

Introducing Oracle Regular
Expressions

An Oracle White Paper
September 2003

Introducing Oracle Regular Expressions Page 2

Introducing Oracle Regular Expressions

Introduction..4
History of Regular Expressions...4
Traditional Database Pattern Matching ...5
Oracle Regular Expressions ...6
Enhancing the Data Flow ..6

Database to Client...7
Database Update ...7
Client to Database...7

Oracle Regular Expressions Key Features ...8
Interfaces ..8
Metacharacters ...9
Locale Support...9

Character sets.. 10
Case and Accent Sensitivity.. 10
Range.. 11
Character Class ... 11
Collation Element .. 12
Equivalence Class... 12

Using Regular Expressions in Oracle... 13
Function Overview... 13

REGEXP_LIKE ... 13
REGEXP_SUBSTR.. 13
REGEXP_INSTR... 13
REGEXP_REPLACE.. 14

Arguments ... 15
Offset ... 15
Occurrence.. 15
Multiline... 16
Newline.. 16

Using with DDL... 17
Constraints .. 17
Indexes... 18
Views.. 18

Using with PL/SQL... 18
Performance Considerations .. 19

Advanced Topics... 20
Architecture... 20

Introducing Oracle Regular Expressions Page 3

Looping behaviour ... 20
Backreferences .. 21
SQL Text Literals ... 21
SQL*Plus ... 22
NULL and the empty string ... 22

Conclusion ... 22

Introducing Oracle Regular Expressions Page 4

Introducing Oracle Regular Expressions

INTRODUCTION

Regular expressions provide a powerful means of identifying a pattern within a
body of text. A pattern describes what the text to identify looks like and could be
something quite simple, such as that which describes any three-letter word, to
something quite complex, like that which describes an email address.

Oracle Regular Expressions provide a simple yet powerful mechanism for rapidly
describing patterns and greatly simplifies the way in which you search, extract,
format, and otherwise manipulate text in the database. The remainder of this
document introduces Oracle regular Expressions and describes how to leverage
their power using SQL and PL/SQL.

History of Regular Expressions

If you are familiar with UNIX or Perl then you almost certainly have used regular
expressions to search for or manipulate text data. Indeed, the indispensable
searching tool ‘grep’ shares its middle two initials with the technology, standing for
‘Global Regular Expression Print’. Adoption of regular expressions by the
mainstream developer community was fueled mostly by web based technologies
and the need to manipulate text data coming from and going to the browser. With
the advent of CGI, web programmers were able to leverage regular expression
capabilities from UNIX tools in order to perform important tasks that could not be
done as easily before. While an impressive list of languages, such as Java, PHP,
XML, and Python, have incorporated support for regular expressions, Perl stands
out as the one language that helped their popularization beyond UNIX based
platforms.

Pattern matching with regular expressions can be applied to all kinds of real word
problems. They are used heavily in web applications to verify, parse, manipulate,
and format data coming to and from the middle tier; a surprisingly large amount of
middle tier processing is taken up with such string processing. They are used in
bioinformatics to assist with identifying DNA and protein sequences. Linguists use
regular expressions to aid research of natural languages. Server configuration is
often done in terms of regular expressions such as in a mail server to help identify
potential spammers, and are perhaps also used by the spammers themselves to
effortlessly collect innocent victims email addresses from Internet based data
stores. Many protocol and language standards accept regular expressions as filters

Introducing Oracle Regular Expressions Page 5

and validation constructs. In short, it is hard to imagine an application that could
not benefit from the functionality that regular expressions offer.

Historically, regular expressions have been the domain of expert users, such as
administrators or developers. Casual application users will most likely never come
across them but that is not to say that they could not benefit from their power, it is
mainly that the syntax is often not very intuitive to non-experts. This appears to be
changing; everyone should take a second look to see if there is a task that could be
simplified by using regular expressions. Indeed, many string searching and
manipulation tasks cannot be performed without regular expressions. How would
you attempt to search for all Internet addresses in a document? Most applications
do not allow you to perform such pattern matching but once you become
accustomed to their availability, you will surely wonder how you ever managed to
live without them.

Traditional Database Pattern Matching

A simple form of pattern matching has long been part of Oracle SQL through use
of the LIKE condition that provides two variants of wildcarding with the zero or
more of any character percent (%), and any character underscore (_). Such characters
are termed metacharacters as they describe the pattern rather than partake in it. A
simple example could be LIKE 'abc%’ that matches any row that beginning with
‘abc’. In many cases, LIKE is limiting and other solutions have been sought as a
means to perform more complex queries. Suppose you wanted to construct a query
to search the company employee database for both ‘John’ and ‘Jon’. There is no
way to specify a single pattern that represents these variants using LIKE as there is
no means to express that a particular portion of text does not have to be present to
prove a match, in this case the optional ‘h’. Note that LIKE ‘Jo%n’ is not
restrictive enough for our task as it would also match ‘Joan’ and ‘Johan’.

