

Introducing Java Server Faces
(JSF) to 4GL Developers

An Oracle White Paper

November 2006

Introducing Java Server Faces (JSF) to 4GL Developers Page 2

Introducing Java Server Faces (JSF) to 4GL

Developers

Introduction ... 4
Introducing JSF ... 4

A Brief History Lesson .. 4
Before JSF ... 5

JSF In the Community ... 5
Oracle’s contribution ... 6
Contribution from others.. 6

Understanding JSF .. 6
Introducing the component .. 6

The component architecture .. 7
Supporting the component ... 8
A simple component example.. 8

The event model ... 10
Action events .. 10
Value change events... 10
Phase events .. 11

The page flow.. 12
Introducing faces-config.xml.. 12
The action attribute.. 13

The managed bean.. 13
Managed bean definition... 14
Referencing the managed bean .. 15

Converters and validators .. 15
Converters ... 16
Validators... 16

The JSF lifecycle .. 16
Overview.. 16
Looking at the phases... 17

Restore View... 17
Apply Request Values.. 17
Process Validations .. 17

JSF Advance Features... 18
Skinning.. 18
Render Kits.. 19

Introducing Java Server Faces (JSF) to 4GL Developers Page 3

Ajax ... 19
Conclusion.. 20

Introducing Java Server Faces (JSF) to 4GL Developers Page 4

Introducing Java Server Faces (JSF) to 4GL

Developers

INTRODUCTION

The past couple of years have seen the emergence of JSF (Java Server Faces) as the

technology of choice for building the user interface (UI) layer of Java web

applications. Oracle’s own business applications are committing to JSF as the UI

technology in the “Fusion” stack.

The component based architecture gives business developers simple, yet powerful,

UI components with which to build applications; while being based on standards

means that the larger development community can collaborate to build richer and

more advanced components.

This paper will introduce JSF to 4GL developers, showing how the components

can be used, and behind the scenes, how the components work.

INTRODUCING JSF

The Java Community Process (JCP), which is responsible for defining the standard

for JSF – initially released as JSR-127 (Java Specification Request 127)- states one

of its goals is to: “… establish a standard API for creating Java Web application GUIs,

which will eliminate the burden of creating and maintaining GUI infrastructure for developers.”

Which means that JSF is about components in the traditional UI sense of widgets

like buttons, text fields and check boxes. It is not slaved to the traditional mark-up

centric view of previous web technologies: a button is a button, not a tag. It has

behavior, you can listen for it being pressed and the infrastructure to support what

happens when it is pressed is taken care for you. Which is exactly what you have

been used to in the Oracle Forms, Visual Basic and PeopleTools world.

A Brief History Lesson

From its formative years in 2001, the first release in 2003, up to the current release

(JSF 1.2 JSR-252) in 2006 the JCP has brought together resources from the

community, including Oracle, to define the specification and produce a reference

implementation of the specification.

IBM, BEA, Sun and others have also

committed to using JSF as their UI

technology.

Introducing Java Server Faces (JSF) to 4GL Developers Page 5

Before JSF

It is difficult to see how far JSF has raised the bar for Java web application UIs

without first being aware of the development experience (or lack of) that was the

catalyst for the simpler UI component based view that JSF typifies.

Static HTML

In the formative years of the web, static HTML (Hyper Text Markup Language)

pages made up the bulk of any content you would see on the web. The overriding

limitation was that as static pages it became difficult to display any sort of dynamic

data like a list of products held in a database. Furthermore, if you wanted to do

more than simply serve up a series of static pages, you also had to code your own

communication to and from the server using the HTTP Post and Get messages as

the carrier.

Servlets

To overcome the limitations of static pages, servlets were introduced. Simply a

Java program that would do some processing and output a string of HTML tags as

its result. Thus, the development of a web page required the developer to code a

program that would output the tags to be rendered by the browser. Again,

developers would also still have to manage the Post and Get communication

highlighted above.

