
Developing DApps on
Oracle Blockchain Platform
A Developer’s Guide

developer.oracle.com

http://developer.oracle.com

Developing DApps
on Oracle Blockchain
Platform

any organizations are adopting blockchain

technology to increase the speed of

business-to-business transactions and share

data in a secure and tamper-proof system.

Blockchain, the ingenious technology behind

cryptocurrencies, has very broad applications

in areas such as ERP, supply chain, healthcare,

and financial services. The concept at the core of

blockchain is a distributed ledger consisting of a

current set of facts maintained in a world state

key-value database and transaction history. This is

maintained as a list of blocks, with the database

changes and transaction history extended by

consensus via peer-to-peer protocols, and linked

and secured with cryptographic hashes.

M

Blockchain’s use of distributed ledger technology,

multi-party consensus, and embedded

cryptography for signing transactions and linking

blocks, enables a single source of truth among

multiple participants with data integrity, high

availability and durability of data, resilience against

single point of failure and malicious attacks, and

process integrity. These attributes can be leveraged

to optimize an ecosystem of participants via

faster transactions with near real-time settlement,

lower costs by avoiding intermediaries, and

greater automation of verification, settlement, and

downstream event triggers.

In order to ensure blockchain can deliver these

capabilities and support multiple participating

organizations relying upon it, the underlying

framework must have highly credible architecture.

The Oracle Blockchain Platform (OBP) builds on

Linux Foundation’s Hyperledger Fabric open-

source code, a global, cross-industry collaborative

effort to bring blockchain technology for business

into the mainstream.

This community with representatives from multiple

technology companies and many industries ensures

the transparency, longevity, and interoperability

necessary for growing blockchain adoption in

enterprise and government deployments around

the world.

The benefits of blockchain are faster, more

automated processes, which is a distinct benefit

to developers. Instead of building the necessary

infrastructure on premises, get an accelerated

start with Oracle’s comprehensive, enterprise-

grade Blockchain-as-a-Service offering, that adds

a number of unique advantages to the open

source foundation. With the Oracle Blockchain

Platform providing a complete, pre-assembled

blockchain platform with a comprehensive set of

tools and APIs, developers are able to quickly get

a blockchain network up and running.

For development and testing, a free downloadable

OBP SDK is also available with a time-limited

license.

Developing DApps on Oracle Blockchain Platform2

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/what-are-advantages-oracle-blockchain-cloud-service.html
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

This allows developers to focus resources on

building and integrating the application and its

underlying smart contract code specific to their

blockchain network, rather than spending a lot

of time and effort on building and hardening the

infrastructure of the blockchain platform. The

hardened, industrialized platform, its dynamic

configuration and monitoring tools, and a

powerful set of integrated enterprise features

helps to reduce the time to develop and integrate

applications, resulting in higher productivity and

significantly reduced operating costs. Developers

can deliver faster results for rapid experimentation

and leverage production-strength platform for

mission-critical deployment of a trusted blockchain

network that provides increased visibility, faster

settlement, and decreased risk of fraud for

business-to-business transactions.

Contents

What is Oracle Blockchain Platform?
Understanding Blockchain Networks, Nodes,
and other Components

Transaction Flow
Endorsement

Commit

Query

Provisioning a Blockchain Network
Oracle Blockchain Platform Console

Create a Blockchain Network (Founder)

Adding Participating Organizations

Export Participant’s PKI Certificates

Add Participant Organization to Founder

Creating Channels

Developer Samples – Guided Walkthrough
Installing Samples

Instantiating Samples

Invoking Samples

Managing your Blockchain Network
Dashboard Tab

Network Tab

Nodes Tab

Channels Tab

Chaincodes Tab

Developer Tools Tab

Developing and Deploying Chaincodes
Chaincode Development - Basics

Compiling Chaincode

Installing & Instantiating Chaincode

Implementing Custom Chaincode Functions

Invoking Chaincodes via REST API

Initializing the Ledger

Invoking Operations

Advanced Topics
ABAC – Attribute Based Access Control

Testing Chaincode Using Mockshim

Logging

Rich Queries in Chaincode

Events – Publish & Subscribe

Using Rich History Database for Analytics/BI

Summary

Reference and Resources

04

05

07
07

07
08

09

19

17

10

19

18

10

20

18

11

21

19

12

21

13

22

15

23

25
25

29

29

30

33

35

36

39
39

41

42

43

45

49

54

54

Developing DApps on Oracle Blockchain Platform3

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Blockchain can be very resource (compute,

memory, storage and network) intensive,

so performance and scalability are critical

characteristics of a successful service. Blockchain

system can be visualized in three layers as

illustrated in the diagram below:

Blockchain Platform includes

A network of validating nodes (peers)

Distributed ledger (linked blocks, world state
and history DB)

Ordering service (for creating blocks)

Membership services (for managing
organizations in a permissioned blockchain)

Smart Contracts (Chaincode) layer consists of

chaincode programs that contain the business

logic for updating the ledger, querying data,

and/or publishing events. Chaincodes can read

the ledger data to verify conditions as part of

any proposed updates or deletes and trigger

custom events. Note that updates and deletes are

proposed (or simulated) and are not final until

transactions are committed following consensus

and validation protocols.

New or Existing Applications, which can

Register/enroll organizations as members

Submit transactions (invoke smart contracts) to
update or query data

Consume events emitted by the chaincodes or
by the blockchain platform

What is Oracle
Blockchain Platform?

production-ready permissioned blockchain

network consists of validating nodes,

ordering service, and membership services for

enrolling organizations, supported by a broad

set of dependencies, including compute, storage,

event management, and identity management.

It needs to provide the interfaces to maintain

ledgers, create channels, add participating

organizations and nodes, invoke and monitor

smart contracts, browse the ledge, and have the

APIs necessary to build and run your applications.

Oracle Blockchain Platform (OBP) provides

this comprehensive set of nodes and services

along with all the required dependencies and

APIs, architected to support highly scalable

distributed transaction processing required by

enterprise applications.

A

Developing DApps on Oracle Blockchain Platform4

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Note that some Oracle ISV partners provide

complete solutions based on OBP, which include

smart contracts, new application components,

and integrations with Oracle and 3rd party

applications (see some of their solutions on

Oracle Cloud Marketplace.)

As a developer, once you have registered an

account on Oracle Cloud (you can start at

cloud.oracle.com/blockchain), you can setup a

new instance of OBP and start developing your

chaincode and integrate applications within

minutes. You can easily integrate new or existing

applications using the OBP REST API or broad

portfolio of enterprise integration adapters

from Oracle Integration Cloud (OIC.) Enterprise

developers can securely extend existing business

processes with real-time data sharing across

existing Oracle ERP Cloud, SCM Cloud, HCM Cloud,

CX Cloud, Netsuite Suite Cloud Platform, Flexcube

core banking, and custom applications on premise

or in a cloud.

Understanding Blockchain Networks,
Nodes, and other Components

The terms defined below are specific to

Hyperledger Fabric blockchain architecture on which

Oracle Blockchain Platform is based.

Blockchain Network: Collection of member

organizations that can read and write to the

blockchain ledger. Organizations can be

founders, which run the ordering service,

or participants, which join their peer nodes to

founder’s ordering service.

Nodes: Distinct operating entities on the network.

Nodes include the orderer(s), certificate authority,

REST proxy, and peers.

Orderers: Node for creating new blocks from the

transactions sent by the clients. Orderer can operate

by itself (Solo) or as part of an ordering cluster,

where they are also referred to as ordering service

nodes or OSNs.

Oracle Blockchain Platform (OBP) provides the

following capabilities for the lowest layer in

this diagram:

An ability to spin up one or more

pre-assembled instances of a blockchain

platform cloud service in Oracle Cloud

Infrastructure (OCI)

A private cloud service deployable as

software appliance outside of OCI

An ability to link instances into hybrid

blockchain networks, spanning Oracle and

non-Oracle Hyperledger Fabric nodes

An administrative console and set of

tools for administration and monitoring of

OBP instances

Tools to deploy and manage smart contracts

APIs and SDKs for applications to interact

with chaincode and consume events

The creation of smart contracts and integration

with the applications that invoke them is left to

customers or system integrators.

Developing DApps on Oracle Blockchain Platform5

Free Cloud TrialFree SDK

https://cloudmarketplace.oracle.com/marketplace/blockchain
http://cloud.oracle.com/blockchain
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Chaincodes are installed on and specific to a

channel and its peers. The same chaincode can

be instantiated and used on multiple channels,

however, while executing a transaction request it

operates in the context of the specific channel and

its ledger.

Certificate Authority: a node providing PKI

functionality in the blockchain. CA is responsible

for registering member organizations, issuing

their enrollment and TLS certificates, and handling

certificate revocation and renewal.

OBP is pre-assembled with all these components

and their underlying dependencies required for

out-of-the-box operation: event management

(Kafka), identity management (IDCS), object store

(OSS), two manager VMs in high availability

configuration for hosting all control nodes, agents

providing embedded backup and recovery and

telemetry for cloud monitoring and management

operations, and a separate VM to isolate chaincode

execution containers running customer code.

The pre-assembled nature of OBP reduces the

burden of building an open source environment

from scratch and provides a blockchain platform

you can provision with a simple request and a few

clicks in minutes using QuickStart templates sized

for development and production needs.

The integration of Oracle Identity Cloud Service

in the OBP CS is a unique differentiator, which

provides strong identity management with

identity federation for authentication and adding

new members, protects secure access with

behavioral authentication and single sign-on. For

an overview of OBP Cloud Service please review

the “Getting Started with Oracle Blockchain Cloud

Service” video.

Peers: Participation validates notes of member

organizations. Peers are responsible for

maintaining a copy of the ledger, running

smart contracts, and committing transactions.

Organizations can have one or more peers on

the network. Two peers per member is a common

configuration for operating performance

and availability.

Channel: A subnet within a blockchain network

with an isolated ledger and an authorized group

of member organizations represented by their

peer nodes. Peers executing a transaction

targeting a specific channel can only access

the ledger on that channel, but a single peer

can belong to multiple channels and execute

independent transactions on each of them.

Chaincode: a synonym for smart contract, the

specific programming module that contains

business logic invoked on the channel to read and

write application data from/to the ledger, apply any

validation logic, and trigger application events.

Developing DApps on Oracle Blockchain Platform6

Free Cloud TrialFree SDK

https://cloud.oracle.com/blockchain/shape
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:22306#youtube.com
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:22306#youtube.com
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Endorsement
Endorsement is the process of executing

chaincode and returning results to a client. The

client request for particular chaincode invocation

is sent to a number of peers (as defined by

chaincodes endorsement policy) on a specific

channel. The response includes the return code

and Read-Write set (RWset), which includes all

keys read and updated during the execution,

signed by the peer’s private key, with the signature

as transaction ID that provides proof of execution.