To remedy this limitation, applications could perform pattern matching operations
by constructing complex SQL or PL/SQL logic. This approach is both hard to
write and difficult to maintain as even the simplest of logic could consume hours of
development time. Often there is no way to represent a pattern in SQL alone,
consider how difficult it would be to extract all email addresses from a body of text
using SQL. The query would be almost impossible and would translate to many
lines of PL/SQL source. It should be noted that although Oracle already provides a
simple PL/SQL pattern matching package (OWA_PATTERN) it is far from being
a full regular expression implementation and does not support several key required
features such as alternation, the OR condition that allows matching either of two
expressions. In this respect it is limiting in its ability to perform complex pattern
matching operations.

It is still possible to obtain good regular expression support in the database by
creating user-defined functions to publicly available regular expression libraries.
While fine as a temporary solution, this approach has many limitations and issues.
Callouts are difficult to develop, deploy, maintain, and in most cases, difficult for

Introducing Oracle Regular Expressions Page 6

the vendor to support. As they are not native to the database, callout solutions are
rarely able to inherit database features such as locale support, performance
enhancements, and most likely cannot handle larger datatypes. Perhaps the most
limiting is that applications built on databases cannot rely on the callouts being
available so it is difficult for developers to make use of them without requiring that
they be deployed, often a risk not worth taking.

Some Oracle based applications use third party regular expression technology at the
client level to provide pattern matching capabilities. Typically, data from the
database is being extracted to a client, manipulated with regular expressions then
passed on to another source, or even turned around and written right back to the
database. Alternatively, data from a source external to the database is often
manipulated with regular expressions before it is written in to the database, or
possibly even filtered and rejected as input. It is evident that this approach is far
from ideal as data is being pulled back and forth between database and client
primarily in order to access regular expression functionality. In a similar manner to
that dictated by the object-oriented paradigm, it is desirable that this logic be as
close to the data as possible.

Oracle Regular Expressions

The web paradigm has reached a reasonably stable state in terms of major software
components. Most large-scale web applications consist of a database backend, a
web server middle tier with access to a database, and the front end. While the
middle tier technology employed tends to be quite dynamic in nature, ranging from
simple CGI to large scale Java applications, the backend remains a solid component
and in most cases is a database that understands SQL or a similar query language.

Oracle Regular Expressions build on the limitations of existing solutions by
providing a sophisticated set of metacharacters for describing more complex
patterns than previously possible, all native to the database. Leveraging their power,
an application will not only run more efficiently but it can have an improved data
flow and be more robust.

Enhancing the Data Flow

While middle tier technologies have long had the ability to perform regular
expression searching, support in the backend database is a valuable and often
overlooked consideration. The introduction of Oracle Regular Expressions brings
the database closer to the Internet by providing enhanced string manipulation
features right within the database, providing the flexibility to perform regular
expression based string manipulation at any tier.

Oracle Regular Expressions can be used in many data manipulation scenarios such
as updating, selecting, and formatting for presentation. These scenarios are
described in the following sections in terms of the data flow.

Introducing Oracle Regular Expressions Page 7

Database to Client

Regular expressions are especially helpful in a web application where data from the
database needs to be filtered and formatted for presentation. As an example,
consider an application that selects a phone number stored within a CHAR(10)
column as a series of 10 digits in the format XXXXXXXXXX . The requirement is to
format this column as (XXX) XXX-XXXX for presentation to the end user.
Should this processing occur in the middle tier then other clients who have access
to the same data will need to duplicate the formatting logic. A DBA querying the
table through SQL*Plus, for example, will only be able to view the format as stored
on disk without incorporating their own means of formatting. This forces all clients
of the data to have special knowledge of how the telephone number is stored
within the database; when clients have such an expectation it becomes difficult to
change the backend format. As a means to resolve this it would be a trivial task to
create a database view that uses the regular expression enabled replace function
(REGEXP_REPLACE) to reformat the telephone number. All clients of the data
will then simply need to query the view and will benefit from the centralized logic
providing them only the pre-formatted version of the telephone number.

Regular expressions are often used in a client to filter and refine a result set to the
desired rows. With the regular expression enabled LIKE condition
(REGEXP_LIKE) this filtering can now easily occur within the database directly
on the data minimizing network data flow and putting the job of getting the correct
data right where it ought to be, in the hands of the database. Moving complex logic
closer to the data in this manner creates a more robust environment as data not
targeted for the end user does not have to leave the database and client processing
is reduced.

Database Update

Oracle Database 10G allows you to perform updates in terms of regular
expressions. Where traditionally it would have been easiest to select the query set,
perform regular expression based updates within a client and write the results back
to the database, it is now possible to perform all of this in a single update
statement. The data never has to leave the database bringing benefits such as
reduction in network traffic, tighter security, and improved performance.

Client to Database

Where regular expressions normally play a part in data flowing from client to
database is in validating and formatting data for storage.

We may want to validate that a credit card number or an email address matches a
certain pattern or we may want to reformat a user provided telephone number into
a format that will make more sense when stored in the database. Much like the flow
from database to client, while it is possible to perform such manipulation on the
middle tier, only clients of the middle tier would have access to this logic.