Java Server Pages

In order to move away from this programmatic view of web page development,

the next step in the evolution brought us to Java Server Pages (JSP). These were

“special” tags that could be embedded into a web page. These tags were used by

the JSP container to generate servlets, that in turn generated the markup. So, you

had the concepts of developers who could develop JSP tags, and possibly a

different set of developers who could use the tags via JSTL (JSP Standard Tag

Libraries).

However, this still represented a “tag” based view of UI development and still

required the UI developer to understand the intricacies of HTTP protocols and to

manage state.

Thus, JSF finally brings the development of web UIs to the stage where developers

can work with visual controls that support an event model and allow visual editing

through IDEs such as Oracle JDeveloper.

JSF In the Community

So, being a ratified standard, anyone can develop their own set of JSF components

for use, and anyone could implement their own JSF runtime on which those

components run. And that is what we are seeing in the wider community.

Strictly speaking servlets do not have to

generate HTML; they can generate any

markup language dependant on the end

user device: e.g. a mobile phone or PDA.

Introducing Java Server Faces (JSF) to 4GL Developers Page 6

Oracle’s contribution

Oracle is one of the leading expert groups involved in the JSF specification,

contributing their experiences from their own web framework used by the Oracle

Applications developers: UIX (User Interface XML). As a result of the work on

the specification, the library of UIX components was redeveloped as standard JSF

components. This set of components is called ADF Faces and can be used on any

runtime implementation of JSF.

Being committed to the open source community, Oracle has also donated their

ADF Faces implementation to the Apache community, and within this community

this offering is called Trinidad.

Contribution from others

Sun, who are also involved in the JCP, provide a reference implementation for the

JSF framework (the environment on which the JSF components run) and that now

appears in the Java Enterprise Edition (EE) 5.

MyFaces, from the Apache community, provide both a 1.1 reference

implementation as well as a component library. Other offerings include Glassfish,

which is an open source implementation of Java EE 5 application server and

contains a JSF 1.2 implementation.

The bottom line is components are standardized within JSF and you can use any

component from any vendor and mix and match them as required.

UNDERSTANDING JSF

So, now with an understanding of the need for a component based solution, the

next step is to look at these components and what features they offer.

Introducing the component

Figure 1 shows a small sample of some of the ADF Faces components. Each web

page in your application will be constructed from components. Components will

typically be nested inside other components (called layout components or

containers) to provide the required layout.

For the remainder of this paper we will

study and use the ADF Faces set of

components; although the general points

could apply to any JSF implementation.

Introducing Java Server Faces (JSF) to 4GL Developers Page 7

Figure 1 – ADF Faces components

The component architecture

Each component is typified by three parts: attributes, behavior and renderers.

Attributes

Each component has a number of attributes associated with the component. For

example, a button will have an attribute text that defines the text label that appears

on the button; or a background-color attribute to define the background color.

Behavior

The component defines a number of actions that control the behavior of that

component. For example, a button provides a valueChange event on which a

developer associates code.

Renderers

The component itself has attributes and behavior as indicated above but that says

nothing about how the component will actually look. That is the responsibility of

the renderer. It is the job of the renderer to realize the component as defined as a

concrete screen instruction – e.g. in the case of a browser application – a fragment

of HTML mark-up.

Having separate (or pluggable) rendering is one of the most compelling features of

JSF. The fact that the component behavior is de-coupled from the way it is

displayed means that the same UI component can be displayed differently – for

example, depending on the device to which it is rendered.

JSF UI components are not limited to

generating markup. For example UI

Components can also render binary data

such as an image streams or different

document types such as SVG, PDF and

Word.

Introducing Java Server Faces (JSF) to 4GL Developers Page 8

Supporting the component

However, the component does not live in isolation. The JSF runtime provides a

number of features to support the components.

Managed beans

The managed bean is simply a Java object that provides integration between the UI

component and the data object the component is displaying. You can define the

scope of these objects by indicating that they exist for the lifetime of the

application, when only requesting a web page, or a session covering a number of

web pages.