Peers do not write the results into the ledger

in this phase. If chaincode endorsement policy

specifies multiple endorsements, the execution

is performed on the multiple peers, and the client

receives multiple responses. It is the client’s

responsible for comparing the results to ensure

they match, and checking that appropriate number

of responses has been received consistent with the

endorsement policy.

Commit
Commit is the process of validating and writing

transactions to the ledger. During this step,

the client sends the response and all the peer

signatures to the orderers. Upon validating the

signatures, ordering service (a cluster of orderers)

sequences transactions from all the clients and

group them in blocks, which are then delivered

to the peers on a relevant channel. Each peer

then validates each transaction in the block by

checking for sufficient endorsements and verifying

that the relevant data in the ledger have not

been changed by another transaction since the

current one was executed in the endorsement

stage (i.e., if at endorsement time Alice has a

balance of $100 and transaction is to transfer

$70 to Bob, we need to know that there haven’t

been intervening transactions that might have

reduced Alice’s balance before we commit the $70

transfer.) Once these checks are complete, each

peer writes the valid transactions to the world state

database, updates the history database, and returns

transaction commit event.

Transaction Flow

racle leverages Hyperledger Fabric, a

Linux Foundation open source project,

as the foundation of its blockchain platform. The

transaction flow is defined by Fabric protocols

between peers, orderers, fabric-ca, and clients as

detailed on page 8.

Fabric transactions fall into two categories:

invocations (usually updates) and queries. Both

invoke smart contracts and request an endorsement

– a digitally signed result of the execution. In

addition, invocations add a further stage – a

commit, where the transaction is included in a block

and, after verification, appended to the ledger by

all peers on the channel specified at the invocation

time. Note that commit stage is at client’s

discretion, and can be optionally added even for

queries or failed invocations if it’s important to

record them in the ledger.

O

Developing DApps on Oracle Blockchain Platform7

Free Cloud TrialFree SDK

https://www.hyperledger.org/projects/fabric
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In summary, the end-to-end transaction flow as

depicted in the diagram on page 9:

1. The client applications register and enroll

with fabric-ca to obtain a certificate.

2. Client sends a signed transaction proposal

request to endorsing peer nodes (one or more

as specified in the endorsement policy).

3. Endorsing peers verify the signature

and execute the specified chaincode on the

specified channel.

4. Chaincode responses (RWSet) are signed

by the peers and these endorsements are

returned to the client.

5. If responses are valid, results from the

peers match, and sufficient number has been

received as per the chaincode endorsement

policy requirements, the client assembles the

endorsements into a commit package and

sends it to ordering service to be included in

a block.

6. Orderers validate the signatures and

sequence transactions into blocks, sending the

new blocks to the peers for the specific channel.

7. Committers in each peer validate the

transaction signatures and check if there’s

a sufficient number of signatures to meet

endorsement policy. They also verify that the

values of the keys read at endorsement time

haven’t changed since endorsement time.

And in OBCS they also verify that rich query

results haven’t changed. If everything’s valid,

the transaction is committed, i.e., updated key

values are stored into the world state database,

the commit flag for the transaction is set in the

block added to the chain, and history database

is updated with appropriate pointers. Note that

blocks are appended to the chain irrespective

of whether transactions are valid or not – a

commit flag for each transaction is used to

indicate if it has committed or failed.

Note that the block is added to the chain with

transaction flag indicating commit status for each

transaction. If verification step has failed, the

transaction will be marked as failed in the block and

failure notification returned to the client, which can

re-submit it if appropriate.

Query
Query is the process of reading the current ledger

state through chaincode query functions and

returning an endorsed result payload. Queries do

not typically change the ledger state, so are not

normally sent for commitment. However, client

applications can submit queries to be committed as

an auditable proof that a peer had knowledge of the

ledger state at a specific point in time.

Developing DApps on Oracle Blockchain Platform8

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Gossip messages will identify available peers,

detect ones that are offline, update blocks to peers

that are out of sync, and quickly bring new peers’

ledger copy up to the latest state.

This architecture imposes significant responsibilities

on a client to orchestrate the transaction flow, and

handle async events using an SDK. In order to

simplify working with the blockchain, OBP provides

a REST proxy (a.k.a. Gateway) that handles the

orchestration and exposes RESTful endpoints

for applications to trigger transactions, query the

ledger, and subscribe to events. See Invoking

Chaincodes via REST API below for more details.

In addition to the REST API for interacting with

transactions and events, OBCS also provides

an extensive REST API for configuration and

monitoring of the blockchain network. These

administrative functions can be integrated into

any DevOps toolset, and enable deployment of

chaincode, adding nodes, creating channels, adding

organizations, querying and setting configuration

attributes, starting/stopping components and many

other tasks.

Provisioning a
Blockchain Network

he key properties of a permissioned

blockchain implementation are that all

members of the network see consistent data,

that all records are immutable, and that only

invited members can read and write to the

ledger. Setting up a new blockchain instance with

a “Create a new Network” checkbox enabled

identifies you as the founding member of the

network. Other participants set up instances

with this field unchecked and then join your

network by sharing their PKI certificates with the

founder. The founder’s administrator can extend

the network by adding the shared certificates to

register the organizations as permitted members

and enable them to participate in the designated

channels. Other participants can also import

member certificates when adding them in Create

Channel dialogue.

8. The peer emits transaction commit and new

block added events, as well as any custom

events declared in the chaincode logic and

these are delivered to any subscribing client.

In addition to the main transaction flow protocol,

the Fabric blockchain peers use a messaging

protocol called gossip data dissemination protocol

to continuously send messages to each other and

keep the ledger copies current.

T

Developing DApps on Oracle Blockchain Platform9

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/rest-api/index.html
https://hyperledger-fabric.readthedocs.io/en/latest/gossip.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Here we guide you through a few basic steps to set

up the network and run included samples.

Each OBP instance in your network has its own

console that their respective admins can use

to manage their organization and monitor the

blockchain networks that they are included in.

User’s role and their instances function in the

network (founder or participant) determines

the tasks you can do in your console. For

example, if you are the Founder, you can edit

the configuration of the orders used by the

participants in the network.

Create a Blockchain Network (Founder)

Developers can start creating the instance by

selecting one of the network quick start templates.

Developers can click on the “Quickstart” button to

see the templates.

This eBook uses an example of an ecosystem

that includes a car manufacturer and a group of

car dealers to illustrate how a blockchain network

might be setup and blockchain application created

for this ecosystem.

Oracle Blockchain Platform Console

The Oracle Blockchain Platform console helps you

monitor the blockchain network and perform day to

day administrative tasks.

After you provision your OBP instance, all of the

components and capabilities necessary to begin

work on your blockchain network are available in

the console Web UI or through the extensive REST

API. You can use the console to perform tasks such

as managing nodes, configuring network channels

and policies, adding organizations and deploying

chaincodes. You can also monitor and troubleshoot

the network, view node status, view ledger blocks,

and find and view log files. Detailed walkthrough

of the Console tabs and capabilities is provided in

Managing your Blockchain Network chapter.

Select one of the three quick start templates

by clicking on the Create button. The difference

between Developer and Enterprise templates

are detailed in the online documentation and

summarized below:

Enterprise templates include HA configurations

for production where all components are

replicated for resiliency

Enterprise templates support zero-downtime

managed patching/upgrades

Developer template has a max of 7 peer nodes

per instance while Enterprise templates have a

max of 14 peer nodes per instance

The Enterprise X1 and X4 templates differ only

in the number of cores allocated to VMs. While

throughput depends on many factors, generally

guidance is to use X1 template if you expect your

transaction rates to be under 10K/hr (with payload

sizes around a few hundred KB), otherwise choose

X4 template. As the result of the HA and capacity

differences, the minimum charges for each

template are different.

Developing DApps on Oracle Blockchain Platform10

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/administer/create-oabcs-instance.html#GUID-84E28529-A879-4BC9-81D1-60C2B679C0C3
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Developers can also select Custom option to create

their own instance configuration using the Create

Instance dialogue shown below.

Click Next button in the top right corner to proceed

to the confirmations screen and if all the details are

correct, click Create button to submit the request.

The time to create an instance is typically under 10

minutes and you will receive a confirmation email

once it’s been created. You can also return back

to the Blockchain Cloud Services dashboard and

monitor the status there.

After the instance has been created, click on its

menu icon on the right of the row and select

“Blockchain Console” to bring up the Admin UI for

your new blockchain instance.

See chapter Managing your Blockchain Network

below for a detailed walkthrough of the Console

tabs and capabilities.

Adding Participating Organizations

A blockchain is more effective with multiple

participating organizations. If you create

additional instances, the founding member has the

authority to add their organizations to the network.

Provisioning is similar to the initial setup, with one

difference – the participating organization doesn’t

need its own ordering service. If the instance

you are creating is for an organization that will

join an existing blockchain network, do not check

the “Create a new Network” checkbox on the

provisioning screen.

Developing DApps on Oracle Blockchain Platform11

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Similarly, click Next, verify your inputs, and then

click Create.

Upon return to the Blockchain Cloud Service

dashboard you will see the instances with status

“Creating service.” You can also click on the Activity

tab above to monitor these requests which should

complete in about 10 minutes and generate an

email notification.

Export Participant’s PKI Certificates

Before the Founder or other members can add

a new organization, the new member needs to

export its PKI certificate as a JSON file. The

console of each non-founding member loads a

simple wizard to assist with joining the network

on the Dashboard tab, which is the first view

when you open the Blockchain Console. Once the

instance has completed the tasks in the wizard,

the Dashboard view changes to a normal set of

health and traffic gauges. The wizard is shown in

the following screenshot.

Exporting of the certificates can be done

automatically following the participant setup

wizard or by exporting the certificate manually.

The developer can export the certificate

automatically following the sequence in the

participant setup wizard.

Developing DApps on Oracle Blockchain Platform12

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

The developer can also manually export the

certificate from the Network tab’s view using

the Actions menu pulldown on the far right of

the organization’s row as shown in thefollowing

diagram.

Add Participant Organization
to Founder

After the certificate of the participant organization

has been exported, Founder can add participant

organization by importing the certificate and

validating the connection using Add Organization

wizard on the Network tab of the Founder’s console.

In the Founder console go to the Network tab and

click Add Organizations button. In the wizard click

Upload Organization Certificates control and select

the JSON file exported in the Participant’s wizard.

Multiple organizations can be added in one step

using the + sign icon to add additional rows for

importing multiple certificates.

Participants peer(s) can communicate with the

network by connecting to the ordering service

provided by the Founder. To obtain the orderer

settings, after importing participant’s certificate

in to the founder network, click Export Orderer

Settings button to save Founder’s ordering service

information in a JSON file. This will be imported

later by the participating instance to complete the

process of joining the network.