Introducing Oracle Regular Expressions Page 8

When a regular expression describes the required format for data in a column, the
regular expression itself is a property of the data and therefore should not be
externalized in client logic. With column constraints defined in terms of regular
expressions, we can bulletproof our database so that only data matching a certain
pattern will be allowed into a table irrespective of the source that the data originates
from, be it an external client or even an internal PL/SQL routine.

With the above scenarios in mind, it is evident that the combination of Oracle
Regular Expressions and SQL is an extremely powerful one that can drastically
change the way in which string manipulation and pattern matching is performed
within an application.

ORACLE REGULAR EXPRESSIONS KEY FEATURES

Most regular expression implementations are based to some extent on the
documented behaviour of Basic and Extended Regular Expressions (BRE and
ERE) as described in the POSIX1 standard, often referred to as UNIX style regular
expressions. The standard leaves plenty of room for extensions that most regular
expression implementations readily take advantage of which means that in general,
no two implementations are alike. It is because of this incompatibility issue that
Oracle Regular Expressions are based on the POSIX ERE definition. This assures
that any Oracle Regular Expression will have the same behaviour on similarly
conformant implementations.

POSIX style regular expressions are currently not part of the SQL standard2. The
standard does however introduce the SIMILAR predicate for pattern matching
which could be considered a version of LIKE with regular expression support.
SIMILAR maintains support for the LIKE behaviour of percent (%) and
underscore (_) and adds some features that are found in POSIX but misses some
key important features such as backreferences, interval quantifiers, and anchors.
Furthermore, the standard has no means to locate, extract, or replace the matching
pattern as SIMILAR only places focus on proving the existence of a pattern, in the
same manner as LIKE.

Interfaces

Oracle Regular Expressions are implemented by the following interfaces available
in both SQL and PL/SQL:

SQL Function Description

REGEXP_LIKE Determine whether pattern matches

REGEXP_SUBSTR Determine what string matches the pattern

REGEXP_INSTR Determine where the match occurred in the string

REGEXP_REPLACE Search and replace a pattern

Table 1

Introducing Oracle Regular Expressions Page 9

For detailed information on the valid arguments and syntax, refer to the sections
on Conditions and Functions in the SQL Reference3.

Metacharacters

For a complete list of supported metacharacters please refer to the Appendix C of
the SQL Reference3. They are listed here for reference and will not be described
further.

Syntax Description Classification

. Match any character Dot

a? Match ‘a’ zero or one time Quantifier

a* Match ‘a’ zero or more times Quantifier

a+ Match ‘a’ one or more times Quantifier

a|b Match either ‘a’ or ‘b’ Alternation

a{m} Match ‘a’ exactly m times Quantifier

a{m,} Match ‘a’ at least m times Quantifier

a{m,n} Match ‘a’ between m and n times Quantifier

[abc] Match either ‘a’ or ‘b’ or ‘c’ Bracket Expression

(…) Group an expression Subexpression

\n Match nth subexpression Backreference

[:cc:] Match character class in bracket expression Character Class

[.ce.] Match collation element in bracket expression Collation Element

[=ec=] Match equivalence class in bracket expression Equivalence Class

Table 2

Locale Support

Locale support refers to how the regular expression will behave under the
properties of a given character set, language, territory, and sort order. As regular
expressions are for matching text, and text is not limited to English, it stands to
reason that they should be able to handle text in any language or character set and
that the unique properties of that locale should be honoured. Most standards are
rather vague when it comes to supporting different locales. POSIX, while stating
that there are some considerations that should be taken to support locales, does not
match up to the locale definition that Oracle provides.

Introducing Oracle Regular Expressions Page 10

Oracle Regular Expression pattern matching is sensitive to the underlying locale
defined by the session environment. This affects all aspects of matching including
whether it will be case or accent insensitive, whether a character is considered to fall
within a range, what collation elements are considered valid, and so on. The engine
is also strictly character based, as an example the dot (.) will match a single
character in the current character set and never a single byte of the data.

It is important to realize that the results of a particular regular expression query
could be different under a different locale.

Table 3 shows how certain features are affected by the underlying locale and what
property of the locale affects it. The ‘Character Set’ dependency refers to the
database character set or national character set while ‘Sort Order’ refers to the
setting of NLS_SORT. If NLS_SORT is set to BINARY then the matching always
follows the binary properties of the character set.

Match Type Dependency

Character based matching Character Set

Character classes Character Set

String comparisons Sort Order

Range matching Sort Order

Collation element Sort Order

Equivalence class Sort Order

Table 3

Character sets

All Oracle character sets are fully supported by Oracle Regular Expressions. This
includes all multibyte character sets, variants of Unicode such as UTF-8
(AL32UTF8) and UTF-16 (AL16UTF16), and all shift sensitive character sets.
Metacharacters always operate on the data in terms of characters and never bytes.
As the input character set is always that of the database character set (or national
character set), there is no way to directly refer to arbitrary byte values or characters
from other character sets.