Expression Language

Expression Language (EL) is a scripting language that is part of the JSF runtime

and provides simplified expressions for accessing the data, managed beans and the

various properties of the components. EL is a very powerful feature of JSF. For

example, a component attribute (such as required) can be set by an EL expression

depending on the value of data in a backing bean:

#{emp.MaritalStatus ==’single’}

So if the value of MaritalStatus is “single” (and so the expression evaluates as true)

then the required attribute will be set to true.

Oracle ADF uses EL as the language to bind the UI components to the underlying

data.

Navigation case

The JSF framework allows developers to define a set of rules that define the

navigation between pages. By default, this is defined in a file called faces-config.xml

and is covered later in this paper.

Lifecycle

The JSF Request Processing Lifecycle (more commonly referred to as JSF lifecycle)

is, as the name suggests, the various stages of processing in the life of a specific JSF

request. At certain points in the JSF lifecycle specific actions will happen; whether

it is the component retrieving its current state, or rendering the component.

A simple component example

So, in order to understand how each of these “parts” works as part of the whole,

lets look at a simple case of a JSF text field component on a web page.

Introducing Java Server Faces (JSF) to 4GL Developers Page 9

Figure 2 – Simple example

If you change from the design view of the page to the code view in the JDeveloper

visual editor, you can see the source JDeveloper has created for you. There are

two tags in the source code:

• <f:view>

• <h:inputText>

The first is the top-level container in which all the UI components will appear. JSF

holds the definition of the page in a component tree (which can be manipulated at

runtime) and <f:view> encapsulates this components tree.

<h:inputText> is a UI component in this tree and represents the input text field.

Hiding the implementation details

Note that the input field has a property required which is set to true, and a property

value, which is being resolved by an EL expression via a managed bean. However,

there is absolutely no detail of how the component implements the properties or in

fact, how the component actually renders itself.

So this component could render itself using HTML markup up if displaying in a

browser, WML (Wireless Markup Language) if displaying on a mobile device, or

possibly even some hybrid of markup and JavaScript (refer to Ajax, covered later).

And that is the beauty of JSF to the business developer, the implementation detail

of the UI control is hidden. The component simply exposes functionality and

features (as a UI component would in Visual Basic or Oracle Forms).

For simplicity, some tags have been

omitted.

Today the implementations of JSF happens

to use JSP as a carrier technology. That is,

the page definitions are JSP pages and the

JSF components are expressed as JSP tag

libraries. This however is a convenience, it

means that conventional HTML / JSP

editors and IDEs can be used to design JSF

pages. JSF itself makes no assumptions

about the format of the page definition.

Introducing Java Server Faces (JSF) to 4GL Developers Page 10

The event model

The next step is to consider how the UI component initiates and reacts to UI

actions or events such as pressing a button or selecting a value from a list.

JSF provides an event model that supports three types of events.

Action events

An action event occurs when a JSF UI component, like a button or link, is clicked.

Figure 3 shows a simple JSF page consisting of an input field, a button and an

output field, which will display the data from the input field concatenate with the

string “hello”.

Figure 3 – Simple event example

JDeveloper allows you to add a method to the Action attribute, which will execute

the following code (held in a managed bean)

 public String buttonPressed_action() {

 // Add event code here...

 String inputText = (String)getInputText1().getValue();

 getOutputText1().setValue(inputText + " hello!");;

 return null;

 }

Value change events

Input UI components such as input text fields have two events that are triggered

when changing data. A ValueChangeListener fires when a value in the field has

changed and Validator fires to validate the data entry. Again, JDeveloper provides

An action event in analogous to a When-

Button-Pressed trigger in Oracle Forms.

By double-clicking on the button,

JDeveloper will automatically create a

placeholder for your code. JDeveloper will

also create a backing bean for you and

accessor methods for getting and setting

the value of the UI components.