After you click Finish button, the participant

organization is added to the Founder’s network

and you can see it listed in the Network table.

Developing DApps on Oracle Blockchain Platform13

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

You can also switch from the table view to topology

view by clicking on the topology icon ().

Now return to the participant’s console and go to

step 3 in the wizard to import the ordering service

information you’ve exported from the Founder.

Click on the Upload control and select the saved

JSON file with the ordering service information,

then click Import button.

After importing the ordering service information,

click on step 4 in the wizard to complete the

process and exit from the wizard to a regular

dashboard view.

In the Network tab of the participant’s Console you

can now see the entries for the Founder and your

Participant instance.

By the way, if you have to export Founder’s

ordering service information again in the future, it

is also available from the additional actions menu

of the Founder in the Network tab.

Developing DApps on Oracle Blockchain Platform14

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Creating Channels

The next step is connecting the peers on the

channels. Channels is a sub network of the main

blockchain network with isolated ledger and

authorized members. Once authorized to join a

channel, a member organization can add one or

more of its peer nodes to the channel. Peers can

participate in one or more channels, and for each

channel have either read-only or read/write access

to the ledger. Peers with read-only access can not

run smart contracts for that channel, but do get the

blocks and commit transactions in their copy of

the channel’s ledger. They can publish events and

respond to block queries from Fabric client SDKs.

Note that a channel named “default” is

created at provisioning time and all peers are

automatically joined to that channel. You can

continue to use the default channel or create

new ones for certain transactions, chaincodes,

and member organizations.

You could have a completely open network with

all organizations and their peers belonging to one

channel, or use a number of channels between

groups of participants to enable the appropriate mix

of shared and confidential actions. For example,

you could keep a vehicle sales pricing information

on a private channel confidential to the transaction

participants, while keeping vehicle inventory status

on a channel shared by all participating dealers.

Like the other setup activities across the

organizations, creating channels is a two-

step operation. First you authorize a member

organization to a channel and then each

organization must explicitly join its peers. You can

select the authorized members when creating a

new channel using checkboxes in the Create a

New Channel wizard (as shown above), or add a

new members to an existing channel using Edit

Channel Organizations option from the channel’s

additional actions menu on the Channels tab as

shown below.

Developing DApps on Oracle Blockchain Platform15

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Once the organization has been added to a channel,

the second step is to join its peers to that channel,

and this must be done in that organization’s console

using Join Peers to Channel option from the

channel’s additional tasks menu on the Channel tab.

In our sample configuration, the founder’s two

peers are connected with participants (remote)

peers on a channel.

An earlier practice of bilateral channels for

each pair of participants is not considered

very scalable and is best avoided. Note that

since OBP 19.1.3 (based on Hyperledger

Fabric 1.3) a new capability is available for

private collections to maintain fine-grained

confidentiality within a channel, where

multiple collections of organizations can

be defined within a channel and used for

selectively sharing transaction data.

Import the remote peer to the Founder’s

configuration:

You can import and export information about

other participant’s peer nodes using

Export/Import button on the Nodes menu.

Export the remote peer nodes configuration from

the participant’s instance and then import in to

the Founder’s configuration:

On the Nodes tab you can see remote peer nodes in

the table below.

Developing DApps on Oracle Blockchain Platform16

Free Cloud TrialFree SDK

https://hyperledger-fabric.readthedocs.io/en/latest/private-data-arch.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

You can also see them associated with specific

channels when you use the topology icon to switch

to topology view. The fully provisioned blockchain

network looks like this:

to streamline its supply chain activities. Blockchain

provides a distributed inventory ledger of vehicles

and vehicle parts to enable visibility and transfer of

vehicles and parts across this network. Developers

can install, instantiate and invoke these samples

from the Developer Tools tab under Samples.

Note the two areas below the samples: they

provide an output display based on what

chaincode returns (e.g., Success, or actual

return values for queries), and a transaction log

with detailed transaction flow steps and

related messages.

Developer Samples—
Guided Walkthrough

racle Blockchain Platform (OBP) includes

some chaincode samples to help you learn

how to create, deploy, and invoke chaincode.

OBP console Samples page provides access to

these samples to help you quickly get familiar

with OBP and includes links to download

complete chaincode and configuration artifacts

for these samples. Two of the samples used in

this eBook are:

1. Balance Transfer – A simple chaincode

representing two parties with account

balances and operations to query the balances

and transfer funds between parties.

2. Car Dealer Sample – Chaincode to manage

the production, transfer, and querying of

vehicle parts; the vehicles assembled from

these parts; and transfer of the vehicles. In this

sample, a large automaker and its dealers and

buyers have created a blockchain network

O

Developing DApps on Oracle Blockchain Platform17

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/explore-oracle-autonomous-blockchain-cloud-service-using-samples.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

To explore the samples, follow the Install,

Instantiate, and Invoke steps for each sample. For

more detailed explanation of the first two steps,

see Developing and Deploying Chaincodes chapter

below. Developers can also download the samples

for learning chaincode programming.

Installing Samples

Click Install button and the chaincode will be copied

to the peer nodes you specify. In the wizard you can

select the peers to install it on.

Instantiating Samples

Next step is to click Instantiate button. This multi–

step process involves building (compiling) the

chaincode, binding it to a channel, starting new

chaincode execution containers initialized with

the compiled chaincode and linked to the peer

nodes of an organization, and finally invoking the

chaincode’s Init() function to initialize any ledger

values (this could be a null function if developer

so chooses.) This step also automates the process

of creating a REST end point for this chaincode

in the REST proxy. In the wizard you can select

the channel to use, input parameters for the

ledger initialization (optional depending on the

chaincode), and rest proxy to use for the REST

end point.

When instantiating Balance Transfer sample, the

chaincode expects to initialize the ledger with

initial account balances, so you need to specify the

input values for A and B accounts. However, in the

Car Dealer sample, the ledger is not initialized and

so no input fields are provided. Instead, the first

action selected in the Invoke Chaincode wizard

must be “Produce vehicle part”, which populates

the ledger with initial data. Note that the

instantiation process involves compiling the

chaincode, creating a new execution container,

loading the binary, and executing the chaincodes

Init() function – this can take a couple minutes, so

you may not see the Instantiated count updated

immediately. It is safe to exit the wizard after

this step and refresh the Samples page later to

see if the chaincode instantiation count has been

updated. You can also check it under Chaincodes

tab or under Channels tab.

Developing DApps on Oracle Blockchain Platform18

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Invoking Samples

After chaincode has been instantiated, we are ready

to execute the chaincode on the network peers of

an organization. When you get to the Invoke step,

the wizard offers a selection of actions to choose

for that specific chaincode and input fields for any

parameters they require.

In the Balance Transfer sample, the ledger

maintains values for two accounts denoted A and

B, and the chaincode provides actions to transfer

funds between them and query the balance of

each account.

After running these transactions, let’s review the

rest of the Console to understand the information

it provides about the blockchain network and the

latest transactions.

In the Car Dealer sample, the ledger maintains

the inventory of vehicle parts and vehicle

assemblies. The chaincode provides actions to

add parts or vehicles to the inventory, transfer

these to other owners, assemble parts into

vehicles, and query the ownership or transaction

history of parts and vehicles.

Managing your
Blockchain Network

racle’s blockchain console provides all

of the tools necessary for you and the

other member organizations to monitor and

manage blockchain network participation. Each

organization will have their own console UI

where they can monitor network health, add

organizations (if authorized), view node status,

examine channels and ledger activity, and

manage chaincodes.

Dashboard Tab

The Dashboard tab provides a summary of the

network health and transaction metrics, with a

banner summarizing the number of operating

components, such as peers, channels, and

chaincodes. A health monitor displays the

number and percentage of running nodes, while

the transaction charts show the most used

channels and peers during the selected time

frame. Note that Peers charts can be switched to

show endorsement or commit transaction counts.

O

Developing DApps on Oracle Blockchain Platform19

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/manage-organization-and-network.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

After the sample transactions have been executed,

the transaction metrics on the default channel and

on some of the peers should’ve increased to reflect

the most recent transactions.

Information Provided in the Dashboard:

1. Health of the Network:

Percentage and number of running and

stopped nodes (any stopped nodes can be

started from Nodes tab.)

Partition Utilization showing CPU, Memory,

and Disk used in each of the two OBP manager

VMs. You can toggle the view between the

partitions by clicking 1 and 2 buttons.

Network Tab

The network tab lists all of the organizations

currently participating in your blockchain

network. Network views are available in tabular

() or graphical topology () formats and

provide additional details on each organization’s

role. You can also use Add Organizations button

on this tab to launch a wizard used to add and

remove organizations from your network.

2. Channel Activity:

Number of blocks that have been created.

Number of transactions that have been

executed and number of blocks created. Note

that system transactions, e.g., configuration

changes, chaincode deployment or update will

increase the number of blocks, but will not

show up in user transactions. In addition, a

block can have multiple transactions based on

ordering service configuration settings.

Graphic depiction of the most active channels.

3. Peer Activity:

Number of endorsement and commits

completed by the network’s peer nodes.

Graphic depiction of the most active peer

nodes with success and failure metrics, and a

toggle between Endorsements and Commits.

Developing DApps on Oracle Blockchain Platform20

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Nodes Tab

The Nodes tab has a summary banner displaying

counts of each node type, including your peers,

orderers, certificate authorities, REST proxies,

and remote peers. This tab also lists details for

each node, including the full name, nod type,

and current status. You can use the Actions menu

() on the right-hand side of each node’s row

to start, stop, and restart nodes, join a node to

a channel, or edit its configuration. Add Node

button enables you to create additional Peer

nodes, and Export/Import Peers button provides

access to wizards used to export and import peer

node information between instances.

Clicking on the node name itself brings up a node-

specific set of views, including health gauges and

Logs view. You can check peer node logs by going

to Nodes tab, double clicking on a peer node (e.g.,

peer0) and selecting Logs from the nav bar on the

left. In the Logs select Peer or Chaincode logs to

view and then click Current Log button to see the

entries related to the sample transactions you’ve

just executed. The logs are rotated (snapped and

zipped) at midnight UTC daily, and by setting the

time window you can view and download the logs

for previous days.

Channels Tab

The Channels tab provides a view of each channel,

which is a blockchain subnet, including its creator

organization, the number of peers and instantiated

chaincodes. Note that only the channels you

created or have been authorized to join will be

visible in your instance. If you don’t see a channel

you expect to see listed, check in its creator’s

console (Edit Channel Organization on the Actions

menu in the Channels tab) if your organization has

been authorized as indicated by the checkbox.

You use this tab to add new channels and upgrade

chaincodes on a channel. This tab also enables

you to drill down on the channel to view detailed

ledger activity for each channel.

Developing DApps on Oracle Blockchain Platform21

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Drill down on the default channel to use ledger

browser view to explore the added blocks.

