

Oracle JD Edwards
EnterpriseOne:
Scalable Elastic
Deployment
Leveraging Container Technology and Oracle Cloud
Infrastructure Autoscaling for Compute Service

TECHNICAL BRIEF

November 19, 2019

JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remain at the sole discretion of Oracle.

1 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Table of Contents
Executive Summary ... 3

Overview: Configuring Containers in Oracle Cloud

Infrastructure ... 5

The Value ... 5

How It Works .. 5

Overview: Configuring AutoScale Utility in Oracle

Cloud Infrastructure ... 8

The Value ... 8

How It Works .. 9

Bringing Together Containers and Autoscaling Utility in

Oracle Cloud Infrastructure .. 11

Patching Benefits of Autoscaling .. 11

Oracle Cloud Infrastructure Autoscaling ... 11

Testing Oracle Cloud Infrastructure Autoscaling with Containers .. 12

Testing Methodology, Metrics, and Results ... 13

Overview: Alternative Scaling of JD Edwards

EnterpriseOne using Containers .. 17

Oracle Cloud Infrastructure Requirements for an

Autoscale Utility ... 18

Conclusion ... 20

Appendix A: Test Configuration ... 21

Appendix B: Configuring Oracle Cloud Infrastructure

Autoscaling .. 22

2 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Creating an Instance Pool and Autoscaling Configuration .. 23

Preparing the Load Balancer for Autoscaling ... 30

Autoscaling Test ScreenShots ... 36

Appendix C: Configuring Oracle Cloud Infrastructure

Autoscaling Utility for Patching .. 46

3 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

EXECUTIVE SUMMARY

In today’s landscape, business requirements are always evolving. IT decision makers are looking for

products that improve their employees’ efficiency throughout the life cycle of ERP administration. The JD

Edwards team has been investigating mechanisms to lower the ongoing total cost of ownership of your JD

Edwards solution and deliver on the promises of simplified system administration, cloud automation,

elasticity, and scalability.

These are some of the challenges that our customers face today:

 Your business experience includes peak processing times that require additional compute

resources outside of the norms.

 System maintenance and patching and security operations across your expansive global footprint

pose a challenge.

 You have divested businesses and need to quickly and easily align your systems to the changing

business.

In response to these challenges, the JD Edwards team, along with the Oracle Cloud Infrastructure

counterparts, has been automating processes to enable autonomous elasticity and scalability of your

servers and their associated resources.

So What Is Elasticity?

Simply put, elasticity is your system’s ability to balance your ever-changing processing requirements against

the system resources needed to manage your workloads.

Why Is Elasticity Important?

You only pay for what you use! Rather than having servers and processing capacity that remain idle during

your lower usage periods, you can have an infrastructure that can expand and contract based on your

workloads to ensure peak performance during the periods you need higher processing power. Customers

can realize significant cost savings by leveraging elasticity.

This technical brief describes how customers can leverage Oracle Cloud Infrastructure autoscaling for

Compute Service with container technology to “right-size” their compute fleet and save infratructure costs by

scaling the workload tier dynamically and on demand.

The Oracle Cloud Infrastructure autoscaling enables automatic adjustment to the number of compute

instances in an instance pool based on performance metrics such as CPU and memory utilization. Such

automatic adjustment provides consistent performance to end users during periods of high demand and helps

reduce the costs during periods of low demand. For more information on the Oracle Cloud Infrastructure

feature on autoscaling, see Oracle Cloud Infrastructure – Autoscaling.

For information about Oracle Optimized Solution for JD Edwards EnterpriseOne—a complete architecture that

provides high-performance, high–availability, secure, and low-cost deployments— see Implementing High

Performance and Availability for JD Edwards EnterpriseOne.

This technical brief describes the mechanics of using the autoscaling feature in Oracle Cloud Infrastructure

and how this technology is combined with the container technology and the elastic unit concept to provide a

scalable versatile solution to a JD Edwards EnterpriseOne architecture.

https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/autoscalinginstancepools.htm
http://www.oracle.com/us/solutions/oos-jde-ha-solution-brief-2422023.pdf
http://www.oracle.com/us/solutions/oos-jde-ha-solution-brief-2422023.pdf

4 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Container technology is a method of packaging JD Edwards EnterpriseOne components as a unit so that the

JD Edwards system can be run with its dependencies, isolated from other processes. The key thing to

recognize with containers in Oracle Cloud Infrastructure is that they are designed to virtualize a single

application by creating an isolation boundary at the application level rather than at the server level.

For more information, see:

JD Edwards EnterpriseOne on Oracle Cloud

Deploying Containerized JD Edwards EnterpriseOne on Oracle Cloud Infrastructure

https://www.oracle.com/applications/jd-edwards-enterpriseone/oracle-cloud.html
https://www.oracle.com/webfolder/technetwork/tutorials/jdedwards/White%20Papers/Deploying%20Containerized%20JD%20Edwards%20EnterpriseOne%20on%20Oracle%20Cloud%20Infrastructure.pdf

5 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

OVERVIEW: CONFIGURING CONTAINERS IN ORACLE CLOUD
INFRASTRUCTURE

Containers are open-source tools designed to make it easier to create, deploy, and initiate applications.

Containers enable JD Edwards EnterpriseOne to implement an application, whether that be a JD Edwards

EnterpriseOne logic, batch, or HTML component, with all the needed libraries and other dependencies, and

deliver the application as a single package or image. Oracle has delivered many of these packaged images

as standard repository images on Oracle Cloud Infrastructure. This section discusses the value of containers

and provides an overview of how a container works.

The Value

Because all repository images in the container are initiated on top of the operating system, delivering these

container images involves the sharing of this underlying operating system. Unlike a virtual machine (VM),

containers enable applications to use the same operating system kernel providing a significant performance

boost and reducing the size of the application.

You can quickly create VM images for any of the JD Edwards EnterpriseOne components such as logic,

batch, and HTML servers. The container implementation goal is simple—make it easy to package and ship a

code. In other words, the goal is to make the code as portable as possible and make that portability simple.

