

Oracle Data Provider
For .NET 11g

An Oracle Technical White Paper
October 2007

Oracle Data Provider For .NET 11g Page 2

Oracle Data Provider For .NET 11g

Introduction ... 3
Oracle Data Provider for .NET.. 4

Performance .. 4
Connection Pooling and Statement Caching 4
Controlling Data Fetch Size ... 5
Optimizing LOB Data... 5
Array Data ... 6
64-bit .NET Framework ... 6

Performance – New for ODP.NET 11g ... 6
Client Result Cache .. 6
Faster LOB Fetching ... 7
Enhanced Statement Caching... 7

Database Change Notification.. 8
Real Application Clusters (RAC).. 10
XML Features.. 11
ADO.NET 2.0 .. 12
Native Oracle Types... 13
Other Major Features... 13

Conclusion.. 14

Oracle Data Provider For .NET 11g Page 3

Oracle Data Provider For .NET 11g

INTRODUCTION
One of the great benefits of using Oracle products is their support for multiple
programming frameworks. By supporting .NET, Java/J2EE, PHP, and C/C++
applications, all developers can use Oracle’s advanced database features, providing
true flexibility for development organizations. Each of Oracle’s data access drivers
is designed to maximize performance of its respective framework and to enable
access to the latest database features.

Within the .NET realm, Oracle offers a multitude of products to develop
applications with the Oracle database, including Oracle Developer Tools for Visual
Studio .NET, Oracle Database Extensions for .NET, Oracle Providers for
ASP.NET, and Oracle Data Provider for .NET (ODP.NET).

ODP.NET is a native .NET data access provider for Oracle databases. It offers
standard ADO.NET data access for .NET Framework 1.x, 2.0, and higher. For
developers who have used another ADO.NET provider, basic ODP.NET data
access requires very little new to learn. It can be used with existing constructs, such
as the Microsoft Data Access Application Blocks (DAAB) for .NET. As such,
ADO.NET developers can start using Oracle data sources very quickly.

While ODP.NET shares common basic elements with other ADO.NET providers,
ODP.NET’s unique value is its tight integration with the Oracle database.
ODP.NET exposes many of the database’s unique capabilities, such as Real
Application Clusters (RAC) tuning, advanced security, and complex data types, to
.NET developers. These features allow .NET middle-tiers to take advantage of the
Oracle database’s unique capabilities.

This white paper focuses on ODP.NET data access and its unique capabilities,
discussing .NET development features that are part of Oracle Database 11g and
prior releases. Many ODP.NET 11g features are enabled with older Oracle
database server releases, such as the Oracle Database 10g and Oracle Database 9i.
This white paper does not cover ODP.NET features released after Oracle
Database 11g on Windows, such as ODP.NET 11.1.0.6.20.

Oracle Data Provider For .NET 11g Page 4

ORACLE DATA PROVIDER FOR .NET
As with other .NET data providers, any .NET application, including C# .NET,
Visual Basic .NET, and ASP.NET, can call ODP.NET. While most commonly
employed in middle-tiers, ODP.NET can also be used within the database server
itself via .NET stored procedures.

ODP.NET offers the best performance and greatest access to Oracle database
features than any other .NET data provider. ODP.NET was designed specifically
to maximize Oracle database’s capabilities.

ODP.NET 11g introduces new performance features available in Oracle Database
11g, as well as enhance existing functionality in the Oracle database. As such, all
developers will benefit using the latest ODP.NET version whether they are
deploying new database applications or enhancing existing applications. Some of
these unique Oracle features include data access performance tuning; database
change notification; RAC connection pooling; XML support; native Oracle data
type support; and many other features, which will be described further in this
paper.

Performance
One of ODP.NET's key differentiators over other providers is its out-of-the-box
performance and numerous tuning options. Under the covers, numerous
optimizations automatically ensure fast .NET access to Oracle data sources without
requiring any specific performance coding. In addition, ODP.NET has many
tunable parameters for specific data retrieval and data update scenarios. Many of
these optimizations were developed for retrieving and manipulating historically
large data types, such as LOBs and REF Cursors.