Highlighting a block will show its transactions

below, and expanding the triangle icon to the left of

a transaction will show its details.

The drill down page also provides access to view

the other information related to this channel:

instantiated chaincodes, peer nodes

and organizations that have been authorized on

this channel.

For detailed chaincode execution logs, drill down

on v0 for obcs-cardealer chaincode, then click on

Logs link for any of the listed peers, and on Logs

view click the Current Log button or one of the

rotated archived logs and scroll down to see the

entries related to most recent transactions.

Chaincodes Tab

The Chaincodes tab lists the chaincodes installed

on your network and their versions. You can

use this tab to determine which peers and

channels have chaincodes installed and to deploy

new chaincodes. The Install chaincode button

provides access to two wizards: Quick Deploy and

Advanced. The former is a single dialogue wizard

that handles chaincode installation, instantiation

(building and binding to a channel), and creation

of a REST end point through the REST

proxy—all with very few inputs from the user.

The Advanced wizard takes you through a

three-step dialogue for these operations,

providing an opportunity to specify detailed

settings for the peers to install on and define

chaincode’s endorsement policy, transient map,

and private collections as well as to choose the

REST proxy to use to expose this chaincode.

Developing DApps on Oracle Blockchain Platform22

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Developer Tools Tab

The developer tools are used to learn how to

develop chaincode, develop applications on Oracle

Blockchain Cloud Service. This tab also provides

samples to install, instantiate & test the chaincode

samples Oracle Blockchain Cloud Service Console.

Chaincode Development

This includes chaincode samples written in Go and

Node.js to help you learn how to implement and

manage your network’s chaincodes.

Samples

This page has options to install, instantiate & test

the sample chaincode.

Install Sample Chaincode

Select the sample that you want to install on the

peer(s) of the organization. You can install the

chaincode on one or more peers.

Instantiate Sample Chaincode

Select the channel to instantiate the chaincode,

then Select the REST proxy server to enable & test

the instantiated chaincode. Enabling instantiated

chaincode on the rest proxy will assist the

application developer with the API to invoke.

Invoke and Test Sample Chaincode

Invoke and pass the default payload defined by

click on the invoke button. Transaction Results

are returned with values, and the API details field

displays the detailed log of all blockchain processes

performed from invoking the transaction.

Developing DApps on Oracle Blockchain Platform23

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Developers can go to the channels tab and click on

the ledger to view the transaction invoked.

Once downloaded, client SDKs will need

connection profile info to interact with the

current OBP instance, and certificates to validate

signatures of fabric-ca, peers, and orderers. To

simplify the configuration, OBP provides a pre-

assembled developer package with connection

information you can download from the

Console’s Developer Tools tab under Application

Development page. This includes all the

blockchain connection information and relevant

certificates as shown below.

Application Development

In addition to the REST APIs provided by OBP,

applications can use a software development kit (SDK)

to access the APIs that permit queries and updates

to the ledger. You can install and use the Hyperledger

Fabric SDKs to develop applications connecting

to OBP and invoking its chaincodes. This includes

development SDKs to build client applications in

Go (preview), Java, or Node.js, which you can

download from Hyperledger Fabric site or from the

OBCS Console’s Developer Tools tab under Application

Development page. The SDKs on this page are the

same as those provided by Hyperledger.

Note: the SDKs provided with Fabric require

minor adaptation to their underlying network

libraries in order to work with the load balancer

infrastructure in Oracle Cloud Infrastructure.

Follow documentation to download the scripts

to automate these adaptations or to perform

them manually.

Developing DApps on Oracle Blockchain Platform24

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/use-hyperledger-fabric-sdks-develop-applications.html
https://github.com/hyperledger/fabric-sdk-go
https://github.com/hyperledger/fabric-sdk-java
https://fabric-sdk-node.github.io/
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/use-hyperledger-fabric-sdks-develop-applications.html#GUID-59A8279E-7A90-4823-9538-EA236BF9D164
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Developing and
Deploying Chaincodes

O BP supports Smart Contracts using

application chaincodes, which are the

specific programming modules that a peer can

invoke on transaction request. The chaincode

defines the assets and business logic for the

desired transactions. Chaincodes are deployed in

two steps. First they must be installed by each

organization on one or more of its peers, which

copies the chaincode package with the source code

to the specified peers. Then they must be

instantiated, which is a Hyperledger Fabric process

that builds the chaincode from the source (which

was copied to the peer during the install step),

binds it to a channel, starts a chaincode execution

container for this chaincode and initializes by

calling its Init() method.

Chaincode Development - Basics

Chaincode programs written in Go, Node.js, or

Java use the basic Hyperledger Fabric

stub interface functions available in OBP to create,

read, update, and delete records in the ledger.

Note that this is not the same as adding blocks.

Existing blocks are unchangeable and new blocks

are generated by the ordering service and are

appended by the peers. Each block contains new

transactions, including their results, endorsement

signatures, timestamps, and other metadata.

The ledger changes performed through the

stub interface are captured by a peer into the

transaction Read-Write Set (RWSet) and are

considered simulated until transaction commits.

Before the commit, there’s no finality, and no

other peer will see these changes in their copy of

the ledger.

The role of the application chaincode is to evaluate

the input parameters and current ledger values or

historical data and produce output results, which

are captured and signed by the peer as RWSet that

is returned to the client.

Only after the client examines the results and

sends them to the ordering service, then orderers

validate and include transaction in a block sent

to the peers, and peers validate and commit the

transaction will the output results be committed

in the ledger. At commit time the updated values

are written to the world state DB, and commit flag

is set for the transaction in the block that’s been

appended to the chain, which together with other

blocks provides the transaction history log.

Developing DApps on Oracle Blockchain Platform25

Free Cloud TrialFree SDK

https://openblockchain.readthedocs.io/en/latest/API/ChaincodeAPI/
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Typical chaincode operates on the ledger records

that represent some sort of “asset”, for example,

a document and its related metadata, electronic

record, like an invoice or purchase order, or a

digital representation of some physical assets,

like cars, buildings, art works, etc. The business

logic in the chaincode will generally implement

CRUD (Create, Read, Update, Delete) functions

on the assets, and in the process examine certain

conditions and optionally trigger events.

stub *shim.ChaincodeStubInterface provides

functions to access state and transaction history

data via calls to peer as well retrieve invocation

parameters, e.g.:

function, args := stub.

GetFunctionAndParameters()

Then using function you can dispatch the

execution to a specific functional routine:

// Handle different functions

if function == “initLedgerA” { // set

initial state of ledger

	 return t.initLedgerA(stub, args)

} else if function == “initLedgerB” { //

set initial state of ledger

	 return t.initLedgerB(stub, args)

} else if function == “initVehiclePart”

{ //create a new vehiclePart

	 return t.initVehiclePart(stub, args)

} else if function ==

“transferVehiclePart” { //change owner

of a specific vehicle part

	 return t.transferVehiclePart(stub,

args)

}

OBP chaincode can be written in Go, node.js, and,

Java. For the examples below we use Go. The

chaincode modules are required to implement two

interface functions that can be invoked by a peer

node:

Init(stub ChaincodeStubInterface)

pb.Response

This is used to set up any initial state

information in the ledger (e.g., starting

account balance, starting inventory, etc.) –

called at instantiate and upgrade time, but it

can be a null function if the chaincode doesn’t

require an initial state.

Invoke(stub ChaincodeStubInterface)

pb.Response

This is used to extract chaincode method

being invoked and arguments passed to it,

and then dispatch to the appropriate function

in the chaincode.

Developing DApps on Oracle Blockchain Platform26

Free Cloud TrialFree SDK

https://golang.org/
https://nodejs.org/
https://openblockchain.readthedocs.io/en/latest/Setup/JAVAChaincode/
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

To perform the CRUD functions, the chaincodes

do not read or write ledger directly, rather they

use Hyperledger Fabric shim API to invoke

these operations in a peer node as shown in the

diagram below.

Create

Create or Init functions add assets to the ledger.

Depending on the nature of the business network,

create functions could add an asset such as a new

account, invoice, vehicle, real estate property, or

contract. Create functions can include additional

info, such as the owner, opening value, location,

and other relevant attributes.

In our Car Dealer sample, when the chaincode

adds a new part to the inventory ledger it uses

PutState() API in the code snippet below:

// ==== Create vehiclePart object and

marshal to JSON ====

objectType := “vehiclePart”

//vehiclePart :=

&vehiclePart{objectType, serialNumber,

assembler, assemblyDate, name, owner}

vehiclePart := &vehiclePart{objectType,

serialNumber, assembler, assemblyDate,

name, owner, recall, recallDate}

vehiclePartJSONasBytes, err := json.

Marshal(vehiclePart)

if err != nil {

	 return shim.Error(err.Error())

}

// === Save vehiclePart to state ===

err = stub.PutState(serialNumber,

vehiclePartJSONasBytes)

err != nil {

	 return shim.Error(err.Error())

}

serialNumber key in the PutState() API will be

included by the peer in the RWSet along with all

the attribute values.

Read

Read functions are queries on the ledger.

Chaincodes typically implement a variety of

queries, from reading values from a specific asset

to returning all assets that match certain criteria.

For example, the chaincode could enable reading

the value of a specific account, return all vehicles

of a particular type or color, list all properties that

contain certain keywords in the description, or all

contracts with a particular vendor.

To read the ledger, chaincode uses GetState() API

as shown in the code snippet below where we

read information for a specific vehicle by referring

the key chassisNumber:

Developing DApps on Oracle Blockchain Platform27

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

We change the Owner attribute to the value

of newOwner, masrhal the vehicleToTransfer

structure again and use PutState() to save

updated values for the chassisNumber key.

Delete

The delete function doesn’t really delete the data,

but just marks the key as “deleted”, indicating

that the specified asset is no longer available.

This could represent the closing of an account,

selling a product out of inventory, or completing

a contract. In the Car Dealer chaincode, we have

the following example using DelState() API on

serialNumber key:

err = stub.DelState(serialNumber) //

remove the vehiclePart from chaincode

state

if err != nil {

 return shim.Error(“Failed to

delete state:” + err.Error())

}

Update

Update functions simply change values on an already

existing key or set of keys. For example, an update

could deposit or withdraw funds to an account,

change the condition of a vehicle, transfer ownership

of a property, or modify the status of a contract. In our

Car Dealer example, we transfer vehicle ownership to

a new owner by adding the following code after the

snippet above:

vehicleToTransfer.Owner = newOwner //

change the owner

vehicleJSONBytes, _ := json.

Marshal(vehicleToTransfer)

	 err = stub.PutState(chassisNumber,

vehicleJSONBytes) //rewrite the vehicle

	 if err != nil {

		 return “”, err

	 }

	 return “”, nil

vehicleAsBytes, err := stub.