Case and Accent Sensitivity

The regular expression functions are sensitive to NLS_SORT as described in Table
3. In matching string literals, if NLS_SORT consider two characters equal, then so
does the regular expression function. This is a very useful feature that is not
available in any other means of pattern matching within the Oracle Database.

As an example, consider the following statement:

Introducing Oracle Regular Expressions Page 11

 ALTER SESSION SET NLS_SORT=GEN ERIC_BASELETTER;
 SELECT REGEXP_SUBSTR(‘ Café’, ‘cafe’) FROM dual;
 -> Café

The query returned the entire string ‘Café’ as the NLS_SORT setting equates ‘C’ to
‘c’ that differ in case, and also ‘é’ to ‘e’ that differ in accents. Case sensitivity can
always be overridden at a statement level using the case sensitivity match options.

Range

When a range is specified within a bracket expression, characters are considered to
be in or out of the range depending on the current setting of NLS_SORT.

The default value for NLS_SORT derives itself from the setting of
NLS_LANGUAGE, which is in turn normally derived from the client
environment variable NLS_LANG. While the default language sort is normally
useful for sorting purposes, it is not useful for comparisons such as those that take
place when determining whether a certain character falls between the range end
points. As an example, should NLS_LANGUAGE be set to FRENCH then the
default sort order is FRENCH where ordering is as follows a < A < b < B. Should
we specify a range [a-z] then following this ordering it can be noted that every
alphabetic character other than ‘Z’ will fall into this range; this is most likely not the
desired behaviour. Better sorts for ranges would be those that are case insensitive
that treat case variants to be equal. This can be achieved by appending ‘_CI’ to the
end of a sort name such as setting NLS_SORT to FRENCH_CI.

Character Class

Character classes, such as [:alpha:], are sensitive to the underlying character set.
Each character within a character set has a certain number of properties, which can
be extracted using regular expression character classes. For example, most of the
Asian multibyte character sets have full width variants of numeric characters, both
the half width and full with variants are considered to be digits and will match the
[:digit:] character class. Also, rather than using [a-zA-Z] to define all alphabetical
characters, you could use [:alpha:] and be portable across different languages and
character sets as [:alpha:] consists of all alphabetical characters in the current
character set.

As a usage example, consider a simple query to convert Java names enumerated in
a table to a more readable format. This works by looking for any instance of a
lower case letter immediately followed by an upper case letter, something that is
rarely found in English (short of McDonald) but often used the Java namespace. It
records these two letters in backreferences by using subexpressions, then replaces
the first letter, followed by a space, followed by the second letter:

 SELECT
 REGEXP_REPLACE(‘StringBuffer’,
 ‘([[:lower:]])([[:upper:]])’,
 ‘\1 \2’)

Introducing Oracle Regular Expressions Page 12

 FROM dual;
 -> String Buffer
For a complete list of character classes see Appendix C of the SQL Reference3

Collation Element

A collation element is any valid letter within a given alphabet. Any valid collation
element is allowed, for example, ‘cs’ is considered a single letter in Hungarian but
not in French:

 ALTER SESSION SET NLS_SORT=XHUNGARIAN;
 SELECT REGEXP_SUBSTR(‘cs’, ‘[[.cs.]]) FROM dual;
 -> cs

 ALTER SESSION SET NLS_SORT=FRENCH;
 SELECT REGEXP_SUBSTR(‘cs’, ‘[[.cs.]]) FROM dual;
 -> ORA-12731: invalid collation class

This is primarily useful in ranges where you only want to match certain letters in an
alphabet where one of the endpoints is a multi-letter collation element. In
traditional Spanish, for example, ‘ch’ is considered a single letter but if we simply
specified

 ALTER SESSION SET NLS_SORT=XSPANISH;
 SELECT REGEXP_SUBSTR(‘ch’, ‘[ch]’) FROM dual;
 -> c

This would match a single 'c' as an individual letter and never 'ch'. It is for this
reason that POSIX introduced the collation element to the bracket expression.

 ALTER SESSION SET NLS_SORT=XSPANISH;
 SELECT REGEXP_SUBSTR(‘ch’, ‘[[.ch.]]’) FROM dual;
 -> ch

For a list of valid collation elements see Table A-10 on Monolingual Linguistic
Sorts in the Globalization Guide4. For an introduction to sorting and collation
elements see the Oracle white paper on linguistic sorting5.

Equivalence Class

The equivalence class allows searching for all characters that have a common base
letter. Equivalence class is sensitive to NLS_SORT and works by converting both
the source and destination characters to their base (lower case with accents
removed) before performing a comparison. As the character is converted to lower
case, it can also be used to isolate accent and case sensitivity to a single character.
 SELECT
 REGEXP_SUBSTR('Oracle', '[[= o=]]racle')
 FROM dual;

Introducing Oracle Regular Expressions Page 13

 -> Oracle

USING REGULAR EXPRESSIONS IN ORACLE

Function Overview

This section introduces the functions that provide Oracle Regular Expressions
support and shows some simple usage scenarios. All functions have similar
signatures and support CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR, and
NCLOB datatypes.