Note that this method returns a String, in

this case null. The importance of this

string is discussed later in the navigation

section

Introducing Java Server Faces (JSF) to 4GL Developers Page 11

a simple dialog to define the name of the method, the managed bean in which the

method is placed and will generate the correct method signature (Figure 4)

Figure 4 – Creating a valueChangeListener

Phase events

Phase events execute at specific instances in the JSF lifecycle, allowing you to add

your own code into the JSF lifecycle at points such as validation phase, or updating

the model with values phase.

The significant point for any of these events is not what you can code, but instead

what you DON’T have to code.

• There is no need to process the HTTP request to check what event is

raised.

• There is no need to process the HTTP request to find out what value was

typed into the input text field

• There is no processing the HTTP response to set the value of the output

field. This is done be setting an attribute on the output text field.

Introducing Java Server Faces (JSF) to 4GL Developers Page 12

The JSF framework provides a layer of abstraction to deal with the “plumbing” of

associating an action with a piece of code and allowing to code to access attributes

of the components.

The page flow

As well as defining a framework for components on a page, JSF also defines a

framework for managing the flow between application pages. So, performing a

particular action on a page results in navigation to another web page.

Introducing faces-config.xml

As you would expect, JSF handles the flow of your application through the web

pages with minimum of coding on the developer’s part. Instead, an XML file

defines what action on a specific page results in navigation to another specific

page. This XML file is called faces-config.xml.

Figure 5 shows an example faces-config.xml file with a navigation case on the

browserCustomers page. An edit action would result in navigation to the editCustomers

page, while a showOrders action would result in navigation to the customerOrders web

page.

Figure 5 – Faces-config.xml

Note that the faces-config.xml file contains

more information than just the navigation

rules. As an introduction to JSF, your

primary involvement with this file will be

defining navigation but it also used to

specify managed beans, render kits,

converters and validators.

Introducing Java Server Faces (JSF) to 4GL Developers Page 13

However, JDeveloper makes management of this file even easier by providing a

visual editor for defining and visualizing the page navigation rules.

Figure 6 – Faces-config.xml

The action attribute

In order to define which UI component actually raises the action you simply set

the action property on the component. This is the same property that was

discussed earlier for defining the method to be executed on pressing a button. The

action property can take the name of a navigation case on the diagram or the name

of a method – which is why the action method discussed earlier, returns a String,

which defines the name of the JSF navigation flow to be followed.

The managed bean

The role of the managed bean is actually quite simple. It is a place to put code

relating to UI actions (like a button being pressed) and to hold state information

about the UI (for example, the name of the logged on user). More specifically, a

managed bean contains code generally shared between many pages.

Introducing Java Server Faces (JSF) to 4GL Developers Page 14

The lifecycle of a managed bean is handled by JSF – when the bean is first

referenced, JSF will create an instance of the relevant Java class and keep it around

as long as is specified by the bean definition.

You also have the concept of a backing bean. A backing bean is a specialized

managed bean created and managed by JDeveloper and is tied to one specific JSF

page. Typically this bean provides accessor methods for each UI component on

the page it backs.

You don’t need a backing bean for every page. A page can happily live without

any backing bean at all, or a backing bean can only contain references to a few of

the components on the page. In most cases the backing bean will only contain

action code and no references to the UI Components – unless you need to

programmatically manipulate them.

In the example above (figure 3) a backing bean was used to reference the

components created on the page and to provide a place to put action code.

Managed bean definition

Managed beans are registered in the faces-config.xml file; however, JDeveloper can

aid you in the creation and referencing of these beans. When a JSF application

starts up it reads the faces-config.xml file to make the beans available. There are a

number of configuration options for managed beans.