The ability of containers to quickly initiate processes enables the creation of a complete VM image, including

JD Edwards EnterpriseOne services in seconds instead of minutes.

For detailed information about using the container technology in the Oracle Cloud Infrastructure, see the

technical brief Deploying Containerized JD Edwards EnterpriseOne on Oracle Cloud Infrastructure.

How It Works

To a system architect or application developer who is already familiar with the overall structure of JD Edwards

EnterpriseOne applications, the solution is quite simple, yet powerful. This document will introduce the

concept of an elastic unit. Elastic units provide a supported JD Edwards EnterpriseOne architecture to

minimize any changes to the JD Edwards EnterpriseOne configuration by defining an instance with a JD

Edwards EnterpriseOne Enterprise Server and JD Edwards EnterpriseOne HTML Server. This elastic unit

concept will serve as a starting point for more complex uses such as autoscaling and portability.

ELASTIC UNIT INSTANCE

The Oracle Cloud Infrastructure elastic unit is a single instance that encompasses a single JD Edwards

EnterpriseOne Enterprise Server and EnterpriseOne HTML or JAS Server as its container components. The

setup of an Oracle Cloud Infrastructure elastic unit is shown in the figure below.

https://www.oracle.com/webfolder/technetwork/tutorials/jdedwards/White%20Papers/Deploying%20Containerized%20JD%20Edwards%20EnterpriseOne%20on%20Oracle%20Cloud%20Infrastructure.pdf

6 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Figure: Oracle Cloud Infrastructure Elastic Unit Instance

As a unit, this JD Edwards EnterpriseOne and JAS Server pair services all JD Edwards EnterpriseOne

external requests. The HTML server in the elastic unit receives the JD Edwards EnterpriseOne request and

forwards that requested workload to the corresponding JD Edwards EnterpriseOne Enterprise Server in the

elastic unit set.

The advantage of this design is that the need for any configurations using the JD Edwards EnterpriseOne

Object Configuration Management (OCM) is eliminated. The HTML and Enterprise servers work as a unit—

there is a 1-1 correspondence between the HTML Server and the JD Edwards EnterpriseOne Enterprise

Server that will execute the JD Edwards EnterpriseOne requests

When the load parameters are set within the elastic unit, through a scaling mechanism the instance can be

replicated for JD Edwards EnterpriseOne customers in increments of that load parameter. For example, a JD

Edwards EnterpriseOne elastic unit can be configured to support 100 interactive users and if the user load

increases beyond 100, then a second elastic unit can be initiated to service those users. The elastic unit also

works in the reverse scenario. The JD Edwards system may have two elastic units, each capable of

supporting 100 interactive users. A CPU threshold can be set so that if an elastic unit resource is not used, it

can be removed from the JD Edwards EnterpriseOne architecture. Thus the model of elastic units works well

for scaling up and down.

For each elastic unit, the machine name of the container for the JD Edwards EnterpriseOne Enterprise Server

is “jdeent” and that of the container for the JD Edwards EnterpriseOne HTML Server is “jdeweb”, further

simplifying any OCM configurations normally required if unique machine names are used. The only difference

between replicated containers is the web tier port for which the JD Edwards EnterpriseOne requests are

directed.

The JD Edwards EnterpriseOne web traffic either can be automatically directed to a load balancer, which

manages the incoming network traffic to a set of back-end servers, or can be manually directed by users to

the individual servers for servicing the JD Edwards EnterpriseOne requests. This configuration for directing

network traffic is based on the customer’s decision during the JD Edwards EnterpriseOne architecture design

implementation.

For the purpose of this document, an Oracle Cloud Infrastructure managed load balancer is illustrated. The

benefit of an Oracle Cloud Infrastructure Load Balancer as a Service (LBaaS) is seamless updates to the load

balancer that can be made through the autoscaling utility. This functionality makes the load balancer a hands-

free solution for automating the direction of network traffic as JD Edwards EnterpriseOne servers are added

and removed from the architecture.

7 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The JD Edwards EnterpriseOne database server is notably missing as a container component within the

elastic unit diagram; this is by design. The container technology performs well with many EnterpriseOne

components such as the Enterprise server, HTML server, and AIS server to name a few. However, it does not

perform well on a JD Edwards EnterpriseOne Database Server. Configuring a JD Edwards EnterpriseOne

database container may be acceptable for testing and development purposes, but it is not recommended for

use in a production mode and thus are excluded in the diagrams in this document.

Elastic units in a similar way can assist in patching. The simplest patching model, which is covered later in this

document, consists of a simple operating system, software updates, security patches, and other non-JD

Edwards EnterpriseOne updates that have few dependencies.

8 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

OVERVIEW: CONFIGURING AUTOSCALE UTILITY IN ORACLE CLOUD
INFRASTRUCTURE

The Oracle Cloud Infrastructure autoscaling utility is an important addition to the Oracle Cloud Infrastructure

framework, introducing the capability of launching VM images automatically based on CPU consumption or

memory usage metrics. This new capability extends the possibilities of intelligence and automated scaling to

yet a higher level.

Autoscaling allows adjustments to the number of compute instances in an instance pool based on the

performance metrics of CPU or memory. The JD Edwards EnterpriseOne application scaling model can

leverage this Oracle Cloud Infrastructure feature during periods of high usage when more hardware

resources are required to meet business needs. The autoscaling feature also allows for an automatic scale-

down which in turn reduces the JD Edwards EnterpriseOne footprint when limited resources are needed

during periods of lower demand.

For more information on the Oracle Cloud Infrastructure autoscaling utility, see Oracle Cloud Infrastructure –

Autoscaling.

The Value

The Oracle Cloud Infrastructure autoscaling feature facilitates the replication of any of the JD Edwards

EnterpriseOne container components based on the simple metrics of CPU or memory as depicted in the

figure below:

To understand how these replicated compute instances function in this architecture, an Oracle Cloud

Infrastructure Load Balancer is included in the requirements of scaling using this methodology.

