

An Oracle White Paper

September 2009

What’s New in Oracle Data Provider for .NET
11.1.0.7.20

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

Introduction ... 2

Oracle Streams Advanced Queuing .. 3

ODP.NET Oracle Streams AQ Functionality 3

Promotable Transactions ... 5

Performance .. 6

Application Self-Tuning .. 6

Faster Data Retrieval and Optimized Memory Usage 7

Code Access Security ... 7

High Availability Event Notification and Callback 8

Programmatic Database Startup and Shutdown 8

Conclusion .. 9

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

2

Introduction
Oracle Data Provider for .NET (ODP.NET) is a native ADO.NET data access driver for

Oracle databases. ODP.NET 11.1.0.7.20 introduces new features to improve ease of

development, application scalability, performance, security, and manageability. This

release exposes unique Oracle database functionality, which .NET developers can now

use more easily, and improves Oracle integration with the .NET Framework. Features

include:

• Oracle Streams Advanced Queuing (AQ) – AQ provides database-integrated

message queuing. ODP.NET can programmatically access AQ operations, such as

message enqueue, dequeue, listen, and notification for building robust messaging

applications. Oracle Developer Tools for Visual Studio can administer and manage AQ

resources in the database.

• Promotable Transactions – Promotable transactions optimize resource usage by

deferring distributed transaction use until absolutely required. ODP.NET transactions

begin as local transactions with the first database connection. When a second

database connection joins, ODP.NET promotes the local transaction to a distributed

transaction.

• Performance - Application Self-Tuning – After sampling query behavior at run-time,

ODP.NET dynamically tunes the statement cache size. This enhancement improves

performance, reduces network usage, and saves on client and server memory usage.

• Performance - Faster Data Retrieval and Optimized Memory Usage –

OracleDataReader data retrieval and OracleDataAdapter.Fill performance have been

improved. In addition, ODP.NET now reuses the fetch array buffer, which stores data

from executed statements. This feature reduces client memory usage since ODP.NET

requires fewer fetch array buffers for typical applications.

• Code Access Security – ODP.NET now includes OraclePermission and

OraclePermissionAttribute classes to help developers enforce imperative and

declarative Code Access Security, respectively.

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

3

• High Availability Event Notification and Callback – ODP.NET receives notifications

when a database, service, service member, host, or instance fails or becomes

available. .NET developers can register an ODP.NET callback to notify the application

when one of these events occurs and execute an event handler.

• Programmatic Database Startup and Shutdown – ODP.NET users with database

administrator privileges can programmatically startup or shutdown a database

instance.

ODP.NET 11.1.0.7.20 can connect to Oracle Database 9i Release 2 (9.2) or higher. The

database server can be on any platform, such as Windows, Linux, or UNIX. ODP.NET

supports .NET Framework 2.0 and higher. Developers can download ODP.NET for free

from Oracle Technology Network (OTN).

http://www.oracle.com/technology/tech/windows/odpnet/

Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing (AQ) provides database-integrated message queuing. AQ is

often used for message management and asynchronous communication among applications. For

example, AQ can route a typical purchase order to a validation application, and then later to a

sales recording application. AQ can then send the order to the shipping department for order

fulfillment. Upon fulfillment, the order information can be routed to the billing department for

payment processing. AQ and .NET can orchestrate this entire business process.

Queues act as message repositories between sender and recipient(s). AQ leverages the Oracle

database to persist messages, to propagate them among queues, and to transmit messages using

Oracle Net Services and HTTP(S).

Because AQ uses the database infrastructure, all operational benefits of persistence, high

availability, scalability, scheduling, and reliability apply to queue data. AQ supports standard

database features, such as recovery, restart, and security.

ODP.NET Oracle Streams AQ Functionality

ODP.NET 11.1.0.7.20 introduces an AQ application programmatic interface (API) that can

access AQ’s operational features, including enqueue messages, dequeue messages, listen for

queue messages, and message notification. The ODP.NET AQ API is easy to use for building

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

4

.NET messaging applications with Oracle database. Oracle Developer Tools for Visual Studio

can administer and manage AQ resources so that developers never have to leave Visual Studio

when working with AQ.

ODP.NET queues are represented by OracleAQQueue objects. A user queue handles normal

message processing. An exception queue handles unprocessed or unretrieved messages. A single

message or an array of messages can be enqueued.

The AQ message itself is represented by an OracleAQMessage object. This object consists of

control information and the message data. The message can be one of several data types: XML,

Raw (OracleBinary or byte array), or user-defined type.

Developers have numerous customizable message options. They can specify message recipients,

overriding the queue subscriber list. Messages can be set with different priority levels for priority

based dequeuing. Messages can remain on the queue for a developer-defined set time before

expiring, whereby the message is moved to the exception queue. These are some of the many

choices available for managing individual queue messages.