Connection Pooling and Statement Caching

One of the most widely used performance optimizations is connection pooling,
which is critical for applications with large numbers of users that connect and
disconnect from the database. ODP.NET creates a pool of connections with
tunable settings that include connection lifetime and timeout, minimum and
maximum pool sizes, and the numbers of connections to increment or decrement
from the pool at a time. These parameters give developers greater control over
how their application handles large user populations and the changes in those
populations over time. This ultimately leads to better application response time
and quality of service for end users.

If a particular query or PL/SQL statement is executed multiple times, ODP.NET
can use statement caching to speed statement execution. By caching the server
cursor created during the initial statement execution, statement caching eliminates
the need to re-parse each statement before subsequent executions. Each
subsequent statement execution reuses the saved parsed information, and then
executes the statement. The result set data itself is not cached, only the parsed
statement information. ODP.NET will still retrieve the latest data from the

The Oracle Data Provider for .NET enables
fast data access performance to Oracle

databases. It supports the latest database
functionality available with Oracle

Database 11g.

ODP.NET includes numerous performance
tuning features to optimize data retrieval
and data changes. Some of these tuning

options include connection pooling;
statement caching; using LOB data types;
and employing PL/SQL associative arrays.
64-bit ODP.NET is supported on Windows

x64 and Windows Itanium.

Oracle Data Provider For .NET 11g Page 5

database server. Statement caching just allows these queries to be executed more
quickly.

When employing statement caching, SQL or PL/SQL statements should use
parameters rather than literal values. Doing so takes full advantage of statement
caching since parsed information from parameterized statements can be reused
even if the parameter values change in subsequent executions. If literal values were
used instead and those literal values changed, the parsed information could not be
reused and the database would need to parse the statement anew.

By default, ODP.NET will cache the last ten executed statements. The number of
statements to cache and which statements to cache can be configured at the
application level or machine level.

Controlling Data Fetch Size

To tune data retrieval performance, ODP.NET can specify a set amount of data to
return for each database round trip. Many times, a developer may not need to
retrieve the data queried all at once. The end user may be consuming portions of
the data over a period of time.

The query’s data fetches can be spaced in distinct chunks defined by the developer
through two ODP.NET OracleCommand properties: FetchSize and RowSize.
FetchSize tells ODP.NET how much data to retrieve per database roundtrip.
RowSize indicates how large each row of data is. RowSize is a read-only property
that is set after a query is executed. If a developer wishes to fetch ten rows of data
per database roundtrip, all that is required is to set FetchSize equal to ten multiplied
by RowSize. The wonderful thing about RowSize is that its value can be
determined at runtime. Consequently, if there is a schema change or a query
change in the future, there is no need to modify the code to ensure ten rows of data
are fetched per round trip.

Optimizing LOB Data

A similar fetch size tuning feature exists with LOB data types. These data types are
used to store images and documents, which can sometimes be in the range of
gigabytes. For LOB applications, performance is often a key issue due to LOB’s
potential data size and how LOB data is consumed. Sending gigabytes of data
between the server and client can clog a network unless data retrieval is handled
intelligently.

With ODP.NET, developers can specify how LOB data should be retrieved. Upon
LOB query execution, developers can choose to fetch all the LOB data immediately
or defer the LOB fetch until the user attempts to read the data. The end user may
not need to read the data directly after the query execution. If developers choose
to defer the LOB fetch, they can then specify how much data to retrieve for each
LOB read call. If the end user only needs to read 10KB of data at a time,
developers can retrieve just 10KB of data for each LOB read. This optimizes how
networking resources between the server and client are used.

Oracle Data Provider For .NET 11g Page 6

Moreover, ODP.NET developers can retrieve any portion of a LOB via random
access. Perhaps the end user may need only the last 100MB of data from a 1GB
LOB. Developers can tune LOB retrieval to only fetch the last 100MB without
returning data from the first 900MB to the client. These tuning options provide
.NET developers the flexibility to build better performing applications.