The JD Edwards EnterpriseOne Database Server is not shown in the above diagram; the database is

configured as a DBCS instance within Oracle Cloud Infrastructure. The DBCS instance is managed

separately from the virtual machines in Oracle Cloud Infrastructure.

The Oracle Cloud Infrastructure LBaaS server also works with the Oracle Cloud Infrastructure autoscaling

utility. When another JD Edwards EnterpriseOne component is added to the compute instances managed by

the Oracle Cloud Infrastructure autoscaling utility, the utility also updates the Oracle Cloud Infrastructure

LBaaS server with the added component.

https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/autoscalinginstancepools.htm
https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/autoscalinginstancepools.htm

9 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

For example, another JD Edwards EnterpriseOne HTML compute instance can be created. Furthermore,

that JD Edwards EnterpriseOne web tier component and its port access will be controlled by an Oracle

Cloud Infrastructure LBaaS device. The Oracle Cloud Infrastructure LBaaS server will automatically pick up

the new port and provide service.

This automated mechanism eliminates the need for any manual configuration when a new resource that can

provide JD Edwards EnterpriseOne services is available.

How It Works

Throughout the design process, you will make numerous decisions that will affect the behavior and

ultimately determine the success of your solution. When considering autoscaling, the most important

questions are:

 What is the maximum number of compute instances that will be allowed?

 What is the CPU or memory scale out threshold of the VM instance beyond which the autoscaling event

is triggered?

 What is the threshold of CPU or memory to scale down or scale in compute instances?

When the system reaches the CPU or memory threshold, the autoscaling utility dynamically creates

additional compute instances in near real time. As the load increases, upward scaling is initiated and the

instances are scaled out. When the load decreases below a defined threshold, autoscaling automatically

removes instances from the compute pool.

The autoscaling metric threshold is measured every minute. If three consecutive minutes pass and the

threshold is met, an autoscaling event occurs (scale out or scale in). A cool-down period or the time

between triggered events of approximately five minutes is automatically configured to allow the compute

instances to stabilize before any new triggered event can occur. The period for stabilizing the environment is

called the cool-down period and is configurable within the autoscaling utility. Five minutes is the default and

minimum period for cool down, but a customer has the control to change this value.

The Oracle Cloud Infrastructure autoscaling function is invoked synchronously (in-line), meaning that it is

executed outside of the currently running compute instance.

CHOOSING THE CPU OR MEMORY LIMIT BEYOND WHICH TO SCALE ANOTHER COMPUTE INSTANCE

The Oracle Cloud Infrastructure business model for scaling requires users to determine the right initial shape

by selecting the CPU or memory threshold limits beyond which autoscaling is to be initiated (scale up and

scale in) and setting the maximum number of autoscaling elastic units.

Option1: Choose an initial small shape and then scale horizontally.

Each shape should support 75–150 users. The granularity of this approach is to limit the cost and the number

of resources.

Option 2: Choose an initial large shape and then scale horizontally.

This approach is preferable if the customer does not want scaling events to be executed frequently.

10 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

For scaling up, a starting CPU limit of 70–80% should be chosen. This is a typical limit on CPU usage beyond

which performance of the application starts to degrade. For the testing results presented in this document, a

CPU limit of 70% was used. For memory, a similar 70–80% limit should be set as the threshold for similar

performance concerns.

For scaling down or in, a starting CPU limit of 1–5% should be used as a best practice. For JD Edwards

EnterpriseOne Enterprise Servers, the consumption for an idle CPU is approximately 2%. The consumption of

an idle JD Edwards EnterpriseOne HTML Server is appropriately 2% as well.

CHOOSING THE NUMBER OF COMPUTE INSTANCES

The recommended starting number of compute instances for autoscaling is three. This number depends

largely on the customer requirements, but for initial configuration, three compute instances will ensure

sufficient scalability during maintenance, periods of increased load.

The number of compute instances depends largely on the initial shape of the master compute instance in the

pool to be replicated. If an initial small shape is chosen, more compute instances may be required to handle

all the load and peak throughput requirements of a customer. If an initial large compute instance shape is

chosen, fewer number of compute instances will have to be defined.

11 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

BRINGING TOGETHER CONTAINERS AND AUTOSCALING UTILITY IN
ORACLE CLOUD INFRASTRUCTURE

The container toolset and the Oracle Cloud Infrastructure autoscaling utility are two separate technologies

that can function independently of each other. However, when combined they can provide a superior model

for scalability in the JD Edwards EnterpriseOne architecture.

A simple task is accomplished through Oracle Cloud Infrastructure autoscaling with containers—bringing up

additional elastic units based on a single hardware resource threshold metric, namely CPU or memory

consumption, as an input to trigger a series of autoscaling events.

Patching Benefits of Autoscaling

Autoscaling is the capability of initiating a manual scaling of resources using the autoscaling utility for patching

the JD Edwards EnterpriseOne web tier components of the JD Edwards EnterpriseOne architecture.

The goal is to minimize downtime for system maintenance and improve the deployment of infrastructure

patches. This is beneficial especially for customers that have large footprints of servers across multiple time

zones.

Patches can include operating system and other infrastructure patches, security patches, and particular

database patches across each of the installed instances of JD Edwards EnterpriseOne.

The idea is to patch one of the JD Edwards EnterpriseOne component servers (enterprise, HTML, database,

and so on) and deploy the patched server across their infrastructure, saving time and money.

Oracle Cloud Infrastructure Autoscaling

This section of the document describes the Oracle Cloud Infrastructure autoscaling process using containers

and a JD Edwards EnterpriseOne elastic unit instance. For this example, both autoscaling and container

technologies are combined to provide a solution to the customer.

12 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Assume that a customer has a single elastic unit instance with two containers, a JD Edwards EnterpriseOne

Enterprise Server and a HMTL Server. This single JD Edwards EnterpriseOne environment would support

an estimated 150 interactive and batch processes. The problem the customer is facing is that the hardware

resources are sufficient for processes during the day, but are insufficient for processes during the night.