.NET developers set enqueue options via the OracleAQEnqueueOptions class. For example, a

message can be enqueued persistently on disk or buffered in memory. Disk storage is a high

availability medium; however, memory storage is better performing.

Similarly, there are dequeue options available through the OracleAQDequeueOptions class. With

this object, developers can search and wait for messages with matching criteria.

Subscribers can listen on an OracleAQQueue object for relevant messages. Alternatively,

developers can employ asynchronous notification with the OracleAQQueue.MessageAvailable event.

This event provides notification if there is a queue message available for

OracleAQQueue.NotificationConsumers, which consists of an array of consumers.

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

5

The table below illustrates some of the key ODP.NET AQ APIs.

TABLE 1. ODP.NET AQ FUNCTIONALITY AND IMPLEMENTATION EXAMPLES

AQ FUNCTIONALITY ODP.NET EXAMPLE

Create Message Create an OracleAQMessage object

Enqueue single message Specify an OracleAQMessage message, an OracleAQQueue queue, and the

OracleAQQueue enqueue options. Finally, call OracleAQQueue.Enqueue.

Enqueue multiple messages Specify an OracleAQMessage array of messages in OracleAQQueue.EnqueueArray.

Dequeue single message Specify the OracleAQQueue dequeue options and then call OracleAQQueue.Dequeue.

Dequeue multiple messages Call OracleAQQueue.DequeueArray.

Listen for messages on

Queue(s)

Call OracleAQQueue.Listen. To listen on multiple queues, use static

OracleAQQueue.Listen method.

Message Notification Use OracleAQQueue.MessageAvailable event and the

OracleAQQueue.NotificationConsumers property

Promotable Transactions

Distributed transactions require orchestration among application, transaction coordinator, and

multiple resource managers. Local transactions only require an application and a single resource

manager. When compared to distributed transactions, local transactions have much less

overhead and are preferred for greater application performance and scalability.

At design time, it may not be clear when a distributed or local transaction will be required.

Depending on run time circumstances, the same transaction code may sometimes require just

one database connection (i.e. local) and sometimes require more than one database connection

(i.e. distributed). Normally, developers would have to design for a distributed transaction in all

cases, even if a local transaction could have been used some of the time.

ODP.NET promotable transactions allow all transactions to start local. Transactions are

promoted to distributed transactions only when more than one resource manager joins.

Promotable transactions provide better run time optimization of system resources.

This new feature requires that the first connection be to Oracle Database 11g Release 1 or

higher. Subsequent connections may connect to any other Oracle resource or version, or even

another vendor’s database.

No ODP.NET code change is required to enable promotable transactions. The Promotable

Transaction setting must be set to “promotable”, which is its default value. Oracle Services for

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

6

Microsoft Transaction Server 11.1.0.7.20 or higher and .NET Framework 2.0 or higher must be

used on the mid-tier.

Performance

ODP.NET introduces performance enhancements that dramatically speed data access and

reduce resource usage. No code change is necessary to employ these enhancements, meaning

developers will see faster and more efficient ODP.NET data access just by upgrading their

provider. The features include application self-tuning, faster data retrieval, and optimized

memory usage.

Application Self-Tuning

ODP.NET enables dynamic application self-tuning of the statement cache. By sampling run

time query execution, ODP.NET dynamically resizes the statement cache to optimize overall

performance. The statement cache size is increased dynamically if frequently executed

statements are not being cached. The statement cache is decreased dynamically if excessive

memory usage is slowing overall application performance. This feature enhances performance,

reduces network usage, and saves on client and server memory usage, while increasing developer

productivity, especially if statement cache size hasn’t been tuned previously.

Developers no longer need to manually optimize the ODP.NET statement cache. It is

unnecessary to experiment with different cache sizes, determine which statements to cache, and

later resize the cache when application behavior changes over time.

Statement caching itself allows ODP.NET to cache statement parses for frequently executed

SQL and PL/SQL. Oracle retains the parsed statements in the shared pool. Because the client

cursor remains open, no additional server cursor lookup is required. In addition, statement

metadata remains on the client. All these improvements speed SQL and PL/SQL execution.

Before ODP.NET 11.1.0.7.20, developers would set the statement cache size at design time, thus

caching a user-defined number of most recently executed statements. Over time, the least

recently executed statements were removed from the cache.

Because statement cache size was set at design time, it was difficult to ensure the cache size

would remain optimal at run time. The number of frequently executed statements could change

over time, be it over the course of a day or over the course of a year. A cache that is too small

leads to unnecessary parsing and lookup. A cache that is too large leads to excessive memory

usage. ODP.NET application self-tuning overcomes these obstacles and manages the statement

cache automatically.

Application self-tuning is enabled by default in the Windows Registry. Self tuning can be set

with the Self Tuning connection string attribute; in a .NET configuration file, such as web.config or

application configuration file; and in the Windows Registry. If the connection string attribute is

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

7

set, it overrides the .NET configuration file setting for that application. Along the same lines,

setting the .NET configuration self-tuning attribute overrides the Registry setting.