REGEXP_LIKE

The REGEXP_LIKE condition is a little different to the other REGEXP
functions in that it only returns a Boolean indicating whether the pattern matched
in the given string or not. No details on how or where the match occurred is
provided. There is only one optional argument being the match option, position
and occurrence are redundant.

Consider a usage example where you were given the task to write an expression
that could search for rows containing common inflections of the verb ‘fly’. The
following regular expression would do the job nicely matching fly, flying, flew,
flown, and flies.

 SELECT c1 FROM t1 WHERE
 REGEXP_LIKE(c1, ‘fl(y(ing)?|(ew)|(own)|(ies))’);

REGEXP_SUBSTR

This function returns the actual data that matches the specified pattern. In cases
where it is not obvious how the pattern matched, REGEXP_INSTR can be called
to locate the exact character offsets. Using the scenario above:

 SELECT REGEXP_SUBSTR(
 ‘the bird flew over the river ’,
 ‘fl(y(ing)?|(ew)|(own)|(ies))’)
 FROM dual;
 -> flew

REGEXP_INSTR

The REGEXP_INSTR function performs a regular expression match and returns
the character position of either the beginning or end of the match. Unlike INSTR,
REGEXP_INSTR is not able to work from the end of a string. When analyzing
the return value it often helps to view the match position as being the position right
before the character count returned. Special care must be taken when using the
output of this function as input to other SQL functions as they might not interpret
the values in the same manner. Some common scenarios regarding the return
values are described below.

Introducing Oracle Regular Expressions Page 14

Empty String

Any regular expression can match the empty string in a particular location. This
concept does not exist in other pattern matching functions so it is important to
know how to interpret the return results of REGEXP_INSTR when an empty
string match occurs. Consider the following expression:

 SELECT REGEXP_INSTR('abc', ' d?') FROM dual;
 -> 1
This function call returns 1 indicating that the match commenced at the first
character. We know that really ‘d?’ matches the empty string at the beginning of
‘abc’ so if we apply the rule that the match commences at the position just before
the character indicated by the return value then this will become a little clearer.
Issuing the same query indicating that the return value be the end of the match
returns 1, the match also completes on the first character.

 SELECT REGEXP_INSTR('abc', 'd?', 1, 1, 1)
 FROM dual;
 -> 1

Now we know that the match starts just before character 1 and ends just before
character 1 meaning that this expression matched the empty string just before the
‘a’.

Last Character

The position of the end of a match consumes the last character in that match. As
the actual position of the match is just before the return character,
REGEXP_INSTR can return a character count that does not necessarily exist
within the string. As an example, note the return value of the following query:

 SELECT REGEXP_INSTR('abc', 'abc', 1, 1, 1)
 FROM dual;
 -> 4

Although there are only 3 characters in ‘abc’ the return value was 4. The match
should be interpreted as ending before the 4th character or right after the 3rd
character.

REGEXP_REPLACE

The power of Oracle Regular Expressions really becomes evident when coupled
with the ability to replace the pattern matched. This function works by looking for
an occurrence of a regular expression and replacing it with the contents of a
supplied text literal. The replacement text literal can also contain backreferences to
subexpressions included in the match giving extremely granular control over your
search and replace operations.

Introducing Oracle Regular Expressions Page 15

Simple HTML Filter

With REGEXP_REPLACE it is simple to filter out certain parts of data. This
example shows how a very simple HTML filter could be written.

 SELECT REGEXP_REPLACE (c1, ‘<[^>]+>’)
 FROM t1;

Using Backreferences

References to matched subexpressions are valid within the replacement string and
are identified as \n where n refers to the nth subexpression. In order to specify the
backslash (\) to be part of the replace expression, it must be escaped with the
backslash as in '\\'.

Arguments

Oracle Regular Expression functions take a number of arguments that affect the
way in which matching will occur. All functions take the mandatory source string
and regular expression and the optional match parameters but beyond these there
are several other important arguments. All arguments have defaults but in SQL
there is no mechanism to allow you to explicitly indicate that you want the default
behaviour without leaving the arguments out of the function call. This means that
if you want to specify the right most argument but require the default behaviour of
those proceeding, you are required to explicitly define the default values.

Both the source string and the regular expression itself are SQL character
expressions and can just as easily come from a column than a text literal. The
regular expression itself must be valid otherwise the function will return a
compilation error.

Offset

All REGEXP SQL functions provide an offset argument to indicate the character
position to commence the matching. It should be noted that the caret (^) anchor is
always tied to the beginning of the string rather than the offset so a pattern that is
anchored with an offset greater than 1, will never match:

 SELECT REGEXP_SUBSTR('bbb', '^b', 2) FROM dual;
 -> NULL

One exception to this rule is when the multiline option is set, as the anchor could
match an embedded newline character within the string.