To solve this issue using the Oracle Cloud Infrastructure autoscaling utility, the elastic unit VM is put under

the control of the Oracle Cloud Infrastructure autoscaling utility as shown in the figure above. The

configuration of the VM controlled by the Oracle Cloud Infrastructure autoscaling utility is included in the

appendix of this document.

The Oracle Cloud Infrastructure autoscaling process is as follows:

1. Oracle Cloud Infrastructure measures the per minute CPU or memory consumption of the elastic unit

instance configured for autoscaling.

2. The threshold for scale up is set to 70% CPU. The threshold is achieved and is maintained for three

minutes, after which the Oracle Cloud Infrastructure autoscaling utility event is triggered.

3. If a replication (scale up) event occurs, the VM is replicated and the new server or port for the

WebLogic configuration is added to the load balancer (LBaaS) configuration. In a test environment,

this process takes 5–10 minutes.

No OCM change is required; the load balancer is automatically configured by the Oracle Cloud Infrastructure

autoscaling utility and will direct traffic to the new elastic unit when it is available.

The net effect is a scalable solution that meets a large number of customers’ needs, which the former manual

scaling process and configuration system could not meet. The new process of autoscaling transforms the

older process into an intertwined and interdependent set of processes that shift tedious, time-consuming, and

error-prone tasks from the user to a more autonomous JD Edwards EnterpriseOne system with a higher

degree of intelligence. This is the path to digital transformation.

Testing Oracle Cloud Infrastructure Autoscaling with Containers

This section of the document covers the use cases, application behavior, and results of testing an Oracle

Cloud Infrastructure autoscaling utility that is implemented with two JD Edwards EnterpriseOne component

containers, the enterprise server and the HTML server, in a single elastic unit.

USE CASES

This investigation used a set of simple use cases that were designed to exercise and demonstrate certain

aspects of launching additional elastic units using the Oracle Cloud Infrastructure autoscaling utility.

Because the CPU or memory threshold limit can be reached through load to either the JD Edwards

EnterpriseOne Enterprise Server component (logic container) or the JD Edwards EnterpriseOne HTML

Server component (WebLogic container), use cases were developed for each of the scenarios.

Both the JD Edwards EnterpriseOne HTML Server and Enterprise Server share common operating system

resources. As a result, irrespective of the design of the container components, the impact of load on CPU

utilization is the same for both the server components. The use cases presented in this document are:

1. Triggering scaling event on the JD Edwards EnterpriseOne HTML Server

13 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

User load is increased until CPU limit (threshold is 50%) is achieved on the EnterpriseOne HTML

Server for three consecutive minutes.

In this use case, it is assumed that the CPU threshold is achieved triggering the Oracle Cloud

Infrastructure autoscaling event to scale up as a direct result of JD Edwards EnterpriseOne HTML

container utilization.

2. Triggering scaling event on the JD Edwards EnterpriseOne Enterprise Server

Batch processing is increased to achieve a specific CPU load on the JD Edwards EnterpriseOne

Enterprise container. Increasing the batch load is only on the enterprise server container serves as a

good use case for testing the enterprise server CPU resource consumption.

In this use case, it is assumed that the CPU threshold is achieved triggering the Oracle Cloud

Infrastructure autoscaling event to scale up as a direct result of JD Edwards EnterpriseOne Enterprise

Server container utilization.

Testing Methodology, Metrics, and Results

This section of the document describes the testing methodology and results of using the tools of Oracle Cloud

Infrastructure autoscaling utility in an elastic unit configuration.

TESTING METHODOLOGY

The Oracle JD Edwards EnterpriseOne Day-in-the-Life (DIL) Kit was used in the testing of the Oracle Cloud

Infrastructure autoscaling utility using containers to create the background load to the environment. The DIL

Kit is a set of Oracle internally automated load testing scripts for generating various interactive loads in a JD

Edwards EnterpriseOne architecture environment. The DIL Kit comprises 25 interactive applications across

five functional modules, namely Customer Service Management, Finance Management, Human Capital

Management, Supplier Relationship Management, and Supply Chain Management. Another component of

the DIL Kit is the 1.2 TB foundational database that applications use, and which is designed to represent an

average-sized JD Edwards EnterpriseOne customer.

Each of the use cases for testing consisted of the following steps and had a duration of an hour. These use

cases were imitated concurrent to the background load of the DIL Kit to replicate a real customer. The

following steps were performed in these use cases:

1. Logging in to the JD Edwards EnterpriseOne application as a specific JD Edwards EnterpriseOne role or

user

2. Initiating the DIL Kit interactive and batch processes for a specific interactive and batch load—including

increased numbers of interactive users—to target the CPU resources utilized by either the JD Edwards

EnterpriseOne Enterprise Server or the JD Edwards EnterpriseOne HTML Server

3. Logging out of the JD Edwards EnterpriseOne application

For each test, a number of key metrics were collected for performance analysis.

14 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

TESTING METRICS (KEY PERFORMANCE INDICATORS)

Key performance indicators are the critical metrics that create the analytical basis for decision making. These

metrics provide an indication as to whether the application is performing within the expected margins or

whether the performance is below acceptable standards and may lead to customer dissatisfaction. The

following key performance indicators were used in testing Oracle Cloud Infrastructure autoscaling under a

managed set of containers:

END USER EXPERIENCE

It is generally considered that the end user experience defines the acceptable level of performance of an

application. End user experience is the time between a button click within a browser and the moment when

results are displayed on the browser or the next page is displayed to the user. Generally, a period between

0.10 seconds (100 ms) and 0.25 seconds (250 ms) can make a difference in end user experience.

The acceptable level of performance varies, but is generally considered to be between 3–7 seconds, with 3

seconds being the generally accepted norm. End user experience is also determined by the server

performance and the browser rendering process. Selenium test automation scripts of specific JD Edwards

EnterpriseOne applications form the basis of measuring end user experience metric.

SERVER SIDE METRICS

Server side metrics are good indicators of any problem with the processing of data that is transferred from a

web server request made from the browser. Server side metrics include the time between the HTML request

and the moment the response is initially returned to the web server. These metrics do not include the time the

end user experiences due to browser rendering.