GetState(chassisNumber)

	 if err != nil {

		 return “Failed to get vehicle:”,

err

	 } else if vehicleAsBytes == nil {

		 return “Vehicle does not exist”,

err

	 }

	 vehicleToTransfer := vehicle{}

	 err = json.Unmarshal(vehicleAsBytes,

&vehicleToTransfer) //unmarshal it aka

JSON.parse()

	 if err != nil {

		 return “”, err

	 }

Note that after we get vehicleAsBytes,

we unmarshal it into a JSON structure

vehicleToTransfer.

Developing DApps on Oracle Blockchain Platform28

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Compiling Chaincode

Chaincode is a program, written in Go, node.js, or

Java that implements a prescribed interface, and

therefore it needs to be compiled before you run

it. When deploying it on OBP, the compilation is

automatically taken care of during deployment.

But it’s a good idea to compile it locally first to

ensure there are no compilation errors before

installing the chaincode in OBP. Using a local

compile environment you can quickly check for

any errors since it’s much easier to check the

compiler messages and make corrections in

the local environment. For local compiles you

need to download all the necessary packages

of the chaincode’s programming language and

Hyperledger Fabric. Every chaincode program

implements chaincode shim API. As a good

practice, you chaincodes should be compiled

locally to ensure there are no compilation errors

before installing them in OBP. Developers can

setup their development environment and start

developing chaincode by following the steps

mentioned in Hyperledger Fabric documentation.

Installing & Instantiating Chaincode

Chaincodes are installed on specific peers and

then instantiated on specific channels, giving

you complete control over which transaction

types are visible and available to which peers on

any channel. In this example, the name of the

chaincode is cartrace and its version is v1.

After installing the chaincode on the founder

organization’s nodes, you need to decide which

channels to expose it on. Each channel can have

multiple chaincodes, and each chaincode can be

instantiated on multiple channels depending on

the needs of your blockchain network.

Developing DApps on Oracle Blockchain Platform29

Free Cloud TrialFree SDK

https://golang.org/
https://nodejs.org/
https://java.com/en/
https://hyperledger-fabric.readthedocs.io/en/latest/getting_started.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Finally, you can enable access to chaincode via

REST proxies.

In a blockchain network with multiple instances

and organizations, each organization’s blockchain

instance administrator must install the chaincode

on their local peers. However, once chaincode has

been instantiated for a particular channel, when

the same chaincode is installed on any peer on

that channel, the instantiation is automatically

extended to that peer – that is, the chaincode is

compiled and loaded into a chaincode execution

container linked to that peer. No explicit

instantiation is required in this case.

However, if an organization wants to have the

chaincode accessible via their own REST proxy,

they need to edit the proxie’s configuration (Edit

Configuration option on the proxie’s Actions

menu in the Nodes tab) and select the appropriate

channel, chaincode, and peer nodes to expose as

REST end point.

Implementing Custom
Chaincode Functions

Let’s take a simple use case and explore its custom

chaincode functions.

Use Case

In this use case, a large automaker and its dealers

have created a blockchain network to streamline

their inventory management activities. Blockchain

helps them reduce the time required to reconcile

shared inventory information with the vehicle and

parts audit trail.

The sample includes a chaincode to manage the

production, transfer, and querying of vehicle parts;

the vehicles assembled from these parts; and

transfer of the vehicles.

To locate and download the sample, please visit

https://cloud.oracle.com/blockchain/additional-resources.

The cartrace chaincode includes some

custom methods for managing manufacturer-to-

dealer transactions:

Developing DApps on Oracle Blockchain Platform30

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Methods Arguments & Key Code

initVehicle
Add a new vehicle to the ledger

This creates a new vehicle with the attributes provided by
the arguments, e.g., "mer1000001", "mercedes", "c class",
"1502688979", "ser1234", "mercedes", "false", "1502688979"

Chassis ID number, Make, Model, Assembly timestamp, Owner, Recall status,
Recall timestamp

Sample code to add a new vehicle to the ledger:
vehicle := &vehicle{objectType, chassisNumber, manufacturer,
model, assemblyDate, airbagSerialNumber, owner, recall,
recallDate}
vehicleJSONasBytes, err := json.Marshal
(vehicle)

readVehicle
Read the status of a vehicle

This retrieves the vehicle status based on the chassis
number in the arguments, e.g.,: “mer1000001”

Chassis ID number

Sample Code to retrieve the vehicle info from the ledger:
chassisNumber = args[0]
valAsbytes, err := stub.GetState(chassisNumber)

transferVehicle
Change the ownership value of vehicle

This transfers the vehicle from one owner to another
based on the arguments, e.g.,:
Sample arguments are:
“mer1000001”,
“SamDealer”,
“JudeDealer”

Chassis ID number, Current owner, New owner

Sample Code:
chassisNumber := args[0]
currentOwner := strings.ToLower(args[1])
newOwner := strings.ToLower(args[2])

Get the vehicle based on the chassis Number and update the vehicle info
vehicleAsBytes, err := stub.GetState(chassisNumber)

vehicleJSONBytes, _ := json.Marshal(vehicleAsBytes)
err = stub.PutState(chassisNumber, vehicleJSONBytes)

Vehicles

Developing DApps on Oracle Blockchain Platform31

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Methods Arguments & Key Code

initVehiclePart
Add a new part to the ledger. This adds a new part to
the vehicle

Part ID, Assembler, Assembly timestamp, Owner, Recall status, Recall timestamp

Sample Code similar to initiVehicle

readVehiclePart
This queries on part ID and returns vehicle info related to
the part

Part ID

Sample Code similar to readVehicle

transferVehiclePart
This transfers the vehicle part from one vehicle to other

Part ID, Current owner, New owner

Sample Code similar to readVehicle

getHistoryForRecord
This returns all the transactions for a given key of a record

RecordID

Sample Code to retrieve the history of the transaction from the ledger

recordKey := args[0]
resultsIterator, err := stub.GetHistoryForKey(recordKey)

getVehiclePartByRange
This performs a range query based on the start and end
keys provided

PartID, StartDate, EndDate

Sample Code to retrieve the history of the transaction from the ledger

startKey := args[0]
endKey := args[1]
resultsIterator, err := stub.GetStateByRange(startKey,
endKey)

Vehicle
Parts

Developing DApps on Oracle Blockchain Platform32

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Invoking Chaincodes via REST API

OBP includes a REST proxy to enable chaincode

functions to be accessed via RESTful APIs. The APIs

are configured in the REST proxy when chaincodes

are deployed using OBCS wizards, or can be added

independently using Edit Configuration menu

pulldown from the REST proxy Actions menu on

the Nodes tab. See documentation for full REST

API details. The API functions described below are

provided by the REST proxy for querying gateway

versions, invoking transactions and queries, and

subscribing to events. In addition, OBCS provides a

comprehensive set of REST APIs for configuration

and monitoring that handle the administration

functions similar to those in the Console web UI.

Each REST API requires an endpoint, header,

and credentials for authentication. Most also

require a JSON body. The REST endpoints

contain two components in the form of https://

{obcsRestURL}/{resource-path}. The

obcsRestURL is in the form <rest_server_

url:port/restproxy#>, which you can get from

the Nodes tab in the Console.

Find the row for one of the REST proxies and copy

the contents of the Route column as shown below:

Resource-path depends on the specific API and is

shown below. Note: to distinguish the application

REST API endpoints from the administration ones,

the resource-paths below start with /bcsgw/rest,

while the administration and statistics APIs start

with /console/admin/api. Following sections

describe application operations APIs for querying

the ledger, invoking transactions, and subscribing

to events. For administration and statistics APIs

see the relevant Task categories in the navigation

bar in the online documentation. To use a visual

API explorer to test drive these APIs, visit Oracle

Blockchain Platform API Catalog and select either

Console or Gateway API spec in the dropdown.

Querying REST Proxy Version

View Version

Check connectivity to the REST proxy (gateway)

and verify its version number.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/version

Returns: gateway’s version

Transactions and Queries

Invoke a Query

Execute a chaincode function that returns

information, without committing the transaction.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/transaction/query

Returns: response payload from the query function

and its encoding

Invoke a Method (Synchronous)

Execute a chaincode function and commit the

transaction to the ledger.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/transaction/invocation

Returns: response payload from the function and

transaction ID

Developing DApps on Oracle Blockchain Platform33

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/rest-api/index.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/rest-api/index.html
https://apicatalog.oraclecloud.com/ui/views/swaggerui3/oracle-public/obcs/default
https://apicatalog.oraclecloud.com/ui/views/swaggerui3/oracle-public/obcs/default
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Invoke a Method (Asynchronous)

Execute a chaincode function in asynchronous

mode and commit transaction to the ledger.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/transaction/asyncInvocation

Returns: transaction ID created for this transaction

View the Status of a Specified Transaction

Check the status of a previously submitted

transaction and retrieve the response payload.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/transaction

Returns: transaction status and response payload

from chaincode function

GetTransactionID

Request an asynchronous mode transaction ID by

channel name for a transaction you will invoke

later in asynchronous mode.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/transaction/getTxID

Returns: transaction ID and nonce

Events

Subscribe

Register a subscription to an event, specifying an

event type, event name, channel, callback URL,

and expiration time.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/event/subscribe

Returns: subscription ID

Unsubscribe

Remove subscription registration for one or more

events using subscription ID.

Endpoint: https://{obcsRestURL}/bcsgw/

rest/v1/event/unsubscribe

Returns: subscription ID and status

To test REST APIs before using them from

applications, you can use command line tool curl

or GUI tools, such as Postman.

In a command line these REST calls look like this:

curl -i -u <user>:<pwd> -H Content-

type:application/json -X POST -d @

body.json https://<rest_server_

url:port>/<restproxy#>/bcsgw/rest/v1/

transaction

where parameters inside <> need to be replaced

with actual values and body.json referenced by –d

parameter is a text file that needs to contain the

JSON body with the details of the request, e.g.:

{

“channel”: “dealernet”,

“chaincode”: “end2end”,

“method”: “myfunc”,

“args”: [“a”,”b”,”3”]

}

In this JSON body, we are requesting invocation of

end2end chaincode on the channel dealernet and

passing to the chaincode method myfunc and an

array of arguments.

Developing DApps on Oracle Blockchain Platform34

Free Cloud TrialFree SDK

http://curl.haxx.se/download.html
https://www.getpostman.com/downloads/
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In the Authorization tab you must specify your

credentials for access to the REST proxy. These

could be the administrator’s credentials of the

OBCS accounts (the same ones you use to login

to the Console), or different credentials that have

been added to the IDCS app of this OBCS instance

and configured for the RESTPROXY<N>_User role.

Refer to Set Up Users and Access Roles in the

online documentation for detailed steps

The Header tab must specify Content-Type header

with application/json value as shown below.