Faster Data Retrieval and Optimized Memory Usage

ODP.NET runtime performance has been internally optimized to speed data retrieval using

OracleDataReader or populating a DataSet. This feature provides better performance and

scalability for ODP.NET applications.

In addition, ODP.NET reuses the same fetch array buffer, rather than create a new buffer for

every statement executed serially. The fetch array buffer stores data for executed statements.

This feature reduces client memory usage since ODP.NET requires fewer fetch array buffers for

typical applications.

Developers should see faster data retrieval performance and lower memory usage just by

upgrading ODP.NET.

Code Access Security

Code access security limits .NET assemblies from access to protected resources and operations.

It allows developers to manage system resource permission and code group security policies.

ODP.NET provides both imperative and declarative security for client applications with

OraclePermission and OraclePermissionAttribute classes, respectively. These new classes enable easier

and secure code access management with ODP.NET and Oracle database.

In ODP.NET 11.1.0.7.20, code access security ensures that .NET assembly access to the Oracle

database can be sufficiently restricted. Only OraclePermission granted assemblies can connect to

the Oracle database. A security exception is thrown if OraclePermission is not granted to the

assembly. This rule applies to all the assemblies in the call stack. They all must have

OraclePermission granted for database access.

OraclePermission provides flexible control of database access. ODP.NET developers can grant or

deny permission based on specific connection string attributes and attribute values. Consider the

following example:

OraclePermission.Add("Data Source=orcl;"," User Id=;Password=;", KeyRestrictionBehavior.AllowOnly);

This code segment grants connection permission for connection strings with Data Source set to

‘orcl’; with any user id and password combination; and with no other connection string

attributes. ODP.NET throws a security exception if any other connection string combination

tries to connect.

Because OraclePermission and OraclePermissionAttribute classes respectively inherit from

System.Data.Common.DBDataPermission and DBDataPermissionAttrubute, all the standard

.NET code access security functionality is available to ODP.NET developers. Configuration can

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

8

be performed with NET Framework Configuration tool (Mscorcfg.msc) or manually by

modifying application configuration file, web.config, security.config, and/or Windows Registry,

such as modifying the DemandOraclePermission configuration attribute, which enables or disables

OraclePermission demand.

High Availability Event Notification and Callback

Starting with ODP.NET 10.2, .NET applications could use Fast Application Notification (FAN)

events to load balance ODP.NET connections across a cluster and to initiate Fast Connection

Failover (FCF) when a database resource failed. FAN events provide ODP.NET information on

server host, service, service member, instance, and database status changes. This information is

critical for real-time connection load balancing with Oracle Real Application Clusters (RAC) and

for removing invalid connections to RAC or Oracle Data Guard from the connection pool.

ODP.NET managed FAN events internally, which meant .NET developers could not design

their own application logic to respond to FAN events. With ODP.NET 11.1.0.7.20, developers

can now register their own .NET callbacks for FAN events, and then execute an event handler

based on the event. With this feature, application developers can better manage their .NET

applications in response to database component failures or additions.

When the high availability event occurs, the event handler consumes and acts on the database

event data returned to the client. The event data includes the event source, instance name,

service name, hostname, and source status among other information. Events are triggered

whenever a server resource fails or becomes available. The server resource could be a host,

service, service member, instance, or database.

To use this feature programmatically:

1. Set the HA Events attribute to true in the ODP.NET connection string.

2. Define an event handler, HAEventHandler, for the application.

3. Register the callback, OracleConnection.HAEvent += new

OracleHAEventHandler(HAEventHandler), with the application.

Programmatic Database Startup and Shutdown

ODP.NET users with database administrator privileges can now startup or shutdown a database

programmatically. This feature is useful for ODP.NET applications that manage Oracle

databases.

Starting up or shutting down a database requires database administrator privileges, SYSDBA or

SYSOPER. This privilege can be set in the connection string attribute DBA Privilege. The

OracleDatabase class uses a special purpose connection for only starting and shutting down a

Oracle White Paper — What’s New in Oracle Data Provider for .NET 11.1.0.7.20

9

database instance. The class contains methods that provide control over what modes to startup

or shutdown the database in.

Conclusion

ODP.NET 11.1.0.7.20 includes numerous new features to improve developer productivity,

application performance, scalability, and security. .NET developers can now use unique Oracle

database functionality, including Oracle Streams Advanced Queuing; application self-tuning;

faster data retrieval and improved memory management; high availability event notification

callbacks; and programmatic database startup and shutdown. At the same time, more .NET

Framework functionality is now available with promotable transactions and .NET Code Access

Security. .NET developers can take advantage of the best of both worlds in Oracle Database and

.NET Framework.

What’s New in Oracle Data Provider for .NET

11.1.0.7.20

September 2009

Author: Alex Keh

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