The common variables that impact the server side metrics are network latency, network bandwidth, and

application and database performance when these requests are processed. The test group uses the Oracle

Application Testing Suite (OATS) utility to measure the server side metrics.

OPERATING SYSTEM METRICS

The standard operating system metrics of CPU (processor), memory, disk I/O, and network throughput are

used as an indicator of performance.

TESTING ORACLE CLOUD INFRASTRUCTURE AUTOSCALING UTILITY

For simplicity, the JD Edwards EnterpriseOne Purchase Order application (P4310) was used to measure the

end user experience (including server side metrics and browser rendering) to provide the analytics to

measure the baseline performance.

A baseline is the starting point used for comparisons. For testing the Oracle Cloud Infrastructure autoscaling

utility, two baselines are needed, one with a single elastic unit and the other with dual elastic units. The

performance of the application when supporting only interactive users and when supporting interactive users

with concurrent batch processing was tested.

GOAL

15 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The goal of the baseline comparison is to determine if there is any significant difference in the end user

experience (performance) between a JD Edwards EnterpriseOne architecture with a single elastic unit

configuration and an architecture with a dual elastic unit configuration after the replication of a new compute

image is complete.

DISCUSSION

For this comparison, the DIL Kit was used and three load levels of interactive end user experience were

measured. The levels of 100, 300, and 600 were chosen for this comparison.

The testing of the Oracle Cloud Infrastructure autoscaling utility also involved the use of an Oracle Cloud

Infrastructure LBaaS. The goal of the testing was to be sure that the end user experience was consistent

throughout the autoscaling (scale up and scale in) process.

The scale-in threshold used in this testing was 50% CPU usage over a three-minute interval to trigger the

scaling event. The testing was performed for an hour, during which a single elastic unit was scaled out to two

elastic units and returned to a single elastic unit at the end of the test.

RESULTS

The figure below shows the baseline end user response times for interactive user levels of 100, 300, and 600

for a single elastic unit configuration.

The figure below shows the baseline end user response times for interactive user levels of 100, 300, and 600

for a dual elastic unit configuration.

16 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The interactive user levels of 100 and 300 did not trigger any autoscaling event due to JD Edwards

EnterpriseOne Enterprise Server load. However, a load of 600 users was sufficient to maintain a 50% CPU

load for three consecutive minutes.

During the Oracle Cloud Infrastructure autoscaling event, a new elastic unit became available approximately

10 minutes after the event was triggered. The load balancer was updated and new requests were sent to both

the HTML servers in their respective elastic unit containers.

At the end of testing when the JD Edwards EnterpriseOne Enterprise Server and HTML Server became idle,

another scale in event was triggered and the JD Edwards EnterpriseOne architecture returned to a single

elastic unit configuration. The time interval between the triggered events (cool down setting) are configurable

(the default is a minimum of five minutes) and in this test, the second triggered event occurred as expected.

A similar test with 100, 300, and 600 interactive users was performed with concurrent batches being

processed by the JD Edwards EnterpriseOne Enterprise Server. In this case, the 50% threshold was triggered

by the 300 and 600 interactive user levels due to the additional consumption of resources by the batch

processing.

In the autoscaling events, a baseline end user response time ranging between 0.62 seconds (620 ms) and

0.75 seconds (750 ms), was observed. This represents a spread of 0.13 seconds (130 ms), which is an

acceptable level of performance variance.

17 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

OVERVIEW: ALTERNATIVE SCALING OF JD EDWARDS ENTERPRISEONE
USING CONTAINERS

An alternative to the Oracle Cloud Infrastructure autoscaling method is to use the JD Edwards

EnterpriseOne HTML Server as the sole managed container within an elastic unit as depicted in the below

figure.

The above figure shows a single instance managing a single HTML server with two managed instances.

This configuration is a valid JD Edwards EnterpriseOne architecture and does not require any additional

configuration if used with the Oracle Cloud Infrastructure autoscaling utility.

If the goal is to quickly replicate the JD Edwards EnterpriseOne system, instead of using the Oracle Cloud

Infrastructure autoscaling utility with a full JD Edwards EnterpriseOne HTML Server VM, consider placing

the JD Edwards EnterpriseOne HTML Server under the control of containers. This option enables quick start

and almost immediate availability of the instance to users.

18 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

ORACLE CLOUD INFRASTRUCTURE REQUIREMENTS FOR AN AUTOSCALE
UTILITY

The Oracle Cloud Infrastructure Documentation provides detailed information about the infrastructure

requirements for autoscaling.

The high-level requirements can be summarized as follows:

 You have an instance pool and can optionally attach a load balancer to the instance pool. For steps

to create an instance pool and attach a load balancer, see the section Creating an Instance Pool of
the document.

 Monitoring is enabled on the instances in the instance pool. For steps to enable monitoring, see the

section Enabling Monitoring for Compute Instances of the document.

 The instance pool supports the maximum number of instances that you want to scale to. This limit
is determined by your tenancy's service limits. For more information, see the section Service Limits.

Two additional Oracle Cloud Infrastructure components that are strongly recommended to be implemented

with the Oracle Cloud Infrastructure autoscaling utility and the container utilities, are an Oracle Cloud

Infrastructure load balancer and some form of network storage. Each of these two components are

illustrated in the figure below and are subsequently described in detail.

Load Balancer

The function of the load balancer component of the Oracle Cloud Infrastructure is to automate the balancing

of new HTML requests to the JD Edwards EnterpriseOne application after an autoscaling event.

Network Storage Component

https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/autoscalinginstancepools.htm
https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/creatinginstancepool.htm
https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/enablingmonitoring.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/servicelimits.htm

19 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The network storage component configuration is introduced as a central repository for any log files and other

configurations that need to be saved prior to a scale down event. The network storage component is

required because the Oracle Cloud Infrastructure autoscaling utility removes an elastic unit compute

instance when scaling down, meaning any files added and changes made to that elastic unit is otherwise

lost.