Because LOB data can often be large, by default, the LOB data fetch is deferred
after a query is executed. When retrieving many sets of large LOBs, this behavior is
optimal to prevent overloading the network with LOB data delivered to the client.
However, for small LOBs, this behavior can be slow, causing more database round
trips than is necessary.

To allow all the small LOB data to be fetched immediately, ODP.NET has an
InitialLOBFetchSize property on the OracleCommand and OracleDataReader
classes. If InitialLOBFetchSize is set to a value greater than zero, the initial LOB
data from all the LOBs queried is fetched in one round trip up to the number of
characters or bytes that is specified in this property. For instance, if
InitialLOBFetchSize were set to 10 KB, then the first 10 KB of all the LOBs
selected would be retrieved to the client in one database round trip. This can
significantly speed up applications consuming lots of small LOBs.

Array Data

One of ODP.NET’s unique features is the ability to pass arrays between the
database and .NET Framework. Arrays make sharing large sets of data of the same
data type between the database and client much easier. ODP.NET uses PL/SQL
associative arrays in the database to pass data into and out of .NET arrays.

64-bit .NET Framework

With 64-bit .NET Framework, .NET developers have access to more scalable and
high-performing hardware systems. They have a choice between AMD64 and Intel
EM64T processors for Windows x64 and Itanium processors for Windows
Itanium. 64-bit systems have the capability to address larger amounts of memory
directly than 32-bit systems can. They include optimized hardware components for
high performance computing. Beginning with the 10.2.0.3 release, ODP.NET
supports both 64-bit .NET Frameworks with a native 64-bit data access driver for
each platform. Developers can now deploy their ODP.NET mid-tier as a 64-bit
application to take advantage of the more scalable hardware.

Performance – New for ODP.NET 11g
Oracle Database 11g introduces new performance optimizations, many of which
.NET application developers can use without any changes to their existing client
code. These new features include a client result cache, faster LOB retrievals, and
enhanced statement caching.

Client Result Cache

With Oracle Database 11g server and client, ODP.NET applications can use the
Oracle client result cache to improve response times of repeatedly executed queries.

New Oracle Database 11g features are
available that enhance ODP.NET

performance. These features include a
client result cache, faster LOB fetching,
and faster performance with statement

caching.

Oracle Data Provider For .NET 11g Page 7

This feature enables client-side caching of SQL query result sets in memory. The
client result cache is completely transparent to ODP.NET applications, and its
cache of result set data is automatically kept consistent with any session or database
server side changes that would alter the results.

.NET applications calling the same query multiple times see improved performance
since query results are retrieved locally. Local client processing is faster than
making database round trips to re-execute a query and fetch results. If applications
are frequently running the same queries, they will experience a significant
performance improvement when their results are cached on the client, as well as a
reduction in database server load.

On the database server, the client cache reduces the server CPU and network traffic
load that would have been consumed for processing and returning the query
results, thereby improving server scalability. ODP.NET statements from multiple
sessions can match the same cached result set in the client process memory if they
have similar schema, SQL text, bind values, and session settings. Otherwise, the
query execution occurs on the server. This means that multiple ODP.NET users
all have access to the same result cache, which minimizes cache redundancies and
saves memory.

Because the client cache automatically stays consistent with database server data,
developers do not need to write code to ensure the cache and server remain in
synch. If a server change occurs that would invalidate the client-cached data, the
Oracle client will automatically invalidate the cache and update it the next time the
query is executed.

Faster LOB Fetching

ODP.NET 11g improves the performance of small-sized LOB retrieval by reducing
the number of round-trips to the database required for pre-fetching the LOB data,
length, and chunk size. This enhancement is available beginning with Oracle
Database 11g for use with either traditional LOBs or SecureFiles. This
enhancement is transparent to the developer. It can be used like any other LOB
data type without any code changes to existing ODP.NET LOB code.

Enhanced Statement Caching

ODP.NET 11g enhances the existing caching statement caching infrastructure to
now cache ODP.NET parameter contexts. This enhancement works with any
currently supported Oracle database server version. .NET developers will see a
performance improvement when executing statement-cached queries. This
enhancement is transparent to developers, requiring no code changes.

