 1 3 :E
1086693 7191 45 2012-89-081:23:14:50 0] 1 1
1686693 8871 6 2012-08-83:10:51:24 6] 1 3
1086693 11529 48 2012-87-18:15:22:15 1 1 2
1086693 22074 10 2012-89-15:089:57:35 ¢] 1 6
10806693 44214 9 2012-88-83:20:01:87 1 1 4
1086693 1695355 12 2012-87-18:15:085:085 ¢] 1 3
1681281 301 15 2012-89-81:17:15:33 o] 1 1
1081416 65 16 2012-08-25:09:01:08 1 1 4]
1681585 197 7 2012-89-82:21:36:33 1 1 3
1081585 bBb6O 9 2012-89-21:085:59:58 0] 1 3
1681585 8373 11 2012-87-81:19:12:34 6] 1 1
1601585 9437 20 2012-09-14:15:24:22 ¢} 1 3
1081585 11547 44 2012-89-21:085:42:14 1 1 1
1681585 1068539 7 2012-88-85:85:52:56 o] 1 3
1081640 672 20 2012-08-04:23:34:16 1 1 5
1081640 807 9 2012-08-04:11:27:06 1 1 2
1002672 88 48 2012-89-28:16:23:03 1 1 4
Time taken: 62.244 seconds
hive= CREATE TABLE movieapp_log_stage |
= custId INT,
= movieId INT,
> genreld INT,
= time STRING,
> recommended INT,
= activity INT,
= rating INT,
= sales FLOAT
=) |
> ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t';
0K
Time taken: B8.885 seconds
hive= || B
4. Next, load the results of the queries into the staging table:
INSERT OVERWRITE TABLE movieapp_log_stage
SELECT * FROM (
SELECT custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
time,
CAST((CASE recommended WHEN 'Y' THEN 1 ELSE 0 END) AS INT)
recommended,
activity,
cast(null AS INT) rating,
price

FROM movieapp_log_avro
WHERE activity IN (2,4,5,11)
UNION ALL
SELECT
ml.custid,
m1l.movieid,
CASE WHEN m1.genreid > 0 THEN m1.genreid ELSE -1 END genreid,
ml.time,
CAST((CASE m1l.recommended WHEN 'Y' THEN 1 ELSE 0 END) AS

INT) recommended,
m1.activity,
m1.rating,
cast(null as float) price
FROM movieapp_log_avro m1l
JOIN
(SELECT
custid,
movieid,
CASE WHEN genreid > 0 THEN genreid ELSE -1 END genreid,
MAX(time) max_time,
activity
FROM movieapp_log_avro
GROUP BY custid,
movieid,
genreid,
activity
) m2
ON (
ml.custid = m?2.custid
AND ml.movieid = m2.movieid
AND ml.genreid = m2.genreid
AND ml.time = m2.max_time
AND ml.activity =1
AND m2.activity =1
)

) union_result;

	Acknowledgements
	Introduction to Hive and Pig
	Setup
	Exercise 1 – Load Avro data into HDFS
	Exercise 2 – Define an external Hive table and review the results
	Exercise 3 – Extract facts using Hive
	Optional: Extract sessions using Pig

	Solutions
	Exercise 1 – Load Avro data into HDFS
	Exercise 2 – Define an external Hive table and review the results
	Exercise 3 – Extract facts using Hive