And the Body tab must contain the JSON body

with details of the request, which is the same as

the contents of the body.json file used in the curl

example above.

When everything’s set, click the Send button to send

your request and the response will be shown below.

Initializing the Ledger

Now, let’s start using the API’s to trigger the

chaincode functions.

Before you can start trading assets or executing

other business transactions, you may need

to establish the initial state of the ledger. For

example, setting up your account balances, initial

inventory, or open contracts.

Continuing the car dealer example, we will

initialize the ledger with a variety of vehicles and

parts. The channel is ebookchannel, the chaincode

is still cartrace, the custom function is initVehicle,

and the arguments include the chassis ID number,

make, model, assembly timestamp, airbag serial

number, owner, recall status, and recall timestamp.

Inside the chaincode an Invoke dispatcher function

will retrieve the method name and arguments and

dispatch the call to the requested method.

If you prefer to use a visual API test tool, similar

request using Postman would look like this:

In this UI the left pane contains a Collection – a

library of pre-defined APIs. The main pane shows

POST request type in the grey bar and next to it the

REST endpoint with {{hostname}}:{{port}} indicating

these are variables pre-set for this OBCS Workshop

configuration to point to my OBCS Rest proxy

instance. Below the grey bar is a series of tabs:

Developing DApps on Oracle Blockchain Platform35

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/administer/set-users-and-application-roles.html#GUID-BB8330D6-C396-4A00-AE8B-6F9AB23AAE50
https://www.getpostman.com/
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

curl -u <user>:<pwd> -H Content-

type:application/json -X POST –d @

body.json https://<rest_server_

url:port>/<restproxy#>/bcsgw/rest/v1/

transaction/invocation

The JSON body in body.json file:

{

“channel”: “ebookchannel”,

“chaincode”: “cartrace”,

“method”: “initVehicle”,

“args”: [“porsche1000001”, “porsche”,

“cayenne”, “1541542934”, “ser1234”,

“detroit-autos”, “false”, “1541542934”]

The response is a simple success message, with

the resulting transaction ID.

{

“returnCode”: “Success”,

“txid”: “9d0489543542e2ef53cc155dbdb52

31d5770640b15afc0b236a3089f2ed0835c”

}

Invoking Operations

Once the ledger is initialized with some assets,

the participants are ready to execute authorized

transactions. The first step would be querying a

vehicle chassis ID to see if it is available using the

query API (resource-path for queries is /bcsgw/

rest/v1/transaction/query in the endpoint):

{

“channel”: “ebookchannel”,

“chaincode”: “cartrace”,

“method”: “readVehicle”,

“args”: [“porsche1000001”]

}

The response comes back with all of the

details from the asset’s ledger entry (edited for

readability):

To bulk load multiple vehicles and vehicle parts in

the ledger, you can put the curl commands into

a script and use multiple body.json files or inline

json using a single quoted string after curl’s –d flag

instead of a file reference like this:

curl -u $USER:$PASSWORD -H “Content-

type:application/json” -X POST -d

‘{“channel”:”’”ebookchannel”’”,

“chaincode”:”’cartrace’”,”method”:

”initVehiclePart”,

“args”:[“abg1234”, “panama-parts”,

“1502688979”, “airbag 2020”,

“’”$MANU_NAME”’”, “false”,

“1502688979”]}’

https://<rest_server_

url:port>/<restproxy#>/bcsgw/rest/v1/

transaction/invocation

Developing DApps on Oracle Blockchain Platform36

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

On the Console’s Channels tab click to select

ebookchannel and you can see in the ledger

browser the blocks that have been created with

these transactions.

The Get History Record for that chassis number

now gives a compound result, linking the two

ledger entries:

Detroit Autos then transfers the vehicle’s ownership

from the manufacturer to the dealership:

{

“channel”: “ebookchannel”,

“chaincode”: “cartrace “,

“method”: “transferVehicle”,

“args”: [“porsche1000001”, “detroit-

autos”, “johns-dealership”]

}

The response is again a simple success message

and a new transaction ID:

{

“returnCode”: “Success”,

“txid”:

“073c500739cc14b806867ac8eab3a75b9

04dc149a0965f99c48474ff91b800ee”

}

{

“returnCode”: “Success”,

“result”: {

“payload”: “{

“docType”:”vehicle”,

“chassisNumber”: porsche1000001”,

“manufacturer”:”porsche”,

“model”:” “cayenne”,

“assemblyDate”:1541542934, (Date in

Epoch format)

“airbagSerialNumber”:”ser1234”,

“owner”:”detroit-autos”,

“recall”:false,

“recallDate”:1541542934}”,

“encode”: “UTF-8”

},

“txid”: “b56c45db0dd61a4d7a3421bd44

251891c9ee312429df918c32187bd20aa20176”

}

Developing DApps on Oracle Blockchain Platform37

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

{

 “returnCode”: “Success”,

 “result”: {

 “payload”: [

 {

 “TxId”:

“9d0489543542e2ef53cc155dbdb5231d5

770640b15afc0b236a3089f2ed0835c”,

 “Value”: {

 “docType”: “vehicle”,

 “chassisNumber”:

“porsche1000001”,

 “manufacturer”: “porsche”,

 “model”: “cayenne”,

 “assemblyDate”: 1541542934,

 “airbagSerialNumber”:

“ser1234”,

 “owner”: “detroit-autos”,

 “recall”: false,

 “recallDate”: 1541542934

 },

 “Timestamp”: “2018-11-06

22:37:36.205 +0000 UTC”,

],

 “encode”: “UTF-8”

 },

 “txid”:

“5409c942d8c7c46466d7693dcdab2313c9

8e220dc781fbff77c3abac645ef319”

}

Finally, when the dealer sells the car they transfer

the ownership again, which writes a new block to

the ledger:

{

“channel”: “ebookchannel”,

“chaincode”: “cartrace “,

“method”: “transferVehicle”,

“args”: [“porsche1000001”, “john-

dealership”, “clark-and-sons”]

“IsDelete”: “false”

 },

 {

 “TxId”:

“073c500739cc14b806867ac8eab3a75b9

04dc149a0965f99c48474ff91b800ee”,

 “Value”: {

 “docType”: “vehicle”,

 “chassisNumber”:

“porsche1000001”,

 “manufacturer”: “porsche”,

 “model”: “cayenne”,

 “assemblyDate”: 1541542934,

 “airbagSerialNumber”:

“ser1234”,

 “owner”: “johns-dealership”,

 “recall”: false,

 “recallDate”: 1541542934

 },

 “Timestamp”: “2018-11-06

22:43:38.548 +0000 UTC”,

 “IsDelete”: “false”

 }

Developing DApps on Oracle Blockchain Platform38

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

The chaincode library provides functions such as:

GetID() (string, error)

GetMSPID() (string, error)

GetAttributeValue(attrName string) (value

string, found bool, err error)

GetX509Certificate() (*x509.Certificate, error)

AssertAttributeValue(attrName, attrValue

string, error)

Reference:

(https://github.com/hyperledger/fabric/blob/

release-1.3/core/chaincode/lib/cid/interfaces.go)

Steps to setup CID module in chaincode

development environment:

1. Download Golang protobuf and errors

packages from golang github to your

local environment

a. https://github.com/golang/protobuf

b. https://github.com/pkg/errors

Additional detail for event subscription and

callbacks are shown in Events – Publish &

Subscribe section under Advanced Topics chapter.

Advanced Topics

ABAC – Attribute Based
Access Control

evelopers can utilize Hyperledger Fabric

client identity chaincode library (cid) to make

authorization decisions based on an attribute value

and/or the MSPID (Memership Service Provider Id)

associated with the client. This library provides APIs

that allow chaincode to retrieve the MSP ID used

to issue the certificate of the invoker and all the

attributes associated with the certificate provided

when it was being issued via SDK’s register() and

enroll() API calls to fabric-ca. Attributes are key

value pairs like email=test@oracle.com. For

example, this can be used to allow or disallow

a specific operation in the chaincode like search

based on the attribute and value of the MSP.

This action returns a new transaction ID:

{

“returnCode”: “Success”,

“txid”: “87d78d01a6cd0a79aa53f9f

c0caaaf40e5db529f182d0899a77cc

3346cb33665”

}

The ledger browser in the Console shows that this

latest transaction has completed:

Full details for the REST API Endpoints are

available on the documentation site at

https://docs.oracle.com/en/cloud/paas/

blockchain-cloud/rest-api/rest-endpoints.html

D

Developing DApps on Oracle Blockchain Platform39

Free Cloud TrialFree SDK

https://github.com/hyperledger/fabric/blob/release-1.3/core/chaincode/lib/cid/interfaces.go
https://github.com/hyperledger/fabric/blob/release-1.3/core/chaincode/lib/cid/interfaces.go
https://github.com/golang/protobuf
https://github.com/pkg/errors
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/rest-api/rest-endpoints.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/rest-api/rest-endpoints.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

2. Download the cid modules and

dependencies from hyperledger github to your

local environment from

a. Download cid.go, interfaces.go from

https://github.com/hyperledger/fabric/tree/

release-1.3/core/chaincode/lib/cid

b. Download attrgr.go from https://github.

com/hyperledger/fabric/tree/release-1.4/

common/attrmgr

3. Setup your chaincode development

environment based on go vendor dependency

model as shown below.

a. Create a vendor directory under your

go project.

b.Under the vendor directory unzip the

downloaded packages from step 1 (github.

com/golang/protobuf and gitbub.com/pkg/

errors) as shown in the screen shot below.

c. Under the vendor directory unzip the

cid & attrmgr packages as shown in the

screenshot below.

d. cid & attrmgr module refers protobuf

packages.

Now, let’s see how a developer can use the library

defined above and create sample function in the

chaincode:

In your chaincode program, import the

necessary packages

crypto/x509

shim – github.com/hyperledger/fabric/core/

chaincode/shim

cid – using cidabac/cid path to refer to the

relative resource path of cid under vendor

directory as shown below

4. Package (zip) the root (parent) folder into

cartrace.zip and deploy the chaincode in OBP

using Quick or Advanced deploy wizards on the

Chaincode tab.

Developing DApps on Oracle Blockchain Platform40

Free Cloud TrialFree SDK

https://github.com/hyperledger/fabric/tree/release-1.3/core/chaincode/lib/cid
https://github.com/hyperledger/fabric/tree/release-1.3/core/chaincode/lib/cid
https://github.com/hyperledger/fabric/tree/release-1.4/common/attrmgr
https://github.com/hyperledger/fabric/tree/release-1.4/common/attrmgr
https://github.com/hyperledger/fabric/tree/release-1.4/common/attrmgr
https://github.com/kardianos/govendor
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

getMSPID

getCertificateOwner

getTransactionSubmitter

While you might use these functions internally

as part of your business logic, you can

test the Identity Functions from Postman

client using the REST API. For example, for

GetTransactionSubmitter method, the REST call

from Postman and the expected response are

shown below.