Oracle Data Provider For .NET 11g Page 8

Database Change Notification
Database change notification enables client applications to receive notifications
when DML or DDL changes are made to a database object of interest, even when
the client no longer has a connection to the database server. .NET developers can
now cache their data on the middle-tier without having to worry about the cached
data becoming out of synch with the database. If a change happens to one of the
cached data objects or rows of data, then ODP.NET will receive a notification
from the database. This feature can be used in the .NET Framework 1.x, 2.0, and
higher releases.

To use database change notification, the client application registers a query with the
database. When a query has dependencies on underlying database objects and a
change to a dependent object is committed, the database publishes a change
notification to the client application. The notification only contains metadata about
what data or objects changed; it does not contain the changed data. .NET
developers can create a client event handler to reissue the registered query to obtain
the changed data.

Database change notification is particularly useful for applications that use cached
results. Traditionally, data caching by itself is effective at improving application
scalability by allowing rapid access to data without making expensive roundtrips to
the database. But this scalability comes with a tradeoff, as there is no longer a
guarantee that the data remains consistent with the database server after the initial
query. Thus, the cached client data runs the risk of becoming stale.

Database change notification solves the stale data cache problem. Although
database change notification is similar to a trigger in that it responds to a particular
event, a trigger takes action immediately, whereas a database notification is just an
alert, not an action. It is up to the application to determine what action, if any, to
undertake and when. The application can immediately refresh the stale objects,
postpone the refresh, or ignore the notification. Each .NET application may want
to respond differently to a particular database change. Moreover, as additional
applications are added to the database, it is often easier modifying the client
application’s event handler than modifying a database trigger. Modifying the trigger
may require re-testing how existing applications work with the new database trigger
code, while modifying just the new .NET application better isolates the testing
boundaries.

Web applications often cache a variety of data, not all of which needs to be updated
in real time. For example, a weather forecast may only be updated periodically.
End users don’t need to query the database every time the web page is visited.
Since many people will be requesting the same data, application performance and
scalability are greatly enhanced by caching the results and retrieving the data from
the cache. At some point, the weather forecast is updated and the cache must be
refreshed. This may be done the instant the current weather forecast in the
database server has changed.

A constant challenge for client side caches
is keeping the data in synch with server
data changes. Using database change

notification, ODP.NET clients are alerted
when data on the server is modified, even

if there is no active connection back to the
database. This allows the client to ensure
its data cache stays synchronized with the

database.

Oracle Data Provider For .NET 11g Page 9

To receive database change notifications requires the database administrator to
grant the CHANGE NOTIFICATION privilege to the application user. After
connecting to the database, .NET users can then register their specific queries of
interest for change notification. The developer creates a .NET client-side event
handler to direct what the application should do upon receiving a database change
notification. Usually, the event handler will re-query the database server and
refresh the cache.

The following ODP.NET classes are used when building change notification
applications:

• OracleDependency – Creates a dependency between an application and an
Oracle database. It enables the application to receive a notification of a
data change (for example, UPDATE statement), schema change (for
example, ALTER TABLE), or global event (for example, database
shutdown). The OnChange event handler in this class provides the client
logic for what to do after the notification is received.

• OracleNotificationEventArgs – Provides all the event details when a
change notification occurs.

• OracleNotificationRequest – Specifies the characteristics of a notification
request and its notification, such as the notification registration’s timeout
value.

Oracle’s database change notification has a number of features not available on
SQL Server. Oracle supports all types of joins, whereas SQL Server does not
support queries containing either outer joins or self-joins. SQL Server does not
support notifications for statements using views, whereas Oracle database change
notification supports views with the exceptions of fixed views (for example, V$
tables) and materialized views. SQL Server notifications also require explicit
column references, while Oracle Database notifications support both SELECT *
and explicit column references.

SQL Server notification handlers are not persistent. When a SQL Server
notification is published, its notification handler is removed from the database. If
the notification handler is still needed, the application must register a new
notification handler. Oracle database change notification provides the option to
persist the registration even after repeated changes. This is possible by setting
OracleNotificationRequest.IsNotifiedOnce to false.