Occurrence

All functions also take an occurrence that specifies you require the nth matching
expression in REGEXP_SUBSTR and REGEXP_INSTR, the default for which is
1. For REGEXP_REPLACE the occurrence defaults to 0 meaning replace all
matching expressions, otherwise it will only replace the expression specified in the

Introducing Oracle Regular Expressions Page 16

occurrence parameter. An occurrence for which there exists no match will return
NULL.

The REGEXP_INSTR function takes an optional position parameter to indicate
whether the beginning (0) or end (1) of the match is the required return value. The
default is the beginning of the match.

Occurrence is particularly useful when working with delimited text, such as
newline, comma, or colon delimited text, as you can extract any arbitrary line or
field. Consider this example that extracts the 5th field being the full name from a
typical entry in the colon delimited UNIX password file:

 SELECT REGEXP_SUBSTR(
 ‘joe:x:123:123:Joe Bloggs:/home/joe :/bin/sh’,
 ‘[^:]+’, 1, 5)
 FROM dual;
 -> Joe Bloggs

Multiline

The multiline match option changes the behaviour of the anchors so that they
match at the start and end of each line in the string rather than the start and end of
the entire string. This setting is useful when you have newline delimited text data
stored in the database and you want to perform a search on a line basis.

As an example, consider a database where email is archived in its raw format within
a CLOB row, one mail per row. The task at hand is to extract the Subject header
from each row. We might be tempted to start out by writing the expression as
‘^Subject: .*$’. This expression would work wonders with grep as the
regular expression is applied to each line in the specified file rather than the entire
document. In Oracle, the expression is applied to the entire contents of the given
string. In this case the anchors will match only at the first and last characters within
the whole email text and the expression would fail to match so in order for this to
work properly we need to enable multiline mode by specifying ‘m’ in the match
options parameter. Our new expression would look like this:

 SELECT
 REGEXP_SUBSTR(mail, ‘^Subject: .*$’, 1, 1, ‘m’)
 FROM mail_table;

Newline

The default behaviour of the dot (.) is to match any character except the newline
character, as defined by the underlying operating system. Should a column contain
newline characters, the result of the expression '.*' will be to match only up to, and
not including, the first newline character. The match parameter 'n' indicates that the
dot (.) should match everything, including the newline character.

A simple example that demonstrates this behaviour is shown below. This assumes a
UNIX platform where a newline is indicated by a single Line Feed character

Introducing Oracle Regular Expressions Page 17

denoted by decimal 10. We introduce the newline character into the sample data
using the SQL CHR function and concatenation operator.

 SELECT
 REGEXP_SUBSTR('abc' || CHR(10) || 'def' , '.*')
 FROM dual;
 -> abc

The above query does not consume the new line character but if we specify the
newline match parameter, the query will match the entire string.

 SELECT
 REGEXP_SUBSTR('abc' || CHR(10) || 'def' ,
 '.*', 1, 1, 'n')
 FROM dual;
 -> abc
 def
By the same token, if you are searching a large document for a series of terms and
anticipate using the dot in such a manner, then you will need to enable this option.

Using with DDL

Constraints

You can use Oracle Regular Expressions to filter data that is allowed to enter a
table by using constraints. The following example shows how a column could be
configured to allow only alphabetical characters within a VARCHAR2 column.
This will disallow all punctuation, digits, spacing elements, and so on, from entering
the table.

 CREATE TABLE t1 (
 c1 VARCHAR2(20), CHECK
 (REGEXP_LIKE(c1, '^[[:alpha:]]+$')));

 INSERT INTO t1 VALUES ('newuser');
 -> 1 row created.

 INSERT INTO t1 VALUES ('newuser1');
-> ORA-02290: check constraint violated

 INSERT INTO t1 VALUES ('new-user');
-> ORA-02290: check constraint violated

As the description of allowable data is tied in with the column definition, this acts
as a shield to all incoming data so it is no longer required to filter such data on the
client before inserting into the database.

Introducing Oracle Regular Expressions Page 18

Indexes

It is normal to improve performance when accessing a table by creating an index on
frequently accessed and easily indexable columns. Oracle Regular Expressions are
not easily able to make use of these indexes as they rely on knowing how the data
within the column begins and do not lend well to functions that seek for columns
with an abstract pattern. It is possible, however, to make use of functional indexes
for cases where the same expression is expected to be issued on a column within a
query. Functional indexes are created based on the results

 CREATE INDEX t1_ind ON t1 (REGEXP_SUBSTR(c1, 'a'));

 SELECT c1
 FROM t1
 WHERE REGEXP_SUBSTR(c1, 'a') = 'a';

Views

Views are a great mechanism for query subsetting or formatting data before it is
presented to the end user. In this example we show how combining views with
regular expressions makes it easy to reformat data. Suppose there was a
requirement to mangle an email address, perhaps in order to avoid automatic
detection but remain readable. One way we could do this would be to insert a space
between each character. With REGEXP_REPLACE and backreferences, we are
able to replace every letter by itself followed by a space:

 CREATE VIEW v1 AS
 SELECT empno,
 REGEXP_REPLACE(email, '(.)', '\1 ‘) email
 FROM emp;

 SELECT email FROM v1 WHERE empno = 7369;
 -> j d o e @ s o m e w h e r e . c o m

Using with PL/SQL

The Oracle Regular Expression functions do not have to be part of a SQL
statement and are fully supported as a PL/SQL built-in function.