Now you can write functions to retrieve Identity

in your code as shown below, using cid library

to retrieve the identity of the Invoker in their

implementation as shown below.

Testing Chaincode Using Mockshim

To speed up the development and testing lifecycle

of the chaincode and enable local debugging, you

may want to run some unit testing locally. This is

possible using a mock version of the stub shim.

ChaincodeStubInterface, which provides a local

mechanism to simulate responses for GetState/

PutState/DelState ledger access functions

without connecting to a peer node. It enables a

test module for unit testing the basic functionality

of your chaincode before deploying it to Oracle

Blockchain Platform. You can also use this library

to build unit tests for your chaincode.

Import package “github.com/hyperledger/

fabric/core/chaincode/shim” and use shim.

NewMockStub to create smart contract and test

your procedures with debugging and without

having to connect to a blockchain network.

Developing DApps on Oracle Blockchain Platform41

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/use-mock-shim-test-chaincode.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/use-mock-shim-test-chaincode.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Create a unit test function for the chaincode you

want to test as shown below.

Execute the Unit Test

1. Open the terminal window and go to the

directory of the chaincode program using

mock shim

2. Using your go environment to execute the

test code

a. Open a new terminal or command line

window

b. Browse to the cartrace_test.go code folder

These logging levels are provided as part of peer

configuration by the platform and are accessible

by clicking on a peer node in the Nodes view and

going to Logs view on the left hand side menu.

The logs are rotated and are listed in the date

order. Current log can be accessed by clicking on

Current Log button.

Logging in chaincode is performed by integrating

and exposing chaincode instance via the peer.

The chaincode shim package provides API’s for

the chaincode. This package will allow chaincode

to create and manage logging objects. These

logs will be formatted and printed in the logs of

the peer based on the logging levels and also

accessible under Chaincodes menu once you drill

down to a particular chaincode version. These logs

are similarly rotated and listed in the date order.

Current log can be accessed by clicking on

Current Log button.

c. Execute from Terminal go test (As

shown in the screenshot below)

Logging

Logging is one of the ways to detect problems

in chaincode logic or data. OBP provides logging

capabilities at Peer level and Chaincode level.

Peer logs can be configured through the Oracle

Blockchain Cloud Service console. The logging

levels can be controlled based on severity levels

(CRITICAL | ERROR | WARNING | NOTICE | INFO |

DEBUG).

Developing DApps on Oracle Blockchain Platform42

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

Rich Queries in Chaincode

Blockchain state DB is a key-value (KV) store.

Querying KV store by value attributes rather than

keys is termed “rich queries”. In Hyperledger

Fabric open source, there’s an option to use

CouchDB to support rich data queries via

proprietary query language. With Oracle

Blockchain Platform, the underlying KV store

uses Berkeley DB (BDB), which supports SQL-

based rich queries in addition to Couch DB JSON

Query Language (for compatibility.) Using widely-

known SQL simplifies chaincode programming,

and can significantly reduce the amount of code

in addition to other benefits as shown in the

comparison table below.

To view the custom logger entries in OBP Peer

Console, go to Nodes tab and select the peer

where the chaincode is instantiated. On the

peer drill-down menu select the Log option

and set “Log for” selector to Chaincode, then

clock Current Log button. In the log you will see

entries prefixed with your custom logger, e.g.,

[AutoTraceChaincode] as shown below.

The following API’s are available for

chaincode logging:

NewLogger(name string) *ChaincodeLogger -

Create a logging object for use by a chaincode

(c *ChaincodeLogger) SetLevel(level

LoggingLevel) - Set the logging level of the

logger . Logging levels are LogDebug, LogInfo,

LogNotice, LogWarning, LogError, LogCritical

(c *ChaincodeLogger) IsEnabledFor(level

LoggingLevel) bool - Return true if logs will be

generated at the given level

LogLevel(levelString string) (LoggingLevel,

error) - Convert a string to a LoggingLevel

Example to create logging objects inside the

chaincode is shown below.

Developing DApps on Oracle Blockchain Platform43

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/query-state-database.html#GUID-65ED85A1-9C07-4353-9B88-C6545EB7428
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Comparison of rich data queries using Oracle Berkeley DB vs Couch DB:

Developing DApps on Oracle Blockchain Platform44

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/supported-rich-query-syntax.html#GUID-8A1027C5-6833-4F44-9C5B-6DB75F6BAAB
https://jira.hyperledger.org/browse/FAB-2878
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Events – Publish and Subscribe

Oracle Blockchain Platform provides publish

and subscribe mechanism for event-based

applications. Events are asynchronous operations

that are communicated via the peer. These

events can be subscribed by the entities outside

the peer’s organization. For example, if OBP

application performs a 3-way match of PO, Invoice,

and Shipping information to trigger payments,

the match can be used to trigger a payment event

conveyed to an ERP Financials system. OBP

supports subscription to different event types via

REST Proxy:

“transaction”: Events for a particular

transaction ID

“txOnChannel”: Events for every new

transaction on a particular channel

“txOnNetwork”: Events for every new

transaction in the entire network

“blockOnChannel”: A Block header event for

every new block on a particular channel

Query using complex SQL:

SELECT json_extract(t.valueJson,

‘$.owner’) AS owner, json_extract(t.

valueJson, ‘$.color’) AS color,

COUNT(*) AS count

FROM <STATE> t WHERE json_extract(t.

valueJson, ‘$.docType’) = ‘marble’

GROUP BY json_extract(t.valueJson,

‘$.owner’), json_extract(t.

valueJson, ‘$.color’) ORDER BY json_

extract(t.valueJson, ‘$.owner’)

Returns list of owners, color, and count of each

color owned, sorted by owner.

In addition to the advantages above, Berkeley DB

operates an order of magnitude faster than Couch

DB due to a number of architectural differences.

Berkeley DB enabled with transactions allows

definition of transactional boundaries. Once

committed, data is persisted to disk. To enhance

performance, one can use non-durable commits,

where writes are committed to in-memory log files

and later synched with the underlying file systems.

With Berkeley DB there’s also significantly reduced

number of roundtrips to DB for complex queries

due to lazy evaluations of query results.

Examples of using SQL-based rich queries in OBP

chaincode:

Query against JSON fields in values:

SELECT key FROM <state> WHERE json_

extract(valueJson, ‘$.docType’)

= ‘vehiclePart’ AND json_

extract(valueJson, ‘$.owner’) =

‘Detroit Auto‘

Developing DApps on Oracle Blockchain Platform45

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/supported-rich-query-syntax.html#GUID-47E7ECE3-7CC0-4FE4-BAEB-28E86B5E48F
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

“blockOnNetwork”: A Block header event on

creation of a new block in the entire network

“chaincodeEvent”: Custom events emitted by

chaincode logic

Clients or client applications can Subscribe and

Unsubscribe to all the events using the REST

Proxy or Hyperledger Fabric SDKs.

Subscription REST API details are shown in the

table below.

Steps to Subscribe to Events:

Most useful type of events for subscribing are

chaincode events. There is also a good use of

subscribing to block and transaction events, but

majority of the useful events are chaincode events.

Let’s walkthrough step by step to subscribe to

events using Rest Proxy API’s. Developers can use

Postman or other tools to perform RESTful API

calls. Screenshots below for performing REST API

use Postman.

1. Setup authentication using Basic Auth.

2. Setup http headers for subscribing events.

For two-way SSL authentication (mutual TLS),

callback server’s CA should issue a new certificate

and private key for Rest Proxy. This would be

included as part of the callback parameters in the

Subscription REST API call.

Publish Events:

Unlike Chaincode events all the other event types

like transaction & block events are provided by the

framework and do not require any programming

to publish the events. Chaincode events are

published by setting up the events (programming)

in chaincode using stub.SetEvent() method and

deploying the chaincode on to the network.

Example:

To ensure security, RESTt Proxy supports both

one-way and two-way SSL authentication to

connect Proxy with client callback server. To access

one-way SSL authentication, client needs to pass

the callback server’s CA certificate, and a valid

client certificate (only for mutual authentication) to

the REST Proxy.

REST Endpoint

Resource Path

Http Method

https://<rest_server_url:port/restproxy#>

/bcsgw/rest/v1/event/subscribe

POST

Developing DApps on Oracle Blockchain Platform46

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

openssl pkcs12 -in client.p12 -out

client.pem to convert it to PEM format.

keyPassword (optional): only required when

client cert is concatenated with an

encrypted private key. If used it should be

base64 encoded.

4. If the subscription was successful, developer

will receive a subscription id.

“response”: {

 “returnCode”: “Success”,

 “subid”: “75d8cc12-7673-4712-

ba42-715adb69e6b1”

 }

5. After subscription, the callback URL mentioned

in the body of the subscription will receive all the

events generated when the chaincode is executed

with even name as specified and event payload

message used in setEvent() API in the chaincode:

The eventName corresponds to the name used in

setEvent() API in the chaincode. The expires field

specifies the time until event subscription expires

and can be provided in one of the formats below:

xxM: months

xxw: weeks

xxd: days

xxh: hours

xxm: minutes

The callbackTlsCerts structure contains one

mandatory file and two optional fields:

caCert (mandatory): and is the callback

server’s CA certificate in PEM format. It will be

verified by the REST proxy before registering

the subscription.

clientCert (optional): refers to the certificate

REST proxy should use during the callback.

It’s only needed when mutual authentication

is required. It must be in PEM format and

assumed the certificate and private key are

concatenated. If you have PKCS#12 format

certificate, use Linux command.

3. Setup the request body to subscribe for the

events by configuring the callback URL and other

required parameters in the JSON body of the http

POST request as shown below.

{

 “requests”: [

 {

 “eventType”: “chaincodeEvent”,

 “callbackURL”: “http://ebookclientapp-webhook/

evtSender1”,

 “callbackTlsCerts”: {

 “caCert”: “-----BEGIN CERTIFICATE-----

\....\n-----END CERTIFICATE-----”,

 “clientCert”: “-----BEGIN CERTIFICATE-

----\....\n-----END CERTIFICATE-----\n-----BEGIN

ENCRYPTED PRIVATE KEY-----\....\n-----END ENCRYPTED

PRIVATE KEY-----\n”,

 “keyPassword”: “T3JhY2xl”

 },

 “expires”: “1m”,

 “chaincode”: “cartrace”,

 “eventName”: “ebookTransferVehicle”,

 “channel”: “ebookchannel”

 }

]
}

Developing DApps on Oracle Blockchain Platform47

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

{

 “eventType”: “chaincodeEvent”,

 “subid”: “<UUID for the event

subscription>”,

“channel”: “ebookChannel”,

 “eventMsg”: {

 “chaincodeId”: “cartrace”,

 “txId”: “asdfgshjyjnmytrbndxvdfg

txid”,

 “eventName”: “ebookTransferVehicle”,

 “payload”: {

 “type”: “UTF-8”,

 “data”: [“porsche1000001”, “john-

dealership”, “clark-and-sons”]

 }

 }

}

If you are calling back into a custom application,

it will need to parse this response and extract

relevant payload information.