Oracle Data Provider For .NET 11g Page 10

Real Application Clusters (RAC)
RAC is a cluster database with a shared cache architecture that overcomes the
limitations of traditional shared-nothing and federated database approaches. The
RAC cluster database is hosted on multiple computing nodes permitting better
scalability and higher availability than a single computer server by itself. Because
neither special hardware nor .NET application changes are required, RAC can be
built with commodity hardware as the back end for existing applications without
requiring any coding changes.

ODP.NET has always supported data access for RAC transparently. To improve
ODP.NET connection management based on real-time database workload
information, Oracle introduced two connection pool properties for ODP.NET
10.2. The first feature, runtime connection load balancing, improves load balancing
workload across RAC instances, especially after nodes are added or removed from
a cluster. The second feature, fast connection failover, automatically removes
severed RAC connections from the connection pool.

With runtime connection load balancing, how ODP.NET connections are allocated
is based on the database’s load balancing advisory and service goal during runtime.
Load balancing distributes work across all of the available RAC database instances.

In general, connections are created infrequently and exist for a long duration.
Work comes into the system with high frequency, uses these connections from the
pool, and exists for a relatively short duration. The load balancing advisory directs
which RAC instances ODP.NET should allocate incoming work to provide the
optimal service quality. Load balancing minimizes the need to relocate the work
later to a different instance and ensures existing jobs can complete quickly.

The metric by which this work is distributed across instances is determined by the
service goal. The database administrator sets the service goal for either service time
or throughput.

The service time metric is based on how quickly the database can complete tasks,
essentially its response time. The load balancing advisory data is based on the
elapsed time for work done in the service as well as available bandwidth to the
service. Service time is most useful for database applications where work tasks
complete at different rates, such as an internet shopping system.

The throughput metric, too, tracks how quickly database tasks are completed,
allocating more work to nodes where tasks are completing the fastest. Unlike
service time, the throughput metric is intended to gauge the efficiency of each
instance. It measures the amount of processor resources available to take on
additional tasks. When a new operation comes in, it can be directed to the node
with the most processor time available. This metric is best used for relatively
uniform tasks, such as executing homogenous batch processes.

By using these service goals, feedback is built into the system. Work is routed to
provide the best service times globally, and routing responds gracefully to changing

ODP.NET has two connection pooling
features for RAC databases: 1) ODP.NET

connections are automatically load
balanced across existing nodes based on

real-time cluster metrics and 2) severed
database connections are automatically

removed from the connection pool.

Oracle Data Provider For .NET 11g Page 11

system conditions. When a RAC node is added to or removed from the cluster,
load balancing allows work to more quickly distribute itself evenly across all the
nodes to account for the system change. End users will then experience less
disruption or slowed service. In a steady state, the system approaches equilibrium
with improved throughput across all of the RAC instances.

To use this feature in ODP.NET, the application must enable connection pooling
and set the connection pool parameter, Load Balancing, to true.

The second configurable feature for RAC connection pooling, fast connection
failover, allows ODP.NET to automatically free resources associated with severed
connections that were caused by a downed RAC service, service member, or node.
Without this feature, if a RAC node failed, the connection pool would retain
connection resources that were no longer valid. End users may attempt to use
these severed connections from the pool. Without a way to identify these
connections, administrators would have to reset all the ODP.NET connections in
the pool every time some part of the RAC cluster failed.

These severed ODP.NET connections are now automatically cleaned up without
requiring any administrator intervention at runtime. To enable this ODP.NET
feature, use connection pooling and set the connection pool parameter, HA Events,
to true.

XML Features
Because XML is a popular language for data integration and web services, many
.NET programmers incorporate it as an integral part of their applications. XML is
a key part of both the Oracle database and .NET Framework. ODP.NET allows
developers to exploit these two technologies together: Oracle XML DB and .NET
System.XML services.