20 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

CONCLUSION

The Oracle Cloud Infrastructure autoscaling utility combined with a container utility is a powerful way to

transform how you use your JD Edwards EnterpriseOne system to automate business processes and shift

work from users to machines. The ability to launch additional elastic units from events within the Oracle Cloud

Infrastructure environment itself vastly expands the possibilities for digital transformation.

The use cases discussed in this technical brief, along with the observed results and analyses, illustrate some

effective and practical design patterns that can be followed as best practices. The choices about which events

to scale out and scale in as elastic units are the design decisions that have the highest impact on the

performance of your solution and the accessibility of JD Edwards EnterpriseOne architecture.

By automating processes using the Oracle Cloud Infrastructure autoscaling utility, you can shift work from

users to machines, but in doing so you must also consider the effect of increased system resource

consumption and the cost of those services on the Oracle Cloud Infrastructure platform.

When your business analysts have the Oracle Cloud Infrastructure autoscaling feature with elastic unit

running efficiently, system administrators should observe and tune the JD Edwards EnterpriseOne system

parameters, such as security kernels, call object kernels, and threads. It is equally important to measure

performance metrics and test performance in a nonproduction environment during the design and test phase

and to continuously monitor how the system behaves in the production environment. The success of your

implementations can be achieved through a partnership among business analysts, system administrators,

and system architects.

Using the Oracle Cloud Infrastructure autoscaling utility to expand the number of components enables you to

patch any of the JD Edwards EnterpriseOne components within the autoscaling pool while the utility provides

service to the original image. There will be a transition when moving users from the unpatched environment to

the new environment, but the Oracle Cloud Infrastructure autoscaling utility can make this transition

seamless.

The goal of this document has been to create an understanding through theoretical discussion as well as

through observation, measurement, and analyses made as part of several use cases, so that you might

implement the Oracle Cloud Infrastructure autoscaling utility with greater knowledge and foresight. As a

result, you can ensure that your JD Edwards EnterpriseOne application is scalable and use it in new ways to

move toward digital transformation.

21 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

APPENDIX A: TEST CONFIGURATION

The following section provides details of the test environment. The JD Edwards EnterpriseOne Enterprise

Server and HTML Server are configured as containers within the same elastic unit instance.

JD Edwards EnterpriseOne Enterprise Server:

 Oracle Enterprise Linux 6

 Oracle Database12c (12.1.0.2) 32-bit Client

 4 VCPUs x Intel Xeon CPU E5-2697 @ 2.90 GHz

 12 GB RAM

Database Server:

 Oracle Enterprise Linux 6

 Oracle Database12c (12.1.0.2) Enterprise Edition 64 bit

 8 VCPUs x Intel Xeon CPU E5-2697 @ 2.90GHz

 30 GB RAM

HTML Server (HTML1, HTML2a, and HTML2b):

 Oracle Enterprise Linux 6

 6 VCPUs x Intel Xeon CPU E5-2697 @ 2.90 GHz

 16 GB RAM

 WebLogic Server 12c (12.1.3); Java JDK (1.8)

 Single Managed Instance (4 GB Heap Size)

AIS Server:

 Oracle Enterprise Linux 6

 4 VCPUs x Intel Xeon CPU E5-2697 @ 2.90 GHz

 16 GB RAM

 WebLogic Server 12c (12.1.3); Java JDK (1.8)

 Single Managed Instance (4 GB Heap Size)

Deployment Server:

 Windows 2012 R2 Enterprise Edition

 2 VCPUs x Intel Xeon CPU E5-2697 @ 2.90 GHz

 8 GB RAM

Server Manager Console:

 Oracle Enterprise Linux 6

 1 VCPUs x Intel Xeon CPU E5-2697 @ 2.90 GHz

 132 GB RAM

OATS Test Controller:

 Windows 2012 R2 Enterprise Edition

 8 VCPUs x Intel Xeon CPU E5-2697 2.90 GHz

 32 GB RAM

 Oracle Application Testing Suite 12.3.0.1.0.376

Software: JD Edwards EnterpriseOne Application 9.2 Update 2 with Tools Release 9.2.3.1

22 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

APPENDIX B: CONFIGURING ORACLE CLOUD INFRASTRUCTURE
AUTOSCALING

This section describes the configuration steps for setting up the Oracle Cloud Infrastructure autoscaling

utility. The container that is used in this process is Docker.

High Level Outline

Prerequisites—Elastic Unit and Load Balancer have been created and configured.

1. Save configured elastic unit instance as a custom image.
2. Create a model instance using the custom image with the desired shape and storage.
3. Create an instance configuration based on newly created instance.
4. Create an instance pool based on the instance configuration.
5. Create the autoscaling configuration and policy.

6. Use Oracle Cloud Infrastructure Console to monitor the instance pool and scaling activities.

Outline with Details

Prerequisites

1. Prepare a master copy of an elastic unit. Ensure that this instance is set up to automatically start
the containers and managed instances in the correct order. After the master copy is prepared and
tested, clean up any logs that exist for the instance or set up the installation software so that the
instance is not continuously replicated.

2. Prepare a load balancer to be used in your autoscaling environment. Here, you will determine a
front end listener port and a back-end set to attach to the autoscaling configuration among other
settings to facilitate the desired behavior during autoscaling.

Autoscaling Setup

1. Save the master elastic unit as a custom image. This custom image will be the source for accurate
information about the OS and software state.

2. Bring up a model instance using the custom image with the exact shape and boot volume size
desired for members of the autoscaling pool.

3. Using the model instance, create an instance configuration in your desired compartment.
4. Create an instance pool based on the new instance configuration. While defining the pool, you will

choose how many instances to create initially in the pool and you will attach your load balancer.
5. Create an autoscaling configuration and policy in which you will define the following:

a. Cool Down Period: The time interval between autoscaling actions before evaluating the
performance metric for further actions.

b. Performance Metric: Either CPU or memory utilization to trigger autoscaling actions.
c. Scaling Limits: The minimum number of instances, the maximum number of instances,

and the initial number of instances in your autoscaling pool.
d. Scaling Rule: The threshold percentages to trigger actions to scale out (create new

instances in the pool), or to scale in (terminate instances in the pool).
6. Use Oracle Cloud Infrastructure Console to monitor the instance pool and scaling activities.