As an example, to create a function that performs several regular expression
operations on the provided data, the code would look something like the following:

 src := REGEXP_REPLACE (src, ‘<regexp_1>’);
 src := REGEXP_REPLACE (src, ‘<regexp_2>’);
 src := REGEXP_REPLACE (src, ‘<regexp_3>’);

PL/SQL can also be used to enhance regular expression functionality. The
following shows some PL/SQL that could be used to create a function that returns
the nth subexpression:

CREATE FUNCTION regexp_subx (

Introducing Oracle Regular Expressions Page 19

 input VARCHAR2,
 regx VARCHAR2,
 subx NUMBER) RETURN VARCHAR2
IS
 ret VARCHAR2(4000);
BEGIN
 ret := REGEXP_SUBSTR (input, regx);
 ret := REGEXP_REPLACE (ret, regx, ‘\’ || subx);

 RETURN (ret);
END regexp_subx;
/

Performance Considerations

Due to the inherent complexity of the compile and match logic, regular expression
functions can perform slower than their non-regular expression counter parts.
When an expression is provided, internally a compiler begins to process the string
to try to convert it to an internal format, this process also ensures that the regular
expression is well formed and contains no errors. This cost alone can be expensive
especially when compared to parsing the arguments of LIKE for which it is
impossible to construct a badly formed expression. It is also possible that the
regular expression functions run faster as the compiled regular expression is highly
optimized at run time. This is especially true when a complex regular expression
would have to be written in a number of different SQL conditions rather than a
single regular expression based function. Bear in mind that the regular expression
functions are not able to make use of normal indexes.

The compilation is a little different for REGEXP_LIKE as it is optimized to work
in a manner where it is not required that Oracle proves where a match occurs, we
only need to prove whether the pattern occurs in the string or not. For this reason,
REGEXP_LIKE can be considerably faster than other regular expression
functions and may be used as a preprocessing phase to the other, more expensive,
regular expression functions.

For complex expressions that would require several LIKE statements or possibly
PL/SQL logic, Oracle Regular Expressions can be considerably faster at
performing the same logic within a single function but it is difficult to quantify how
much faster as it depends not only on the regular expression, but also on the data
being matched against. Sometimes the combination of regular expression and a
particular segment of text can provide many thousands of alternatives that Oracle
has to process in order to prove that a match exists, or in the worst case, that it
does not exist as every possible alternative must be exhausted.

The trick to writing fast performing regular expressions is to aim at avoiding costly
backtracking that most often comes with liberal use of the infinite quantifiers (+
and *). This statement is especially valid when dealing with large volumes of data,

Introducing Oracle Regular Expressions Page 20

the matching engine can consume large amounts of CPU cycles and memory
particularly when the pattern does not exist as every possibility has to be exhausted.

For a full discussion on how to write fast performing regular expressions, refer to
Mastering Regular Expressions6.

ADVANCED TOPICS

This section introduces some advanced topics that are aimed at the DBA or
application developer using Oracle Regular Expressions. Some features that are
particular to this implementation follow a quick overview of the architecture.

Architecture

Oracle Regular Expressions are based on the POSIX ERE standard1 and employs
and architecture known as a Traditional Nondeterministic Finite Automata (NFA).

There is one requirement of POSIX ERE that many popular implementations, for
very good reasons, choose not to conform to and that is the requirement to match
the longest possible pattern. If we were to describe a pattern that tried to match "a"
or "ab" as "(a|ab)" then, according to POSIX, "ab" should always succeed over "a"
as it is the longer of the two. The reason most implementations do not conform to
this is that it is very expensive in terms of CPU cycles to compute the longest
possible match and still conform to other requirements of the POSIX standard.
This approach is more expensive because even if the matching engine finds a
match, it still has to cycle through all alternatives originating from the same
character position to determine if any of them result in a longer match. It should be
noted that greediness and longest match are two quite different things as greediness
simply refers to the fact that the quantifiers, such as * and +, will attempt to
consume as much text as possible for the match.

When a pattern is provided to a regular expression function Oracle attempts to
compile the expression into an optimized internal form. This is very much like Java
code being compiled to byte codes interpreted on a virtual machine. Oracle Regular
Expressions have their own compiler and virtual machine. Once compilation has
succeeded, the result is then applied to each row in the query so that recompilation
does not have to occur for each row.

Looping behaviour

Because it is possible to match an empty string with Oracle Regular Expressions,
functions that take occurrence as a match option need to handle cases where
consecutive empty strings could match so as to avoid needless looping. The way
Oracle resolves this is by nudging forward a character in cases where a match could
be caught in a loop.