XML DB is Oracle's high-performance, native XML storage and retrieval
technology available within the database server. It provides a unique ability to store
and manage both structured and unstructured data under a standard W3C XML
data model. XML DB provides complete transparency and interchangeability
between the XML and SQL metaphors. ODP.NET exposes XML DB's
functionality to .NET clients, allowing developers to share and make changes to
XML between the database and .NET. This support extends to both schema and
non-schema-based XML to provide flexibility for differing application
requirements. Moreover, ODP.NET contains two native XML data types,
OracleXMLType and OracleXMLStream, for easier client XML data management.
These features allow easier XML management between Oracle XML DB and
Microsoft’s System.XML services.

System.XML is a set of interfaces for manipulating XML data sets from .NET data
providers. ODP.NET interoperates with the System.XML programming
interfaces, feeding data via the ODP.NET DataAdapter interfaces. One of the key
distinctions between XML DB and System.XML is that the former provides XML
services where the data resides, on the database server; the latter manipulates XML

ODP.NET provides support for Oracle XML
DB and interoperating with System.XML.

ODP.NET can work with schema and non-
schema-based XML with support for native

Oracle XML data types using
OracleXMLType and OracleXMLStream.

Oracle Data Provider For .NET 11g Page 12

on the client side. As such, ODP.NET provides greater choice for programmers to
pick the XML technology that best fits their project requirements.

With ODP.NET, relational and object-relational data in the Oracle database can be
accessed as XML and delivered into a Microsoft .NET environment. Client XML
changes can be made and saved back to the server as XML or relational data.
ODP.NET includes support for schema-based OracleXMLType, as well as non-
schema-based XML.

ADO.NET 2.0
Beginning with version 10.2.0.2, ODP.NET provides support for ADO.NET 2.0.
ADO.NET 2.0 introduces a new level of abstraction for the Data Access Layer
(DAL). Instead of using provider-specific classes that implement a generic
interface, ADO.NET 2.0 offers the DbCommon classes, which inherit from the
System.Data.Common namespace and allow developers to use factory classes.
Using database provider factory classes is an easy way to create one set of generic
data access code to any database.

The OracleClientFactory class supports the creation of all of the classes in
System.Data.Common. Because these concrete classes inherit from the
DbCommon abstract base classes, developers can write generic DAL code by using
DbCommon base class object names. There are some areas of the DAL that
remain data source-specific, including the connection string, SQL, and stored
procedure calls.

A key addition to ADO.NET 2.0 is improved connection string management. The
DbConnectionStringBuilder class has a dictionary that maps generic parameter
names to provider specific parameter names. The OracleConnectionStringBuilder
class inherits from and extends the generic DbConnectionStringBuilder class to
expose Oracle-specific connection string properties. Programmers can use
OracleConnectionStringBuilder dynamically to set connection string parameters at
runtime and/or obtain connection string parameters from the app.config file. This
feature enables easier management of connection strings, especially those with a
large number of attributes.

The ADO.NET 2.0 schema discovery APIs provide a generic way to retrieve
metadata from any data source. Developers can obtain Oracle metadata by using
an OracleConnection.GetSchema method call. There are five types of common
metadata that can be exposed: MetaDataCollections, Restrictions,
DataSourceInformation, DataTypes, and ReservedWords. In addition, there is
additional ODP.NET-specific data source information that can be retrieved. With
schema discovery, developers have a simple way to retrieve metadata from any
Oracle data source.

When working with large .NET DataSets, developers will want to minimize the
number of database round trips required to perform updates. By using the
OracleDataAdapter.UpdateBatchSize property, programmers can specify the
number of rows to update per roundtrip. To update all the modified rows in one

ODP.NET supports ADO.NET 2.0’s
features, including provider factories,

connection string builder, schema
discovery APIs, and DataAdapter batch

updates.

Oracle Data Provider For .NET 11g Page 13

roundtrip, UpdateBatchSize can be set to zero. This batch processing support
allows DataSet updates to be performed much more quickly.