23 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Creating an Instance Pool and Autoscaling Configuration

Assumptions and Prerequisites:

 Oracle Cloud Infrastructure Tenancy, Compartment, Security Lists, and other infrastructure are

established.

 Elastic unit is prepared, tested, finalized, and saved as a final custom image.

 External RAC database is configured and tested with elastic unit.

 Final custom image in preferred state is used to bring up a model instance for the pool.

NOTE: These instructions are based on the current processes and user interface in Oracle Cloud

Infrastructure. The process and features of the Oracle Cloud Infrastructure autoscaling utility along with the

user interface could be changed and enhanced in the future.

1. Open the model instance to use as a base of the autoscaling pool.

2. Click Create Instance Configuration from the Actions drop-down list.

3. Select the desired compartment, give the instance configuration a meaningful name, and click the

Create Instance Configuration button.

24 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

4. On the Instance Configurations page, click the newly created instance configuration to open the

details screen.

5. On the instance Configuration Details screen, click the Create Instance Pool button.

25 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

6. In the Create Instance Pool form, select your compartment, enter a meaningful name for the pool,

and select 1 for the initial number of instances in the pool. Click the Attach a Load Balancer check

box to see the load balancer configuration fields and proceed to the next step.

7. In the Load Balancer Information section, complete these fields:

Load Balancer Compartment: Should be set to the same compartment in which you are

working.

Load Balancer: Use the drop-down list to select your load balancer.

Backend Set: Select the back-end set you created for autoscaling.

26 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Port: Enter the actual port on the back-end server that will be used to access the HTML server.

This could be different from the port from which the listener will receive requests on the load

balancer.

8. In the Availability Domain Selection 1 section, select your preferred Availability Domain,

Virtual Cloud Network, Subnet, and the corresponding compartment for the applicable

resources.

9. Confirm all the entered values and then click the Create Instance Pool button.

10. The status is Provisioning because it creates the initial instance in the pool and attaches the

instance as a backend component to the load balancer.

27 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Note: Instances created in a pool are given an autogenerated unique host name based on the name of

the pool.

28 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

11. From the Instance Pool Details form, select Create Autoscaling Configuration from the Actions

drop-down menu.

12. Enter or confirm the following values in the Create Autoscaling Configuration form.

Autoscaling Configuration Compartment: Your compartment should be populated by default.

Autoscaling Configuration Name: Keep the default unique name or enter a meaningful name of your

choice.

Cooldown in Seconds: This field is populated with 300 seconds (five minutes) by default which is the

minimum value allowed. The cool-down period is the amount of time between scaling actions or

decisions as to scale out or scale in the number of instances.

Instance Pool: The fields in this section should automatically be populated with your compartment and

instance pool name.

29 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

13. In the Autoscaling Policy section, complete these fields:

Autoscaling Policy Name: Keep the default unique name or provide a meaningful name of your

choice.

Performance Metric: Select CPU or Memory Utilization.

For this testing, CPU was used.

Scaling Limits:

 Minimum Instances = 1

 Maximum Instances = 3

 Initial Instances = 1

Scaling Rule:

 Scale-out Operator = Greater than (>)

 Threshold Percentage=50

 Number of Instances to Add = 1,

 Scale-in Operator = Less than (<)

 Threshold Percentage = 1

 Number of Instances to Remove = 1

30 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

14. Optionally, fill out the Tags section and click the Create button.

Preparing the Load Balancer for Autoscaling

Assumptions and Prerequisites:

The load balancer has been created and configured for standard EnterpriseOne access.

1. On the Load Balancer Details screen, click the Create Backend Set button to create a new

backend set. This is the back-end set that is associated with the autoscaling pool.

31 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

2. Enter the information to configure the back-end set.

Name: Provide a meaningful name.

Traffic Distribution Policy: Select your preferred policy.

Use SSL: Check if the back-end server is going to be accessed through HTTPS and then provide

certificate information (this should be already uploaded to the load balancer if SSL has been

implemented).

Use Session Persistence: Check whether the sessions are sticky and are on the same backend

set.

Cookie Name: Select a specific cookie for session persistence or enter * to match any cookie

name.

Health Check:

 Protocol = TCP

 Port=Port

This is the port that is used for the backend access.

 Number of retries=2

32 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Leave the other fields blank and they will be populated with the default values.

3. When the work request has been completed, open the backend set and view the details. Notice

that no backends are associated to the backend set at this time.

33 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

4. Return to the load balancer details screen and click Listeners under Resources, and then click the

Create Listener button.

34 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

5. To create a new listener port and associate it with the new backend set created in the previous

steps, complete these fields:

Name: Provide a meaningful name.

HOSTNAMES: Select the hostnames that are associated with your public SSL certificate (if

applicable).

Protocol: Select the protocol used to access this port (HTTP in this case).

Port: Enter the front-end port for the listener to receive requests on the load balancer.

Use SSL: Check if the listener port can be accessed using SSL and then provide certificate

information (this should be already uploaded to the load balancer if the SSL has been

implemented).

Backend Set: Select the back-end set created previously to route requests from this listener.

Idle Timeout in Seconds: Leave this field blank so that it is automatically populated with the

default value of 60 seconds.

35 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

36 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

AUTOSCALING TEST SCREENSHOTS

The following screens were captured during a test of the autoscaling utility using JD Edwards

EnterpriseOne elastic units.

Testing began with an instance pool that can have a minimum of one instance and a maximum of three

instances, and has an autoscaling configuration for triggering a scaling event when a threshold of 50%

CPU is reached. There is a five-minute cooling period between scaling actions before the threshold is

reevaluated on the instances.

In the image below, you can see the CPU utilization of the single-pool instance as it reached the

specified threshold.

After the CPU threshold was maintained for the defined period, a scaling event was triggered and a new

instance was created in the pool. The details of the new instance are shown in the screenshot below.