If your callback is for a packaged application that

has its own REST API format, you can use REST

connector in Oracle Integration Cloud (OIC) to map

the callback data to the desired inbound REST call.

Steps to Un-Subscribe to Events:

1. Follow steps 1 & 2 from subscribe events to

retrieve the subscription id

2. Setup http headers for subscribing events

similar to subscribe

3. Setup the request body as shown below to

Unsubscribe an event using its subscription ID

Endpoint URL

Resource Path

Http Method

https://<rest_server_url:port/restproxy#>

/bcsgw/rest/v1/event/unsubscribe

POST

Request body to Unsubscribe

{

 “request”:

 {

 “subid”: “75d8cc12-7673-4712-ba42-

715adb69e6b1”

 }

}

Response for Unsubscribe Call

{

“response”:

 {

“returnCode”: “Success”,

“subid”: “f5505ce8-54c5-41c7-8ae8-

8077f630af9b”

 }

Developing DApps on Oracle Blockchain Platform48

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

For example, using the rich history database,

you could create an analytics report to learn the

average account balance of all of the customer

accounts over some time interval, or an interactive

dashboard to monitor how long it takes to ship

different types of merchandise from a wholesaler

to a retailer.

Developers can use an Oracle database such as

Oracle Autonomous Data Warehouse (ADW) or

any other Oracle DBaaS to create your rich history

database. Once created, any BI tools or cloud

services, such as Oracle Analytics Cloud (OAC) can

be used to create reports and dashboards.

In this configuration setup, we will be using DBaaS

with OAC service. You will need DBaaS connection

string parameters or a wallet to setup the history

DB connections in OBP and OAC.

Steps to configure and use rich history DB:

1. Create a DB service in Oracle Cloud, such as

Autonomous Data Warehouse or DBaaS.

In Oracle Blockchain Platform, neither of these are

necessary. OBP provides a built-in mechanism to

shadow rich history updates to an Oracle database

service, such as Autonomous Data Warehouse

or DBaaS that can be specified by the user. This

can be configured per channel, and the database

would contain state and transaction history for

the selected channel’s ledger. This configuration

option can be specified as a checkbox in Create a

New Channel wizard or selected from the channel’s

actions menu on Channels tab. When enabled,

the peer will asynchronously write the latest state

and history data to the associated Oracle DB as

transactions are committed by the peers. Please

refer to the Oracle schema documentation for

how state and history data is mapped in RDBMS.

Note the use of JSONValue fields, which can

be unpacked into their own relational columns

using JSON support in Oracle Database. You can

use any BI tools to create reports and interactive

dashboards for visualization about the data in your

ledger based on rich history DB.

Using Rich History Database for
Analytics/BI

The transaction history in Hypeledger Fabric

and OBP is maintained in the linked blocks of

transactions stored in the peer’s filesystem and

indexed by history DB pointers. When accessing

transaction history, chaincode uses a shim API

to request transactions for particular key, and

peer nodes retrieve this information based on

the history DB pointers into the blocks. While this

works well for retrieving transaction sequence for

a few keys, it is a cumbersome way to aggregate

data for analytics. You are also forced to retrieve

all the transactions in the history sequentially

rather than being able to only retrieve the ones

matching certain attributes, like you can do with

rich queries for world state database. Creating

reports on analytics dashboards would require

many query transactions creating additional load

on the network. Another alternative is to have a

client subscribe to all new block events and have

the client applications parse the blocks and load

their data into a data warehouse.

Developing DApps on Oracle Blockchain Platform49

Free Cloud TrialFree SDK

https://cloud.oracle.com/oac
https://cloud.oracle.com/en_US/datawarehouse
https://cloud.oracle.com/en_US/database
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/create-rich-history-database.html#GUID-03C5817B-5A77-4DA6-928D-BC19A8282E9
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

4. Now let’s do some analytics. You can

use any BI tools, but we will create Oracle

Analytics Cloud (OAC) instance, which you

can do from MyServices dashboard. Once an

OAC instance is ready, use the actions menu

to select Oracle Analytics Cloud URL option to

open up the OAC home page.

5. Complete documentation for OAC is

available at https://docs.oracle.com/en/cloud/

paas/analytics-cloud/index.html, where

you can refer to detailed instructions on

defining connections, datasets, and creating

visualizations. The material below provides

a basic illustration of these steps using the

cartrace rich history database as an example.

3. Once the connection is established, switch

to the Channels tab and use a channel’s

action menu to select Enable Rich History for

that channel.

2. In OBP use the Actions menu on the right of

the blue service bar and select Configure Rich

History. Fill in DB connection information as

shown below.

That’s all you need to do. Now when any

transactions are committed on this channel,

OBP will automatically shadow them into a pre-

defined relational schema in the associated Oracle

database. Run a few transactions and check that

your database is getting an update.

Developing DApps on Oracle Blockchain Platform50

Free Cloud TrialFree SDK

https://docs.oracle.com/en/cloud/paas/analytics-cloud/index.html
https://docs.oracle.com/en/cloud/paas/analytics-cloud/index.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

In REST format this looks like:

7. Select the ADMIN user profile after the

connection is successful.

Select Oracle Autonomous Data Warehouse

Cloud or Oracle Database depending on which

kind of DBaaS service you are using and fill in

connection information.

6. Click Create Connection button to configure

the Analytics service to connect with DBaaS

Service created in step 1.

You will see the history and state tables:

<OBP instance>_<OBP channel>_hist for

transaction history data

<OBP instance>_<OBP channel>_state for

world state data

There’s also an <OBP instance>_<OBP channel>_

last table shown. You can’t query this table for

analytics since it’s used internally by OBP for

tracking the block height recorded in the rich

history database. It determines how current

the rich history database is and if all of the

chaincode transactions were recorded in the rich

history database.

Developing DApps on Oracle Blockchain Platform51

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Note the use of “h” as an alias in the from clause

to enable us to refer to JSON fields in the form of

<table-alias.column-name.field>.

The result dataset might look like the one shown

below and is now ready to be used in interactive

dashboards or visualizations as they are called

in OAC.

Note the VALUEJSON column that contains all the

interesting attributes of the transaction. To enable

full use of this data in your analytics dashboard

or report, this column will need to be unpacked

into relational format when defining your dataset.

Oracle database provides built-in JSON support

that makes this trivial.

9. Replace the select above with the one below

to extract JSON values into relational form

along with a few other fields:

select h.key,

h.valueJson.chassisNumber,

h.valueJson.manufacturer,

h.valueJson.model,

h.valueJson.owner,

h.valueJson.recall,

h.valueJson.recallDate,h.valueJson.

assemblyDate,

h.valueJson.airbagSerialNumber,

h.TXNTIMESTAMP,

h.TXNID

from “ebookfounderorg_ebookchannel_hist” h

where h.valueJson.manufacturer IS NOT NULL

8. Click Enter SQL selector on the right to

perform a SQL query to view the contents

of history or state tables. Start with select

* from “<OBP instance>_<OBP channel>_

hist” substituting ebookfounderorg for OBP

instance and ebookchannel for OBP channel.
10. Define a project and create visualizations

based on this dataset. In a project view you

can right click the dataset and select Inspect

option to see various details. Note the last

field enables you to switch between Live

access to data (as its being updated from the

blockchain peer node) or Cached mode.

Developing DApps on Oracle Blockchain Platform52

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

3) Dragged the following fields into the

Stacked Bar components:

a. OWNER to Category (X-Axis)

b. cntofchassis to Values (Y-Axis)

c. MANUFACTURER to Trellis Rows

4) And again, customized the chart using

controls on the bottom left

The results are shown in the screenshot below.

Many powerful analytics capabilities can be

supported using rich history database enabled

by OBP, and in particular if this data is used in

conjunction with other data sources.

To make this visualization using a few clicks we:

1) Defined an aggregate cntofchassis under

My Calculations

2) Selected Donut visualization for the Canvas

3) Dragged the following fields into the Donut

components:

a.	 TXNTIMESTAMP to Category

b.	 cntofchassis to Values

c.	 MANUFACTURER to Trellis Columns

4) Customized the chart using controls on the

bottom left

The same dataset can be used for multiple

visualizations. Let’s create another one where

we are looking for how many vehicles have been

delivered to different dealerships (owners)

by manufacturers.

To make this visualization using a few clicks we:

1) Added a new Canvas at the bottom

2) Selected Stacked Bar visualization for this

Canvas

As an example, let’s create some dashboards

counting the number of vehicles added to the

inventory by hour of day based on transaction

timestamp and grouped by the manufacturer

using a Donut visualization style.

Developing DApps on Oracle Blockchain Platform53

Free Cloud TrialFree SDK

https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Summary

he Oracle Blockchain Platform is a

comprehensive blockchain platform for

building trusted networks that securely and reliably

accelerate business-to-business transactions. This

production-ready service includes admin console,

membership service, peer nodes, orderer service,

and REST proxy. Once provisioned, you can link

instances into a network and begin to build custom

chaincodes to extend business applications such

as payments, contracts, invoicing, shipping, and

accounting. Integrate blockchain with existing

applications via REST APIs or client SDKs, and

publish events, trigger notifications, or incorporate

existing business logic. Easily control access and

privileges with channels that facilitate scalability

and enable confidentiality. With Oracle Blockchain

Platform you can quickly and securely connect your

organization to others in your ecosystem for a wide

range of automated business transactions.

T

References and
Resources

Oracle Blockchain Platform product page

Oracle Blockchain Platform developer site

Oracle Blockchain Platform documentation

Hyperledger Fabric open source documentation

Oracle Blockchain News & Opinion

Oracle Blockchain Platform Getting

Started video

Oracle Blockchain Platform Tutorials

Downloadable free Oracle Blockchain Platform

SDK for time-limited development and test

Developing DApps on Oracle Blockchain Platform54

Free Cloud TrialFree SDK

https://cloud.oracle.com/blockchain
https://developer.oracle.com/blockchain
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/index.html
https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.oracle.com/cloud/blockchain/news-and-opinion.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/videos.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/tutorials.html
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html
https://go.oracle.com/LP=78664?elqCampaignId=194893
https://www.oracle.com/technetwork/topics/cloud/downloads/blockchain-sdk-5443939.html

Copyright © 2019, Oracle and/or its affiliates.

All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its

affiliates. Other names may be trademarks of

their respective owners.

developer.oracle.com

http://developer.oracle.com