Managed bean properties

As well as the place to put UI action code, you can also add variables (like package

variables in PL/SQL) to the managed bean. Consider the case where you would

like to define a value that would be used as the default value for, one or many, UI

fields. You can achieve this by using a managed property, which allows you define

a property, its type and its value. This could then be accessed using EL to

populate the value of a field. So the entry the faces-config.xml file would include:

 <managed-property>

 <property-name>defValue</property-name>

 <property-class>java.lang.String</property-class>

 <value>hello</value>

 </managed-property>

And that property could be access from a JSF page by:

#{backing_page1.defValue}

Managed Bean Scope

Each managed bean has a “lifespan”. JSF will instantiate the bean automatically

and that bean will be available for the defined scope. The scope of the managed

bean is set in the faces-config.xml file. There are four possibilities:

The term Inversion of Control (IoC) is often

used in describing managed beans. This

simply means that the management of the

object (in this case the managed bean) is

handed over to the framework instead of

being left to the application developer.

Introducing Java Server Faces (JSF) to 4GL Developers Page 15

• Application – the bean is available for the duration of the web application.

This is useful for any application global data.

• Session – the bean is available for the duration of the client’s session. For

example, a shopping cart application would keep the session information

across many web pages.

• Request – the bean is available from the time it is instantiated until a

response is sent back to the client. For example, from the point a button is

pressed to when the response is received back at the client.

• None – the bean is instantiated each time it is referenced.

Referencing the managed bean

Now that you have defined information and functionality within your managed

bean, you want to be able to access that information.

Referencing from EL

Using EL you can reference managed properties from your managed bean.

<af:inputText id="fieldA" value="#{backing_page1.defValue}"/>

Thus, on realizing this field, the value of the field would be set to the defValue

managed property in the backing_page1 managed bean.

Referencing from Java

You can also access managed properties from Java as well. To do this you get the

current instance of the FacesContext. This object contains all of the state

information for the components within the JSF lifecycle. By getting a handle to

the current instance of the FacesContext you can access the elements of the JSF

lifecycle.

FacesContext fc = FacesContext.getCurrentInstance();

ValueBinding expr =

fc.getApplication().

createValueBinding("#{backing_page1.defValue}");

System.out.println(expr.getValue(fc).toString());

Converters and validators

When the user enters data into a JSF page and that page is submitted from the

browser, all the data on the page is enclosed in the resulting HTTP message as

strings. So, regardless if data entered was a date or a number when the data gets to

the application server for processing it appears as a string.

The predicament here is that the developer building the “back-end” code will

typically be using Java types (like Integer or Date) to manipulate that data.

Introducing Java Server Faces (JSF) to 4GL Developers Page 16

Without the use of a framework this would require writing code to convert the

strings to the correct data type.

However, this functionality is provided to you through JSF.

Converters

As the name would suggest, a converter is responsible for converting String data to

a type such as java.util.Date or java.lang.Number. JDeveloper provides a palette of

converters and will also automatically add converters for components that would

reasonably require them: e.g. an input field that is bound to date data. Thus, data

entered that represents a date, and is transmitted via HTTP as a string, can still be

typed in the back end code as a java.util.Date.

Validators

Validation, on the other hand, is the process whereby editable component data is

validated against rules or conditions before the data is updated into the model

layer. Thus, before posting data on the page, validation will check the data is, for

example, within defined limits (<af:validateDateTimeRange>). As with converters,

JDeveloper provides a palette of validators and will automatically include them on

certain UI items.

THE JSF LIFECYCLE

We have already come across the phrase “JSF lifecycle” in this paper and it is

worth looking at what this means in a little more detail.

Overview

Once a request starts being processed (e.g. as the result of pressing a button), JSF

goes through a set series of steps. These steps are called the lifecycle. The lifecycle

of a JSF page is similar to the lifecycle of most web pages: the client makes an

HTTP request, the application server receives and processes the request and

responds in HTML. The JSF lifecycle, however, manages a UI component tree on

the server and also controls events and handles state changes.

The JSF lifecycle uses the component tree to handle application requests and

create rendered responses. Depending on the type of request and response, JSF

executes different tasks in different phases of the request processing lifecycle, and

then creates a view of the page (component tree) for rendering (in the Render

Response phase).

While outside the scope if this paper, the

JSF lifecycle can be customized if you

require specialized behavior.