37 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

In the following screenshot, the individual work requests to create the additional instance and to attach

the load balancer are displayed as successful.

38 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

This screenshot shows that a new instance was added to the backend definition of the load balancer.

When the health check of the new backend instance is reported as successful, inbound traffic is routed

to the new instance.

After the cool-down period expires, the increasing load triggers an additional scaling event. This

screenshot shows that the resulting third instance has been added to the pool and the load balancer.

39 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The following screenshot shows that the third instance has been added to the backend set.

40 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

The following screenshot shows the resulting pool of three instances which are all functional and are

processing requests from the load balancer.

The following screenshots show the CPU metrics from each of the instances in the pool during the load

test timeline.

41 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

When the CPU consumption in an instance is less than the minimum CPU threshold (less than 1%), a

scaling event is triggered and the instance is terminated from the pool and is removed from the back

end of the load balancer. The following screenshots show the work requests that are in progress for the

scale-down event.

42 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

43 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

After another cool-down period, another instance in which CPU consumption was lower than the

threshold value was terminated resulting in a single-instance pool with a single back end on the load

balancer. The following screenshots show the progress of the work requests for the scale-down event

and the resulting pool of a single back end server.

44 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

45 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Following the scaling test, the instances from the pool were still visible as terminated instances for a

short time in the Oracle Cloud Infrastructure console. After a scale-down event, the metrics can be

viewed and captured in the duration when the terminated images are visible. The terminated images are

shown in the following screenshot:

46 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

APPENDIX C: CONFIGURING ORACLE CLOUD INFRASTRUCTURE
AUTOSCALING UTILITY FOR PATCHING

This section of the document describes a methodology for patching the JD Edwards EnterpriseOne

architecture on the Oracle Cloud Infrastructure. A simplified example of a web tier patching process is

illustrated in the figure below:

In the above figure, a web tier is shown which has an older version of software or an older security patch. A

new patched web tier VM image is introduced into the architecture and the drain feature of the load balancer

is initiated to move any new connections from the original unpatched web tier component to the patched

web tier component.

The unpatched web tier component can then be taken offline and deprecated. The advantage of this model

is that it includes a “back out” process to this methodology. In addition to the forward process of moving

users from an unpatched web tier to a patched web tier, the reverse process can also be used to back out

users from a patched version back to an unpatched version.

A back out plan is an important contingency plan of any patching methodology. A back out plan is critical to

ensure that an alternative solution can be used if the new system or patched environment does not deliver

services as expected or does not pass the post-implementation test.

Applying a Simple Model to an Instance Pool

The diagram below illustrates the components that are involved in Oracle Cloud Infrastructure for applying a

patch to an instance pool using the patching methodology explained above.

47 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

An instance pool is a requirement for autoscaling; it enables you to provision and create multiple compute

instances based on the same autoscale image within the same region. VM Standard 2.4 refers to the shape

of the Oracle Cloud VM image. A shape in Oracle Cloud has a unique set of processing and memory

allocations as well as disk I/O configurations.

When you create the first instance pool, you must first define the master instance, autoscale image, and VM

image shape. The master instance and autoscale images are templates that the instance pool configuration

uses to create the VM images in the instance pool. You must also define a configuration and policy for the

autoscaling utility of the Oracle Cloud Infrastructure.

The autoscale configuration includes the minimum and maximum number of VM shapes in the instance

pool. The autoscale policy defines the CPU and memory thresholds that the Oracle Cloud Infrastructure

autoscaling utility uses to initiate a new VM image in the instance pool or deprecate and possibly remove a

VM image from the instance pool. The next figure will describe applying the simplified model described

above for patching purposes.

48 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

Patching non-EnterpriseOne VM image uses the same components of the simplified model. The process of

patching involves taking the VM image (VM Standard 2.4) created from the original master EnterpriseOne

image using the instance configuration and autoscale configuration and policy, patching it, and then the

patched VM image is used to create a new master EnterpriseOne instance 2.

From the master EnterpriseOne instance 2, the autoscale image 2 is initiated and this new patched version

of the image is what is propagated to the larger EnterpriseOne architecture implementation. In essense,

only a single patched VM image is required and using the Oracle Cloud autoscale utility, the new patched

software on the new VM image (VM Image 2 in the above diagram) is what is implemented over time to the

entire Cloud architecture.

More than one set of these components can be created using the same or a unique instance configuration.

In the below diagram Instance Pool 1 could be a patched version of the operating system, say recent

security fixes, that supports the database. The instance pool can be a patched version of the operating

system that updates the version of other third party software.

49 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

With the master instance 2, autoscale image 2, and VM image 2 defined, a new instance pool (instance pool

2) is created and attached to the same backend set of the Oracle Cloud Infrastructure Load Balancer.

The load balancer now can manage each of the VM images within each of the instance pools (instance pool

1 and instance pool 2) for patching. In the above diagram, three VM images exist in each instance pool.

Two of the VM images in instance pool 1 in the above diagram have been manually configured to “drain”

(VM image 1-1 and VM image 1-2, which are grayed out). As a result of this configuration, the processes of

these two VM images are moved so that they can be taken offline for patching. This means that all new

requests to JD Edwards EnterpriseOne will no longer go to these VM images, but to the three VM images in

instance pool 2 and the remaining “undrained” instance (VM image 1-3) in instance pool 1 that are still in an

active state.

The marking of VM images to be in a “drain” state is still a manual process for the cloud administrator and it

may take time to move all the processes off the VM images that have to be patched.

The advantages of this patching methodology are:

50 | JD EDWARDS ENTERPRISEONE: SCALABLE ELASTIC DEPLOYMENT

 You only patch the initial VM image defined by the master instance, autoscale image, and VM

shape.

 The autoscaling utility handles the creation of the load balancer and updates the component with

the configuration of each of the active VM shapes within the instance pool.

November, 2019

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle facebook.com/oracle twitter.com/oracle

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties

or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a

particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either

directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1119

Oracle JD Edwards EnterpriseOne: Scalable Elastic Deployment

https://www.oracle.com/
http://www.oracle.com/contact