Native Oracle Types
Microsoft has introduced a set of unified data types among the different .NET
programming languages. With ODP.NET, .NET programmers have access to
.NET data types as well as Oracle data types. Oracle data types can be fully
manipulated within a .NET application and interoperate with .NET data types.
Oracle native types provide advanced functionality to store and manipulate data
structures from the database, such as XML, result sets, images, text, or Microsoft
Office documents. Even with scalar types, such as OracleDecimal, the equivalent
to the .NET decimal type, Oracle types provide additional functionality. In the
example of OracleDecimal, this data type provides a higher level of precision of 38
digits than the .NET decimal with a 28 digit precision.

ODP.NET supports the gamut of advanced Oracle types within the .NET
environment, including REF Cursors, XMLType, LOBs (CLOBs, BLOBs,
NCLOBs), BFILEs, LONGs, RAWs, LONG RAWs, and N-data types. One of
the limitations of using third-party .NET data providers is that users may be limited
in Oracle data type functionality. For example, in ODP.NET, multiple result sets
returned as REF Cursor output parameters from a stored procedure can be
accessed in an arbitrary way. One can read the results of the second REF Cursor
without retrieving the results of the first. With other .NET providers, data may
have to be accessed in a linear manner where the first result set’s data must be
retrieved prior to accessing the second’s. This would negatively affect
performance.

Beginning with ADO.NET 2.0, Oracle data types can be stored natively within the
.NET DataSet. Previously, only .NET data types could be used in DataSet. By
setting OracleDataAdapter.ReturnProviderSpecificTypes to true, the DataSet will
be populated with ODP.NET-specific data types when OracleDataApdater.Fill is
called. This feature can improve performance because it saves .NET from
conducting data type conversions.

Other Major Features
ODP.NET exposes many other Oracle database features, including PL/SQL,
transactions, and Unicode support.

ODP.NET users can fully execute PL/SQL stored procedures and functions in the
database. PL/SQL can be packaged or non-packaged, or even exist as anonymous
PL/SQL within .NET. In ODP.NET, anonymous PL/SQL is generally employed
to batch a set of SQL statements and execute the statements in one database round
trip. Batching statements is a useful performance optimization technique.

ODP.NET can participate in transactional applications with the Oracle database as
the resource manager. ODP.NET employs the Microsoft Distributed Transaction
Coordinator (DTC) to oversee a transaction in a Windows environment. The

ODP.NET supports native Oracle database
types, such as REF Cursors, within the

.NET environment. These native data
types can provide better performance and

more flexibility for data retrieval.

Other major ODP.NET features include
being able to use any type of PL/SQL; local

and distributed transactions; and
internationalized applications with

Unicode.

Oracle Data Provider For .NET 11g Page 14

Oracle Services for Microsoft Transaction Server (OraMTS) act as a proxy among
ODP.NET, DTC, and the Oracle database in order to coordinate these
transactions. OraMTS provides a robust architecture for ODP.NET programmers
to have their transactional applications maintain high availability and high
scalability. In .NET Framework 2.0 and higher, ODP.NET 10.2.0.3 supports both
local and distributed transactions via the System.Transactions namespace.

ODP.NET has full Unicode support so that .NET users can globalize their
applications easily in multiple written languages. This globalization support allows
developers to create one set of code for multiple culture/language settings.
ODP.NET globalization extracts the client computer’s national language setting to
display information in a locale-specific format. For example, a browser set to
Japanese will have currency displayed in yen. Without additional coding, that same
application can be deployed in Germany to show currency in euros. This makes
developing applications for multiple locales easier and faster since no additional
coding is necessary.

CONCLUSION
In Oracle Database 11g, ODP.NET offers new performance capabilities for Oracle
database developers that build upon its existing performance, scalability, ease of
use, and security features. As new Oracle database features and new .NET
Framework features are introduced, ODP.NET continues to provide support for
these new features.

For more information about ODP.NET and Oracle on .NET in general, visit

OTN ODP.NET Product Center:
http://www.oracle.com/technology/tech/windows/odpnet/

OTN .NET Developer Center: http://otn.oracle.com/dotnet

Oracle Data Provider For .NET 11g
October 2007
Author: Alex Keh

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Copyright © 2007, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