Introducing Java Server Faces (JSF) to 4GL Developers Page 17

Figure 7 – JSF lifecycle

Looking at the phases

The fine details of each of the phases are beyond the scope of this paper, however,

an acknowledgement of their existence and general function is useful. In brief, the

JSF lifecycle phases are as follows:

Restore View

An internal view of the page is held in a component tree. In this phase, the

component tree of a page is newly built or restored. All the component tags, event

handlers, converters, and validators have access to the FacesContext instance. If it is

a new empty tree, the lifecycle proceeds directly to the Render Response phase.

Apply Request Values

Each component in the tree extracts its new value from the request message and

stores it locally. If a component has its immediate attribute set to true, then the

validation, conversion, and events associated with the component is processed

during this phase.

Process Validations

The local values of the components are converted and validated. If there are

errors, the lifecycle jumps to the Render Response phase. At the end of this phase,

new component values are set, and any conversion error messages and events are

queued on FacesContext.

Update Model Values

The component objects' properties are set to the validated local values.

Invoke Application

Application level code is executed such as action events.

Render Response

Introducing Java Server Faces (JSF) to 4GL Developers Page 18

The components in the tree are rendered as the web container traverses the tags in

the page. State information is saved for subsequent requests and the Restore View

phase.

JSF ADVANCED FEATURES

As an introductory paper, these advanced features are beyond the scope of this

paper. However, an acknowledgement of their basics is useful to know.

Skinning

Skinning is the ability to define an overall “look and feel” to an application UI. In

the same way that Windows allows you to define a theme for your desktop, ADF

Faces provides this feature by using JSF’s pluggable rendering technology.

Figure 8 – Skinning

Figure 8 shows the same application rendered using different skins. ADF Faces

comes with a number of pre-configured skins but you can develop your own

custom skins through manipulation of CSS (Cascading Style Sheet) tags.

Introducing Java Server Faces (JSF) to 4GL Developers Page 19

Render Kits

Each JSF component is responsible for outputting its own markup tags that are

used by the end device to physically render the screen. ADF Faces provides

render kits for HTML, mobile and telnet.

Figure 9 – Render kits

Figure 9 shows samples of an application rendered using different render kits. JSF

also has the provision of allowing you to develop your own render kits.

Ajax

Web UIs work on a “click and wait” paradigm. That is to say, a request is only

initiated on a UI action (such as a clicking a button) and the UI will wait for a

response. Which can be a limiting factor in trying to build a rich experience. This

has been a factor in the emergence of so called Ajax technology.

Ajax is based around asynchronous JavaScript and XML. Browsers now support

the ability to asynchronously request XML data. Thus, the combination of this

asynchronous passing of XML data, and JavaScript on the browser lends itself to

producing much richer web UIs.

The beauty of this technology for 4GL developers is that the Ajax functionality

can be hidden within JSF components.

Introducing Java Server Faces (JSF) to 4GL Developers Page 20

Some ADF Faces components already exhibit “Ajax like” behavior, but at the time

of writing this paper, work is underway in developing true Ajax functionality within

the ADF Faces components.

CONCLUSION

Java Server Faces is now providing a rich, productive and standards based

framework for developer web UIs. By providing a componentized layer of

abstraction, it factors away much of the complexity of web UI development,

particularly for those developers familiar with 4GL tools such as Oracle Forms,

PeopleTools and Visual Basic.

For further reading on how Oracle

JDeveloper and ADF aid you in developing

JSF applications,see the 1.3 Declarative

Development with Oracle ADF and

JavaServer Faces section of the ADF

Developer's Guide for Forms/4GL

Developers.

http://download-

uk.oracle.com/docs/html/B25947_01/intro00

3.htm#CHDHDHFJ.

Introducing Java Server Faces (JSF) to 4GL Developers

November 2006

Author: Grant Ronald

Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2006, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle

Corporation and/or its affiliates. Other names may be trademarks

of their respective owners.