This is best shown with the REGEXP_REPLACE function in the following
example:

 SELECT REGEXP_REPLACE('abc', 'd?', 'X') FROM dual;

Introducing Oracle Regular Expressions Page 21

 -> XaXbXcX

The expression attempts to replace all occurrences of ‘d’ with ‘X’, if ‘d’ is not found
then it replaces the empty string with ‘X’ anyway. The result may seem surprising as
the expression seems to consume the ‘a’, ‘b’, and ‘c’ in its result. What is actually
happening is that Oracle realizes it will be caught in a loop if it attempts to replace
each occurrence of this expression so it jumps forward a single character before
attempting to match the expression a second time thus resulting in the output
above. This behaviour can also be found in REGEXP_SUBSTR and
REGEXP_INSTR when occurrence is used.

Backreferences

Oracle extends POSIX ERE by adding support for backreferences within a regular
expression. This is considered a valid extension of POSIX ERE as the behaviour of
a backslash followed by something other than a metacharacter, is undefined.

In order to specify a back reference, a group expression must precede in the regular
expression. As an example, '\1(abc)' will cause error ORA-12727 as the grouping
appears after the back reference. The back reference may appear within the
grouping it refers to as in the expression '(a\1?)+'. Note that in this case the
occurrence of the back reference must be optional otherwise the expression will
never match as the back reference is only ever set when the matching engine passes
through the right parentheses. A back reference that is not set is quite different to a
back reference that is set and contains an empty string. A back reference that is not
set will never match. A back reference which is set to the empty string that is
applied to one of the infinite quantifiers (+, or *) will not cause a loop, the engine
will perform one check for the empty string and pass control over to the next
component in the expression.

SQL Text Literals

Strings, known as character or text literals in SQL, have particular requirements as
documented in the SQL Reference3. The following is not specific to regular
expressions and applies to SQL text literals in general, but is particularly pertinent
to Oracle Regular Expressions as they are represented within text literals.

An escape character must precede a single quotation mark within the literal:

 SELECT REGEXP_SUBSTR('that''s all', 'hat''s')

 FROM dual;

 -> hat's

The alternative quoting mechanism can also be used to avoid the need to escape
the quotation mark but you must be careful to choose a quote delimiter that you do
not anticipate will be present within the source or regular expression with a trailing
quotation mark. In this example, the quote delimiter is the single quote so we must
be sure that two consecutive single quotes never appear in the regular expression.

Introducing Oracle Regular Expressions Page 22

 SELECT REGEXP_SUBSTR(q''that's all'', q''hat's'')

 FROM dual;

 -> hat's

Note that this escaping mechanism is quite different to other environments where
regular expressions can be found, as backslash (\) is most often required to escape
itself.

SQL*Plus

When issuing SQL from within SQL*Plus several considerations need to be made.
An ampersand (&) will be treated as a define variable so should it appear in the
pattern as a text literal, you will be prompted to enter it's value. This behaviour can
be removed by setting the SQL*Plus variable DEFINE to be OFF.

If the SQL*Plus variable ESCAPE is set to ON then any instance of the escape
variable will be stripped. This is unfortunate for regular expressions as the default
escape character is backslash (\) which is a common metacharacter. To be safe it is
best to ensure that ESCAPE is set to OFF before issuing a regular expression
query.

NULL and the empty string

Oracle treats NULL and the empty string ('') as the same thing. This is quite
different to the normal treatment of the empty string in other regular expression
implementations where it happens to match everything. With Oracle Regular
Expressions, in order to be conformant with other functions defined in SQL, the
explicitly empty string will cause the function to return NULL and will match
nothing. Note that the empty string itself will still match in the expected manner in
expressions such as '()', '(a|), and 'a?'.

CONCLUSION

The Oracle Database 10G provides the most comprehensive functionality for
developing versatile, scalable, and high performance database applications for Grid
computing. String searching, manipulation, validation, and formatting are at the
heart of all applications that deal with text data; regular expressions are considered
the most sophisticated means of performing such operations. The introduction of
native regular expression support to SQL and PL/SQL in the Oracle Database
revolutionizes the ability to search for and manipulate text within the database by
providing expressive power in queries, data definitions and string manipulations.

1 IEEE Std 1003.1, Open Group Technical Standard
2 ISO/IEC 9075-2:1999 SQL
3 Oracle Database SQL Reference 10G
4 Oracle Database Globalization Guide 10G
5 Sorting Your Linguistic Data inside the Oracle9i Database, An Oracle Technical
White Paper, September 2002

Introducing Oracle Regular Expressions Page 23

6 Mastering Regular Expressions, Second Edition, Jeffrey, E. F. Friedl, ISBN
0596002890

Introducing Oracle Regular Expressions

September 2003

Author: Peter Linsley

Contributing Authors: Barry Trute

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Copyright © 2003, Oracle. All rights reserved.

This document is provided for information purposes only

and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to

any other warranties or conditions, whether expressed orally

or implied in law, including implied warranties and conditions of

merchantability or fitness for a particular purpose. We specifically

disclaim any liability with respect to this document and no

contractual obligations are formed either directly or indirectly

by this document. This document may not be reproduced or

transmitted in any form or by any means, electronic or mechanical,

for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

